蛋白质的降解和氨基酸的降解转化
蛋白质的降解和氨基酸的分解代谢

精氨酸是AGA合成酶的激活剂
•
正常情况下血氨保持动态平衡:肝中合成尿素是维持平
衡的关键。 高血氨症:肝功能严重损伤时 昏迷:氨与脑中的-酮戊二酸结合生成谷氨酸,氨可与 谷氨酸结合生成谷氨酰胺。脑中氨的增加使脑中-酮戊 二酸减少,导致三羧酸循环减弱,从而使脑组织中的ATP 生成减少,引起大脑功能障碍,严重时发生肝昏迷。 降血氨的常用方法:给予谷氨酸、精氨酸;肠道抑菌药; 酸性盐水灌肠;限制蛋白质进食量。
H2N
C
H2N
体内水循环迅速,NH3 浓度低,扩散流失快, 毒性小。 体内水循环较慢,NH3 浓度较高,需要消耗 能量使其转化为较简 单,低毒的尿素形式。
?
O
鸟类、爬虫排 尿酸
O
均来自转氨 不溶于水, 毒性很小, 合成需要 更多的能 量。
N
O
N N N
O
提问:为什么这类生物如此排氨?
水循环太慢,保留水分同时不中毒得付出高能量代价。
激活剂。CPS-I、AGA都存在于肝细胞线粒体中。
循环的特点:
1.
2. 3.
耗能: 消耗3个ATP中的4个高能磷酸键 原料:NH3 、 CO2、 ATP、 天冬氨酸
两个来源不同的氮原子,1个来自氨,1个来自天冬氨酸
4.
5. 6. 7.
限速酶:精氨酸代琥珀酸合成酶 部位:反应在线粒体和胞浆 与三羧酸循环的联系物质:延胡索酸
第三十章 蛋白质的降解和氨基酸的分 解代谢
1. 蛋白质的降解 2. 氨基酸的分解代谢 3. 尿素的形成 4. 氨基酸碳骨架的氧化途径 5. 由氨酸酸衍生的其它重要物质 6. 氨基酸代谢缺陷症
一
蛋白质的降解
蛋白质新陈代谢的功能:
生物化学 第30章 蛋白质解和氨基酸分解代谢

3、转氨基作用的机制
转氨酶的辅酶是磷酸吡哆醛, 起传递氨基的作用
二、氨基酸分解代谢
(三)联合脱氨基作用
——是体内氨基酸脱氨基的主要方式
• 定义 • 形式
二、氨基酸分解代谢
(三)联合脱氨基作用
1、什么是联合脱氨基作用
α -氨基酸先与α -酮戊二酸起转氨基作用,形成谷 氨酸,谷氨酸再脱氨。 生物体采用转氨作用和氧化脱氨作用联合进行的方 法,即可迅速地使各种不同的氨基酸脱掉氨基,叫 联合脱氨基作用。
2、*转氨基作用特点
转氨酶的辅酶是磷酸吡哆醛 转氨酶催化的反应没有游离氨的释放 转氨酶催化反应是可逆反应 氨基的受体:丙酮酸、草酰乙酸、-酮戊二酸
生化作用: 氨基酸转移酶的辅酶,起递氨基作用
HO H3C
R
CH2OHP
磷酸吡哆醛
N
磷酸吡哆胺
吡哆醛:R= -CHO 吡哆胺:R= -CH2NH2 吡哆醇:R= -CH2OH
转氨基作用:在转氨酶的催化下, 某一氨基酸的-氨基转 移到另一种-酮酸的酮基上,生成相应的氨基酸;原来的 氨基酸则转变成-酮酸。
谷丙转氨酶(glutamic pyruvic transaminase, GPT,又称ALT) 谷草转氨酶(glutamic oxaloacetic transminase, GOT,又称AST)
Chapter30 蛋白质降解和 氨基酸的分解代谢
Metabolism of Amino acids & Proteins
本章要点
一、蛋白质的降解 二、氨基酸分解代谢 三、尿素循环(urea cycle鸟氨酸循环 ) 四、氨基酸碳骨架的氧化途径 五、生糖氨基酸和生酮氨基酸 六、由氨基酸衍生的其他重要物质 七、氨基酸代谢缺陷
蛋白质的降解与氨基酸代谢

根据动物实验,人们很早就确定了肝脏是尿素合成的主要 器官,肾脏是尿素排泄的主要器官。1932年Krebs等人利用大 鼠肝切片作体外实验,发现在供能的条件下,可由CO2和氨合 成尿素。若在反应体系中加入少量的精氨酸、鸟尿酸或瓜氨酸 可加速尿素的合成,而这几种氨基酸的含量并不减少。为此, Krebs等人提出了尿素循环学说(urea cycle) ,又称鸟氨酸循 环(orinithine cycle)。
L-谷氨酰胺 谷氨酰胺酶 (肝线粒体)
尿素
L-谷氨酸
2.丙氨酸的转运:
肌肉蛋白
肌肉中有一组氨基转移酶, 可把丙酮酸作为它的-酮酸 的载体。在它们的作用下, 产物为丙氨酸,丙氨酸被释 放到血液,经血液循环进入 肝脏,在肝脏中经转氨作用 又产生丙酮酸,通过葡萄糖 异生途径形成葡萄糖,葡萄 糖通过血液循环回到肌肉中, 通过糖酵解作用降解为丙酮 酸,该循环称为葡萄糖-丙氨 酸循环。 其既可以将肌肉中的氨以 无毒的丙氨酸形式运输到肝, 同时通过肝为肌肉提供葡萄 糖。
蛋白质的降解与氨基酸代谢 Chapter 30 Metabolism of Amino Acids & Proteins.1
一.蛋白质的降解:
细胞不断地把氨基酸合成为蛋白质,又不断地把蛋白 质降解为氨基酸(aa),这个过程有二重意义:
(1). 排除不正常蛋白质,它们若一旦聚集,将对细胞有害。 (2). 通过排除积累过多的酶和“调节蛋白”,使细胞代谢得 以秩序井然地进行。
(1). 转氨基(氨基转移)作用
(2). 氧化脱氨基作用 (3). 联合脱氨基作用
2.1 转氨基作用(transamination):
1) 定义:在转氨酶的作用下,某一氨基酸去掉α-氨基生成 相应的α- 酮酸,而另一种α- 酮酸得到此氨基生成相应的氨 基酸的过程。
生物化学第十一章氨基酸的代谢

C O O H
L-谷氨酸脱氢酶
(C 2)2 H C H =N C O O H
C O O H
C N 2 H H C O O H
NAD+
NADH+H+
L-谷氨酸
+ H2O
) 李 先 磊
(C 2)2 H C =O C O αO H
+ NH3
酸
_H O 2
化学化工学院
转氨基作用
绝大多数的氨基酸脱氨基作用出自转氨基作用。 绝大多数的氨基酸脱氨基作用出自转氨基作用。 的氨基酸脱氨基作用出自转氨基作用 氨基酸和α 酮酸之间的氨基转移作用。 α-氨基酸和α-酮酸之间的氨基转移作用。催化这一反应 的酶叫做转氨酶或者氨基酸转移酶。 的酶叫做转氨酶或者氨基酸转移酶。 转氨酶或者氨基酸转移酶 目前至少发现有50多种转氨酶, 50多种转氨酶 目前至少发现有50多种转氨酶,命名方式是以催化活性最 大的氨基酸作为命名方式,一般的动、植物只催化L 大的氨基酸作为命名方式,一般的动、植物只催化L-氨基 酸转氨,细菌中存在D 氨基酸转氨作用。 酸转氨,细菌中存在D-氨基酸转氨作用。 反应, 转氨作用一 转氨酶催化的作用 是 反应, 物 转氨作用一 的, 般 氨基酸悦化 作用是 的, 反应是 一 方 。 氨酸, 恀多氨基酸 以 氨基转移 α-酮 酸 氨酸, 在酶的催化 , 一 。 转氨基的作用 转氨酶的应用转氨酶的应用氨酸恞
生 物 学 ( 化
参与多种重要的生理活动(如酶、激素) 参与多种重要的生理活动(如酶、激素) 生理活动 悦化 能( 蛋白质) 能(17.9KJ/g 蛋白质) 化 成的 源
) 李 先 磊
化
和
化学化工学院
氮
平
衡
食物摄入氮- 尿氮+粪氮) 食物摄入氮-(尿氮+粪氮) 可反映体内蛋白质合成与分解的动态关系
蛋白质的代谢过程

蛋白质的代谢过程
蛋白质代谢涉及到三个主要的过程:蛋白质合成、蛋白质降解、氨基酸转运。
1. 蛋白质合成(蛋白质合成作用)
蛋白质合成是指通过翻译机制,将mRNA上的信息转换为蛋白质的过程。
合成蛋白质时,先是需要氨基酸的输入,然后逐个将氨基酸通过肽键连接起来形成多肽链,最终形成具有特定功能的三维蛋白质。
2. 蛋白质降解
蛋白质的降解是指将蛋白质分解为氨基酸的过程。
这个过程涉及到多个酶类,比如蛋白酶、肽酶等。
蛋白质降解的目的是使有害的、老化的蛋白质分解并重新利用其组成的氨基酸。
3. 氨基酸转运
氨基酸转运指的是通过氨基酸转运体将氨基酸从细胞外部或内部转移到细胞内部(如细胞质和内质网),以满足蛋白质合成和其他代谢过程对氨基酸的需求。
这个过程是由多个运输蛋白协同完成的。
生物化学8 氨基酸代谢与合成

蛋白质降解和氨基酸的分解代谢蛋白质的降解细胞总是不断地从氨基酸合成蛋白质,又把蛋白质降解为氨基酸。
从表面上看,这样的变化过程看似是一种浪费,实际上它有二重功能,其一是排除那些不正常的蛋白质,它们一旦积聚,将对细胞有害;其二是通过排除积累过多的酶和调节蛋白使细胞代谢的井然有序得以进行。
蛋白质降解的特性蛋白质有选择地降解非正常蛋白质,例如血红蛋白与缬氨酸类似物结合,得到的产物在网织红细胞中的半存活期约10min,而正常血红蛋白可延续红细胞的存活期最终可达120天。
正常的胞内蛋白被排除的速度是由它们的个性决定的,绝大多数快速降解的酶都居于重要的“代谢控制”位置,而较稳定的酶在所有生理条件下有较稳定的催化活性。
降解速度还因它的营养及激素状态而有所不同。
在营养条件被剥夺的情况下,细胞提高它的蛋白质降解速度,以维持它的必需营养源使不可或缺的代谢过程得以进行。
蛋白质降解的反应机制真核细胞对于蛋白质降解有两种体系,一个是溶酶体的降解体质和一种ATP-依赖性的以细胞溶胶为基础的机制。
溶酶体溶酶体是具有单层被膜的细胞器,其中个含有50多种水解酶,包括不同种的蛋白酶,称之为组织蛋白酶。
溶酶体保持其内部PH在5左右,而它含有的酶的最适PH就是酸性。
如此可以抵制偶然的溶酶体渗漏从而保护了细胞,因此在细胞溶胶PH下,溶酶体的大部分酶都是无活性的。
溶酶体对细胞各组分的再利用是通过它融合细胞质的膜被点块即自(体吞)噬泡,并随即分解其内容物实现的。
溶酶体的阻断剂有抗虐药物——氯代奎宁(是一种弱碱,在不带电形式随意穿透溶酶体,在溶酶体内积累形成特电荷型,因此增高了溶酶体内部的pH,并阻碍了溶酶体的功能。
溶酶体降解蛋白质是无选择性的,而rong'mei't'抑制剂对于非正常蛋白或短寿命酶无快速的降解效应,但是它们可以防止饥饿状态下蛋白质的加速度崩溃。
许多正常的和病理活动都伴随溶酶体活性的升高。
ATP-依赖真核细胞蛋白质的降解主要是溶酶体的作用,但是缺少溶酶体的网织红细胞却可选择性的降解非正常蛋白质,这里有ATP-依赖的蛋白质水解体系存在ATP依赖蛋白质需要有泛肽存在。
蛋白质的降解和氨基酸的分解代谢

提问:不同蛋白酶之间功能上可能有 什么区别?
氨肽酶
NH3+ —NH3+—
特定氨基酸间
CCOOOO--— —
羧肽酶
最终产物—氨基酸
二 氨基酸分解代谢
氨基酸的来源:
H C N H 33 COO-
2H+H+ R
H2O+H+
C NH
酶
C O O-
NH4+
脱氢 亚氨基酸不稳定 水解加氧
R CO C O O-
α-酮 酸
! L-谷氨酸脱氢酶(专一催化谷氨酸脱氢分解及逆过程)
酶——L-氨基酸氧化酶、D-氨基酸氧化酶
提问:那种酶作用最重要?
常误认为是L-氧化酶(大多数氨基酸都是L型),但该酶分布不普 遍,活力低(pH=7),作用小。
氨的去路:
高等动物的脑对氨极为敏感,血液中1% 的氨就可引起中枢神经系统中毒。
1. 氨的排泄(人:肝脏合成尿素) 2. 氨与谷氨酸合成谷氨酰胺 3. 氨的再利用 : 参与合成非必需氨基酸 或其它含氮化合物(如嘧啶碱) 4. 肾排氨: 中和酸以铵盐形式排出
1. 氨的排泄---安全、价廉
直接排氨,毒性大,不消耗能量。转化为排氨形式越复杂,越安全, 但越耗能。
HC
N
H
+ 3
L-谷氨酸脱氢酶
COO
COO ( C H 2)2 CO COO
α酮戊二酸大量转化 NADH大量消耗
三羧酸循环中断,能量
α-谷氨酸
α-酮戊二酸 供应受阻,某些敏感器
蛋白质降解方法与氨基酸分解代谢

(3)L-谷氨酸脱氢酶
该酶是能使氨基酸直接脱去氨基活力最高的酶。 存在于线粒体中。
蛋白质的降解方法和氨基 酸的分解代谢
1.2 氨基酸的非氧化脱氨基作用 1、 还原脱氨基作用
蛋白质的降解方法和氨基 酸的分解代谢
2、水解脱氨基作用
蛋白质的降解方法和氨基 酸的分解代谢
蛋白质的降解方法和氨基 酸的分解代谢
1.1 氧化脱氨基作用 1.1.1 氧化脱氨基作用一般过程
蛋白质的降解方法和氨基 酸的分解代谢
实际上:
黄素蛋白
蛋白质的降解方法和氨基 酸的分解代谢
氨基酸的脱氨基作用如果由不需氧脱氢酶催化, 则脱出的氢不以分子氧为直接受体,而以辅酶作 为受体,然后经细胞色素体系与氧结合成水。
R1
R2
R3
R4
水解位点
肽链
糜 蛋
或胰凝乳蛋白酶(Chymotrypsin):R1= 苯丙氨酸Phe,色氨酸Trp,酪氨酸Tyr; 亮氨
白
酸Leu,蛋氨酸Met和组氨酸His水解稍
酶
慢。
蛋白质的降解方法和氨基 酸的分解代谢
பைடு நூலகம்
氨基酸的吸收
氨基酸的吸收:主要在小肠进行,是一种主 动转运过程,需由特殊载体携带。除此之外, 也可经γ-谷氨酰循环进行 。
蛋白质的降解方法和氨基 酸的分解代谢
1.1.2 催化氧化脱氨基作用的酶 1. L-氨基酸氧化酶 ① 以黄素腺嘌呤二核苷酸(FAD)为辅基 ② 以黄素单核苷酸(FMN)为辅基。
说明:
– 人和动物体中的L-氨基酸氧化酶属于后一类。该 酶能催化十几种氨基酸的脱氨基作用。
– 对一些氨基酸必须由特殊的,专一性强的氨基酸 氧化酶催化脱氨基。
生物化学蛋白质降解和氨基酸的分解代谢

Restriction point A cell that passes this point is committed to pass into S phase.
DBRP及其识别序列
Cyclin 细胞周期蛋白
CDK
Cyclin-dependent protein kinase
Destruction box of cyclin
S Phase DNA synthesis doubles the amount of DNA in the cell. RNA and protein also synthesized.
M Phase Mitosis (nuclear division) and cytokinesis (cell division) yield two daughter cells.
第30章 蛋白质降解和氨基酸的 分解代谢
(Protein degradation and amino acids catabolism)
一、蛋白质的降解 二、氨基酸的分解代谢 三、尿素的形成 四、氨基酸碳骨架的氧化途径 五、生糖氨基酸和生酮氨基酸 六、由氨基酸衍生的其他重要物质 七、氨基酸代谢缺陷症
通过葡萄糖-丙氨酸循环,将肌肉中的氨运 输到了肝脏。在肝脏中,氨可转变成尿素,从尿 液中排出。
∣
葡 萄 糖
丙 氨 酸 循 环
(二)谷氨酸氧化脱氨作用
转氨作用产生了大量的谷氨酸,谷氨酸可以在 谷氨酸脱氢酶的作用下发生氧化脱氨(谷氨酸→ α酮戊二酸),该酶以NAD+作为氧化剂。而在催化 逆反应时(α-酮戊二酸→谷氨酸)以NADPH为还 原剂。谷氨酸脱氢酶由6个亚基组成,存在于细胞 溶胶中,它受GTP和ATP的别构抑制,受ADP的别 构激活。
11第十一章 蛋白质的降解和氨基酸的分解代谢

2. 转氨基作用
转氨基作用是α-氨基酸和α-酮酸之间的氨基转移反 应。 催化转氨基作用的酶叫做转氨酶或氨基移换酶。 转氨酶广泛存在于生物体内。已经发现的转氨酶至 少有50多种。用15N 50 N标记的氨基酸证明,除甘氨酸、赖氨 酸和苏氨酸外,其余的α-氨基酸都可参加转氨基作用,其 中以谷丙转氨酶(GPT)和谷草转氨酶(GOT)最重要。
第十一章 蛋白质的降解和氨基酸的代谢
(二)脱羧基作用
1.直接脱羧基作用 2.羟化脱羧基作用
第十一章 蛋白质的降解和氨基酸的代谢
1.直接脱羧基作用
氨基酸在脱羧酶作用下,进行脱羧反应生成胺类 化合物。 氨基酸脱羧酶广泛存在于动植物和微生物体内, 以磷酸吡哆醛作为辅酶。 植物体内谷氨酸脱羧酶催化谷氨酸脱去羧基生成 γ-氨基丁酸。组氨酸脱羧生成组胺,酪氨酸脱羧生成酪 胺,赖氨酸脱羧生成戊二胺(尸胺),鸟氨酸脱羧生成丁 二胺(腐胺)等。所生成的胺类很多都具有活跃的生理作 用。
第十一章 蛋白质的降解和氨基酸的代谢
第十一章 蛋白质的降解和氨基酸的代谢
4. 非氧化脱氨基作用
微生物中主要进行非氧化脱氨基作用,方式有3 种: ①还原脱氨基作用 在无氧条件下,某些含有氢化酶的微生物能利用 还原脱氨基方式使氨基酸脱去氨基。
第十一章 蛋白质的降解和氨基酸的代谢
②脱水脱氨基作用 丝氨酸和苏氨酸的脱氨基也可经脱水的方式完 成,催化该反应的酶以磷酸吡哆醛为辅酶。
第十一章 蛋白质的降解和氨基酸的代谢
含蛋白质丰富的物质经腐败细菌作用时,常发生氨基酸 的脱羧反应,生成这些胺类。
第十一章 蛋白质的降解和氨基酸的代谢
2.羟化脱羧基作用
酪氨酸在酪氨酸酶的催化下可发生羟化作 用而生成3,4-二羟苯丙氨酸,简称多巴(dopa), 它可进一步脱羧生成3,4-二羟苯乙胺,简称多巴 胺(dopamine)。
氨基酸的分解代谢过程

氨基酸的分解代谢过程氨基酸的分解代谢过程通常涉及蛋白质降解、氨基酸转氨基反应和尿素循环等重要步骤。
以下是一般的氨基酸分解代谢过程:
1. 蛋白质降解:首先,蛋白质(由氨基酸组成)在体内被降解为单个氨基酸。
这个过程通常发生在胃和小肠,涉及胃酸和胃蛋白酶等酶的参与。
2. 氨基酸转氨基反应:氨基酸不能直接在体内储存,因此它们需要在分解过程中被转换成能够储存或排除的形式。
氨基酸转氨基反应是其中的关键步骤之一。
在这个过程中,氨基酸的氨基团被转移到α-酮酸上,形成新的氨基酸和α-酮酸。
这一过程通常涉及到氨基转移酶(aminotransferase)酶。
3. 尿素循环:转移后的氨基团一般会形成尿素,这是一种较为稳定且不具有毒性的物质。
尿素循环(或称尿素合成途径)发生在肝脏中,它将氨基团从氨酸转移到尿素上。
尿素然后进入血液,最终通过肾脏排除。
4. 能量产生:在氨基酸分解的过程中,α-酮酸可以进入三羧酸循环(TCA循环)进行氧化磷酸化,从而产生能量。
氨基酸的碳骨架也可以通过不同途径进入糖异生途径或脂肪酸合成途径。
总体而言,氨基酸的分解代谢过程是维持体内氮平衡、提供能量和产生代谢中间产物的重要过程。
这一过程的调节对于人体正常的生理功能非常重要。
1/ 1。
氨基酸的代谢途径

氨基酸的代谢途径
氨基酸的代谢途径包括蛋白质降解、蛋白质合成和氨基酸转化途径。
1. 蛋白质降解:细胞通过蛋白酶将蛋白质降解为氨基酸。
蛋白质降解的主要途径包括泛素-蛋白酶体途径和自噬途径。
2. 蛋白质合成:细胞利用氨基酸合成蛋白质。
蛋白质合成的过程中,氨基酸与转移RNA(tRNA)结合,通过转导酶和核糖体的参与,合成蛋白质。
3. 氨基酸转化途径:氨基酸可以参与各种代谢途径,包括三羧酸循环、糖原代谢、脂肪酸合成和胺基酸互容转化等。
例如,一些氨基酸可以进入三羧酸循环进行能量代谢,经过一系列反应产生能量。
此外,氨基酸还可以通过转氨酶催化作用与其他氨基酸进行转化,形成新的氨基酸。
这些转化途径包括氨基酸转氨酶途径,如谷氨酸转氨酶和丙氨酸转氨酶等。
册05-蛋白质降解和氨基酸的分解代谢

ATP、GTP、NADH可抑制此酶活性。 ADP、GDP及某些a.a可激活此酶活性。 因此当ATP、GTP不足时,Glu的氧化脱氨会加速进行, 有利于a.a分解供能(动物体内有10%的能量来自a.a 氧化)。
19
(2)非氧化脱氨 ①还原脱氨基反应
无氧条件下,一些含有氢化酶微生物能利用还原脱氨 基反应使氨基酸加氢脱氨,生成饱和脂肪酸和氨。
二肽酶 专门水解二肽中肽键,将二肽 水解生成单个氨基酸的酶。
按作用的最适pH分
碱性蛋白酶 中性蛋白酶 酸性蛋白酶。
3
2、重要的蛋白质水解酶
胃蛋白酶
催化具有苯丙氨酸、酪氨酸、色氨酸、亮氨酸、 谷氨酸和谷氨酰胺等的肽键。
胰蛋白酶 水解由赖氨酸、精氨酸的羧基形成的肽键。
糜蛋白酶
水解含苯丙氨酸、酪氨酸、色氨酸等残基羧基 形成的肽键。
9
二、氨基酸分解代谢(P303,熟悉)
1、氨基酸的脱氨基作用 2、氨基酸的转氨基作用 3、联合脱氨基作用 4、氨基酸的脱羧基作用
10
α-氨基酸的功能除去它是蛋白质的组成单位外, 还是能量代谢的物质,又是许多生物体内重要含 氮化合物的前体。这些含氮化合物突出的有血红 素,生物活性的胺,谷胱甘肽,核苷酸及核苷酸 的辅酶等。哺乳动物可自代谢物前体合成非必需 氨基酸,而必需氨基酸则自膳食中获取。
弹性蛋白酶
水解缬氨酸、亮氨酸、丝氨酸、丙氨酸等各种 脂肪族氨基酸形成的肽键。
羧肽酶A 羧肽酶B
水解由各种中性氨基酸为羧基末端构成的肽键。
水解由赖氨酸、精氨酸等碱性氨基酸为羧基末 端构成的肽键。
4
• 3、蛋白质消化吸收 • 哺乳动物的胃、小肠中含有胃蛋白酶、胰蛋白酶、
胰凝乳蛋白酶、羧肽酶、氨肽酶、弹性蛋白酶。 经上述酶的作用,蛋白质水解成游离氨基酸,在 小肠被吸收。 • 被吸收的氨基酸(与糖、脂一样)一般不能直接 排出体外,需经历各种代谢途径。 • 肠粘膜细胞还可吸收二肽或三肽,吸收作用在小 肠的近端较强,因此肽的吸收先于游离氨基酸。
第7章蛋白质降解与氨基酸代谢ppt课件

硝酸还原酶是诱导酶,环境中须有NO3-,需光照条件。 NO2-+ 7H+ + 6e- 亚硝酸还原酶 NH3 + 2H2O
电子供体为铁氧还蛋白。
氨的同化指将氨转化为有机态氮的过程,有两条途径:
1、谷氨酸合成途径 (1)谷氨酰胺合成酶和谷氨酸合酶催化合成
谷氨酸 + NH3 谷氨酰胺合成酶 谷氨酰胺
ATP ADP
谷氨酸合酶
谷氨酰胺 + α-酮戊二酸
2谷氨酸
NADPH+H+ NADP+
现有试验证明,谷氨酸的合成,主要通过谷氨 酰胺合成酶和谷氨酸合酶这条双酶途径催化的。
6e-
固N条件
N2 + 3H2
2NH3
(1)电子供体:氧化底物(MH2)、丙酮酸、H2; (2)ATP供能;
(3)厌氧环境。
固N酶组成
铁蛋白:二聚体,含Fe和S 钼铁蛋白:四聚体,含Mo、Fe和S
一、NH3的来源
(二)硝酸还原
硝酸还原分为两步,第一步在硝酸还原酶催化下, NO3-还原为NO2-,第二步在亚硝酸还原酶催化下,NO2- 还原为NH3
氨基酸合成过程示意图
生物固氮
吸收 NH3
硝酸还原
氨基酸分解
氨同化
谷氨酸 供氨基
转氨作用
糖代谢
酮酸 供碳架
氨基酸
(少数)
转化
氨基酸
氨基酸
氨基酸
一碳基团代谢
概念:在代谢过程中,某些化合物可以分解产生 具有一个碳原子的基团,称为“一碳基团”或“一 碳单位”。
氨基酸的降解和转化

-= =
O
NH2
R1-C-COOH + R2-C-COOH
H
迄今发现的转氨酶都以磷酸吡哆醛为辅基,它与酶蛋白 以牢固的共价键形式结合。
除Gly、Ser、Lys、Pro/Pro-OH外,都可以参与转氨作用 除Gly、Ser、Lys外,Glu的氨基能转给其它天然氨基酸的酮酸
AAR1 P-吡哆醛
AAR2
生糖氨基酸:凡能生成丙酮酸、琥珀酸、草酰乙酸和-酮戊 二酸的氨基酸。
生酮氨基酸:能转变成酮体(丙酮、乙酰乙酸、-丁酸的氨基 酸。(Phe Tyr Leu Lys Trp,在动物肝脏中)
生糖兼生酮氨基酸:部分按糖代谢,部分按脂肪酸代谢途径进行 (3)氧化成CO2和H2O
氨基酸分解产生5种产物进入TCA循环,进行彻底的氧化分 解;这五种产物为:乙酰CoA、 -酮戊二酸、琥珀酰CoA、
联合脱氨基
以嘌呤核苷酸循环的方式进行联合脱氨
COOH
CH2
H2N CH COOH
Asp
OH IMP
N
N 合成酶 N
腺苷琥珀酸
N
NN
NN
α-酮戊二酸
R 5’P 裂解酶 R 5’ P
GOT
转氨酶
氨基酸
草酰乙酸
+
谷氨酸
NH3
α-酮酸
NH2
N
N
+ H2O N N AMP R 5’ P
延胡羧酸
小 结 脱氨基作用
NH2
FP FPH2 NH
R-C-COOH + NH3 O
FPH2 + O2
FP + H2O2
氨基酸氧化酶的种类
L-氨基酸氧化酶:催化L-AA氧化脱氨,体内分布不广泛,最适 pH10左右,以FAD或FMN为辅基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固氮反应所需条件:
◆充分的能量(ATP)供应; ◆强的还原剂; ◆厌氧环境。
精品课件
三、硝酸还原作用
❖ 植物根系从土壤吸收的主要是硝态氮,有 二种酶参与将硝态氮还原成为氨:
❖
NO3-
NH4+
6e-
硝酸还原酶
NO2- 亚硝酸还原酶
2 e-
❖ 在植物体内硝酸还原发生在根和叶内,但 种子萌发或植株缺氧时主要在根部进行。
第三节 氮素循环
一、自然界的氮素循环 ★ 二、生物固氮
2. 生物固氮反应及反应条件
精品课件
生物固氮
一些微生物在常 温常压下通过体内复杂的 固氮酶系统把大气中的分 子态氮转化为有机体可利 用的氨态氮的作用过程。
精品课件
精品课件
固氮酶复合体:
◆还原酶(铁蛋白): 提供很强还原力的电子
◆固氮酶(钼铁蛋白): 利用高能电子将氮气还原为氨
N2 +8H+ + 8e-+16ATP 2NH3+H2+16ADP+16Pi
2、(谷氨酸的氧化)脱氨基 作用
3、氨的去向---尿素循环 4、氨基酸碳骨架的代谢
5、由氨基酸衍生的 其他重要化合物
精品课件
5、 由氨基酸衍生的 其他重要化
合物 ■脱羧基作用 ■羟基化作用
精品课件
脱羧基作用:
精品课件
脱羧基作用:
谷氨酸 → 氨基丁酸 色氨酸 — — → 吲哚乙酸 丝氨酸 → 乙醇胺 → 胆碱 赖氨酸 → 尸胺 鸟氨酸 → 腐胺
精品课件
? N2 → +
NH4
(一)谷氨酸与精品谷课件氨酰胺的形成:
1. 谷氨酰胺合成酶途径
谷氨酸
a-酮戊
合成酶
二酸
转
氨
谷氨酰胺 合成酶
基 作 用
精品课件
2. 谷氨酸脱氢酶途径:
精品课件
(二)氨甲酰磷酸的形成:
氨甲酰磷酸合成酶Ⅰ:
尿素循环(体内氨的排除)
氨甲酰磷酸合成酶Ⅱ: 谷氨酰胺提供氨基(氨的同化: 嘧啶合成) 精品课件
精品课件
❖ 食物蛋白 等)
组织(酶、蛋白、激素
❖消
❖化 ❖吸 ❖收
❖
❖
❖
排
❖
泄
合分 成解
氨基酸库
转氨作用 脱氨作用
❖
❖ 过剩的氨基酸 α-酮酸
氨基酸来龙去脉
转化
非蛋白含氮物质 (嘌呤、嘧啶、胆碱、
肌酸、烟酰胺、卟啉 肾上腺素胆汁盐色素)
❖
糖或酮体
❖
三羧酸循环
精品课件
第一节 蛋白质的酶促降 解 细胞内蛋白质降解的意义: 1. 组成防御机制 2. 清除不正常的蛋白质 3. 维持体内氨基酸代谢库 4. 蛋白质前体的裂解加工
精品课件
胞内蛋白质降解系统 溶酶体系统(酸性系统)包括
多种小分子蛋白酶, 主要水解长寿命蛋白和外来蛋白。 泛素系统(碱性系统)含有高
分子量的蛋白复合物, 主要水解短寿命蛋白和反常蛋白。
精品课件
泛肽激活酶E1
泛
素
泛肽载体蛋白E2
途
径
泛肽连接酶E3
精品课件
泛 素 途 径
精品课件
第二节 氨基酸的降解与转 化
排氨作用:
精品课件
氨基酸的降解:
脱去的氨基 尿素循环
碳骨架
TCA循环
精品课件
4、氨基酸的碳骨架 的代谢:
→ TCA
循环
精品课件
精品课件
◆生糖氨基酸 14种 ◆生酮氨基酸 Leu(Lys) ◆生糖生酮氨基酸 Ile\Lys\Phe\Trp\Tyr
精品课件
第二节 氨基酸的降解与转 化 1、转氨基作用
NH4+
精品课件
联合脱氨基(谷草转氨酶为中心)
精品课件
三、氨基酸降解产物的去向
如果机体能正常利用糖、脂。则氨基酸主 要是用来:
1、重新合成氨基酸。 2、生成Asn, Gln。 3、合成其它含N或非含N化合物(铵盐)。
多余的氨基酸要进行分解代谢。
精品课件
氨基酸的降解:
脱去的氨基
谷氨酸
尿素循环
精品课件
氨基酸1 + -酮酸2 氨基酸2 + -酮酸1
1、转氨基作用
转氨酶
绝大多数氨基酸之脱氨基出自转氨基作用。具有优势接受 脱下的氨基是a-酮戊二酸,新生成的氨基酸转变成谷氨酸。
精品课件
转氨基作用通式:
精品课件
◆ 转氨酶辅基:
精品课件
2、脱氨基作用:
■ 氧化脱氨基 ■ 联合脱氨基★
精品课件
联合脱氨基作用:
蛋白质 核酸 生物大分子
碳水化合物
脂类
氨基酸 核苷酸 构件分子
葡萄糖 脂肪酸/甘油
6-磷酸-葡萄糖
尿
共素循同降解物
环
H+ + -
e
TCA循环
精品课件
丙酮酸
o2 乙CO酰2 COA
电子H2传O 递链
第八章 蛋白质的酶促降解 和氨基酸代谢
第一节 蛋白质的酶促降解 第二节 氨基酸的降解与转化 第三节 氮素循环 第四节 氨基酸的生物合成
精品课件
三、硝酸还原作用:
NO-3
2e-
———
NO-2 —6—e-—
+
硝酸
亚硝酸
Nቤተ መጻሕፍቲ ባይዱ4 还原酶
还原酶
精品课件
第三节 氮素循环
一、自然界的氮素循环 ★ 二、生物固氮
三、硝酸还原作用 ★ 四、氨的同化
精品课件
四、氨的同化
生物体利用3种途径把氨转化为有机 化合物
(一)谷氨酸与谷氨酰胺的 形成: (二)氨甲酰磷酸的形成:
精品课件
第三节 氮素循环
一、自然界的氮素循环 ★ 二、生物固氮
三、硝酸还原作用 ★ 四、氨的同化
精品课件
一、自然界的氮素循环
N2
生物 固氮
NH3
精品课件
自生固氮 ✓ 利用光能进行氮素还原 ✓ 利用化学能进行氮素还原 共生固氮
根瘤菌
精品课件
精品课件
精品课件
二、生物固氮
1.生物固氮的概念和意义 及类型
3、氨的去向-尿素循环:
定位:跨两个膜区: 胞质和线粒体。 直接前体:精氨酸。
精品课件
尿
素
=
循
环
精品课件
体质 ★
:和 定
精线 位
氨粒 :
酸体 跨
。。 两
★ 直 接 前
胞
个 膜 区 :
5、氨的去向------尿素循环
精品课件
瓜氨酸 Asp
鸟氨酸
尿
素
Arg
精氨基 琥珀酸
精品课件
草酰乙酸 延胡索酸
☆ 脱氨基作用 ☆ 氨基酸降解产物的去向
精品课件
氨基酸的降解:
脱去的氨基 尿素循环
碳骨架
TCA循环
精品课件
第二节 氨基酸的降解与转 化 1、转氨基作用
2、(谷氨酸的氧化)脱氨基 作用
3、氨的去向---尿素循环 4、氨基酸碳骨架的代谢 5、由氨基酸衍生的其他重要 化合物
精品课件
1、转氨基作用
精品课件
精品课件
羟基化作用:
精品课件
★ 氨基酸脱 羧基和羟基化 作用与生物活 性物质的产生。
精品课件
由氨基酸降解而衍生的 其它重要化合物:
生物体内物质的降解并 非一个被动的消耗过程, 而是一个主动的利用过 程。
精品课件
第十一章 蛋白质的酶促降 解
第一节 和蛋氨白基质酸的酶代促谢降解
第二节 氨基酸的降解与转化 第三节 氮素循环 第四节 氨基酸的生物合成