北京四中数学题典
2024北京四中高三上学期开学考数学试题

数 学 试 卷(试卷满分为100分,考试时间为90分钟)一、选择题(本大题共14小题,每小题3分,共42分)1. 已知集合{|11}A x x =-≤≤,{,}B a a =-. 若A B A =,则实数a 的取值范围是 (A ){|11}a a -≤≤(B ){|11}a a -<<(C ){|11a a -<<,且0}a ≠ (D ){|11a a -≤≤,且0}a ≠2.若复数i 1iaz +=+是纯虚数,则实数a = (A )1(B )1-(C )2(D )2- 3.已知lg e a =,2e b =,1ln 10c =(e 2.71828=),那么(A )b c a <<(B )c b a <<(C )b a c<<(D )c a b<<4.函数1()x f x x+=的图象的对称中心为 (A )(0,0)(B )(0,1)(C )(1,0)(D )(1,1)5.已知幂函数()f x 满足(6)4(2)f f =,则1()3f 的值为(A )2(B )14(C )14-(D )2-6.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,249a a =,42910S S =,则24a a +的值为(A )30(B )10(C )9(D )67.在下列函数中,导函数值不可能取到1的是(A )ln y x x=(B )cos y x=(C )2xy =(D )ln y x x=-8.已知a ,b ∈R ,则“1ab >”是“222a b +>”的 (A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件9.在ABC ∆中,若cos cos a c B b c A -=-,则ABC ∆的形状是 (A )等腰三角形(B )直角三角形(C )等腰直角三角形(D )等腰三角形或直角三角形10.已知1x =是函数2()(1)()f x x x a =--的极小值点,那么实数a 的取值范围是 (A )(,1)-∞(B )(1,)+∞(C )(,1]-∞(D )[1,)+∞11.已知函数()sin cos f x t x x ωω=+(0t >,0ω>)的最小正周期为π,最大值,则函数()f x 的图象 (A )关于直线π4x =-对称 (B )关于点π(,0)4-对称(C )关于直线π8x =对称 (D )关于点π(,0)8对称12.已知等比数列{}n a 的前n 项和为n S ,若存在实数a ,b ,c ,使得n n S a b c =⋅+,则以下结论不.正确的是(A )0a c += (B )数列{}n a 的公比为b (C )0ac <(D )数列{}n a 可能为常数列13.某教学软件在刚发布时有100名教师用户,发布5天后有1000名教师用户. 如果教师用户人数()R t 与天数t 之间满足关系式:0()e kt R t R =,其中k 为常数,0R 是刚发布时的教师用户人数,则教师用户超过20000名至少经过的天数为 参考数据:lg 20.3010≈ (A )9(B )10(C )11(D )1214.已知函数21()e 2x f x a x =-(a ∈R ),有如下3个结论:①当0a ≤时,()f x 在区间(0,)+∞上单调递减;②当10ea <<时,()f x 有两个极值点; ③当1e a ≥时,()f x 有最大值.其中,正确结论的个数是 (A )0(B )1(C )2(D )3二、填空题(本大题共6小题,每小题5分,共30分)15.已知0a >,则关于x 的不等式22450x ax a --<的解集是_____.16.在平面直角坐标系xOy 中,角α以Ox 为始边,且终边经过点(4,3)-,则3πcos()2α-=_____.17.若2(i)2i x +=(x ∈R ),则x =_____.18.写出一个同时具有下列性质的函数()f x =_____.①函数(1)f x +是偶函数;②当(1,)x ∈+∞时,()f x 单调递减.19.已知()f x 为偶函数,当0x ≥时,2114,0,2()121,.2x x f x x x ⎧-≤≤⎪⎪=⎨⎪->⎪⎩(1)5(())8f f =_____;(2)不等式3(1)4f x -≤的解集为_____.20.设数列{}n a 的前n 项和为n S ,若对任意的正整数n ,总存在正整数m ,使得n m S a =. 给出如下4个结论:①{}n a 可能为等差数列; ②{}n a 可能为等比数列;③ i a (2i ≥)均能写成{}n a 的两项之差; ④ 对任意*n ∈N ,总存在*m ∈N ,使得n m a S =. 其中正确命题的序号是_____.三、解答题(本大题共2小题,共28分) 21.(本小题满分13分)已知{}n a 是等差数列,其前n 项和为n S (*n ∈N ),11a =,59a =. (Ⅰ)求数列{}n a 的通项公式及n S ;(Ⅱ)从条件①、条件②、条件③这三个条件中选择一个作为已知,求数列{}n b 的前n 项和n T .条件①:2n a n b =; 条件②:2n n n b a =+; 条件③:11n n n b a a +=⋅.注:如果选择多个条件分别解答,按第一个解答计分.22.(本小题满分15分)已知函数21()e 2x f x x ax ax =--(0a >).(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)若()f x 的极大值为11e-,求a 的值;(Ⅲ)当1ea >时,若1[1,)x ∀∈+∞,2(,0]x ∃∈-∞,使得12()()0f x f x +=,求a 的取值范围.。
北京市第四中学2023-2024学年八年级下学期期中数学试题

北京市第四中学2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.函数y x 的取值范围是( ) A .2x ≠B .2x <C .2x >D .2x ≥2.下列根式是最简二次根式的是( )A B C D 3.下列各组数中,是直角三角形三边长的一组数为( ) A .1,2,3B .4,5,6C .15,9,17D .1.5,2.5,24.在四边形ABCD 中,对角线AC 与BD 相交于O 点,给出四组条件:①AB DC =,AD BC ∥; ②AB CD =,AB CD ∥; ③AB CD ∥,AD BC ∥; ④OA OC =,OB OD =.能判定此四边形是平行四边形的有( )组. A .1B .2C .3D .45.一次函数24y kx k =-+的图象可能经过的点是( ) A .()0,4B .()3,4C .()0,3D .()2,36.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC =4,BC =2时,则阴影部分的面积为( )A .4B .4πC .8πD .87.若函数y kx b =-的图象如图所示,则关于x 的不等式()30k x b -+>的解集为( )A .1x <B .2x <C .3x <D .5x <8.已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ). A .若120x x >,则130y y > B .若130x x <,则120y y > C .若230x x >,则130y y >D .若230x x <,则120y y >二、填空题9.已知()113,P y -,()222,P y 是一次函数31y x =+图象上的两个点,则1y 2y (填“>”、“<”或“=”).10.在平行四边形ABCD 中,30A ∠=︒,7AB =,21ABCD S 平行四边形=,则AD = . 11.如图,网格内每个小正方形的边长都是1个单位长度,A ,B ,C ,D 都是格点,AB 与CD 相交于点P ,则BPD ∠= ︒.12.小明做了一个矩形的纸板,但他不确定纸板形状是否标准.小宁用刻度尺度量了这个四边形的四条边长和对角线长,然后告诉小明,纸板是标准的矩形.小宁得出这个结论的依据是(1) ;(2) .13.我国南宋数学家秦九韶在《数书九章》中给出了如下公式:如果一个三角形的三边长分别为a ,b ,c ,那么三角形的面积为S ,S =,那么它的面积为 .14.如图,在四边形ABCD 中,6AB =,10BC =,130A ∠=︒,100D ∠=︒,AD CD =.若点E ,F 分别是边AD ,CD 的中点,则EF 的长是 .15.如图,矩形矩形ABCD 中,对角线AC ,BD 相交于点O ,点E 在边BC 上,AB BE =且2CBD CAE ∠=∠,连结OE ,则AOEBOE S S V V 的值是 .16.如图,正方形ABCD 边长为1,点M ,N 分别是边AD ,CD 上的动点且AM CN =,作NP BM ⊥于点P ,则AP 的最小值是 .三、解答题 17.计算:2-+-;(2). 18.直线15y x =-+交x 轴于点A ,交y 轴于点B ,与直线224y x =-交于点C . (1)求交点C 的坐标;(2)直接写出当x 取何值时12y y <;(3)在y 轴上取点P 使得2OP OB =,直接写出ABP V 的面积.19.一次函数y kx b =+的图象由函数y x =-的图象平移得到,且经过点()1,1. (1)求这个一次函数的表达式;(2)当1x <时,对于x 的每一个值,函数()10y mx m =-≠的值小于一次函数y kx b =+的值,直接写出m 的取值范围.20.春季同学们到北海公园赏花游白塔(如图1),这座白塔位于北京市西城区文津街1号北海公园永安寺内,建在善因殿后的山顶.它始建于清顺治八年(1651年),由塔基、塔身和塔顶三部分组成.初二年级课外实践小组为测量永安寺白塔的高度,利用测角仪及皮尺测得以下数据:如图2,84m AE =,30BDG ∠=︒,45BFG ∠=︒.已知测角仪DA 的高度为1.5m ,则永安寺白塔BC 1.7 1.4,结果保留整数)21.如图1,在ABC V 中,D ,E 分别是边,AB AC 上的点.对“三角形中位线定理”逆向思考,可得以下3则命题: I .若D 是AB 的中点,12DE BC =,则E 是AC 的中点; II .若DE BC ∥,12DE BC =,则D ,E 分别是,AB AC 的中点; III .若D 是AB 的中点,DE BC ∥,则E 是AC 的中点.(1)小明通过对命题I 的思考,发现命题I 是假命题.他的思考方法如下:在图2中使用尺规作图作出满足命题I 条件的点E ,从而直观判断E 不一定是AC 的中点.小明尺规作图的方法步骤如下:①在图2中,作边BC 的垂直平分线,交BC 于点M ;②在图2中,以点D 为圆心,以BM 的长为半径画弧与边AC 交与点E 和E '; 请你在图2中完成以上作图.(2)小明通过对命题II 和命题III 的思考,发现这两个命题都是真命题,请你从这两个命题中选择一个,并借助于图1进行证明.22.如图,在四边形ABCD 中,AB DC ∥,AB DC =,对角线AC ,BD 交于点O ,且AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E .(1)求证:四边形ABCD 是菱形;(2)连接OE ,交CB 于点F ,若20ACB ∠=︒,则∠=CFE __________︒. 23.已知:直线334y x =+,分别交x 轴,y 轴于点A 与点B .(1)直接写出点A 与点B 的坐标;(2)如图1,在线段OB 上有一点C ,将ABC V 沿直线AC 折叠后,点B 恰好落在x 轴上的点D 处,求点C 的坐标;(3)将直线AB 绕点B 逆时针旋转45°交x 轴于点P ,求点P 的坐标.24.倡导垃圾分类,共享绿色生活:为了对回收的垃圾进行更精准的分类,某机器人公司研发出A 型和B 型两款垃圾分拣机器人,已知1台A 型机器人每小时分拣垃圾0.4吨,1台B 型机器人每小时分拣垃圾0.2吨.(1)某垃圾处理厂计划向机器人公司购进一批A 型和B 型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买A 型机器人a 台(1045a ≤≤),B 型机器人b 台,请用含a 的代数式表示b ;(2)机器人公司的报价如下表:在(1)的条件下,设购买总费用为w 万元,问如何购买使得总费用w 最少?请说明理由. 25.在菱形ABCD 中,()2045ABC αα∠=<<︒,对角线AC BD ,相交于点O ,点E 是线段BO 上动点(不与B ,O 重合),将线段EO 绕点E 顺时针旋转2α得到线段EF .(1)如图1,当点F 在线段BC 上时,求证:点E 是线段BO 的中点;(2)如图2,作点B 关于点E 的对称点G ,连结CG FG ,,猜想CFG ∠的度数,并证明. 26.定义:关于x ,y 的方程1m ax by c n dx ey f +++++=称为“双绝对值方程”;所有满足“双绝对值方程”的坐标点(),x y 组成的图形称为“双绝对值图形”. 例如:如图1是“双绝对值方程”1x y +=所对应的“双绝对值图形”,求:(1)画出“双绝对值方程”21x y +=所对应的“双绝对值图形”;(2)点()1,0A -,()1,1B ,()1,0C ,()1,1D --组成平行四边形,写出对角线BD 所在直线的函数解析式,并写出“双绝对值图形”ABCD Y 所对应的“双绝对值方程”;(3)对于线段MN ,其中()2,0M -,()0,1N -,1m y x y -+=对应的“双绝对值图形”与线段MN 有两个公共点,求出m 的取值范围;(4)类似的对于方程1x y x y +++=我们可以定义“三绝对值方程”,请画出其对应的“三绝对值图形”.四、单选题27.若12,,,n p p p ⋅⋅⋅是平面上的n 个点,12,,,m l l l ⋅⋅⋅是以这些点为端点的m 条线段,且这些线段的长度均为1,则称此图形为“(),n m 火柴棍图”.以下4个图依次是()12,21火柴棍图,()16,29火柴棍图,()19,35火柴棍图,()25,47火柴棍图,其中阴影四边形一定是正方形的为( )A .B .C .D .五、填空题28.在平面直角坐标系xOy 中,x ,y 表示自变量和对应的函数.一次函数1y ax b =+,2y cx d =+,3y ex f =+,若()()()123113210220x y y y x x x x ⎧-≤-⎪-+=+-<<⎨⎪-+≥⎩请给出一组满足的条件的函数:1y = ,2y = ,3y = .29.横,纵坐标均为整数的点称为整点,例如:()2,3为一个整点.已知点A 为()1,1,点B为()5,1,点C 为()5,5,点D 为()1,5.(1)正方形ABCD 边及其内部,有 个整点;(2)若坐标系内取k 个整点,满足如下条件:对于正方形ABCD 边及其内部的任意整点,总可以在这k 个整点中找到一个点,和它所连的线段上没有整点(除端点外),我们把满足条件的k 的最小值称为此正方形的“分隔数”.问:正方形ABCD 的分隔数是 .。
2023-2024学年北京市第四中学高三上学期开学测试数学试卷含详解

北京四中2023-2024学年度第一学期开学测试高三数学考试时间:120分钟试卷满分:150分一、选择题(本大题共10小题,每小题4分,共40分)1.集合{}{}12,1A x x B x x =-≤≤=<,则R ()A B = ð()A.{}1x x >B.{}1x x ≥C.{}12x x <≤ D.{}12x x ≤≤2.在6(x 的展开式中,3x 的系数为()A.-B.C.40- D.403.已知0.10.644,2,log 0.6a b c ===,则,,a b c 的大小关系为()A.c<a<bB.c b a <<C.a b c<< D.b a c<<4.有10名学生,其中4名男生,6名女生,从中任选2名学生,其中恰好有1名男生的概率是()A.815B.625C.215D.4455.已知函数()f x 在R 上可导,其部分图象如图所示,设(2)(1)21f f a -=-,则下列不等式正确的是()A.(1)(2)f f a ''<<B.(1)(2)f a f ''<<C.(2)(1)f f a ''<<D.(1)(2)a f f ''<<6.给出下面四个命题:①“直线a ,b 不相交”是“直线a ,b 为异面直线”的充分而不必要条件;②“l⊥平面α”是“直线l ⊥平面α内所有直线”的充要条件;③“a 平行于b 所在的平面”是“直线//a 直线b ”的充要条件;④“直线a 平行于α内的一条直线”是“直线//a 平面α”的必要而不充分条件.其中正确命题的序号是()A.①③B.②③C.②④D.③④7.“苏州码子”发源于苏州,在明清至民国时期,作为一种民间的数字符号曾经流行一时,广泛应用于各种商业场合.110多年前,詹天佑主持修建京张铁路,首次将“苏州码子”刻于里程碑上.“苏州码子”计数方式如下:〡1.、〢2.、〣3.、〤4.、〥5.、〦6.、〧7.、〨8.、〩9.、〇0.为了防止混淆,有时要将“〡”“〢”“〣”横过来写.已知某铁路的里程碑所刻数字代表距离始发车站的里程,每隔2公里摆放一个里程碑,若在A 点处里程碑上刻着“〣〤”,在B 点处里程碑刻着“〩〢”,则从A 点到B 点里程碑的个数应为()A.29B.30C.58D.598.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形9.已知函数()22,,x ax x af x x a x a⎧-+≥⎪=⎨+<⎪⎩,若对于任意正数k ,关于x 的方程()f x k =都恰有两个不相等的实数根,则满足条件的实数a 的个数为()A.0B.1C.2D.无数10.在平面直角坐标系xOy 中,已知直线y mx =(0m >)与曲线3y x =从左至右依次交于A ,B ,C 三点.若直线l :30kx y -+=(R k ∈)上存在点P 满足2PA PC +=,则实数k 的取值范围是()A.(2,2)- B.[-C.(,2)(2,)-∞-+∞ D.(,)-∞-⋃+∞二、填空题(共5小题,每小题5分,共25分)11.若复数z 满足2i1iz =+,则z 的虚部为______.12.已知向量,a b ,满足:()1,6,2a b a b a ==⋅-= ,则a 与b 的夹角为________.13.角α的终边与单位圆的交点A 位于第一象限,其横坐标为35,那么sin α=__________,点A 沿单位圆逆时针运动到点B ,所经过的弧长为4π,则点B 的横坐标为__________.14.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线-=1相交于A ,B 两点,若△ABF 为等边三角形,则p=___________.15.如图,在长方体1111ABCD A B C D -中,12,1AB AA AD ===,动点,E F 分别在线段AB 和1CC 上.给出下列四个结论:①113D DEF V -=;②1D EF V 不可能是等边三角形;③当1D E DF ⊥时,1D F EF =;④至少存在两组,E F ,使得三棱锥1D DEF -的四个面均为直角三角形.其中所有正确结论的序号是__________.三、解答题(共6小题,共85分)16.如图,四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,60ABC ∠=,对角面11AAC C 是矩形,且平面11AA C C ⊥平面ABCD .(1)证明:侧棱1AA ⊥平面ABCD :(2)设AC BD O = ,若1AB AA =,求二面角11D OB C --的余弦值.17.已知ABC 的内角,,A B C 的对边分别为,,a b c ,cos 3sin b a C c A =+.(1)求角A 的大小;(2)从以下三个条件中选择一个作为已知,使得三角形存在且唯一确定,求ABC 的面积.条作①:7a =,8b =条件②:1sin 7B =,7a =条什③:2a b =,8c =注:如果选择的条件不符合要求.第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.2022年第24届冬季奥林匹克运动会期间,为保障冬奥会顺利运行,组委会共招募约2.7万人参与赛会志愿服务.赛会共设对外联络服务、竞赛运行服务、文化展示服务等共12类志愿服务.(1)甲、乙两名志愿者被随机分配到不同类志愿服务中,每人只参加一类志愿服务.求甲被分配到对外联络服务且乙被分配到竞赛运行服务的概率;(2)已知来自某高校的每名志愿者被分配到文化展示服务的概率是110,设来自该高校的2名志愿者被分配到文化展示服务的人数为X ,求X 的分布列与数学期望()E X ;(3)已知在2.7万名志愿者中,18~35岁人群占比达到95%,为了解志愿者们对某一活动方案是否支持,通过分层随机抽样获得如下数据:18~35岁人群其他人群支持不支持支持不支持方案90人5人1人4人假设志愿者对活动方案是否支持相互独立.将志愿者支持方案的概率估计值记为0p ,去掉其他人群后志愿者支持方案的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)19.设函数()2ln 2x f x k x =-,0k >.(1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.20.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.21.正实数构成的集合{}()12,,,2n A a a a n =⋅⋅⋅≥,定义{},,i j i j A A a a a a A i j ⊗=⋅∈≠且.当集合A A ⊗中恰有()12n n -个元素时,称集合A 具有性质Ω.(1)判断集合{}11,2,4A =,{}21,2,4,8A =是否具有性质Ω;(2)若集合A 具有性质Ω,且A 中所有元素能构成等比数列,A A ⊗中所有元素也能构成等比数列,求集合A 中的元素个数的最大值:(3)若集合A 具有性质Ω,且A A ⊗中的所有元素能构成等比数列.问:集合A 中的元素个数是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.北京四中2023-2024学年度第一学期开学测试高三数学考试时间:120分钟试卷满分:150分一、选择题(本大题共10小题,每小题4分,共40分)1.集合{}{}12,1A x x B x x =-≤≤=<,则R ()A B = ð()A.{}1x x >B.{}1x x ≥C.{}12x x <≤ D.{}12x x ≤≤【答案】D【分析】先求出集合B 的补集,再求出()A B R ð【详解】因为{}1B x x =<,所以{}R 1B x x =≥ð,因为{}12A x x =-≤≤,所以R ()A B = ð{}12x x ≤≤,故选:D2.在6(x 的展开式中,3x 的系数为()A.-B.C.40- D.40【答案】A【分析】利用二项展开式的通项直接求得.【详解】6(x -的展开式的通项公式为(()666216612r rrrrr r r T C x C x ---+==-,要求3x 项,只需令r=3,所以3x 的系数为()636332612=C ----.故选:A【点睛】二项式定理类问题的处理思路:利用二项展开式的通项进行分析.3.已知0.10.644,2,log 0.6a b c ===,则,,a b c 的大小关系为()A.c<a<bB.c b a <<C.a b c <<D.b a c<<【答案】A【分析】化简a ,通过讨论函数()2xf x =和()4log g x x =的单调性和取值范围即可得出,,a b c 的大小关系.【详解】解:由题意,0.10.242a ==,在()2xf x =中,函数单调递增,且()0f x >,∴0.20.6022b a <<==,在()4log g x x =中,函数单调递增,且当01x <<时,()0g x <,∴4log 0.60c =<,∴c<a<b ,故选:A.4.有10名学生,其中4名男生,6名女生,从中任选2名学生,其中恰好有1名男生的概率是()A.815B.625C.215D.445【答案】A【分析】利用古典概型结合组合数计算概率即可.【详解】由题意可得恰有一名男生的概率为:1146210C C 8C 15P ==.故选:A5.已知函数()f x 在R 上可导,其部分图象如图所示,设(2)(1)21f f a -=-,则下列不等式正确的是()A.(1)(2)f f a ''<<B.(1)(2)f a f ''<<C.(2)(1)f f a ''<<D.(1)(2)a f f ''<<【答案】B【分析】利用直线的斜率公式和导数的几何意义结合图象即可判断.【详解】由图象可知,函数在[0,)+∞上的增长越来越快,故函数图象在点00(,())x f x (0(0,)x ∈+∞)的切线的斜率越来越大,因为(2)(1)21f f a -=-,所以(1)(2)f a f ''<<.故选:B.6.给出下面四个命题:①“直线a ,b 不相交”是“直线a ,b 为异面直线”的充分而不必要条件;②“l⊥平面α”是“直线l ⊥平面α内所有直线”的充要条件;③“a 平行于b 所在的平面”是“直线//a 直线b ”的充要条件;④“直线a 平行于α内的一条直线”是“直线//a 平面α”的必要而不充分条件.其中正确命题的序号是()A.①③ B.②③C.②④D.③④【答案】C【分析】根据空间中直线的位置关系可判断①;根据线面垂直的判定及性质可判断②;根据线面平行的判定及性质可判断③④.【详解】①若直线a ,b 不相交,则//a b 或a ,b 为异面直线;若直线a ,b 为异面直线,则a ,b 不相交,所以“直线a ,b 不相交”是“直线a ,b 为异面直线”的必要而不充分条件,故①错误.②根据线面垂直的判定及性质可知,若l ⊥平面α,则直线l ⊥平面α内所有直线;反之,亦成立,所以“l⊥平面α”是“直线l ⊥平面α内所有直线”的充要条件,故②正确.③若a 平行于b 所在的平面,则//a b 或a ,b 为异面直线;若直线//a 直线b ,a 平行于b 所在的平面或a 在b 所在的平面内,所以“a 平行于b 所在的平面”是“直线//a 直线b ”的既不充分也不必要条件,故③错误.④若直线a 平行于α内的一条直线,则//a α或a α⊂;若直线//a 平面α,则能得到直线a 平行于α内的一条直线,所以“直线a 平行于α内的一条直线”是“直线//a 平面α”的必要而不充分条件,故④正确.故选:C.7.“苏州码子”发源于苏州,在明清至民国时期,作为一种民间的数字符号曾经流行一时,广泛应用于各种商业场合.110多年前,詹天佑主持修建京张铁路,首次将“苏州码子”刻于里程碑上.“苏州码子”计数方式如下:〡1.、〢2.、〣3.、〤4.、〥5.、〦6.、〧7.、〨8.、〩9.、〇0.为了防止混淆,有时要将“〡”“〢”“〣”横过来写.已知某铁路的里程碑所刻数字代表距离始发车站的里程,每隔2公里摆放一个里程碑,若在A 点处里程碑上刻着“〣〤”,在B 点处里程碑刻着“〩〢”,则从A 点到B 点里程碑的个数应为()A.29B.30C.58D.59【答案】B【分析】里程碑上刻着数字依次成等差数列,求出,A B 两处刻的数字,按等差数列的公式求得项数即可.【详解】根据题意A 点处里程碑上刻着数字34,B 点处里程碑刻着数字92,里程碑刻着数字厉等差数列,公差为2,因此里程碑个数为92341302-+=.故选:B .8.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【分析】由已知22:tan :tan a b A B =,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断.【详解】∵22:tan :tan a b A B =,由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A A BB B B B B A B===,∵sin sin B 0A ≠,∴sin cos sin cos A BB A=,∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈,∴22A B =或22A B π+=,∴A B =或2A B π+=,即三角形为等腰或直角三角形,故选D .【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.9.已知函数()22,,x ax x af x x a x a ⎧-+≥⎪=⎨+<⎪⎩,若对于任意正数k ,关于x 的方程()f x k =都恰有两个不相等的实数根,则满足条件的实数a 的个数为()A.0B.1C.2D.无数【答案】B【分析】分0a =、0a >、a<0三种情况讨论,作出函数()f x 的图象,根据已知条件可得出关于实数a 的等式与不等式,进而可求得实数a 的取值.【详解】当0a =时,()22,0,0x x f x x x ⎧+≥⎪=⎨<⎪⎩,作出函数()f x的图象如下图所示:由图可知,当02k <<时,关于x 的方程()f x k =有且只有一个实根,不合乎题意;当0a >时,()22,,,x ax x af x x a a x a x a x a ⎧-+≥⎪=+-<<⎨⎪--≤-⎩,如下图所示:函数()f x 在(),a -∞-上单调递减,在(),a a -上单调递增,在(),a +∞上单调递增,由题意可得22222a a a a -+==,解得1a =;若a<0,则()22,,x ax x af x x a x a ⎧-+≥=⎨--<⎩,如下图所示:函数()f x 在(),a -∞单调递减,在,2a a ⎛⎫ ⎪⎝⎭上单调递减,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,由题意可得2222280a a aa ⎧-+=-⎨∆=-≥⎩,此时a 无解.综上所述,1a =.故选:B.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.10.在平面直角坐标系xOy 中,已知直线y mx =(0m >)与曲线3y x =从左至右依次交于A ,B ,C 三点.若直线l :30kx y -+=(R k ∈)上存在点P 满足2PA PC +=,则实数k 的取值范围是()A.(2,2)- B.[22,22]-C.(,2)(2,)-∞-+∞ D.(,2][22,)-∞-⋃+∞【答案】D【分析】根据直线y mx =与曲线3y x =都关于原点对称,得到A ,C 关于点B 对称,则2PA PC += ,即为1PB =,然后将问题转化为点B 到直线30kx y -+=的距离不大于1求解.【详解】因为直线y mx =与曲线3y x =都关于原点对称,且都过原点,所以B 为原点,A ,C 关于点B 对称,因为直线l :30kx y -+=(R k ∈)上存在点P 满足2PA PC +=,所以1PB =,则点B 到直线30kx y -+=的距离不大于1,1≤,解得k ≤-或k ≥所以实数k 的取值范围是(,)-∞-⋃+∞.故选:D二、填空题(共5小题,每小题5分,共25分)11.若复数z 满足2i1iz =+,则z 的虚部为______.【答案】1【分析】利用复数除法的法则,结合复数的虚部定义进行求解即可.【详解】因为()()()i 1i i i i i i 221111z -===+++-,所以z 的虚部为1,故答案为:112.已知向量,a b ,满足:()1,6,2a b a b a ==⋅-= ,则a 与b的夹角为________.【答案】π3【分析】先根据()2a b a ⋅-= 求出a b ⋅ ,利用夹角公式可得答案.【详解】因为()2a b a ⋅-= ,1a = ,所以3a b ⋅=;所以31cos ,62a b a b a b ⋅===,因为[],0,πa b ∈ ,所以π,3a b = .故答案为:π3.13.角α的终边与单位圆的交点A 位于第一象限,其横坐标为35,那么sin α=__________,点A 沿单位圆逆时针运动到点B ,所经过的弧长为4π,则点B 的横坐标为__________.【答案】①.45②.10-【分析】利用三角函数的定义求出cos α的值,再利用同角三角函数的平方关系可求得sin α,由三角函数的定义可知点B 的横坐标为cos 4πα⎛⎫+⎪⎝⎭,利用两角和的余弦公式可求得结果.【详解】由三角函数的定义可得3cos 5α=,由已知可知α为第一象限角,则4sin 5α=,将点A 沿单位圆逆时针运动到点B ,所经过的弧长为4π,则点B 的横坐标为2cos cos cos sin sin 44410πππααα⎛⎫+=-=- ⎪⎝⎭.故答案为:45;10-.14.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线-=1相交于A ,B 两点,若△ABF 为等边三角形,则p=___________.【答案】6【详解】因为抛物线x 2=2py 的准线2py =-和双曲线-=1相交交点横坐标为, 6.2x p p =∴=由等边三角形得解得考点:本题主要考查抛物线的概念、标准方程、几何性质,考查分析问题解决问题的能力.15.如图,在长方体1111ABCD A B C D -中,12,1AB AA AD ===,动点,E F 分别在线段AB 和1CC 上.给出下列四个结论:①113D DEF V -=;②1D EF V 不可能是等边三角形;③当1D E DF ⊥时,1D F EF =;④至少存在两组,E F ,使得三棱锥1D DEF -的四个面均为直角三角形.其中所有正确结论的序号是__________.【答案】①②④【分析】根据长方体的特征,利用等体积法确定①,根据特殊情况分析三角形边长可判断②,利用向量法可判断③,根据长方体中的特殊位置找出满足条件三棱锥判断④.【详解】由题意,在长方体中,E 到平面CC 1D 1D 的距离为1,F 到边1DD 的距离为2,所以11111112323D DEFE DDF V V --==⨯⨯⨯⨯=,故①正确;由图可知,1D F 的最小值为2,若12D E =,则DE ===,则AE ==,若此时2EF =,则EC ===,可得BE ==,则2AE BE AB +=>=,即1D F 取最小值为2时,1,D E EF 不能同时取得2,当1D F 变大时,1,D E EF 不可能同时大于2,故1D EF V 不可能是等边三角形,故②正确;建立空间直角坐标系,如图,则1(0,0,0),(0,0,1)D D ,设(1,,0)(02)E m m ≤≤,(0,2,)(01)F n n ≤≤,1(1,,1),(0,2,)D E m DF n =-= ,由1D E DF ⊥可得1(1,,1)(0,2,)20D E DF m n m n ⋅=-⋅=-=,即2n m =,1D F ===,EF ===,显然1D F 与EF 不恒相等,只有0m n ==时才成立,故③错误;当E 为AB 中点,F 与C 重合时,如图,此时,1D D DE ⊥,1D D DC ⊥,又2DE EC ==2DC =,故222DE EC DC +=,所以DE EC ⊥,因为113,2,5D E EC D C ===22211D E EC D C +=,所以1D E EC ⊥,即三棱锥1D DEF -的四个面均为直角三角形,当E 与B 重合,F 与C 重合时,如图,显然1D D DB ⊥,1D D DC ⊥,CB DC ⊥,1CB D C ⊥,故三棱锥1D DEF -的四个面均为直角三角形,综上可知,至少存在两组,E F ,使得三棱锥1D DEF -的四个面均为直角三角形,故④正确.故答案为:①②④【点睛】关键点点睛:本题四个选项比较独立,①的关键在于转化顶点,得出高及底面积为定值;②分析三边中1D F 的最小值为2,此时其余两边不能同时等于2;③利用向量得出两点的关系,在此关系下不一定能推出两边长相等;④考虑特殊位置寻求满足条件的位置是解题关键.三、解答题(共6小题,共85分)16.如图,四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,60ABC ∠=,对角面11AAC C 是矩形,且平面11AA C C ⊥平面ABCD .(1)证明:侧棱1AA ⊥平面ABCD :(2)设AC BD O = ,若1AB AA =,求二面角11D OB C --的余弦值.【答案】(1)证明见解析(2)25719【分析】(1)利用面面垂直的性质来进行证明即可;(2)以O 为坐标原点可建立空间直角坐标系,利用二面角的向量求法可求得结果.【小问1详解】四边形11AA C C 是矩形,1AA AC ∴⊥,又平面11AA C C ⊥平面ABCD ,平面11AA C C 平面ABCD AC =,1AA ⊂平面11AA C C ,1AA ∴⊥平面ABCD .【小问2详解】四边形ABCD 为菱形,AC BD ∴⊥,以O 为坐标原点,,OB OC正方向为,x y 轴,平行于1AA 的直线为z轴,可建立如图所示空间直角坐标系,设12AB AA ==,则()0,0,0O,)13,0,2B ,()10,1,2C ,)13,0,2OB ∴=,()10,1,2OC =,设平面11OB C 的法向量(),,n x y z =,则1132020OB n x z OC n y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令2x =,解得:23y =3z =,(2,3,3n ∴= ;平面1OB D y ⊥轴,∴平面1OB D 的一个法向量()0,1,0m =,257cos ,19m n m n m n⋅∴==⋅ ,二面角11D OB C --为锐二面角,∴二面角11D OB C --的余弦值为25719.17.已知ABC 的内角,,A B C 的对边分别为,,a b c,cos sin b a C A =+.(1)求角A 的大小;(2)从以下三个条件中选择一个作为已知,使得三角形存在且唯一确定,求ABC 的面积.条作①:7a =,8b =条件②:1sin 7B =,7a =条什③:a =,8c =注:如果选择的条件不符合要求.第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)π6A =(2)答案见解析【分析】(1)利用正弦定理边化角,结合三角恒等变换知识可求得tan A ,由此可得A ;(2)若选①,利用余弦定理构造方程求得c ,知三角形不唯一,不合题意;若选②,利用正弦定理可求得b ,再利用余弦定理求得c ,代入三角形面积公式即可;若选③,利用余弦定理可构造方程求得b ,代入三角形面积公式即可.【小问1详解】由正弦定理得:sin sin cos sin B A C C A =+,又()sin sin sin cos cos sin B A C A C A C =+=+,cos sin sin A C C A ∴=,()0,πC ∈ ,sin 0C ∴>,cos A A =,即tan 3A =,()0,πA ∈ ,π6A ∴=.【小问2详解】若选条件①,由余弦定理得:22222cos 6449a b c bc A c =+-=+-=,即2150c -+=,解得:2c =或2c +=,∴三角形不唯一,不合题意;若选条件②,由正弦定理得:sin 121sin 2a Bb A===,由余弦定理得:22222cos 449a b c bc A c =+-=+-=,即2450c --=,解得:c =-(舍)或c =,∴满足题意的三角形唯一,满足题意;此时11153sin 22222ABC S bc A ==⨯⨯= ;若选条件③,由余弦定理得:222222cos 642a b c bc A b b =+-=+-=,即2640b +-=,解得:b =--b =-,∴满足题意的三角形唯一,满足题意;此时(111sin 8222ABC S bc A ==⨯-⨯⨯=- .18.2022年第24届冬季奥林匹克运动会期间,为保障冬奥会顺利运行,组委会共招募约2.7万人参与赛会志愿服务.赛会共设对外联络服务、竞赛运行服务、文化展示服务等共12类志愿服务.(1)甲、乙两名志愿者被随机分配到不同类志愿服务中,每人只参加一类志愿服务.求甲被分配到对外联络服务且乙被分配到竞赛运行服务的概率;(2)已知来自某高校的每名志愿者被分配到文化展示服务的概率是110,设来自该高校的2名志愿者被分配到文化展示服务的人数为X ,求X 的分布列与数学期望()E X ;(3)已知在2.7万名志愿者中,18~35岁人群占比达到95%,为了解志愿者们对某一活动方案是否支持,通过分层随机抽样获得如下数据:18~35岁人群其他人群支持不支持支持不支持方案90人5人1人4人假设志愿者对活动方案是否支持相互独立.将志愿者支持方案的概率估计值记为0p ,去掉其他人群后志愿者支持方案的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)【答案】(1)1132(2)分布列见解析,15(3)01p p <【分析】(1)利用古典概型计算即可;(2)根据离散型随机变量的分布列和期望公式计算即可;(3)由表格可计算得01,p p 判定大小即可.【小问1详解】甲、乙两名志愿者被随机分配到不同类志愿服务中,每人只参加一类志愿服务的基本事件空间Ω有212A 1211132=⨯=个基本事件,记事件A :“甲被分配到对外联络服务且乙被分配到竞赛运行服务”,即包含1个基本事件,则1()132P A =;【小问2详解】由题知,0,1,2X =,1~(2,)10X B 22181(0)C 110100P X ⎛⎫==-= ⎪⎝⎭,12119(1)C 1101050P X ⎛⎫==⨯⨯-= ⎪⎝⎭,22211(2)C 10100P X ⎛⎫===⎪⎝⎭,则X 的分布列:X012P811009501100X 的数学期望()81911012100501005E X =⨯+⨯+⨯=;【小问3详解】易知019019190189051410090519p p +==<==++++.19.设函数()2ln 2x f x k x =-,0k >.(1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(1)单调递减区间是(,单调递增区间是)+∞;极小值()1ln 2k k f-=;(2)证明详见解析.【详解】试卷分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先对()f x 求导,令()0f x '=解出x ,将函数的定义域断开,列表,分析函数的单调性,所以由表格知当x =时,函数取得极小值,同时也是最小值;(Ⅱ)利用第一问的表,知f 为函数的最小值,如果函数有零点,只需最小值(1ln )02k k -≤,从而解出k e ≥,下面再分情况分析函数有几个零点.试卷解析:(Ⅰ)由()2ln 2x f x k x =-,(0k >)得2()k x kf x x x x-=-='.由()0f x '=解得x =()f x 与()f x '在区间(0,)+∞上的情况如下:所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x=(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=.因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =()f x 在区间上的唯一零点.当e k >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值、函数零点问题.20.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(Ⅰ)2212x y +=;(Ⅱ)见解析.【分析】(Ⅰ)由题意确定a ,b 的值即可确定椭圆方程;(Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM ,ON 的表达式,结合韦达定理确定t 的值即可证明直线恒过定点.【详解】(Ⅰ)因为椭圆的右焦点为(1,0),所以1225;因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212xy +=.(Ⅱ)设1122(,),(,)P x y Q x y 联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k -=+++=+.直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-.因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0=t ,所以直线方程为y kx =,所以直线l 恒过定点(0,0).【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.正实数构成的集合{}()12,,,2n A a a a n =⋅⋅⋅≥,定义{},,i j i j A A a a a a A i j ⊗=⋅∈≠且.当集合A A ⊗中恰有()12n n -个元素时,称集合A 具有性质Ω.(1)判断集合{}11,2,4A =,{}21,2,4,8A =是否具有性质Ω;(2)若集合A 具有性质Ω,且A 中所有元素能构成等比数列,A A ⊗中所有元素也能构成等比数列,求集合A 中的元素个数的最大值:(3)若集合A 具有性质Ω,且A A ⊗中的所有元素能构成等比数列.问:集合A 中的元素个数是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.【答案】(1)1A 具有性质Ω;2A 不具有性质Ω.(2)3(3)存在,4【分析】(1)将集合1A ,2A 进行计算,得出集合中的元素个数即可知1A 具有性质Ω;2A 不具有性质Ω.(2)利用等比数列性质和集合性质Ω的定义,即可得集合A 中的元素个数最大值为3;(3)根据集合具有的性质Ω的定义,对集合中的元素个数进行分类讨论,再由集合元素的互异性得出矛盾即可求出A 中的元素个数最大值是4.【小问1详解】1A 具有性质Ω;2A 不具有性质Ω.若{}11,2,4A =,则{}112,4,8A A ⊗=,恰有()33132-=个元素,所以1A 具有性质Ω;若{}21,2,4,8A =,{}222,4,8,16,32A A ⊗=,有5个元素,()44152-≠,2A 不具有性质Ω.【小问2详解】当A 中的元素个数4n ≥时,因为A 中所有元素能构成等比数列,不妨设元素依次为12,,,n a a a 构成等比数列,则121n n a a a a -=,其中121,,,n n a a a a -互不相同.于是这与A 具有性质Ω,A A ⊗中恰有()21C 2n n n -=个元素,即任取A 中两个不同元素组成组合的两个数其积的结果互不相同相矛盾.当A 中的元素个数恰有3个时,取{1,2,4}A =时满足条件,所以集合A 中的元素个数最大值为3.【小问3详解】因为0(1,2,,)i a i n >= ,不妨设1231n n a a a a a -<<<<< ,所以121321n n n n a a a a a a a a --<<<< .(1)当5n >时,121321,,,,n n n n a a a a a a a a -- 构成等比数列,所以131122n n n na a a a a a a a --== ,即2132n n a a a a --=,其中2132,,,n n a a a a --互不相同.这与A A ⊗中恰有()21C 2n n n -=个元素,即任取A 中两个不同元素组成组合的两个数其积的结果互不相同相矛盾.(2)当5n =时,12133545,,,,a a a a a a a a 构成等比数列,第3项是23a a 或14a a .①若第3项是23a a ,则132345121335a a a a a a a a a a a a === ,即324213a a a a a a === ,所以2314a a a a =,与题意矛盾.②若第3项是14a a ,则134514121335a a a a a a a a a a a a === ,即344233a a a a a a === ,所以234,,a a a 成等比数列,设公比为q ,则A A ⊗中等比数列的前三项为:121314,,a a a a a a ,其公比为q ,第四项为312a a q ,第十项为912a a q .(ⅰ)若第四项为23a a ,则12332a a a a q =,得221a a q =,又94512a a a a q =,得751a a q =,此时A 中依次为234711111,,,,a a q a q a q a q 显然1534a a a a =,不合题意.(ⅱ)若第四项为15a a ,则31512a a a a q =,得352a a q =,又94512a a a a q =,得421a a q =,此时A 中依次为456711111,,,,a a q a q a q a q ,显然2534a a a a =,不合题意.因此,4n ≤.取{1,2,4,16}A =满足条件.所以A 中的元素个数最大值是4.【点睛】方法点睛:对于“新定义”的题目关键在于充分理解定义的本质,把新定义与高中已学内容建立联系,灵活运用类比、归纳、分类讨论等数学思想才能将问题解决.。
北京市第四中学2023-2024学年九年级上学期月考数学试题(含答案)

数学练习班级________姓名________学号________学生须知1.本练习卷共6页,共26道小题,满分100分.练习时间120分钟.2.在练习卷和答题卡上准确填写班级、姓名和学号.3.答案一律填写在答题纸上,在练习卷上作答无效.4.选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.一.选择题(每题2分,共16分)1.下列关系式中,属于二次函数的是().A. B. C. D.2.抛物线的顶点坐标是( ).A. B. C. D.3.一元二次方程的解为( ).A.,B.,C.,D.,4.二次函数与轴的公共点个数是( ).A.0个B.1个C.2个D.3个5.如果在二次函数的表达式中,,,,那么这个二次函数的图象可能是().A.B. C. D.6.关于的方程有实数根,则的取值范围是( ).A.且 B.且 C. D.7.已知二次函数,分别取,,,那么对应的函数值为,,中,最大的为( ).A. B. C. D.不能确定8.如图,直线与轴交于点,与直线交于点,以线段为边向左作菱形,点恰与原点重合,抛物线的顶点在直线移动.若抛物线与菱形的边、都23x y =y =213y x =-3y x =-()2314y x =++()1,4-()1,4--()1,4()1,4-2430x x -+=11x =-23x =11x =23x =11x =-23x =-11x =23x =-223y x x =++x 2y ax bx c =++0a >0b <0c >x ()()2212110k x k x -+++=k 14k >1k ≠14k ≥1k ≠14k >14k ≥22y x x c =-++11x =-212x =32x =1y 2y 3y 1y 2y 3y 122y x =-+y A 12y x =D AD ABCD C O ()2y x h k =-+12y x =AD CD有公共点,则的取值范围是().A. B. C. D.二.填空题(每题2分,共16分)9.用配方法解方程,配方后所得的方程是________.10.关于的方程的一个解是,则值为________.11.已知关于的一元二次方程有两个实数根,则实数的取值范围是________.12.某学校开展的课外阅读活动中,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为,根据题意,可列方程________.13.已知函数.若,则________.14.如图,点、在的图象上.已知、的横坐标分别为、4,连接、.若函数的图象上存在点,使的面积等于的面积的一半,则这样的点共有________个.15.已知二次函数的图象如图所示,有下列结论:①;②;③;④;⑤方程的两个根是和1.其中结论正确的是________.16.如图,网格(每个小正方形的边长为1)中有、、、、、、、、九个格点,抛物线的解析式为(为整数).h 122h -≤≤12h -≤≤312h -≤≤112h -≤≤2650x x -+=x 22424x kx k ++=2-k x 2210x x m +-+=m x 2,0122,1x x y x x ⎧≤<=⎨-≥⎩2y =x =A B 214y x =A B 2-OA OB 214y x =P PAB △AOB △P ()20y ax bx c a =++≠0abc <20a b ->0a b c ++=80a c +>20ax bx c ++=3-22⨯A B C D E F G H O l ()21ny x bx c =-++n(1)若为偶数,且抛物线经过点和,则抛物线还经过网格上的________点;(2)若经过这九个格点中的三个,则所有满足这样条件的抛物线共有________条.三.解答题(共68分,第17、20题每题8分,第18、19、21、24题每题6分,第22、23、25、26题每题7分)17.解方程:(1);(2).18.小马与小郭两位同学解方程的过程如下表:小马:两边同除以,得,则.小郭:移项,得,提取公因式,得.则或,解得,.(1)你认为他们的解法是否正确?若正确,请在对应的括号内打“√”;若错误,请在对应的括号内打“×”;(2)请写出你的解答过程.19.已知关于的一元二次方程.(1)求证:该方程总有两个实数根;(2)若,且该方程的两个实数根的差为2,求的值.20.已知抛物线经过点和.(1)求和的值;(2)列表并画出函数图象;(3)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.n l ()1,0A ()2,0B l l 2450x x --=2310x x -+=()()2333x x -=-()3x -33x =-6x =()()23330x x ---=()()3330x x ---=30x -=330x --=13x =20x =x 22430x mx m -+=0m >m ()21y a x k =-+()0,3-()3,0a k21.如图,已知过原点的抛物线与轴交于另一点.(1)求的值和抛物线顶点的坐标;(2)根据图象,直接写出不等式的解集.22.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量(单位:个)与销售单价(单位:元)有如下关系:.设这种双肩包每天的销售利润为元.(1)求与之间的函数表达式;(2)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?(3)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?23.某游乐场的圆形喷水池中心有一雕塑,从点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为轴,点为原点建立直角坐标系,点在轴上,轴上的点、为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为.(1)求雕塑高;(2)求落水点、之间的距离;(3)若需要在上的点处竖立一尊高3米的雕塑,且,那么雕塑顶部是否会碰到水柱?请通过计算说明.22y x mx =+x ()2,0A m M 2224x mx x +>-y x ()603060y x x =-+≤≤w w x O OA A x O A y x C D ()21566y x =--+OA C D OD E EF 9m OE =F24.已知关于的二次函数(实数,为常数).(1)若二次函数的图象经过点,对称轴为,求此二次函数的表达式;(2)若,当时,二次函数的最小值为21,求的值;(3)记关于的二次函数,若在(1)的条件下,当时,总有,请直接写出实数的最小值.25.已知,点在直线上,以为边作等边(要求点、、为逆时针顺序),过点作于点.请解答下列问题:(1)当点在图①位置时,求证:;(2)当点在图②位置时,请直接写出线段,,的数量关系;(3)当点在图③位置时,补全图形并直接写出线段,,的数量关系.26.在平面直角坐标系中,对于点和点,给出如下定义:若,则称点为点的勤学点.例如:点的勤学点的坐标是,点的勤学点的坐标是.(1)①点的勤学点的坐标是________;②点是函数图象上某一个点的勤学点,则的值为________;(2)若点在函数(,)的图象上,求其勤学点的纵坐标的取值范围(结果可用含的代数式表示);(3)若点在关于的二次函数的图象上,其勤学点的纵坐标的取值范围是或,其中.令,直接写出关于的函数解析式及的取值范围.x 21y x bx c =++b c ()0,41x =20b c -=3b x b -≤≤b x 222y x x m =++01x ≤≤21y y ≥m 60ABC ∠=︒F BC AF AFE △A F E E ED AB ⊥D F AD BF BD +=F AD BF BD F AB BF BD xOy (),P a b (),Q a b '1,1,1b a b b a +≥⎧=⎨-<'⎩QP ()2,3()2,4()2,5-()2,5--()()2,A a 4y x =a P 2y x =+3k x ≤<73k -<<Q b 'k P x 222y x tx t t =-+-+Q b 'b m'>b n '≤m n >s m n =-s t t北京四中10月参考答案一、选择1-8 A A B A C D B A8.提示:将与联立得:,解得:.点的坐标为.由抛物线的解析式可知抛物线的顶点坐标为.将,,代入得得:,解得,抛物线的解析式为.当抛物线经过点时.将代入得:,解得:(舍去),.当抛物线经过点时.将代入得:,整理得:,解得:,(舍去).综上所述,的范围是.二、填空9.10.0或411.12.13.214.4个15.①③④⑤16.点,8条16.提示:(1)为偶数时,,经过点和,122y x =-+12y x =12212y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩21x y =⎧⎨=⎩∴D ()2,1(),h k x h =y k =12y x =12h k =12k h =∴()212y x h h =-+C ()0,0C ()212y x h h =-+2102h h +=10h =212h =-D ()2,1D 21()2y x h h =-+()21212h h -+=22760h h -+=12h =232h =h 122h -≤≤()234x -=2m ≤()21001121x +=F n 2y x bx c =++l ()1,0A ()2,0B,解得,抛物线解析式为,当时,,点在抛物线上,抛物线还经过网格上的点;(2)所有满足条件的抛物线共有8条.当为奇数时,由(1)中的抛物线平移又得到3条抛物线,如答图3-1所示;当为偶数时,由(2)中的抛物线平移又得到3条抛物线,如答图3-2所示.三、解答题17.(1)5,(218.小马×,小郭×,,619.(1)证明:,,,.无论取何值时,,即,原方程总有两个实数根.(2)解:,即,,.,且该方程的两个实数根的差为2,,.20.(1),;(2)略;(3)21.(1),;(2)或22.解:(1),与之间的函数解析式;(2)当时,,解得,,10420b c b c ++=⎧∴⎨++=⎩32b c =-⎧⎨=⎩∴232y x x =-+0x =2y =∴()0,2F ∴F n n 1-3x =1a =Q 4b m =-23c m =()2222444134b ac m m m ∴∆=-=--⨯⨯=Q m 240m ≥0∆≥∴22430x mx m -+=Q ()()30x m x m --=1x m ∴=23x m =0m >Q 32m m ∴-=1m ∴=1a =4k =-()222y x =--4m =-()1,2M -1x <2x >()()()2230603030601800901800w x y x x x x x x x =-⋅=-+-=-++-=-+-w x ()29018003060w x x x =-+-≤≤200w =2901800200x x -+-=140x =250x =,不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元;(3)根据题意得:,当时,有最大值,最大值是225.23.(1);(2);(3)不会碰水.24.解:(1)二次函数的图象经过点,;对称轴为直线:,,此二次函数的表达式为:.(2)当时,,此时函数的表达式为:,根据题意可知,需要分三种情况:①当,即时,二次函数的最小值在处取到;,解得,(舍去);②,即时,二次函数的最小值在处取到;,解得,(舍去);③,即时,二次函数的最小值在处取到;,解得.综上所述,的值为或4.(3)由(1)知,二次函数的表达式为:,对称轴为直线:,当时,随的增大而减小,且最大值为4;二次函数的对称轴为直线:,且,当时,随的增大而增大,且最小值为,当时,总有,,即的最小值为4.25.(1)如图,证,,则;5048>Q 250x =()2290180045225w x x x =-+-=--+45x =w 116OA =22CD =109,3F ⎛⎫⎪⎝⎭()0,44c ∴=12bx =-=2b ∴=-∴2124y x x =-+20b c -=2b c =221y x bx b =++2bb <-0b <x b =22221b b b ∴++=1b =2b =32bb ->-2b >3x b =-()()223321b b b b ∴-+-+=34b =41b =-32b b b -≤-≤02b ≤≤2bx =-222122b b b b ⎛⎫⎛⎫∴-+⋅-+= ⎪ ⎪⎝⎭⎝⎭b =±b 2124y x x =-+1x =∴01x ≤≤y x 222y x x m =++14x =-20>∴01x ≤≤y x m 01x ≤≤21y y ≥4m ∴≥m ADE FHE △≌△BDE BHE △≌△BD BH FH BF AD BF ==+=+(2);(3).26.(1)①;②9(2)当时,;当时,或;当时,.(3),.BD AD BF =-2AB BD BF +=()1-13k ≤<36k b +≤'<61k -<<32b k -<≤--'46b ≤'<76k -<≤-36b -<'<24s t t =-4t >。
北京四中八年级第一学期期末数学试题(附答案) 2

北京四中八年级第一学期期末数学试题(附答案)作者:学大教育编辑整理 来源:网络一、选择(本题共30分,每小题3分) 1.下列说法正确的是( ).A .4的平方根是2B .9的算术平方根是C .8的立方根是D .的立方根是2.计算的结果是( ).A .B .C .21D .3.下列图形中,轴对称图形的个数是( ).A .1B .2C .3D .4 4.下列变形正确的是( ).A .B .C .D .5.若函数(k≠0)的图象如图所示,则关于x的不等式≤0的解集在数轴上表示正确的是().6.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上依画法证明△POM≌△PON根据的是().A.SSS B.SAS C.AAS D.HL7.若将直线(k≠0)的图象向上平移3个单位后经过点(2,7),则平移后直线的解析式为().A.B.C.D.8.如图,等边三角形ABC中,D为BC的中点,BE平分∠ABC交AD于E,若△CDE的面积等于1,则△ABC的面积等于().A .2B .4C .6D .12 9.已知一次函数,其中,则所有符合条件的一次函数的图象一定都经过( ).A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限10.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为( ).A .1B .1.5C .2D .2.5二、填空(本题共18分,第15题4分,其余每小题各2分) 11.函数2-=x y 中,自变量x 的取值范围是_________.12.在,,,327这四个实数中,无理数是_________.13.如图,△ABC 中,D 为AC 边上一点,AD =BD =BC ,若∠A =40°,则∠CBD =_____.14.若直线(k ≠0)经过点(1,3),则该直线关于x 轴对称的直线的解析式为____15 . Rt △ABC 中,∠C =90°,∠A =30°,P 为AC 边上一点,PC =2,∠PBC =30°.(1)若PD ⊥AB 于D ,在图中画出线段PD ;(2)点P 到斜边AB 的距离等于_________.16.下图是按一定规律排列的一组图形,依照此规律,第n 个图形中的个数为_____.(n 为正整数)17.如图,钝角三角形纸片ABC 中,∠BAC =110°,D 为AC 边的中点.现将纸片沿过点D 的直线折叠,折痕与BC 交于点E ,点C 的落点记为F .若点F 恰好在BA 的延长线上,则∠ADF =_________°.18.对于三个数a 、b 、c ,用}c b min{、、a 表示这三个数中最小的数, 例如,,那么观察图象,可得到的最大值为_________.三、(本题共17分,第19、21题各5分,第20题3分,第22题4分) 19.因式分解:(1); (2).20.计算:.21.先化简再求值:,其中x=3.22.解分式方程:.四、(本题共11分,第23题6分,第24题5分)23.已知:如图,D为△ABC内一点,AC=BC,CD平分∠ACB.求证:∠ABD=∠BAD.24.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.解:(1)画法:(2)答:AM+AN_________BM+BN.(填“>”、“=”或“<”)五、(本题共12分,每小题6分)25.在平面直角坐标系xOy中,一动点从点出发,在由,四点组成的正方形边线上(如图①所示),按一定方向匀速运动.图②是点P运动的路程s与运动时间t(秒)之间的函数图象,图③是点P的纵坐标y与点P运动的路程s之间的函数图象的一部分.请结合以上信息回答下列问题:(1)图②中,s与t之间的函数关系式是_________(t≥0);(2)与图③中的折线段相对应的点P的运动路径是→_________→_________→_________;(填“A”、“B”、“C”、“D”、“M”或“N”)(3)当4≤s≤8时,直接写出y与s之间的函数关系式,并在图③中补全相应的函数图象.26.某中学初二年级300名同学在“爱心包”活动中,集资购买一批学习用品(书包和文具盒),捐赠给灾区90名学生,所买的书包每个54元,文具盒每个12元.现每名同学只购买一种学习用品,而且每2人合买一个文具盒,每6人合买一个书包.若x名同学购买书包,全年级共购买了y件学习用品.(1)求y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)若捐赠学习用品的总金额超过2300元,且灾区90名学生每人至少得到一件学习用品,问:同学们如何设计购买方案,才能使所购买的学习用品件数最多?学习用品最多能买多少件?六、解答题(本题共12分,每小题6分)27.已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为,,P为y轴上B点下方一点,PB=m(m>0),以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限.(1)求直线AB的解析式;(2)用m的代数式表示M点的坐标;(3)若直线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,写出你的结论并说明理由.28.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△EGM为等腰三角形;(2)判断线段BG、AF与FG的数量关系并证明你的结论.(1)证明:(2)答:线段BG、AF与FG的数量关系为_________.证明:北京四中八年级第一学期期末数学试题(附答案)参考答案一、选择(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 D D B B B D A C B A二、填空(本题共18分,第15题4分,其余每小题各2分)11.x≥2.12..13.20.14..15.(1)答案见图1;(2)2.16..17.40.18.1.三、计算(本题共17分,第19、21题各5分,第20题3分,第22题4分)19.(1)解:.(2)解:.20.解:.21.解:.当x= 3时,原式=.22.解:去分母,得.2x=2.x=1.经检验,x=1是原方程的解.所以,原方程的解为x=1.四、认真做一做(本题共11分,第23题6分,第24题5分)23.证法一:如图2-1.∵CD平分∠ACB,∴∠1=∠2.在△ACD与△BCD中,∴△ACD≌△BCD.∴AD=BD.∴∠ABD=∠BAD.证法二:如图2-2.延长CD交AB于点E.∵AC=BC,CD平分∠ACB,∴CE垂直平分AB.∵点D在CE上,∴AD=BD.∴∠ABD=∠BAD.24.解:(1)答案图如图3所示.画法:1.作点M关于射线OP的对称点,连结交OP于点A.2.作点N关于射线OQ的对称点,连结交OQ于点B.(2)=.五、仔细想一想(本题共12分,每小题6分)25.(1)(2)M→D→A→N;(3)26.解:(1).(2)由题意得解得<x≤180.又因为x为6的倍数,所以x等于168,174,180.因为随x的增大而减小,所以当x等于168,即168名同学购买书包,132名同学购买文具盒时,所购买的学习用品件数最多.因为时,,所以最多可买94件学习用品.此时168名同学购买书包,132名同学购买文具盒。
北京四中数学题典

解答题模块练训练25 函数(推荐时间:75分钟)1.记函数f (x )=2-x +3x +1的定义域为A ,g (x )=lg[(x -a -1)(2a -x )] (a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围.2.函数g (x )=13x 3+12ax 2-bx (a ,b ∈R ),在其图象上一点P (x ,y )处的切线的斜率记为f (x ). (1)若方程f (x )=0有两个实根分别为-2和4,求f (x )的表达式;(2)若g (x )在区间[-1,3]上是单调递减函数,求a 2+b 2的最小值.3.已知函数f (x )=13x 3-x 2+ax -a (a ∈R ). (1)当a =-3时,求函数f (x )的极值;(2)求证:当a ≥1时,函数f (x )的图象与x 轴有且只有一个交点.4.设a >0,a ≠1为常数,函数f (x )=log a x -5x +5.(1)讨论函数f (x )在区间(-∞,-5)内的单调性,并给予证明;(2)设g (x )=1+log a (x -3),如果方程f (x )=g (x )有实根,求实数a 的取值范围.5.已知函数y =x +a x有如下性质:如果常数a >0,那么该函数在(0, a ]上是减函数,在[a ,+∞)上是增函数. (1)如果函数y =x +2bx在(0,4]上是减函数,在[4,+∞)上是增函数,求实常数b 的值; (2)设常数c ∈[1,4],求函数f (x )=x +c x(1≤x ≤2)的最大值和最小值.6.已知函数f (x )=x +a 2x,g (x )=x +ln x ,其中a >0.(1)若x =1是函数h (x )=f (x )+g (x )的极值点,求实数a 的值;(2)若对任意的x 1,x 2∈[1,e](e 为自然对数的底数)都有f (x 1)≥g (x 2)成立,求实数a 的取值范围.答案1.解 (1)由2-x +3x +1≥0,得x -1x +1≥0. 解上式得x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞).(2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.由a <1,得a +1>2a .所以g (x )的定义域B =(2a ,a +1).又因为B ⊆A ,则可得2a ≥1或a +1≤-1,即a ≥12或a ≤-2. 因为a <1,所以12≤a <1或a ≤-2. 故当B ⊆A 时,实数a 的取值范围是(-∞,-2]∪⎣⎡⎭⎫12,1.2.解 (1)f (x )=g ′(x )=x 2+ax -b .∵-2,4分别是f (x )=x 2+ax -b =0的两实根,∴a =-(-2+4)=-2,b =2×4=8,∴f (x )=x 2-2x -8.(2)∵g (x )在区间[-1,3]上是单调递减函数,∴g ′(x )≤0即f (x )=x 2+ax -b ≤0在[-1,3]上恒成立.∴⎩⎪⎨⎪⎧ 1-a -b ≤0,9+3a -b ≤0, 即⎩⎪⎨⎪⎧a +b -1≥0,3a -b +9≤0, A 点坐标为(-2,3),∴a 2+b 2的最小值为13.3.(1)解 当a =-3时,f (x )=13x 3-x 2-3x +3, ∴f ′(x )=x 2-2x -3=(x -3)(x +1).令f ′(x )=0,得x 1=-1,x 2=3.当x <-1时,f ′(x )>0,则f (x )在(-∞,-1)上单调递增;当-1<x <3时,f ′(x )<0,则f (x )在(-1,3)上单调递减;当x >3时,f ′(x )>0,f (x )在(3,+∞)上单调递增.∴当x =-1时,f (x )取得极大值为f (-1)=-13-1+3+3=143; 当x =3时,f (x )取得极小值为f (3)=13×27-9-9+3=-6. (2)证明 ∵f ′(x )=x 2-2x +a ,∴Δ=4-4a =4(1-a ).由a ≥1,则Δ≤0,∴f ′(x )≥0在R 上恒成立,∴f (x )在R 上单调递增.∵f (0)=-a <0,f (3)=2a >0,∴当a ≥1时,函数f (x )的图象与x 轴有且只有一个交点.4.解 (1)设x 1<x 2<-5,则x 2-5x 2+5-x 1-5x 1+5=1(x 1+5)(x 2+5)·10·(x 2-x 1)>0. 若a >1,则f (x 2)-f (x 1)>0.∴f (x 2)>f (x 1),此时f (x )在(-∞,-5)内是增函数;若0<a <1,则f (x 2)-f (x 1)<0,∴f (x 2)<f (x 1),此时f (x )在(-∞,-5)内是减函数.(2)由g (x )=1+log a (x -3)及f (x )=g (x )得1+log a (x -3)=log a x -5x +5⇒a =x -5(x -3)(x +5). 由⎩⎪⎨⎪⎧x -3>0x -5x +5>0⇒x >5. 令h (x )=x -5(x -3)(x +5),则h (x )>0. 由1h (x )=(x -3)(x +5)x -5=(x -5)+20x -5+12 ≥45+12,当且仅当⎩⎪⎨⎪⎧x -5=20x -5x >5⇒x =5+25时等号成立.∴0<h (x )≤145+12. 故所求a 的取值范围是0<a ≤112+45. 5.解 (1)由函数y =x +a x 的性质知:y =x +2bx在(0,2b ]上是减函数,在[ 2b ,+∞)上是增函数,∴2b =4,∴2b =16=24,∴b =4. (2)∵c ∈[1,4],∴c ∈[1,2].又∵f (x )=x +c x在(0, c ]上是减函数,在[c ,+∞)上是增函数, ∴在x ∈[1,2]上,当x = c 时,函数取得最小值2 c .又f (1)=1+c ,f (2)=2+c 2, f (2)-f (1)=1-c 2. 当c ∈[1,2)时,f (2)-f (1)>0,f (2)>f (1),此时f (x )的最大值为f (2)=2+c 2. 当c =2时,f (2)-f (1)=0,f (2)=f (1),此时f (x )的最大值为f (2)=f (1)=3.当c ∈(2,4]时,f (2)-f (1)<0,f (2)<f (1),此时f (x )的最大值为f (1)=1+c . 综上所述,函数f (x )的最小值为2c ;当c ∈[1,2)时,函数f (x )的最大值为2+c 2; 当c =2时,函数f (x )的最大值为3;当c ∈(2,4]时,函数f (x )的最大值为1+c .6.解 (1)∵h (x )=2x +a 2x+ln x , 其定义域为(0,+∞),∴h ′(x )=2-a 2x 2+1x, ∵x =1是函数h (x )的极值点,∴h ′(1)=0,即3-a 2=0.∵a >0,∴a = 3.经检验当a =3时,x =1是函数h (x )的极值点,∴a = 3.(2)对任意的x 1,x 2∈[1,e]都有f (x 1)≥g (x 2)成立等价于对任意的x 1,x 2∈[1,e],都有f (x )min ≥g (x )max .当x ∈[1,e]时,g ′(x )=1+1x>0. ∴函数g (x )=x +ln x 在[1,e]上是增函数, ∴g (x )max =g (e)=e +1.∵f ′(x )=1-a 2x 2=(x +a )(x -a )x 2, 且x ∈[1,e],a >0.①当0<a <1且x ∈[1,e]时,f ′(x )=(x +a )(x -a )x 2>0, ∴函数f (x )=x +a 2x在[1,e]上是增函数, ∴f (x )min =f (1)=1+a 2.由1+a 2≥e +1,得a ≥e ,又0<a <1,∴a 不合题意.②当1≤a ≤e 时,若1≤x ≤a ,则f ′(x )=(x +a )(x -a )x 2<0, 若a <x ≤e ,则f ′(x )=(x +a )(x -a )x 2>0. ∴函数f (x )=x +a 2x在[1,a )上是减函数, 在(a ,e]上是增函数.∴f (x )min =f (a )=2a .由2a ≥e +1,得a ≥e +12. 又1≤a ≤e ,∴e +12≤a ≤e. ③当a >e 且x ∈[1,e]时f ′(x )=(x +a )(x -a )x 2<0, 函数f (x )=x +a 2x在[1,e]上是减函数. ∴f (x )min =f (e)=e +a 2e.由e +a 2e≥e +1,得a ≥e , 又a >e ,∴a >e.综上所述,a 的取值范围为[e +12,+∞).。
北京四中数学题典

训练16 算法初步、复数1.已知复数z =11+i,则复数(z -1)·i 在复平面内对应的点在第________象限. 2.在复平面内,复数21-i 对应的点到直线y =x +1的距离是________.3.在如图所示的流程图中,若f (x )=2x ,g (x )=x 3,则h (2)的值为________..题3 题5 题64.(2011·陕西改编)设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =⎩⎨⎧⎭⎬⎫x ||x i |<1,i 为虚数单位,x ∈R ,则M ∩N 为________. 5.给出如图所示的流程图,其功能是________.6.一组数据x i (1≤i ≤8)从小到大的茎叶图为:4|0 1 3 3 4 6 7 8,在如图所示的流程图中x 是这8个数据的平均数,则输出的s 2的值为________.7.已知一个算法的流程图如图所示,当输出的结果为0时,输入的x 的值为________.题7 题88.执行如图所示的流程图,则输出的S =________.9.若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1-z 2)i 的实部为________.10.已知集合A =⎩⎨⎧⎭⎬⎫12i,i 2,|5i 2|,(1+i )2i ,-i 22,则集合A ∩R +的子集个数为________.11.(2010·北京)在复平面内,复数2i1-i 对应的点的坐标为______.12.阅读如图所示的流程图,运行相应的程序,输出的结果是________.题12 题13 题1413.某地区为了解70岁~80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:14.若如图所示的算法流程图中输出y 的值为0,则输入x 的值可能是________(写出所有可能的值).答案1.四 2.223.8 4.[)0,1 5.求|a -b |的值 6.7 7.-2或18.7 500 9.-20 10.8 11.(-1,1) 12.8 13.6.42 14.0,-3,1。
北京市四中2024-2025年初三10月月考数学试卷

数学练习班级 __________ 姓名 ___________ 学号 ___________一、选择题(共16分,每小题2分) 1.一元二次方程x 2+2x =0的解为( ).A .x = 2B .x =2C .x 1=0,x 2= 2D .x 1=0,x 2=2 2.抛物线2(1)2y x =的顶点坐标是( ).A .( 1,2)B .(1, 2)C .(1,2)D .( 1, 2) 3.若关于x 的方程x 2+6x +c =0有两个相等的实数根,则c 的值是( ).A .36B .9C . 9D . 36 4.设A 123(2,),(1,),(2,)y B y C y 是抛物线2(1)y x 上的三点,则123,,y y y 的大小 关系为( ).A .123y y yB .132y y yC .321y y yD .213y y y 5.已知抛物线y =ax 2+bx +c 的部分图象如图所示,则当y >0时,x 的取值范围是( ).A .x <3B .x > 1C . 1<x <3D .x < 1 或 x >3(第5题图) (第7题图)6.已知AB =10cm ,以AB 为直径作圆,那么在此圆上到AB 的距离等于5cm 的点共有( ).A .无数个B .1个C .2个D .4个 7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =1,下列结论正确的是( ).A .a >0B .b =2aC .b 2<4acD .8a +c <08.若二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是( ).A .a >0B .(x 0 x 1)(x 0 x 2)<0C .x 1<x 0<x 2D .a (x 0 x 1)(x 0 x 2)<0 二、填空题(共16分,每小题2分)9.在平面直角坐标系xOy 中,抛物线245y x x 与y 轴交于点C ,则点C 的坐标为 .10.如图,已知⊙O 的半径OA =5,弦AB 的弦心距OC =3,那么AB = .(第10题图) (第13题图)11.若m 是关于x 的方程x 2 2x 1=0的解,则代数式6m 3m 2+2的值是 . 12.若抛物线y =x 2 2x +m 与x 轴的一个交点是( 2,0),则另一个交点的坐标是 .13.如图,一次函数y 1=kx +n (k ≠0)与二次函数y 2=ax 2+bx +c (a ≠0)的图象相交于A ( 1,4),B (6,2)两点,则关于x 的不等式kx +n >ax 2+bx +c 的解集为 . 14.平面上一点P 到⊙O 上一点的距离最长为6cm ,最短为2cm ,则⊙O 的半径为 .15.二次函数y =ax 2+bx 的图象如图所示,若关于x 的一元二次方程 ax 2+bx m =0有实数根,则m 的取值范围是 .(第15题图) (第16题图)16.如图,一条抛物线与x 轴相交于M 、N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动.若点A 、B 的坐标分别为( 2,3)、(1,3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为 .三、解答题(共68分,第17题10分,第18、22题5分,第19、20、21、23、24、25题7分,第26题6分) 17.用适当的方法解方程(1)x 2 2x 8=0; (2)2x (x 3) 5(3 x )=0.18.如图,已知:在⊙O 中,直径AB ⊥CD ,E 为垂足,AE =4,CE =6,求⊙O的半径.19.已知二次函数y = x 2 2x +2.(1)填写表,并在给出的平面直角坐标系中画出这个二次函数的图象;(2)结合函数图象,直接写出方程 x 2 2x +2=0的近似解(精确到0.1).20.已知关于x 的方程kx 2+(2k +1)x +2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =kx 2+(2k +1)x +2(k 为正整数)图象与x 轴两个交点的横坐标均为整数,求此抛物线的解析式;(3)已知抛物线y =kx 2+(2k +1)x +2恒过定点,求出定点坐标.A21.已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为( 3,0),与y轴交于点C,点D( 2, 3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出P A+PD的最小值;(3)若抛物线上有一动点Q,使三角形ABQ的面积为24,求Q点坐标.22.掷实心球是中考体育考试项目之一,实心球投掷后的运动轨迹可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从投掷到着陆的过程中,实心球的竖直高度y(单位:)m与水平距离x(单位:)m近似满足函数关系2.某位同学进行了两次投掷.y a x h k a()(0)(1)第一次投掷时,实心球的水平距离x与竖直高度y的几组数据如下:根据上述数据,直接写出实心球竖直高度的最大值,并求出满足的函数关系式:2y a x h k a;()(0)(2)第二次投掷时,实心球的竖直高度y与水平距离x近似满足函数关系2.记实心球第一次着地点到原点的距离为0.09( 3.8) 2.97y xd,第二次着1地点到原点的距离为d,则1d2d(填“ ”“ ”或“ ” ).223.阅读以下材料:利用我们学过的完全平方公式及不等式知识能解决代数式一些问题, 如a 2+2a 4=a 2+2a +12 12 4=(a +1)2 5. ∵(a +1)2≥0,∴a 2+2a 4=(a +1)2 5≥ 5, 因此,代数式a 2+2a 4有最小值 5. 根据以上材料,解决下列问题:(1)代数式a 2 2a +2的最小值为 ;(2)试比较a 2+b 2+11与6a 2b 的大小关系,并说明理由; (3)已知:a b =2,ab +c 2 4c +5=0,求代数式a +b +c 的值.24. 在平面直角坐标系xOy 中,()()p q A p y B q y ,,,和2()3t C t y ,是抛物线223y x tx 上三个不同的点.(1)当1p q t y y ,时,求抛物线对称轴,以及p ,q 之间的等量关系; (2)当1p 时,若对于任意的32t q t ,都有p q t y y y ,求t 的取值范围.25. 如图,正方形ABCD 中,点E ,F 分别在边BC ,CD 上,BE =CF ,AE ,BF 交于点G .(1)在线段AG 上截取MG =BG ,连接DM ,∠AGF 的角平分线交DM 于点N .①依题意补全图形;②用等式表示线段MN 与ND 的数量关系,并证明;(2)在(1)条件下,若正方形ABCD 边长为1,求线段DN 的最小值.26. 【阅读材料】(1)抛物线上的任意一点都具有如下性质:抛物线C 上任意一点A 到抛物线对称轴上一点F 的距离和到垂直于抛物线对称轴的一条直线l 的距离相等.例如:已知抛物线y =x 2,点F (0,14),直线l :14y ,抛物线上一点Q (a ,a 2).作QP l 于点P , 连结QF .则QP =a 2+14, 214QF a QP .点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)抛物线上两点连成的线段叫做抛物线的弦,过焦点的弦叫做焦点弦.与抛物线对称轴垂直的焦点弦叫做通径. 【解决问题】请你仿照(1)中的方法,解决以下问题: ①已知抛物线213y x ,焦点3(0)4,,请计算出准线的解析式; ②已知抛物线218y x,准线2y ,请计算出焦点坐标; ③综合以上几问的结果,请直接写出抛物线212y x p的焦点坐标与准线解析式(用含p 的式子表示).。
北京四中学2024-2025学年数学九上开学统考试题【含答案】

北京四中学2024-2025学年数学九上开学统考试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是()A .10B .16C .18D .202、(4分)如图,在△ABC 中,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,若∠BAD =45°,则∠B 的度数为()A .75°B .65°C .55°D .45°3、(4分)对于代数式2ax bx c ++(0,,,a a b c ≠为常数),下列说法正确的是()①若240b ac -=,则20ax bx c ++=有两个相等的实数根②存在三个实数m n s ≠≠,使得222am bm c an bn c as bs c++=++=++③若220ax bx c +++=与方程()()230+-=x x 的解相同,则422a b c -+=-A .①②B .①③C .②③D .①②③4、(4分)若方程1322x a x x -+=--有增根,则a 的值为()A .1B .2C .3D .05、(4分)如图,直线y x m =-+与3y x =+的交点的横坐标为-2,则关于x 的不等式30x m x -+>+>的取值范围()A .x>-2B .x<-2C .-3<x<-2D .-3<x<-16、(4分)一组数据1,2,a 的平均数为2,另一组数据-l ,a ,1,2,b 的唯一众数为-l ,则数据-1,a ,b ,1,2的中位数为()A .-1B .1C .2D .37、(4分)已知,则下列不等式一定成立的是()A .B .C .D .8、(4分)下列各点中,在第四象限的点是()A .(2,3)B .(﹣2,﹣3)C .(2,﹣3)D .(﹣2,3)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.10、(4分)某通讯公司的4G 上网套餐每月上网费用y (单位:元)与上网流量x (单位:兆)的函数关系的图像如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a 的值为__________.11、(4分)我市在旧城改造中,计划在市内一块如下图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要______元.12、(4分)定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为________.13、(4分)已知点A (﹣12,a ),B (3,b )在函数y =﹣3x +4的象上,则a 与b 的大小关系是_____.三、解答题(本大题共5个小题,共48分)14、(12分)已知一次函数5y kx b =++与一次函数3y kx b =-++的图象的交点坐标为(3,0)A ,求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.15、(8分)据大数据统计显示,某省2016年公民出境旅游人数约100万人次,2017年与2018年两年公民出境旅游总人数约264万人次,若这两年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2019年仍保持相同的年平均增长率,请你预测2019年该省公民出境旅游人数约多少万人次?16、(8分)如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N .(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3:1,ND =1.①求MC 的长.②求MN 的长.17、(10分)已知:线段a ,c .求作:△ABC ,使BC =a ,AB =c ,∠C =90°18、(10分)如图,在四边形ABCD 中,AD ∥BC ,AD =12cm ,BC =15cm ,∠B =90°,DC=5cm .点P 从点A 向点D 以lcm /s 的速度运动,到D 点停止,点Q 从点C 向B 点以2cm /s 的速度运动,到B 点停止,点P,Q 同时出发,设运动时间为t (s ).(1)用含t 的代数式表示:AP =;BQ =.(2)当t 为何值时,四边形PDCQ 是平行四边形?(3)当t 为何值时,△QCD 是直角三角形?B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一张矩形纸片ABCD ,已知6AB =,4BC =.小明按所给图步骤折叠纸片,则线段DG 长为______.20、(4分)小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为_____,方差为________.21、(4分)若0234a b c ==≠,则a b 的值为__________,a b c a b c +--+的值为________.22、(4分)已知一次函数y ax b =+,反比例函数k y x =(a ,b ,k 是常数,且0ak ≠),若其中-部分x ,y 的对应值如表,则不等式8k x ax b -<+<的解集是_________.x 4-2-1-124y ax b =+6-4-3-1-02k y x =2-4-8-84223、(4分)若因式分解:3x x -=__________.二、解答题(本大题共3个小题,共30分)24、(8分)先化简,再求值:22121124a a a a ++⎛⎫-÷ ⎪+-⎝⎭,其中a=325、(10分)已知:如图,平行四边形ABCD 中,AC ,BD 交于点O ,AE ⊥BD 于点E ,CF ⊥BD 于点F .求证:OE =OF .26、(12分)某校开展爱“我容城,创卫同行”的活动,倡议学生利用双休日在浜江公园参加评选活动,为了了解同学们劳动时间,学校随机调查了部分同学劳动的时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)将条形统计图补充完整;(2)抽查的学生劳动时间的众数为______,中位数为_______;(3)已知全校学生人数为1200人,请估算该校学生参加义务劳动2小时的有多少人?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.【详解】解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C 点上所以BC=4当x=9时,P点在D点上∴BC+CD=9∴CD=9-4=5∴△ABC的面积S=12AB×BC=12×4×5=10故选A.本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC 和CD的长,再用矩形面积公式求出矩形的面积.2、A【解析】由基本作图得到MN垂直平分AC,则DA=DC,所以∠DAC=∠C=30°,然后根据三角形内角和计算∠B的度数.【详解】解:由作法得MN垂直平分AC,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAC=∠BAD+∠DAC=45°+30°=75°,∵∠B+∠C+∠BAC=180°,∴∠B=180°-75°-30°=75°.故选:A.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).3、B 【解析】根据根的判别式判断①;根据一元二次方程2ax bx c k ++=(k 为常数)最多有两个解判断②;将方程()()230+-=x x 的解代入220ax bx c +++=即可判断③.【详解】解:①240b ac ∆=-=∴方程20ax bc c ++=有两个相等的实数根.∴①正确:②一元二次方程2ax bx c k ++=(k 为常数)最多有两个解,∴②错误;③方程()()230+-=x x 的解为122,3x x =-=,将x =-2代人220ax bx c +++=得()()22220a b c -+⋅-++=,422a b c ∴-+=-,∴③正确.故选:B .本题考查的知识点是一元二次方程根的情况,属于比较基础的题目,易于掌握.4、A 【解析】先去分母,根据方程有增根,可求得x=2,再求出a.【详解】1322x ax x -+=--可化为x-1-a=3(x-2),因为方程有增根,所以,x=2,所以,2-1-a=0,解得a=1.故选A 本题考核知识点:分式方程的增根.解题关键点:理解增根的意义.5、C 【解析】解:∵直线y x m =-+与3y x =+的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .本题考查一次函数与一元一次不等式.6、B 【解析】试题解析:∵一组数据1,2,a 的平均数为2,∴1+2+a =3×2解得a =3∴数据-1,a ,1,2,b 的唯一众数为-1,∴b =-1,∴数据-1,3,1,2,b 的中位数为1.故选B.点睛:中位数就是讲数据按照大小顺序排列起来,形成一个数列,数列中间位置的那个数.7、C 【解析】根据不等式的性质对选项进行逐一判断即可得到答案.【详解】解:A 、因为,不知道是正负数或者是0,不能得到,则A 选项的不等式不成立;B 、因为,则,所以B 选项的不等式不成立;C、因为,则,所以C选项的不等式成立;D、因为,则,所以D选项的不等式不成立.故选C.本题考查了不等式的性质,解题的关键是知道不等式两边同加上(或减去)一个数,不等号方向不变;不等式两边同乘以(或除以)一个正数,不等号方向不变;不等式两边同乘以(或除以)一个负数,不等号方向改变.8、C【解析】根据第四象限的点的横坐标是正数,纵坐标是负数解答.【详解】解:纵观各选项,第四象限的点是(2,﹣3).故选:C.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】解:应分(70-42)÷4=7,∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,∴应分1组.故答案为:1.10、59【解析】由题意得,300.29 600500a-=-,解得a=59.故答案为59.11、150a 【解析】作BA 边的高CD ,设与BA 的延长线交于点D ,则∠DAC =30°,由AC =30m ,即可求出CD =15m ,然后根据三角形的面积公式即可推出△ABC 的面积为150m 2,最后根据每平方米的售价即可推出结果.【详解】解:如图,作BA 边的高CD ,设与BA 的延长线交于点D ,∵∠BAC =150°,∴∠DAC =30°,∵CD ⊥BD ,AC =30m ,∴CD =15m ,∵AB =20m ,∴S △ABC =12AB ×CD =12×20×15=150m 2,∵每平方米售价a 元,∴购买这种草皮的价格为150a 元.故答案为:150a 元.本题主要考查三角形的面积公式,含30度角的直角三角形的性质,关键在于做出AB 边上的高,根据相关的性质推出高CD 的长度,正确的计算出△ABC 的面积.12、x >﹣1【解析】解:3⊕x <13,3(3-x )+1<13,解得:x >-1.故答案为:x >﹣1本题考查一元一次不等式的应用,正确理解题意进行计算是本题的解题关键.13、a >b【解析】根据k<0,y 随x 增大而减小解答【详解】解:∵k =﹣3<0,∴y 随x 的增大而减小,∵﹣12<3,∴a >b .故答案为:a >b .此题主要考查了一次函数的图像上点的坐标特征,利用一次函数的增减性求解更简便三、解答题(本大题共5个小题,共48分)14、113y x =-+和113y x =-;两条直线与y 轴围成的三角形面积为1.【解析】(1)将点A 坐标代入两个函数解析式中求出k 和b 的值即可;(2)分别求出两个一次函数与y 轴的交点坐标,代入三角形面积公式即可.【详解】解:将点(3,0)A 分别代入两个一次函数解析式,得035,03 3.k b k b =++⎧⎨=-++⎩解得1,34.k b ⎧=-⎪⎨⎪=-⎩所以两个一次函数的解析式分别为113y x =-+和113y x =-.(2)把0x =代入113y x =-+,得1y =;把0x =代入113y x =-,得1y =-.所以两个一次函数与y 轴的交点坐标分别为(0,1)和(0,1)-.所以两条直线与y 轴围成的三角形面积为:()111332⨯+-⨯=.本题考查了两条直线相交或平行问题以及待定系数法求一次函数的解析式,难度不大.15、(1)这两年公民出境旅游总人数的年平均增长率为20%;(2)约172.8万人次.【解析】(1)根据题意可以列出相应的一元二次方程,从而可以解答本题;(2)根据(1)中的增长率即可解答本题.【详解】(1)设这两年该省公民出境旅游人数的年平均增长率为x ,100(1+x)+100(1+x)2=264,解得,x 1=0.2,x 2=−3.2(不合题意,舍去),答:这两年公民出境旅游总人数的年平均增长率为20%;(2)如果2019年仍保持相同的年平均增长率,则2019年该省公民出境旅游人数为:100(1+x)3=100×(1+20%)3=172.8(万人次),答:预测2019年该省公民出境旅游总人数约172.8万人次.本题考查一元二次方程的应用,(1)解决此类问题要先找等量关系,2017年出境旅游人数+2018年出境旅游人数=264,可根据2016年的人数,运用增长率公式表示出2017年、2018年的人数,从而列出方程,由此可解;(2)可根据(1)中计算出来的增长率,运用公式直接求解(增长率计算公式:B =A (1+a )n 这里A 为基数,B 为增长之后的数量,a 为增长率,n 为期数).16、(1)证明见解析;(2)①MC =3;②【解析】(1)根据折叠可得∠AMN=∠CMN ,再根据平行可得∠ANM=∠CMN ,可证CM=CN (2)①根据等高的两个三角形的面积比等于边的比,可求MC 的长.②作NF ⊥MC ,可得矩形NFCD ,根据勾股定理可求CD ,则可得NF ,MF ,再根据勾股定理可求MN 的长.【详解】解:(1)∵折叠∴CM =AM ,CN =AN ,∠AMN =∠CMN∵ABCD 是矩形∴AD ∥BC∴∠ANM =∠CMN∴∠ANM =∠AMN ∴CM =CN (2)①∵AD ∥BC ∴△CMN 和△CDN 是等高的两个三角形∴S △CMN :S △CDN =3:1=CM :DN 且DN =1∴MC =3②∵CM =CN ∴CN =3且DN =1∴根据勾股定理CD =如图作NF ⊥MC ∵NF ⊥MC ,∠D =∠DCB =90°∴NFCD 是矩形∴NF =CD =,FC =DN =1∴MF =2在Rt △MNF 中,MN =此题考查了矩形的性质、折叠的性质、勾股定理以及三角形的面积.此题难度适中,注意掌握辅助线的作法,掌握数形结合思想与方程思想的应用.17、详见解析【解析】过直线m 上点C 作直线n ⊥m ,再在m 上截取CB =a ,然后以B 点为圆心,c 为半径画弧交直线n 于A ,则△ABC 满足条件.【详解】解:如图,△ABC 为所作.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18、(1)tcm,(15﹣2t)cm;(2)t=3秒;(3)当t为32秒或256秒时,△QCD是直角三角形.【解析】(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,BQ的长(2)当AP=CQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当∠CDQ=90°或∠CQD=90°△QCD是直角三角形,分情况讨论t的一元一次方程方程,解方程求出符合题意的t值即可;【详解】(1)由运动知,AP=t,CQ=2t,∴BQ=BC﹣CQ=15﹣2t,故答案为tcm,(15﹣2t)cm;(2)由运动知,AP=t,CQ=2t,∴DP=AD﹣AP=12﹣t,∵四边形PDCQ是平行四边形,∴PD=CQ,∴12﹣t=2t,∴t=3秒;(3)∵△QCD是直角三角形,∴∠CDQ=90°或∠CQD=90°,①当∠CQD =90°时,BQ =AD =12,∴15﹣2t =12,∴t =32秒,②当∠CDQ =90°时,如图,过点D 作DE ⊥BC 于E ,∴四边形ABED 是矩形,∴BE =AD =12,∴CE =BC ﹣BE =3,∵∠CED =∠CDQ =90°,∠C =∠C ,∴△CDE ∽△CQD ,∴CD CE CQ CD =,∴5325t =,∴t =256秒,即:当t 为32秒或256秒时,△QCD 是直角三角形.此题考查平行四边形的判定和直角三角形的判定,解题关键是掌握性质并且灵活运用求解一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】首先证明△DEA′是等腰直角三角形,求出DE ,再说明DG =GE 即可解决问题.【详解】解:由翻折可知:DA′=A′E =4,∵∠DA′E =90°,∴DE =,∵A′C′=2=DC′,C′G ∥A′E ,∴DG =GE =故答案为:.本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20、901【解析】解:平均数=9189889092905++++=,方差=22222(9190)(8990)(8890)(9090)(9290)25-+-+-+-+-=故答案为:90;1.21、23,13【解析】令=234a b c k ==,用含k 的式子分别表示出,,a b c ,代入求值即可.【详解】解:令=234a b c k ==,则2,3,4a k b k c k ===,所以2233a k b k ==,234123433a b c k k k k a b c k k k k +-+-===-+-+.故答案为:(1).23,(2).13本题考查了分式的比值问题,将,,a b c 用含同一字母的式子表示是解题的关键.22、62x -<<-或04x <<【解析】根据表可求出反比例函数与一次函数的交点,然后根据交点及表格中对应的函数值即可求出等式8kx ax b -<+<的解集.【详解】根据表格可知,当x=-2和x=4时,两个函数值相等,∴y ax b =+与ky x =的交点为(-2,-4),(4,2),根据图表可知,要使8k x ax b -<+<,则62x -<<-或04x <<.故答案为:62x -<<-或04x <<.本题考查了反比例函数与一次函数交点问题,熟练掌握反比例函数与一次函数的性质是解答本题的关键.23、()()11x x x +-【解析】应用提取公因式法,公因式x ,再运用平方差公式,即可得解.【详解】解:()()()32111x x x x x x x -=-=+-此题主要考查运用提公因式进行因式分解,平方差公式的运用,熟练掌握即可解题.二、解答题(本大题共3个小题,共30分)24、14【解析】根据分式的运算法则及运算顺序,把所给的分式化为最简分式,再代入求值即可.【详解】原式=221(2)(2)22(1)1a a a a a a a +-+--⨯=+++当3a =时,原式=321314-=+本题考查了分式的化简求值,根据分式的运算法则及运算顺序,把所给的分式化为最简分式是解决问题的关键.25、见解析【解析】欲证明OE=OF ,只要证明△AOE ≌△COF (AAS )即可.【详解】证明:∵四边形ABCD 是平行四边形,∴OA=OC ,∵AE ⊥BD 于点E ,CF ⊥BD 于点F ,∴∠AEO=∠CFO=90°,在△AOE 和△COF 中,AEO CFO AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (AAS ),∴OE=OF .本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26、(1)见解析(2)1.5、1.5(3)216【解析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)总人数乘以样本中参加义务劳动2小时的百分比即可得.【详解】(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100−(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时,故答案为:1.5、1.5;(3)1200×18%=216,答:估算该校学生参加义务劳动2小时的有216人此题考查扇形统计图,条形统计图,中位数,众数,解题关键在于看懂图中数据。
北京四中数学题典

训练27 数 列(推荐时间:75分钟)1.数列{a n }中,a 3=1,a 1+a 2+…+a n =a n +1(n =1,2,3,…).(1)求a 1,a 2;(2)求数列{a n }的前n 项和S n ;(3)设b n =log 2S n ,存在数列{c n }使得c n ·b n +3·b n +4=1,试求数列{c n }的前n 项和.2.(2011·湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.3.(2011·辽宁)已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.4.某商店投入81万元经销某种北京奥运会特许纪念品,经销时间共60天.为了获得更多的利润,商店将每天获得的利润投入到次日的经营中.市场调研表明,该商店在经销这一产品期间第n 天的利润a n =⎩⎪⎨⎪⎧1,1≤n ≤20110n ,21≤n ≤60(单位:万元,n ∈N *).记第n 天的利润率b n =第n 天的利润前n 天投入的资金总和,例如b 3=a 381+a 1+a 2. (1)求b 1,b 2的值;(2)求第n 天的利润率b n ;(3)该商店在经销此纪念品期间,哪一天的利润率最大?并求该天的利润率.5.设等差数列{a n }的前n 项和为S n ,公比是正数的等比数列{b n }的前n 项和为T n ,已知a 1=1,b 1=3,a 2+b 2=8,T 3-S 3=15.(1)求{a n },{b n }的通项公式;(2)若数列{c n }满足a 1c n +a 2c n -1+…+a n -1c 2+a n c 1=2n +1-n -2对任意n ∈N *都成立.求证:数列{c n }是等比数列.6.设数列{a n },{b n }满足:a 1=4,a 2=52,a n +1=a n +b n 2,b n +1=2a n b n a n +b n. (1)用a n 表示a n +1,并证明:∀n ∈N *,a n >2;(2)证明:⎩⎨⎧⎭⎬⎫ln a n +2a n -2是等比数列; (3)设S n 是数列{a n }的前n 项和,当n ≥2时,S n 与2⎝⎛⎭⎫n +43是否有确定的大小关系?若有,加以证明;若没有,请说明理由.答案1.解 (1)∵a 1=a 2,a 1+a 2=a 3,∴2a 1=a 3=1,∴a 1=12,a 2=12. (2)∵S n =a n +1=S n +1-S n ,∴2S n =S n +1,S n +1S n=2, ∴{S n }是首项为S 1=a 1=12,公比为2的等比数列. ∴S n =12·2n -1=2n -2. (3)∵b n =log 2S n ,S n =2n -2, ∴b n =n -2,b n +3=n +1,b n +4=n +2,∴c n ·(n +1)(n +2)=1,c n =1(n +1)(n +2)=1n +1-1n +2. ∴c 1+c 2+…+c n=(12-13)+(13-14)+…+(1n +1-1n +2) =12-1n +2=n 2n +4. 2.(1)解 设成等差数列的三个正数分别为a -d ,a ,a +d ,依题意,得a -d +a +a +d =15,解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)证明 数列{b n }的前n 项和S n =54(1-2n )1-2=5·2n -2-54,即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,2为公比的等比数列.3.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧ a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a22+…+an 2n -1, ①故S 1=1,S n 2=a 12+a24+…+a n2n .②所以,当n >1时,①-②得S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-an2n=1-(12+14+…+12n -1)-2-n2n=1-(1-12n -1)-2-n 2n =n2n .所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n2n -1.4.解 (1)当n =1时,b 1=181;当n =2时,b 2=182.(2)当1≤n ≤20时,a 1=a 2=a 3=…=a n -1=a n =1.∴b n =an81+a 1+a 2+…+a n -1=181+n -1=1n +80. 当21≤n ≤60时,b n =a n 81+a 1+…+a 20+a 21+…+a n -1=110n 81+20+a 21+…+a n -1=110n 101+(n -21)(n +20)20=2n n 2-n +1 600, ∴第n 天的利润率b n=⎩⎨⎧1n +80, 1≤n ≤20(n ∈N *)2n n 2-n +1 600,21≤n ≤60(n ∈N *)(3)当1≤n ≤20时,b n =1n +80是递减数列,此时b n 的最大值为b 1=181; 当21≤n ≤60时,b n =2n n 2-n +1 600=2n +1 600n -1 ≤22 1 600-1=279(当且仅当n =1 600n ,即n =40时,“=” 成立). 又∵279>181,∴当n =40时,(b n )max =279. ∴该商店经销此纪念品期间,第40天的利润率最大,且该天的利润率为279. 5.(1)解 设数列{a n }的公差为d ,数列{b n }的公比为q (q >0),由题意得⎩⎪⎨⎪⎧ d +3q =7q +q 2-d =5, 解得⎩⎪⎨⎪⎧d =1q =2. ∴a n =n ,b n =3×2n -1. (2)证明 由c n +2c n -1+…+(n -1)c 2+nc 1=2n +1-n -2, 知c n -1+2c n -2+…+(n -2)c 2+(n -1)c 1=2n -(n -1)-2(n ≥2),两式相减:c n +c n -1+…+c 2+c 1=2n -1(n ≥2), ∴c n -1+c n -2+…+c 2+c 1=2n -1-1(n ≥3), ∴c n =2n -1(n ≥3). 当n =1,2时,c 1=1,c 2=2,适合上式, ∴c n =2n -1(n ∈N *), 即{c n }是等比数列.6.证明 (1)由已知得a 1=4,a 2=52, 所以b 1=1,故a n +1b n +1=a n b n =…=a 1b 1=4,b n =4a n ,a n +1=a n 2+2a n, 因为a 1=4>2,a 2=52>2, 假设n =k (k ∈N *)时,a k >2,则a k +1=a k 2+2a k>2, 故∀n ∈N *,a n >2.(2)a n +1+2=(a n +2)22a n, a n +1-2=(a n -2)22a n, 所以a n +1+2a n +1-2=⎝ ⎛⎭⎪⎫a n +2a n -22, 所以ln a n +1+2a n +1-2=2ln a n +2a n -2, 所以⎩⎨⎧⎭⎬⎫ln a n +2a n -2(n ∈N *)是等比数列. (3)由(2)可知ln a n +2a n -2=(ln 3)×2n -1=ln 32n -1, 解得a n =2(32n -1+1)32n -1-1. =2⎝⎛⎭⎫1+232n -1-1=2+432n -1-1设c n =432n -1-1=4(32n -2-1)(32n -2+1)<14c n -1,(n ≥2) c n <14c n -1<⎝⎛⎭⎫142c n -2<…<⎝⎛⎭⎫14n -1c 1=2⎝⎛⎭⎫14n -1.∴S n =a 1+a 2+…+a n<2n +2+2·(14)1+2·(14)2+…+2·(14)n -1 =2n +2×[1-(14)n ]1-14. <2n +83=2(n +43) ∴S n 与2(n +43)有确定的大小关系,即S n >2(n +43).。
北京第四中学七年级数学下册第六章【实数】经典练习题(培优提高)

一、选择题1.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±. A .0个 B .1个 C .2个 D .3个2.下列命题是真命题的是( )A .两个无理数的和仍是无理数B .有理数与数轴上的点一一对应C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等3.下列实数中,是无理数的为( )A .3.14B .13C .5D .94.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .95.如果32.37≈1.333,323.7≈2.872,那么32370约等于( )A .287.2B .28.72C .13.33D .133.36.85-的整数部分是( )A .4B .5C .6D .7 7.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( )A .5个B .4个C .3个D .2个8.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n9.64的平方根为( )A .8B .8-C .22D .22±10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个11.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题12.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, . (2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.13.把下列各数填在相应的横线上1.4,2020,2-,32-,0.31,038-π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______14.2(3.14)|2|ππ--=________.15.若|2|0x x y -++=,则12xy -=_____.16.计算:38642-+--. 17.我们知道2 1.414≈,于是我们说:“2的整数部分为1,小数部分则可记为21-”.则:(1)21+的整数部分是__________,小数部分可以表示为__________;(2)已知32+的小数部分是a ,73-的小数部分为b ,那么a b +=__________; (3)已知11的在整数部分为x ,11的小数部分为y ,求1(11)x y --的平方根. 18.比较大小:312-___________12 19.如果3x -+(y +2)2=0,那么xy 的值为___________.20.25的平方根是______;34-的相反数是_____,1-12π的绝对值是 __. 21.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.24.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.25.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4 B .5 C .6 D .72.下列各式计算正确的是( )A .31-=-1B .38= ±2C .4= ±2D .±9=33.下列各数中比3-小的数是( )A .2-B .1-C .12-D .04.下列说法中,正确的是 ( )A .64的平方根是8B .16的平方根是4和-4C .()23-没有平方根D .4的平方根是2和-25.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .4076.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A 31B .13C .23D 327.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .98.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ 9.已知实数a 的一个平方根是2-,则此实数的算术平方根是( )A .2±B .2-C .2D .410.81的平方根是( )A .9B .-9C .9和9-D .81 11.下列说法中,错误的是() A .实数与数轴上的点一一对应 B .1π+是无理数C .32是分数D .2是无限不循环小数 二、填空题12.若()22210b a b -+++-=,求()2020a b +的值. 13.计算:(1)3168--.(2)()23540.255(4)8⨯--⨯⨯-.14.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.15.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值. 16.比较大小:221(填“>”、“=”或“<”).17.规定一种新的定义:a ★b -a 2,若a =3,b =49,则(a ★b )★b =_________. 18.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______19.计算20201|-+=_________.20.已知1×1=1;11×11=121;111×111=12321;1111×1111=1234321,则111111×111111=_____. 21.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.三、解答题22.计算:(1)﹣12﹣(﹣2)(21)+2|23.1 24.计算:(1.(2)()23540.255(4)8⨯--⨯⨯-.25.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.一、选择题1.在实数:20192020,π,9,3,2π,38,0.36,0.3737737773…(相邻两个3之间7的个数逐次加1),52-,49中,无理数的个数为( ) A .4B .5C .6D .7 2.-18的平方的立方根是( ) A .4 B .14C .18D .164 3.下列说法正确的是( )A .2-是4-的平方根B .2是()22-的算术平方根C .()22-的平方根是2D .8的平方根是44.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S 5.如图,在数轴上表示1,3的对应点分别为A B 、,点B 关于点A 的对称点为C ,则点C 表示的数为( )A 31B .13C .23D 32 6.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( )A .1B .3C .7D .97.81的平方根是( )A .9B .-9C .9和9-D .818.下列选项中,属于无理数的是( )A .πB .227-CD .09.已知下列结论:①;②无理数是无限小数;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ) A .① ③ B .②③ C .③④ D .②④ 10.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5 11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.(1)小明解方程2x 1x a 332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x ,y 是有理数,且x ,y 满足等式2x 2y 17++=-x-y 的值.13.解方程:(1)24(1)90--=x(2)31(1)7x +-=-14.已知a 是b 的小数部分,求代数式(1b a --的平方根.15. ________0.5.(填“>”“<”或“=”)16________,2的相反数是________.17.2-.18.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______19.比较大小:_______-2.(填“>”“=”或“<”)20.+(y +2)2=0,那么xy 的值为___________.21.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.三、解答题22.已知31a +的算数平方根是4,421c b +-的立方根是3,c 22a b c +-的平方根.23.计算:(1()23-.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦.24.若()220b -+=,求()2020a b +的值. 25.“*”是规定的一种运算法则:a*b=a 2-3b .(1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;。
北京四中数学题典

训练28 立体几何(推荐时间:75分钟)1.如图,平面ABCD ⊥平面PAD ,△APD 是直角三角形,∠APD =90°,四边形ABCD 是直角梯形,其中BC ∥AD ,∠BAD =90°,AD =2BC ,O 是AD 的中点.(1)求证:CD ∥平面PBO ;(2)求证:平面P AB ⊥平面PCD .2.(2011·福建)如图,四棱锥P —ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面P AD ;(2)若P A =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P —ABCD 的体积.3.如图所示,正方形ABCD 所在平面与三角形CDE 所在平面相交于CD ,AE ⊥平面CDE ,且AE =3,AB =6.(1)求证:AB ⊥平面ADE ;(2)求凸多面体ABCDE 的体积.4.(2010·辽宁)已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,PA =AC =12AB ,N 为AB上一点,且AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小.5.如图所示,正三棱柱ABC —A 1B 1C 1的侧面是边长为2的正方形,D 、E 分别是BB 1、AC 的中点.(1)求证:BE ∥平面A 1CD ; (2)求二面角C —A 1D —C 1的余弦值.6.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成的角的大小; (2)证明:平面AMD ⊥平面CDE ; (3)求二面角A -CD -E 的余弦值.答案1.证明 (1)∵AD =2BC ,且O 是AD 中点, ∴OD =BC ,又AD ∥BC , ∴OD ∥BC ,∴四边形BCDO 为平行四边形, ∴CD ∥BO ,CD ⊄平面PBO ,且BO ⊂平面PBO ,故CD ∥平面PBO . (2)∵∠BAD =90°,∴BA ⊥AD , 又平面PAD ⊥平面ABCD , 且平面PAD ∩平面ABCD =AD , AB ⊂平面ABCD ,∴AB ⊥平面PAD ,PD ⊂平面PAD ,∴AB ⊥PD .∵AP ⊥PD ,AB ∩AP =A , ∴PD ⊥平面PAB , 又∵PD ⊂平面PCD , 故平面PAB ⊥平面PCD .2.(1)证明 因为P A ⊥平面ABCD ,CE ⊂平面ABCD , 所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面P AD . (2)解 由(1)可知CE ⊥AD .在Rt △ECD 中,DE =CD ·cos 45°=1, CE =CD ·sin 45°=1. 所以AE =AD -ED =2.又因为AB =CE =1,AB ∥CE ,所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+121×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P —ABCD =13S 四边形ABCD ·P A =13×52×1=56.3.解 (1)∵AE ⊥平面CDE ,CD ⊂平面CDE , ∴AE ⊥CD .在正方形ABCD 中,CD ⊥AD , ∵AD ∩AE =A ,∴CD ⊥平面ADE . ∵AB ∥CD , ∴AB ⊥平面ADE .(2)在Rt △ADE 中,AE =3,AD =6, ∴DE =AD 2-AE 2=3 3.连接BD ,则凸多面体ABCDE 被分割为三棱锥B —CDE 和三棱锥B —ADE . 由(1)知,CD ⊥DE .∴S △CDE =12×CD ×DE =12×6×33=9 3.又AB ∥CD ,AB ⊄平面CDE ,CD ⊂平面CDE , ∴AB ∥平面CDE .∴点B 到平面CDE 的距离为AE 的长度. ∴V B —CDE =13△CDE ·AE =13×93×3=9 3.∵AB ⊥平面ADE ,∴V B —ADE =13△ADE ·AB =13×932×6=9 3.∴V ABCDE =V B —CDE +V B —ADE =93+93=18 3. 故所求凸多面体ABCDE的体积为18 3. 4.(1)证明 设P A =1,以A 为原点,AB ,AC ,AP 所在直线分别为x ,y ,z 轴正向建立空间直角坐标系如图所示,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).所以CM →=(1,-1,12),SN →=(-12,-12,0).因为CM →·SN →=-12+12+0=0,所以CM ⊥SN .(2)解 NC →=(-12,1,0),设a =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧a ·CM →=0,a ·NC →=0,即⎩⎨⎧x -y +12z =0,-12x +y =0.令x =2,得a =(2,1,-2).因为|cos 〈a ,SN →〉|=⎪⎪⎪⎪⎪⎪a ·SN →|a |·|SN →|=⎪⎪⎪⎪⎪⎪-1-123×22=22, 所以SN 与平面CMN 所成的角为45°.5.(1)证明 由题意,可知正三棱柱ABC —A 1B 1C 1的所有棱长都等于2. ∵△ABC 是边长为2的正三角形,且AE =EC .∴BE ⊥AC ,且BE =32AC = 3. 又∵平面ABC ⊥平面ACC 1A 1, 平面ABC ∩平面ACC 1A 1=AC , ∴BE ⊥平面ACC 1A 1. 取A 1C 1的中点F ,连接EF , 则在正方形ACC 1A 1中,EF ⊥AC .∴以E 为坐标原点,直线EA 、EF 、EB 分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.则E (0,0,0),B (0,0,3),A (1,0,0),C (-1,0,0),A 1(1,2,0),C 1(-1,2,0),D (0,1,3). 则EB →=(0,0,3),AC 1→=(-2,2,0), A 1C →=(-2,-2,0),CD →=(1,1,3). 设EB →=mA 1C →+nCD →,则有⎩⎪⎨⎪⎧0=-2m +n ,0=-2m +n ,3=3n ,解得⎩⎪⎨⎪⎧m =12,n =1, 即EB →=12A 1C →+CD →.根据向量共面定理,可知EB →与A 1C →、CD →共面. 又∵A 1C ∩CD =C ,EB ⊄平面A 1CD , ∴BE ∥平面A 1CD .(2)解 设平面A 1CD 的法向量n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ⊥A 1C →,n ⊥CD →,得⎩⎪⎨⎪⎧n ·A 1C →=-2x -2y =0,n ·CD →=x +y +3z =0,即⎩⎪⎨⎪⎧x +y =0,z =0. 令x =1,则y =-1,z =0.∴n =(1,-1,0)是平面A 1CD 的一个法向量. 设平面C 1A 1D 的法向量m =(x 1,y 1,z 1).而A 1C 1→=(-2,0,0),A 1D →=(-1,-1,3). 由⎩⎪⎨⎪⎧ m ⊥A 1C 1→,m ⊥A 1D →得⎩⎪⎨⎪⎧m ·A 1C 1→=-2x 1=0,m ·A 1D →=-x 1-y 1+3z 1=0,即⎩⎨⎧x 1=0,y 1-3z 1=0,令z 1=1,得y 1= 3. ∴m =(0,3,1)是平面C 1A 1D 的一个法向量. 故cos 〈m ,n 〉=m·n|m|×|n|=0×1+3×(-1)+1×002+(3)2+12×12+(-1)2+02=-322=-64. 设二面角C —A 1D —C 1的平面角为θ,由图可知, θ∈⎝⎛⎭⎫π2,π,故cos θ=cos 〈m ,n 〉=-64.6.方法一(1)解 由题设知,BF ∥CE ,所以∠CED (或其补角)为异面直线BF 与DE 所成的角.设P 为AD 的中点,连接EP ,PC .因为FE 綊AP ,所以F A 綊EP .同理,AB 綊PC .又FA ⊥平面ABCD ,所以EP ⊥平面ABCD .而PC 、AD 都在平面ABCD 内,故EP ⊥PC ,EP ⊥AD .由AB ⊥AD ,可得PC ⊥AD .设FA =a ,则EP =PC =PD =a ,CD =DE =EC =2a ,故∠CED =60°.所以异面直线BF 与DE 所成的角的大小为60°.(2)证明 因为DC =DE 且M 为CE 的中点,所以DM ⊥CE .连接MP ,由EP =CP 得,MP ⊥CE .又MP ∩DM =M ,故CE ⊥平面AMD .而CE ⊂平面CDE ,所以平面AMD ⊥平面CDE .(3)解 设Q 为CD 的中点,连接PQ ,EQ .因为CE =DE ,所以EQ ⊥CD .因为PC =PD ,所以PQ ⊥CD ,故∠EQP 为二面角A -CD -E 的平面角.由(1)可得,EP ⊥PQ ,EQ =62a ,PQ =22a . 于是在Rt △EPQ 中,cos ∠EQP =PQ EQ =33所以二面角A -CD -E 的余弦值为33. 方法二如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =1,依题意得B (1,0,0), C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1), M ⎝⎛⎭⎫12,1,12. (1)解 BF →=(-1,0,1),DE →=(0,-1,1), 于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12·2=12.所以异面直线BF 与DE 所成的角的大小为60°.(2)证明 由AM →=⎝⎛⎭⎫12,1,12,CE →=(-1,0,1),AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0.因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A , 故CE ⊥平面AMD .而CE ⊂平面CDE , 所以平面AMD ⊥平面CDE .(3)解 设平面CDE 的法向量为u =(x ,y ,z ),则 ⎩⎪⎨⎪⎧u ·CE →=0,u ·DE →=0.于是⎩⎪⎨⎪⎧-x +z =0,-y +z =0. 令x =1可得u =(1,1,1).又由题设,平面ACD 的一个法向量为v =(0,0,1). 所以,cos u ,v =u ·v |u ||v |=0+0+13×1=33.因为二面角A -CD -E 为锐角,所以其余弦值为33.。
北京四中《二次根式》习题(含答案)

二次根式的练习一、概念 二次根式1x 的取值范围是( ). A .9x ≠B .9x >C .9xD .9x2.当x 在实数范围内有意义,这个条件是( ) A .3x >− B .3x > C .3x − D .3x3.使代数式y =有意义的负整数x 之积是( ) A .3−B .3C .2D .2−4在实数范围内有意义,则实数x 的取值范围是 . 5x 的取值范围是 .6在实数范围内有意义,则实数x 的取值范围是 .7x 的取值范围是 .8.当x 时,二次根式1x −有意义. 9.已知2y =+,则y x = . 10. 若x 是正数,且是整数,求x 的最小值.最简二次根式11.下列二次根式中,最简二次根式是( )AB C D12.下列二次根式中,是最简二次根式的是( )AB C D 13.下列二次根式中,是最简二次根式的是( )AB CD14.下列二次根式中,是最简二次根式的是( )AB CD15.下列二次根式中,最简二次根式的是( )AB C D 16.下列二次根式中,是最简二次根式的是( )AB C D同类二次根式17( ) ABC D 18( ) AB CD19.与是同类二次根式的是( ) AB 1−CD .20( ) ABC D21m 的值为( ) A .2019B .2019−C .2023D .2023−22 )A B C D .−23.若最简二次根式a +可以合并成一项,则a ,b 的值分别为( ) A .1a =,2b =B .1a =−,0b =C .1a =,0b =D .1a =−,2b =24.下列各组二次根式中,属于同类二次根式的是( )A和 B C D25a>0)有个.26x=.二、二次根式的运算1.下列计算正确的是()A.=B.C D2.=__________.3.4−.5=.6.计算:−=.7.8.计算1)+=.9.计算−=.2)10.计算2)=.11.计算:1)−=.12.计算:(3+−=.13.计算:+=.14.计算:=.15.计算:=.16.计算:2(−÷+=.17=.18.计算:22)= .19.计算:21)= . 20.计算:22++= . 21.已知x =y =,则xy = . 22.计算:202120222)2)= .23.计算:202020211)(1= .24.计算:20212021(2(2+⨯−= .253=,且01x <<,则= .26.对于任意不相等的两个实数a ,b ,新定义一种运算“※”如下:a ※b =,则2※6= .27.观察3个式子:11111122=+−=,11111236=+−=,111113412=+−= ;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是 . 28.计算:(1)(2)−29.计算:(1) (2)21)+30+.4|231.计算:(1−;(2)22)32.计算:(1)−.(2)÷4(3)÷.(4)2.33.计算:(1)(⨯;(2)2(5(51)+⨯−−34.计算:(1;(2(3)22)3)−+; (4.35.计算:(1÷ (2)2(22)−36.计算2211|))22+−.37.计算:(1 (2(3)(4)−.38.计算:(1)−; (2)2(3−+(1(2)40.计算:(1(2)(341.计算:(1−÷.+;(2)21) 42.计算:(1)(2−+;(2)−.43.计算:(1)−;(2(11)(3−.(1 (2)−(3)+ (445.计算:(1 (2(3011(2021)()1|2−++(4)21)−46.计算:(1; (2)−;(31999.三、条件求值利用二次根式的概念与性质求值1.(1)已知9y =+的值.(2)已知x 、y 为实数,且4y2与|2|b +互为相反数,则2()a b −的值.利用整体思想求字母为无理数时代数式的值 3.已知x =y = (1)x y += ,xy = ; (2)求33x y xy +的值.4.已知1a =1b =,求: (1)求221a a −−的值; (2)求222a ab b −+的值.5.已知:a b ==,求33ab a b +的值.6.已知2x +,2y =−,求代数式22222x xy y x y xy −+−的值.7.若0a >,0b >=+的值.8.(1)已知x =21x x ++= .(2)当a =时,求2121a a a −+−的值.(33=,且01x <<,求2916x x x +−的值;9.已知a =,b =.(1)求a b +的值;(2)设m 是a 小数部分,n 是b 整数部分,求代数式2244m mn n ++的值.利用完全平方公式进行复合二次根式的化简10.已知x ,y x y +,xy 的值.四、分母有理化1.像2)1+−=−,两个含有二b b+=(0)a a,1)1(0)次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因−,+与−等都是互为有理化因+11式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请回答下列问题:(1)化简:=,=;(2)计算:①1)+=;②若x=,y=,则y x+=;x y(3)已知a=,b=c=试比较a,b,c的大小,并说明理由.2.先阅读,再解答:由222=−=可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:=(11的有理化因式是;(2=.(直接写结果)(3<(4)利用你发现的规律计算下列式子的值:1).3.小明在解决问题:已知,a =2281a a −+的值,他是这样分析与解答的:122a ===−+2a ∴−=2(2)3a ∴−=,即2443a a −+=. 241a a ∴−=−.222812(4)12(1)11a a a a ∴−+=−+=⨯−+=−.请你根据小明的分析过程,解决如下问题: (1= ;(2)若a =2627a a +−的值.五、阅读理解类型1.对于任意的正数a 、b 定义运算“★”为:a ★))a b b a b <=,则(3★2)(8⨯★12)的运算结果为 .2. 阅读材料,解答下列问题: 例:当时,如,,故此时 的绝对值是它本身;当 ,故此时 的绝对值是 ;当时,如,则,故此时 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即:这种分析方法渗透了数学中的分类讨论思想. (1)请仿照例中的分类讨论,分析 的各种化简后的情况;(2)猜想与的大小关系;(3)当 时,试化简.3.求代数式a +的值,其中1007a =,如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确的运用二次根式的性质: ;(3)求代数式a +2022a =−.4. 先阅读下面的解题过程,然后再解答:形如的化简,只要我们找到两个数,,使,,即,那么便有.例如:化简.解:首先把化为,这里,,由于,,即,,所以.根据上述方法化简:.二次根式的习题参考答案一、概念 二次根式1.D 2.B 3.C 4.12x5.3x − 6.1<x 7.1x −且0x ≠ 8.1x −且1x ≠ 9.9 10. 1最简二次根式11.B 12.C 13.B 14.C 15.C 16.D 同类二次根式17.A 18.A 19.D 20.D 21.B 22.C 23.C 24.D 25.2 26.32二、二次根式的运算1.C 2. 5 3.. 4.2 5.46.1 7. 8.4 9.1− 10.2 11.7 12.1 13.3 14.5 15.1−16. 17.12 18.11+ 19.3 20.1021.1 222 23.1− 24.1− 2526.2 27.1120;11(1)n n + 28.(1),(2)129.(1)73;(2) 30.1 31.(1)(2)7−.32.(1−(2 (3). (4).33.(1)−;(2)16−−34.(1);(2;(3)17;(435.(1)4(2)1; 36.37.(1)(2)(3)43(4)6.38.(14−;(2)11−. 39.(1)(2)40.(1)(2)(3)2 41.(1)(2)22−.42.(1)2(2)6−+ 43.(1)4−;(2)(3)0.44.(1)0;(2)1;(3)3−;(4.45.(1)4(2;(3)(4)5−46.(1+(2)2;(3)997001999999000. 三、条件求值利用二次根式的概念与性质求值1.(1);(2)5; 2. 9. 利用整体思想求字母为无理数时代数式的值3.(1);1(2)10. 4.(1)0;(2)8. 5.58 6.43.7.2. 8.(1)2;(2)3;(3)329.(1);(2)20.利用完全平方公式进行复合二次根式的化简10.x y +=,1xy =.四、分母有理化1.(1) (2)①2020;②98; (3)>>a b c 2.(11;(2)3 (3)证明略(分子有理化); (4)2017. 3. (11;(2)26−. 五、阅读理解类型 1.2 2.(3)33.(1)小亮;(3)2028 4.。
北京四中数学必修1-5

北京四中数学必修必修一一、选择题(本题共12小题,每题5分,共60分)1.下列给出的赋值语句中正确的是( )A. B. C. D.2.)A.游戏1和游戏3B.游戏1C.游戏2D.游戏33.频率分布直方图的重心是( )A.平均数B.众数C.中位数D.标准差4.设有一个直线回归方程为,则变量增加一个单位时( )A.平均增加个单位B.平均增加个单位C.平均减少个单位D.平均减少个单位5.某初级中学有学生人,其中一年级人,二、三年级各人,现要利用抽样方法取人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为;使用系统抽样时,将学生统一随机编号,并将整个编号依次分为段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样6.下列所给的运算结果正确的个数有( )① SQR(4)=±2 ;② 5\2=2.5 ;③ 5/2=2.5 ;④ 5 MOD 2=2.5 ;⑤ 5^2=25A.2B.3C.4D.57.从装有个红球和个黑球的口袋内任取个球,那么互斥而不对立的两个事件是( )A.至少有一个黑球与都是黑球B.至少有一个红球与都是红球C.至少有一个黑球与至少有个红球D.恰有个黑球与恰有个黑球8.已知有下面程序,如果程序执行后输出的结果是11880,那么在程序UNTIL后面的“条件”应为 ( )A.i>9B.i>=9C.i<=8D.i<89.期中考试以后,班长算出了全班40个人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N,那么M:N为( )A. B.1 C. D.210.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( )A. B. C. D.11.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在的频率为( )A.0.001B.0.1C.0.2D.0.312.任意说出星期一到星期日的两天(不重复),期中恰有一天是星期六的概率是( )A. B. C. D.第II卷(非选择题共90分)二、填空题(本题共4小题,每题4分,共16分)13.将一个骰子连续掷两次,依次记录所得点数,则两次骰子的点数相同的概率_______,两次的差的绝对值为1的概率__________,两数之积等于12的概率_________.14.若总体中含有1650个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,分段时应从总体中随机剔除__________个个体,编号后应均分为___________段,每段有__________个个体.15.下图程序运行后输出的结果为_________________________.16.假设储蓄卡的密码由6个数字组成,每个数字可以是0,1,2,3,……9十个数字中的任何一个,假设一个人完全忘记了自己的密码,并且知道他设的密码没有重复数字,问他到自动取款机上随机试一次密码就能取到钱的概率____________.三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)编写程序解一元二次方程.18.(本小题满分12分)从名男生和名女生中任选人参加演讲比赛,①求所选人都是男生的概率;②求所选人恰有名女生的概率;③求所选人中至少有名女生的概率.19.(本小题满分12分)为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:;;;;;;;;;(1)列出频率分布表(含累积频率);(2)画出频率分布直方图以及频率分布折线图;(3)据上述图表,估计数据落在范围内的可能性是百分之几?(4)数据小于11.20的可能性是百分之几?20.(本小题满分12分)某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:(1)写出该城市人口数y(万人)与年份x(年)的函数关系式;(2)编写表示计算10年以后该城市人口总数的程序;(3)编写程序:计算大约多少年以后该城市人口将达到120万人.21.(本小题满分12分)在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.22.(本小题满分14分)青年歌手电视大赛共有10名选手参加,并请了12名评委,在计算每位选手的平均分数时,为了避免个别评委所给的极端分数的影响,必须去掉一个最高分和一个最底分后再求平均分.试编写一个解决该问题的程序.答案与解析二、填空题:13.,, 14.5,35,47 15.22,-22 16.三、解答题:17.解:INPUT a,b,cd=b^2-4a*a*cIF d<0 thenPRINT “no real root”ELSEIF d=0 thenPRINT –b/(2*a)ELSEPRIINT (-b+sqr(d))/(2*a), (-b-sqr(d))/(2*a)ENDIFENDIFEND18.解:基本事件的总数为=20①设所选3人都是男生的事件为AA所包含的基本事件数=4 P(A)=;②设所选3人恰有1女生的事件为BB所包含的基本事件数=12 P(B)=;③设所选3人中至少有1名女生的事件为CC所包含的基本事件数=16 P(C)=.19.(2)(3)由上述图表可知数据落在范围内的频率为:,即数据落在范围内的可能性是75%.(4)数据小于11.20的可能性即数据小于11.20的频率,也就是数据在11.20处的累积频率.设为,则:,所以,从而估计数据小于11.20的可能性是54%.20.解:(1)21.解:设构成三角形的事件为A,长度为10的线段被分成三段的长度分别为x,y,10-(x+y),则,即.由一个三角形两边之和大于第三边,有,即.又由三角形两边之差小于第三边,有,即,同理.∴构造三角形的条件为.∴满足条件的点P(x,y)组成的图形是如图所示中的阴影区域(不包括区域的边界).,.∴.22.i=0INPUT amax=amin=as=aDOINPUT xs=s+xIF max<=x THENmax=xEND IFIF min>=x THENmin=xEND IFi=i+1LOOP UNTIL i>12 s1=s-max-minp=s1/10PRINT pEND必修二解三角形综合练习一、选择题1.在△ABC中,若,则与的大小关系为()A. B. C. ≥ D. 、的大小关系不能确定2.在△ABC中,若a=2bsinA,则B为()A. B. C. 或 D. 或3.在△ABC 中,,则A等于()A.60° B.45° C.120° D.30°4.在△ABC中,bcosA=acosB ,则三角形的形状为()A.直角三角形B.锐角三角形C.等腰三角形 D.等边三角形5.(2011 辽宁)△ABC的三个内角A、B、C所对的边分别为a,b,c,a sin A sin B+b cos2A=则A. B.C. D.6.在△ABC中,∠A,∠B的对边分别为a,b,且∠A=60°,,那么满足条件的△ABC()A. 有一个B. 有两个C. 不存在D. 不能确定个数7.在△ABC中,其面积,则BC长为()A.B.75 C.51 D.498.在△ABC 中,sinA:sinB:sinC=3:2:4,则cosC的值为()A. B.- C. D.-9.设A是△ABC中的最小角,且,则实数a的取值范围是()A. a≥3B. a>-1C. -1<a≤3D. a>010.关于x的方程有一个根为1,则△ABC一定是()A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形二、填空题11.在△ABC 中,,则A=____________.12.在△ABC中,A=60°, b=1, 面积为,则=____________.13.在△ABC中,已知AB=l,∠C=50°,当∠B=____________时,BC的长取得最大值.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶4h后,船到达C 处,看到这个灯塔在北偏东,这时船与灯塔的距离为____________km.三、解答题15.在△ABC中,已知,c=1,,求a,A,C.16. 在△ABC 中,已知cos2B+cos2C=1+cos2A, sinA=2sinBcosC, cosC=sinB.求证:△ABC是以A为直角顶点的等腰直角三角形.17.在△ABC中,已知,求角A.18.在奥运会垒球比赛前,C国教练布置战术时,要求击球手以与连结本垒及游击手的直线成15°方向把球击出,根据经验,通常情况下,球速为游击手最大跑速的4倍,问按这样布置,游击手能否接着球?11. 45°; 12. ; 13. 40°; 14.15. a=,A=105°,C=30°; 16. 略; 17. 60°; 18.不能数列综合练习一、选择题1.数列则是该数列的()A.第6项B.第7项 C.第10项 D.第11项2.方程的两根的等比中项是()A. B. C.D.3.已知为各项都大于零的等比数列,公比,则()A.B.C.D.和的大小关系不能由已知条件确定4.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为()A.12 B. C.16 D.185.若a、b、c成等差数列,b、c、d成等比数列,成等差数列,则a、c、e成()A.等差数列B.等比数列C.既成等差数列又成等比数列D.以上答案都不是6.在等差数列{a n}中,,则()A.4 B.C.8 D.7.两等差数列{a n}、{b n}的前n项和的比,则的值是()A.B. C. D.8.{a n}是等差数列,,则使的最小的n值是()A.5 B. C.7 D.89.{a n}是实数构成的等比数列,是其前n项和,则数列{} 中()A.任一项均不为0 B.必有一项为0C.至多有一项为0 D.或无一项为0,或无穷多项为010.某数列既成等差数列也成等比数列,那么该数列一定是()A.公差为0的等差数列B.公比为1的等比数列C.常数数列D.以上都不对二、填空题11.已知等差数列{a n}的公差,且a1、a3、a9成等比数列,则的值是________.12.(2011 北京)在等比数列{a n}中,a1=,a4=-4,则公比q=___;___.13.已知数列{a n}中,对任意正整数n都成立,且,则____________.14.在等差数列{a n}中,若,则有等式成立,类比上述性质,相应地:在等比数列{b n}中,若,则有等式____________成立.三、解答题15.已知数列{2n-1a n }的前n项和.⑴求数列{a n}的通项公式;⑵设,求数列的前n项和.16.已知数列{a n}是等差数列,且.⑴求数列{a n}的通项公式;⑵令,求数列{b n}前n项和的公式.17.甲、乙两人连续6年对某县农村养鸡业规模进行调查,提供两个不同的信息图如图所示.甲调查表明:从第1年每个养鸡场出产1万只鸡上升到第6年平均每个鸡场出产2万只鸡.乙调查表明:由第1年养鸡场个数30个减少到第6年10个.请您根据提供的信息说明:⑴第2年养鸡场的个数及全县出产鸡的总只数;⑵到第6年这个县的养鸡业比第1年是扩大了还是缩小了?请说明理由;⑶哪一年的规模最大?请说明理由.18.已知数列{a n}为等差数列,公差,{a n}的部分项组成的数列恰为等比数列,其中,求.参考答案二、填空题11. ; 12. -2 ; 13. 1 ; 14.三、解答题15. (1) ; (2)16. (1) ; (2)17.(1) 第2年养鸡场的个数为26个,全县出产鸡的总只数是31.2万只;(2) 到第6年这个县的养鸡业比第1年缩小了;(3) 第2年的规模最大。
2023北京四中初一(下)期中数学

2023北京四中初一(下)期中数学一、选择题。
(每小题只有一个选项符合题意。
共10小题,每小题3分,共30分)1.在本学期的选修课中,同学们在北海公园里发现了地砖有以下四种铺砌方式,其中,由一块砖仅通过平移这一种变换就能得到的是()A.织篮式砌合B.错缝砌合C.人字砌合D.弯曲铺砌2.在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.方程组的解是()A.无解B.无数组解C.D.4.不等式的解集在数轴上表示为()A.B.C.D.5.若a>b,则下列不等式成立的是()A.a+2<b+2B.a﹣2<b﹣2C.3a<3b D.﹣<﹣6.若点P在第四象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)7.下列命题中,真命题是()A.相等的两个角是对顶角B.两条直线被第三条直线所截,同位角相等C.在同一平面内,垂直于同一条直线的两条直线平行D.直线外一点到这条直线的垂线段叫做这点到直线的距离8.如图,纸片的边缘AB,CD互相平行,将纸片沿EF折叠,使得点B,D分别落在点B′,D'处.若∠1=80°,则∠2的度数是()A.50°B.60°C.70°D.80°9.数学组老师们去北海公园踩点出题.梁老师提示可以利用平面直角坐标系表示景点的地理位置.王老师说:“在正方形网格中,分别以正东、正北方向为x,y轴的正方向建立平面直角坐标系.”孙老师说:“咱们把表示白塔的点的坐标定为(0,0)吧.”薛老师说:“表示九龙壁的点的坐标定为(﹣1,5).”杨老师特别默契地说:“那么表示画肪斋的点的坐标就是(2,4).”范老师说:“白塔仍然为原点,如果表示九龙壁的点坐标为(﹣2,10),那么这时表示画肪杰的点坐标为()”A.(1,2)B.(2,4)C.(4,8)D.(1,9)10.前进鞋店举办庆五一特惠活动,如图为活动说明.小明打算在该店同时购买一双球鞋及一双皮鞋,且他有一张所有购买的商品定价皆打8折的折价券.若小明计算后发现使用折价券与参加特惠活动两者的花费相差50元,则下列叙述正确的是()定价相差100元B.使用折价券的花费较少,且两双鞋的定价相差250元C.参加特惠活动的花费较少,且两双鞋的定价相差100元D.参加特惠活动的花费较少,且两双鞋的定价相差250元二、填空题。
2024北京四中初一(下)开学考数学(预科部)

2024北京四中初一(下)开学考数 学一、选择题(共16分,每题2分)每道题符合题意的选项只有一个.1. 某几何体的平面展开图如图所示,则该几何体是( )A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱 2. 下列关于单项式2x 2y 的说法正确的是( )A. 系数是1,次数是2B. 系数是2,次数是2C. 系数是1,次数是3D. 系数是2,次数是33. 教材中“整式的加减”一章的知识结构如图所示,则A 和B 分别代表的是( )A. 整式,合并同类项B. 单项式,合并同类项C. 多项式,次数D. 多项式,合并同类项4. 实数m ,n 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. m n <B. 0m n +>C. 0m n −<D. 0mn > 5. 下列等式变形正确的是( )A. 若2x =1,则x =2B. 若2(x ﹣2)=5(x +1),则2x ﹣4=5x +5C. 若4x ﹣1=2﹣3x ,则4x +3x =2﹣1D. 若3112123x x +−−=,则3(3x +1)﹣2(1﹣2x )=1 6. 若方程x +y =3,x ﹣2y =6和kx +y =7有公共解,则k 的值是( ) A. 1B. ﹣1C. 2D. ﹣2 7. 如图,直线AB ,CD 相交于点O ,OE 平分∠AOD ,OF 平分∠BOD .当直线CD 绕点O 顺时针旋转α°(0<α<180)时,下列各角的度数与∠BOD 度数变化无关的角是( )A. ∠AODB. ∠AOCC. ∠EOFD. ∠DOF8. 把如图①的两张大小相同的小长方形卡片放置在图②与图③中的两个相同大长方形中,已知大长方形的长比宽多10cm ,若记图②中阴影部分的周长为1C ,图③中阴影部分的周长为2C ,那么12C C −=( )A. 10cmB. 20cmC. 30cmD. 40cm二、填空题(共16分,每题2分)9. 计算38396932''︒+︒的结果为________.10. 建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳子,沿这根绳子可以砌出直的墙,这样做蕴含的数学道理是________.11. 一个角的补角比它的余角的3倍少20︒,这个角的度数是_______度.12. 当2x =时,336++=ax bx ,则当2x =−时,多项式33ax bx ++的值为_____.13. 点C 是直线AB 上一点,若线段AB 的长为4,12BC AC =,线段BC 的长为______. 14. 如果a ,b 为定值,关于x 的一次方程21262kx a x bk +−−=,无论k 为何值时,它的解总是1,则6a b +=______.15. 对于三个数a ,b ,c ,用{,,}M a b c 表示这三个数的平均数,用min{,,}a b c 表示这三个,数中最小的数.例如:1234{1,2,3}33M −++−==,min{1,2,3}1−=−,如果{3,21,1}min{3,7,25}M x x x x +−=−++,那么x =__________.16. 四个互不相等的数a ,b ,c ,m 在数轴上的对应点分别为A ,B ,C ,M ,其中4a =,8b =,0.5()m a b c =++.(1)若2c =,则A ,B ,C 中与M 距离最小的点为_____;(2)若在A ,B ,C 中,点C 与点M 的距离最小,且不等于A ,B 与点M 的距离,则符合条件的点C 所表示的数c 的取值范围为____.三、解答题(共68分,第17题16分,第18题6分,第19题7分,第20题12分,第21题7分,第22题6分第23-24题,每题7分)17. 计算:(1)37(2)( 1.25)34−+−−+; (2)1325554⎛⎫⎛⎫÷⨯−÷− ⎪ ⎪⎝⎭⎝⎭; (3)3751412660⎛⎫⎛⎫+−÷− ⎪ ⎪⎝⎭⎝⎭; (4)22131105(3)5⎛⎫−−−⨯−+− ⎪⎝⎭. 18. 先化简再求值: 已知21302x y ⎛⎫−++= ⎪⎝⎭,求()222213455x y xy x y xy ⎛⎫−−− ⎪⎝⎭的值. 19. 填空:已知90AOB ∠=︒,90COD ∠=︒,OE 平分BOD ∠,30AOC ∠=︒,(1)如图,OC 在AOB ∠内部时,求COE ∠的度数.解:90AOB ∠=︒,90BOC AOC ∴∠+∠=︒,90COD ∠=︒,90BOC BOD ∴∠+∠=︒,AOC BOD ∴∠=∠(_________________)(填写推理依据), 30AOC ∠=︒,30BOD ∴∠=︒, OE 平分BOD ∠,DOE ∴∠=_____=_____°(__________)(填写推理依据), COE COD DOE =∠−∠∴∠=______°.(2)若OC 在AOB ∠外部,COE ∠的度数为________.20. 解方程(组):(1)2(3)5(3)21x x −−−=;(2)2135234x x −−−=;(3)531825x y x y −=⎧⎨+=⎩. 21. 北京时间2023年10月26日,神舟十七号载人飞船发射取得了圆满成功!神舟十七号发射成功并对接中国空间站,标志着中国载人航天走过空间站关键技术验证阶段和建造阶段.某超市为了满足广大航天爱好者的需求,计划购进A 、B 两种航天载人飞船模型进行销售,据了解,2件A 种航天载人飞船模型和3件B 种航天载人飞船模型的进价共计95元;3件A 种航天载人飞船模型和2件B 种航天载人飞船模型的进价共计105元.(1)求A ,B 两种航天载人飞船模型每件的进价分别为多少元?(2)若该超市计划正好用250元购进以上两种航天载人飞船模型(两种航天载人飞船模型均有购买),请你写出所有购买方案.22. 点O 为数轴的原点,点A 、B 在数轴上的位置如图所示,点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍.点C 在数轴上,M 为线段OC 的中点.(1)点B 表示的数为________;(2)若线段5BM =,则线段OM 的长为________;(3)若线段AC a =(05a <<),求线段BM 的长(用含a 的式子表示).23. 定义数对(x ,y )经过一种运算φ可以得到数对(x ',y '),并把该运算记作φ(x ,y )=(x ',y '),其中x ax by y ax by =+⎧⎨=−''⎩(a ,b 为常数).例如,当a =1,且b =1时,φ(﹣2,3)=(1,﹣5). (1)当a =1且b =1时,φ(0,)= ;(2)若φ(1,2)=(0,4),则a = ,b = ;(3)如果组成数对(x ,y )的两个数x ,y 满足二元一次方程2x ﹣y =0,并且对任意数对(x ,y )经过运算φ又得到数对(x ,y ),求a 和b 的值.24. 定义:从一个角的顶点引出的一条射线,把这个角分成1∶2两部分,这条射线叫做这个角的内倍分线.(1)如图1,OM 是AOB ∠的一条内倍分线,满足BOM AOM ∠=∠2,若45AOB ∠=︒,求AOM ∠的度数.(2)已知60AOB ∠=︒,把一块含有60︒角的三角板COD 按如图2叠放.将三角板COD 绕顶点O 以2度/秒的速度按顺时针方向旋转t 秒(0180t <<).①t 为何值时,射线OC 是AOD ∠的内倍分线;②在三角板COD 转动的同时,射线OB 以每秒n (01n <<)度的速度绕O 点逆时针方向旋转至OB ',在旋转过程中存在OB '恰好同时是AOD ∠,AOC ∠的内倍分线,请直接写出n 的值.四、选做题(共10分,第25题2分,26题8分)25. 如图所示,每个字母分别代表不同的数字,四个角上每个三角形的三个顶点上的数字之和都与中间四边形BDGE 四个顶点上的数字之和相等,若1A =,3C =,3F =,则H 的值为_____.26. 数学活动课上,老师拿出两个单位长度不同的数轴A 和数轴B 模型,如图,当两个数轴的原点对齐时,数轴A 上表示2的点与数轴B 上表示3的点恰好对齐.(1)图1中,数轴B 上表示9的点与数轴A 上表示________的点对齐,数轴A 上表示8−的点与数轴B 上表示______的点对齐;(2)如图2,将图中的数轴B 向左移动,使得数轴B 的原点与数轴A 表示2−的点对齐,则数轴A 上表示5的点与数轴B 上表示_______的点对齐,数轴B 上距离原点12个单位长度的点与数轴A 上表示_______的点对齐;(3)若数轴A 上表示2n 的点与数轴B 表示3m 的点对齐,则数轴A 上表示26n +的点与数轴B 上表示_______的点对齐,数轴B 上距离原点()312m +个单位长度的点与数轴A 上表示________的点对齐.(用代数式表示)参考答案一、选择题(共16分,每题2分)每道题符合题意的选项只有一个.1. 【答案】C【分析】由平面图形的折叠及立体图形的表面展开图的特点确定立体图形为四棱锥,再根据四棱锥的特性解题.【详解】观察图可得,这是个下底面为正方形,侧面有四个正三角形的四棱锥的展开图,则该几何体为四棱锥.故选C .【点睛】本题主要考查了几何体的展开图,此题关键是确定是四棱锥的展开图.2. 【答案】D【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而分析即可.【详解】解:单项式2x 2y 的系数为2,次数为3.故选:D .【点睛】本题考查了单项式,正确把握单项式的次数与系数的确定方法是解题的关键. 3. 【答案】D【分析】根据整式的定义,整式的加减运算,即可得到答案【详解】单项式和多项式统称为整式,整式的加减就是合并同类项,故选:D .【点睛】本题考查了整式,单项式和多项式统称作整式,注意整式的加减就是合并同类项是解答本题的关键.4. 【答案】B【分析】根据数轴上点的位置可知2134n m −<<−<<<,由此即可得到答案.【详解】解:由题意得,2134n m −<<−<<<, ∴m n >,0m n +>,0m n −>,0mn <,∴四个选项中只有B 选项符合题意,故选B .【点睛】本题主要考查了实数与数轴,正确得到2134n m −<<−<<<是解题的关键. 5. 【答案】B【分析】根据解一元一次方程的方法即可依次判断.【详解】A.若2x =1,则x =12,故错误;B.若2(x ﹣2)=5(x +1),则2x ﹣4=5x +5,正确;C.若4x ﹣1=2﹣3x ,则4x +3x =2+1,故错误;D.若3112123x x +−−=,则3(3x +1)﹣2(1﹣2x )=6,故错误;故选B .【点睛】此题主要考查解一元一次方程,解题的关键是熟知去分母的方法.6. 【答案】C【分析】先求出326x y x y +=⎧⎨−=⎩①②的解,然后代入kx +y =7求解即可. 【详解】解:联立326x y x y +=⎧⎨−=⎩①②, ②-①,得-3y =3,∴y =-1,把y =-1代入①,得x -1=3∴x =4,∴41x y =⎧⎨=−⎩, 代入kx +y =7得:4k ﹣1=7,∴k =2,故选:C .【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.7. 【答案】C【分析】根据角平分线的定义可得∠AOD =2∠EOD ,∠BOD =2∠DOF ,结合平角的定义可求解∠EOF =90°,由∠EOF 的度数为定值可判定求解.【详解】解:∵OE 平分∠AOD ,OF 平分∠BOD ,∴∠AOD =2∠EOD ,∠BOD =2∠DOF ,∵∠AOD +∠BOD =180°,∴∠EOD +∠DOF =90°,即∠EOF =90°,∴直线CD 绕点O 顺时针旋转α°(0<α<180)时,∠EOF 的度数与∠BOD 度数变化无关.故选:C .【点睛】本题主要考查角平分线的定义,求解∠EOF 的度数是解题的关键.8. 【答案】B【分析】题目主要考查整式加减的运用,设图②与图③中的大长方形的宽为cm a ,则长为()10cm a +,图①中的长方形长为cm x ,宽为cm y ,结合图形分别表示出两个长方形的周长,然后相减即可得.理解题意,结合图形列出代数式是解题关键.【详解】解:设图②与图③中的大长方形的宽为cm a ,则长为()10cm a +,图①中的长方形长为cm x ,宽为cm y ,由图②可知:()1102420C a a a =++⨯=+;由图③可知:10x y a +=+,()()()221022C a a x a y =++−+−,()22042a a x y =++−+,6202(10)a a =+−+,4a =,则()21420420cm C C a a −=+−=,故选:B .二、填空题(共16分,每题2分)9. 【答案】10811'︒【分析】角度单位都是60进制,度加度,分加分得出结果后满60进1即可.【详解】原式=10771'=10811',故答案为:10811'.【点睛】本题考查数学中角度量度的相加,解题的关键是知道角度量度的运算方法,知道度加度,分加分,进制是60即可.10. 【答案】两点确定一条直线【分析】此题考查了直线的性质:两点确定一条直线.由直线公理可直接得出答案.【详解】解:建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳子,沿这根绳子可以砌出直的墙.这样做蕴含的数学道理是两点确定一条直线.故答案为:两点确定一条直线.11. 【答案】35【分析】设这个角为x 度.根据一个角的补角比它的余角的3倍少20°,构建方程即可解决问题.【详解】解:设这个角为x 度.则180°-x=3(90°-x )-20°,解得:x=35°.答:这个角的度数是35°.故答案为:35.【点睛】本题考查余角、补角的定义,一元一次方程等知识,解题的关键是学会用方程分思想思考问题,属于中考常考题型.12. 【答案】0【分析】本题考查了求代数式的值,方程的解,由已知可求得823a b +=,而当2x =−时,有33823ax bx a b ++=−−+,从而可求得其的值.解题的关键是根据条件得到823a b +=,从而利用整体代入法求值.【详解】解:当2x =时,336++=ax bx ,即8236a b ++=,∴823a b +=,当2x =−时,有33823(82)3330ax bx a b a b ++=−−+=−++=−+=故答案为:0.13.【答案】43或4 【分析】本题考查了两点间的距离的含义和求法,分两种情况讨论:①点C 在A 、B 中间时;②点C 在点B 的右边时,求出线段BC 的长为多少即可.理解题意,分类讨论是解决问题的关键.【详解】解:①点C 在A 、B 中间时,如图:∵AB 的长为4,12BC AC =,则2AC BC = ∴3AC BC AB BC +==, ∴43BC =. ②点C 在点B 的右边时,如图:∵AB 的长为4,12BC AC =,则2AC BC =, ∴2AB BC AC BC +==,∴4BC =.综上所述:线段BC 的长为43或4. 故答案为:43或4. 14. 【答案】1【分析】根据一元一次方程的解的定义即可求出答案.【详解】解:将1x =代入方程21262kx a x bk +−−=, 211262k a bk +−∴−=, ()()3213k a bk ∴+−−=,3613k a bk ∴+−+=,()346b k a ∴+=−,由题意可知,30b +=,460a −=,23a ∴=,3b =−, ()266313a b ∴+=⨯+−=, 故答案为:1.【点睛】本题考查一元一次方程,解题的关键是正确理解一元一次方程的解的定义.15. 【答案】2或-4【分析】依据定义分别求出{3,21,1}M x x +−和min{3,7,25}x x −++,再分三种情况讨论,即可得到x 的值. 【详解】3211{3,21,1}13x x M x x x +++−+−==+ 当min{3,7,25}3x x −++=时,73253x x −+≥⎧⎨+≥⎩,解得14x −≤≤, ∵{3,21,1}min{3,7,25}M x x x x +−=−++∴13x +=,解得2x =,符合条件;当min{3,7,25}7x x x −++=−+时,37257x x x ≥−+⎧⎨+≥−+⎩,解得4x ≥, ∵{3,21,1}min{3,7,25}M x x x x +−=−+∴17x x +=−+,解得3x =,不符合条件;当min{3,7,25}25x x x −++=+时,325725x x x ≥+⎧⎨−+≥+⎩,解得1x ≤−, ∵{3,21,1}min{3,7,25}M x x x x +−=−++∴125x x +=+,解得4x =−,符合条件;综上所述:2x =或4x =−故答案为:2或-4【点睛】本题考查了算术平均数、一元一次方程的应用、解一元一次不等式组.解题的关键是弄清新定义运算的法则,并分情况讨论.需要考虑每种情况下x 的取值范围16. 【答案】 ①. B ②. 8c >【分析】本题考查了代数式求值,数轴上两点的距离,绝对值的几何意义,数形结合是解题的关键. (1)根据已知求得7m =,进而分别求得A ,B ,C 中与M 距离,即可求解;(2)根据已知得60.5m c =+,表示出A ,B ,C 与M 距离,根据点C 与点M 的距离最小,且不等于A ,B 与点M 的距离,得0.560.52c c −+<−,0.560.52c c −+<+,令0.5x c =,则62x x −<−,()62x x −<−−,由绝对值的几何意义可知,62x x −<−表示数轴上数x 到6的距离比到2的距离小,则2642x +>=;()62x x −<−−表示数轴上数x 到6的距离比到2−的距离小,则2622x −+>=,得>4x ,进而即可求解. 【详解】解:(1) ∵4a =,8b =当2c =,∴()0.5m a b c =++()0.54827=⨯++= ∵473−=,871−=,275−=∴A ,B ,C 中与M 距离最小的点为B ,故答案为:B .(2)∵0.5(48)60.5m c c =++=+,则A ,M 之间的距离为:60.540.52c c +−=+,B ,M 之间的距离为:60.580.52c c +−=−,C ,M 之间的距离为:60.50.56c c c +−=−+,∵点C 与点M 的距离最小,且不等于A ,B 与点M 的距离, ∴0.560.52c c −+<−,0.560.52c c −+<+,令0.5x c =,则62x x −<−,()62x x −<−−,由绝对值的几何意义可知,62x x −<−表示数轴上数x 到6的距离比到2的距离小,即x 在两个数中点的右侧,则2642x +>=; ()62x x −<−−表示数轴上数x 到6的距离比到2−的距离小,即x 在两个数中点的右侧,则2622x −+>=, 即:当>4x 时,62x x −<−,()62x x −<−−,亦即:当0.54c >时,0.560.52c c −+<−,0.560.52c c −+<+,∴当8c >时,点C 与点M 的距离最小,且不等于A ,B 与点M 的距离,故答案为:8c >.三、解答题(共68分,第17题16分,第18题6分,第19题7分,第20题12分,第21题7分,第22题6分第23-24题,每题7分)17. 【答案】(1)10 (2)43(3)30−(4)6【分析】本题考查了有理数的混合运算,掌握有理数的运算法则以及运算顺序是解题的关键.(1)根据有理数的加减进行计算即可求解;(2)将除法转化为乘法,然后按照从左至右的顺序进行计算即可求解;(3)将除法转化为乘法,然后根据乘法分配律进行计算即可求解;(4)根据有理数的混合运算,先计算乘方,然后乘除,最后计算加减即可求解.【小问1详解】 解:37(2)( 1.25)34−+−−+372 1.2534=−++923=−+10=;【小问2详解】 解:1325554⎛⎫⎛⎫÷⨯−÷− ⎪ ⎪⎝⎭⎝⎭11425553⎛⎫⎛⎫=⨯⨯−⨯− ⎪ ⎪⎝⎭⎝⎭43=;【小问3详解】 解:3751412660⎛⎫⎛⎫+−÷− ⎪ ⎪⎝⎭⎝⎭()375604126⎛⎫=+−⨯− ⎪⎝⎭()()()3756060604126=⨯−+⨯−−⨯−453550=−−+30=−;【小问4详解】 解:22131105(3)5⎛⎫−−−⨯−+− ⎪⎝⎭()91259=−−−−+6=.18. 【答案】22211x y xy −−,34【分析】本题考查了整式的化简求值,非负数的性质应用,根据非负数的性质,得出x 、y 的值,代入所求代数式计算即可.掌握整式的化简求值是解题的关键.【详解】解:原式22223125x y xy x y xy =−−+,22211x y xy =−−;21302x y ⎛⎫−++= ⎪⎝⎭, 30x ∴−=,102y +=, ∴3x =,12y =−, 当3x =,12y =−时, 原式2211323113224⎛⎫⎛⎫=−⨯⨯−−⨯⨯−= ⎪ ⎪⎝⎭⎝⎭19. 【答案】(1)同角的余角相等,∠BOE ,15,角平分线的定义,75(2)105︒【分析】本题考查的是与余角相关的计算,角平分线的定义,理解角的和差的运算是解本题的关键. (1)利用同角的余角及角平分线的定义,根据每一步的提示结合条件,填写推理依据即可;(2)作出图形,类比(1【小问1详解】解:∵90AOB ∠=︒,∴90BOC AOC ∠+∠=︒,∵90COD ∠=︒,∴90BOC BOD ∠+∠=︒∴AOC BOD ∠=∠(同角的余角相等),∵30AOC ∠=︒,∴30BOD ∠=︒,∵OE 平分BOD ∠,∴15DOE BOE ∠=∠=︒(角平分线的定义),∴75COE COD DOE ∠=∠−∠=︒.故答案为:同角的余角相等,∠BOE ,15,角平分线的定义,75;【小问2详解】OC 在AOB ∠外部时,如图,∵90AOB ∠=︒,∴90BOD AOD ︒∠+∠=,∵90COD ∠=︒,∴90AOC AOD ∠+∠=︒∴AOC BOD ∠=∠,∵30AOC ∠=︒,∴30BOD ∠=︒,∵OE 平分BOD ∠,∴15DOE BOE ∠=∠=︒,∴105COE COD DOE ∠=∠+∠=︒.故答案为:105︒.20. 【答案】(1)6x =(2)13x =−(3)31x y =⎧⎨=−⎩【分析】本题考查解一元一次方程,二元一次方程,解题的关键是掌握解方程的方法及步骤.(1)方程去括号,移项合并同类项,化系数为1,即可得到答案;(2)方程去分母,去括号,移项合并同类项,化系数为1,即可得到答案;(3)先算⨯①+②3,再解一元一次方程,最后代入原方程即可得到答案.【小问1详解】解:2(3)5(3)21x x −−−=去括号得:2615521x x −−+=,移项得:2521615x x +=++,合并同类项得:742x =,系数化为1得:6x =;【小问2详解】解:2135234x x −−−= 去分母得:()()42133524x x −−−=去括号得:8491524x x −−+=,移项得:8924154x x −=−+,合并同类项得:13x −=,系数化为1得:13x =−;【小问3详解】解:531825x y x y −=⎧⎨+=⎩①②由⨯①+②3得,1133x =,解得:3x =,将3x =代入②得:235y ⨯+=,解得:1y =−∴方程组的解为31x y =⎧⎨=−⎩. 21. 【答案】(1)A 种飞船模型每件进价25元,B 种飞船模型每件进价15元(2)购买方案:①购进7件A 型飞船模型和5件B 型飞船模型;②购进4件A 型飞船模型和10件B 型飞船模型;③购进1件A 型飞船模型和15件B 型飞船模型.【分析】本题考查了二元一次方程组的实际应用及二元一次方程的正整数解的应用,找准等量关系列出二元一次方程(组)是解题关键.(1)设A 种飞船模型每件进价x 元,B 种飞船模型每件进价y 元,根据“2种A 型飞船模型和3种B 型飞船模型的进价共计95元;3种A 飞船模型和2种B 型飞船模型的进价共计105元”,即可得关于x 、y 的一元二次方程组,解之即可;(2)设购进a 件A 型飞船模型和b 件B 型飞船模型,根据总价=单价×数量,得到关于a 、b 的二元一次方程,结合a 、b 是正整数即可得所有购买方案.【小问1详解】解:设A 种飞船模型每件进价x 元,B 种飞船模型每件进价y 元,根据题意,得239532105x y x y +=⎧⎨+=⎩, 解得2515x y =⎧⎨=⎩, 答:A 种飞船模型每件进价25元,B 种飞船模型每件进价15元;【小问2详解】解:设购进a 件A 型飞船模型和b 件B 型飞船模型,根据题意,得2515250a b +=,∴3a 10b 5=−, ∵a ,b 均为正整数,∴当5b =时,7a =;当10b =时,4a =;当15b =时,1a =,∴所有购买方案如下:①购进7件A 型飞船模型和5件B 型飞船模型;②购进4件A 型飞船模型和10件B 型飞船模型;③购进1件A 型飞船模型和15件B 型飞船模型.22. 【答案】(1)-1;(2)4或6;(3)1722a +或1722a −+. 【分析】(1)由AB=1.2OA=6,得OB=1,而点B 在原点的左侧,故B 表示-1;(2)由B 表示-1,BM=5,确定点M 表示的数为4或-6,根据点的几何意义确定线段的长度即可.(3)根据AC 的长度,分类确定点C 表示的数,继而确定中点M 表示的数,线段的和与差分别表示线段长度即可.【详解】(1)∵AB=1.2OA=6,∴OB=1,∵点B 在原点的左侧,∴B 表示-1,故填-1;(2)设M 表示的数为x ,∵B 表示的数为-1,且BM=5,∴|x+1|=5,∴x=4或x=-6,∴M 表示的数为4或-6,∴MO=4或MO=6,故填4或6;(3)∵AC a =,点A 表示的数为5,当点C 在点A 右侧,5OC AO AC a =+=+, ∴()11522OM OC a ==+, ∴()11715222BM OB OM a a =+=++=+; 点C 在线段OA 上,5OC OA AC a =−=−, ∴()11522OM OC a ==−,∴()11751222BM OM OB a a =+=−+=−+; 答:线段BM 的长为:1722a +或1722a −+. 【点睛】本题考查了数轴上点的几何意义,以及线段的和与差的意义,熟练用表示的数与线段的长度表示动点表示的数是解题的关键,灵活运用分类思想是解题的主要方法.23. 【答案】(1)(1,﹣1);(2)2,﹣1;(3)3214a b ⎧=⎪⎪⎨⎪=−⎪⎩【分析】(1)当a =1且b =1时,分别求出x ′和y ′即可得出答案;(2)根据条件列出方程组即可求出a ,b 的值;(3)根据对任意数对(x ,y )经过运算φ又得到数对(x ,y ),得到ax by x ax by y +=⎧⎨−=⎩,根据2x -y =0,得到y =2x ,代入方程组即可得到答案.【详解】解:(1)当a =1且b =1时,x ′=1×0+1×1=1,y ′=1×0﹣1×1=﹣1,故答案为:(1,﹣1);(2)根据题意得:2024a b a b +=⎧⎨−=⎩, 解得:21a b =⎧⎨=−⎩, 故答案为:2,﹣1;(3)∵对任意数对(x ,y )经过运算φ又得到数对(x ,y ),∴ax by x ax by y +=⎧⎨−=⎩, ∵2x ﹣y =0,∴y =2x ,代入方程组解得:222ax bx x ax bx x +=⎧⎨−=⎩, ∴222ax bx x ax bx x+=⎧⎨−=⎩,解得3214a b ⎧=⎪⎪⎨⎪=−⎪⎩.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.24. 【答案】(1)15︒(2)①15t =或60,②23n = 【分析】(1)根据角的和差关系求解即可;(2)①根据题意分2DOC AOC ∠=∠和2AOC COD ∠=∠两种情况讨论,分别列出方程求解即可;②根据题意得到2AOB B OC ''∠=∠且2B OD AOB ''∠=∠,然后列出方程求解即可.【小问1详解】∵OM 是AOB ∠的一条内倍分线,满足BOM AOM ∠=∠2, ∴1153AOM AOB ∠=∠=︒; 【小问2详解】①∵将三角板COD 绕顶点O 以2度/秒的速度按顺时针方向旋转t 秒∴2AOC t ∠=当2DOC AOC ∠=∠时, ∴12AOC DOC ∠=∠,即1260t =⨯︒ ∴解得15t =;当2AOC COD ∠=∠时, ∴12DOC AO ∠=∠,即16022t ︒=⨯ ∴解得60t =;综上所述,当15t =或60时,射线OC 是AOD ∠的内倍分线;②由题意得,2AOB B OC ''∠=∠且2B OD AOB ''∠=∠ ∴2313AOB AOC AOB AOD ''⎧∠=∠⎪⎪⎨⎪∠=∠⎪⎩,即()2602316020603nt t nt ⎧−=⨯⎪⎪⎨⎪−=⨯+⎪⎩ ∴解得3023t n =⎧⎪⎨=⎪⎩,即:23n =. 【点睛】此题考查了角的和差计算,一元一次方程与几何的应用,解题的关键是题目中角的数量关系.四、选做题(共10分,第25题2分,26题8分)25. 【答案】5【分析】本题考查列代数式,解题的关键是根据代数式的特点,列方程得到132E A D C D D =+−=+−=−,132G A B F B B =+−=+−=−.据此即可求解.【详解】解:根据题意得:A B D C B E F D G ++=++=++,∴132E A D C D D =+−=+−=−,132G A B F B B =+−=+−=−,∵A B D H G E ++=++,∴H A B D G E =++−−1(2)(2)B D B D =++−−−−122B D B D =++−+−+5=;故答案为:5.26. 【答案】(1)6;12−;(2)212;6或10−;(3)39m +;28n +或248n m −− 【分析】本题主要考查了用数轴表示有理数,数轴上两点的距离,整式的加减计算,正确理解题意熟知数轴B 上的1个单位长度在数轴A 上表示23个单位长度是解题的关键. (1)根据题意可知数轴B 上的1个单位长度在数轴A 上表示23个单位长度,据此求解即可; (2)先求出数轴A 上表示的数与2−的距离,再根据数轴B 上的1个单位长度在数轴A 上表示23个单位长度进行求解即可;求出数轴B 上距离原点12个单位长度的点在数轴A 上距离2−的距离即可得到答案; (3)要求B 轴对应A 轴的数,即要先求出B 轴上到对齐点的距离在A 轴上表示的是多少,同理,要求A 轴对应B 的数,即要先求出A 轴上到对齐点的距离在B 轴上表示多少,据此求解即可.【详解】解:(1)∵数轴A 上表示2的点与数轴B 上表示3的点恰好对齐,∴数轴B 上的1个单位长度在数轴A 上表示23个单位长度, ∴数轴B 上表示9的点与数轴A 上表示2963⨯=的点对齐,数轴A 上表示8−的点与数轴B 上表示28123−÷=−的点对齐, 故答案为:6;12− ;(2)由题意得数轴A 上表示5的点与数轴B 上表示()3215222⎡⎤−−⨯=⎣⎦ 的点对齐; 由题意得,数轴B 上距离原点12个单位长度的点在数轴A 上距离2−有21283⨯=个单位长度, ∴数轴B 上距离原点12个单位长度的点与数轴A 上表示286−+=或2810−−=−的点对齐, 故答案为;212;6或10−; (3)∵()23262393m n n m ++−÷=+, ∴数轴A 上表示26n +的点与数轴B 上表示39m +的点对齐;数轴B 上距离原点()312m +个单位长度的点在数轴B 上表示的数为312m +或312m −−,∴数轴B 上表示312m +的点在A 轴上表示的数为()223123283n m m n ++−⨯=+; 数轴B 上表示312m −−的点在A 轴上表示的数为()2312322483m m n n m −−−⨯+=−−; 综上所述,数轴B 上距离原点()312m +个单位长度的点与数轴A 上表示28n +或248n m −−的点对齐; 故答案为:39m +;28n +或248n m −−.。
2023-2024学年北京四中高二(上)期中数学试题和答案

2023北京四中高二(上)期中数 学一、选择题(本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知直线l的一个方向向量为,则直线l的斜率为( )A.B.C.D.﹣12.已知点A(﹣2,3,0),B(1,3,2),,则点P的坐标为( )A.(4,3,4)B.(﹣4,﹣1,﹣4)C.(﹣1,6,2)D.(﹣5,3,﹣2)3.已知直线方程kx﹣y﹣2k=0,则可知直线恒过定点的坐标是( )A.(﹣2,0)B.(2,0)C.(0,﹣2)D.(0,2)4.平行六面体ABCD﹣A1B1C1D1的所有棱长都是1,O为A1C1中点,∠BAD=∠BAA1=∠DAA1=60°,,则( )A.x=1,y=1B.x=1,C.,D.,y=15.“a=﹣3”是“直线x+ay+2=0与直线ax+(a+2)y+1=0互相垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知点(1,﹣2)和在直线l:ax﹣y﹣1=0(a≠0)的两侧,则直线l倾斜角的取值范围是( )A.B.C.D.7.过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为( )A.(x﹣3)2+(y+1)2=5B.C.(x﹣3)2+(y﹣8)2=50D.(x﹣3)2+y2=28.正方体ABCD﹣A1B1C1D1中,O为正方形ABCD中心,A1P=λA1B1(λ∈[0,1]),直线OP与平面ABC所成角为θ,则θ取最大时λ的值为( )A.B.C.D.9.A(1,y1),B(﹣2,y2)是直线y=﹣x上的两点,若沿x轴将坐标平面折成60°的二面角,则折叠后A、B两点间的距离是( )A.6B.C.D.10.点M(x0,y0)到两条直线:x+3y﹣2=0,x+3y+6=0距离相等,y0<x0+2,则的取值范围是( )A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)若向量与向量共线,则x的值为 .12.(5分)直线2x﹣y﹣1=0与2x﹣y+1=0之间的距离是 .13.(5分)以A(2,3),B(4,9)为直径的两个端点的圆的方程是 .14.(5分)在空间四边形ABCD中,= .15.(5分)如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=2,BC=1,AA1=2,点D在棱AC 上滑动,点E在棱BB1上滑动,给出下列四个结论:①三棱锥C1﹣A1DE的体积不变;②A1D+DB的最小值为;③点D到直线C1E的距离的最小值为;④使得A1D⊥C1E成立的点D、E不存在.其中所有正确的结论为 .三、解答题(本大题共6小题,共85分)16.(13分)已知点A(1,2),B(﹣3,5),C(6,2).(1)求△ABC的面积;(2)过点C的直线l与点A(1,2),点B(﹣3,5)距离相等,求直线l的方程.17.(13分)如图,在△ABC中,,BC=4,D,E分别为AB,AC的中点,O为DE的中点,将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED.(1)平面A1OB⊥平面BCED;(2)若F为A1C的中点,求点F到面A1OB的距离.18.(14分)已知直线l过点P(2,3),圆C:x2+4x+y2﹣12=0.(1)求与圆C相切的直线l的方程;(2)当直线l是圆C的一条对称轴,交圆C于A,B两点,过A,B分别作l的垂线与x轴交于D,E两点,求|DE|.19.(15分)如图,梯形ABCD所在的平面与等腰梯形ABEF所在的平面互相垂直,AB∥CD∥EF,AB⊥AD,|CD|=|DA|=|AF|=|FE|=2,|AB|=4.(1)求证:DF∥平面BCE;(2)求二面角C﹣BF﹣A的余弦值;(3)线段CE上是否存在点G,使得AG⊥平面BCF?请说明理由.20.(15分)已知圆和圆(r>0).(1)若圆C1与圆C2相交,求r的取值范围;(2)若直线l:y=kx+1与圆C1交于P、Q两点,且,求实数k的值;(3)若r=2,设P为平面上的点,且满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.21.(15分)对于n维向量A=(a1,a2,…,a n),若对任意i∈{1,2,…,n}均有a i=0或a i=1,则称A为n维T向量.对于两个n维T向量A,B,定义d(A,B)=.(Ⅰ)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.(Ⅱ)现有一个5维T向量序列:A1,A2,A3,…,若A1=(1,1,1,1,1)且满足:d(A i,A i+1)=2,i∈N*.求证:该序列中不存在5维T向量(0,0,0,0,0).(Ⅲ)现有一个12维T向量序列:A1,A2,A3,…,若且满足:d(A i,A i+1)=m,m∈N*,i=1,2,3,…,若存在正整数j使得,A j为12维T向量序列中的项,求出所有的m.参考答案一、选择题(本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.【答案】D【分析】利用斜率公式求解.【解答】解:因为直线l的一个方向向量为,所以直线l的斜率为.故选:D.2.【答案】A【分析】设P(x,y,z),表示出、,即可得到方程组,解得即可.【解答】解:设P(x,y,z),因为A(﹣2,3,0),B(1,3,2),所以,,因为,所以(x+2,y﹣3,z)=2(3,0,2),所以,解得,即P(4,3,4).故选:A.3.【答案】B【分析】依题意可得(x﹣2)k﹣y=0,令,解得即可.【解答】解:直线kx﹣y﹣2k=0,即(x﹣2)k﹣y=0,令,解得,所以直线kx﹣y﹣2k=0恒过点(2,0).故选:B.4.【答案】C【分析】根据空间向量线性运算法则计算可得.【解答】解:依题意==,又,所以,.故选:C.5.【答案】A【分析】根据充分条件和必要条件的定义结合两直线垂直的判定分析判断即可.【解答】解:当直线x+ay+2=0与直线ax+(a+2)y+1=0互相垂直时,a+a(a+2)=0,得a2+3a=0,解得a=0或a=﹣3,所以当a=﹣3时,直线x+ay+2=0与直线ax+(a+2)y+1=0互相垂直,而当直线x+ay+2=0与直线ax+(a+2)y+1=0互相垂直时,a=0或a=﹣3,所以“a=﹣3”是“直线x+ay+2=0与直线ax+(a+2)y+1=0互相垂直”的充分不必要条件.故选:A.6.【答案】C【分析】因为点(1,﹣2)和在直线l:ax﹣y﹣1=0(a≠0)的两侧,那么把这两个点代入ax﹣y﹣1,它们的符号相反,乘积小于0,求出a的范围,设直线l倾斜角为θ,则a=tanθ,再根据正切函数的图象和性质即可求出范围.【解答】解:因为点(1,﹣2)和在直线l:ax﹣y﹣1=0(a≠0)的两侧,所以,(a+2﹣1)(a﹣1)<0,即:(a+1)(a﹣)<0,解得﹣1<a<,设直线l倾斜角为θ,∴a=tanθ,∴﹣1<tanθ<,∴0<θ<,或<θ<π,故选:C.7.【答案】D【分析】由圆心和切点连线与切线垂直可得k BC=﹣1,得到关于圆心的一个方程,根据圆的性质,可知圆心C在AB的垂直平分线x=3上,由此可求得a,b的值,得到圆心坐标,进而可求得圆的半径即可求解.【解答】解:设圆心C(a,b),因为直线x﹣y=1与圆C相切于点B(2,1),所以,即a+b﹣3=0,因为AB中垂线为x=3,则圆心C满足直线x=3,即a=3,∴b=0,所以半径,所以圆C的方程为(x﹣3)2+y2=2.故选:D.8.【答案】A【分析】在平面ABB1A1中过点P作PP1⊥AB交AB于点P1,连接P1O,即可得到∠POP1即为线OP与平面ABC所成角,且,设正方体ABCD﹣A1B1C1D1的棱长为2,则,从而求出(tanθ)max,即可得解.【解答】解:在平面ABB1A1中过点P作PP1⊥AB交AB于点P1,连接P1O,由正方体的性质可知PP1⊥平面ABCD,则∠POP1即为直线OP与平面ABC所成角,则,设正方体ABCD﹣A 1B1C1D1的棱长为2,则,所以当OP1=1时(tanθ)max=1,此时θ取最大值,P1为AB的中点,又A1P=λA1B1,所以当时θ取最大值.故选:A.9.【答案】C【分析】求出沿x轴将坐标平面折成60°的二面角后,点A在平面xOy上的射影C的坐标,作BD ⊥x轴,交x轴于点D(﹣2,0),然后利用空间向量表示,利用向量的模的性质进行求解,即可得到答案.【解答】解:∵A(1,y1),B(﹣2,y2)是直线y=﹣x上的两点,∴y1=﹣,y2=2,现沿x轴将坐标平面折成60°的二面角后,点A在平面xOy上的射影为C(1,0),作BD⊥x轴,交x轴于点D(﹣2,0),∴=++,∴=+++2•+2•+2•=3+9+12﹣2××2×=18,∴||=3.故选:C.10.【答案】B【分析】利用点到直线的距离公式得到x0+3y0+2=0,结合y0<x0+2求出x0,再由x0≠0及计算可得.【解答】解:依题意,所以x0+3y0+2=0,即,又y0<x0+2,所以,解得x0>﹣2,显然x0≠0,所以,当﹣2<x0<0时,所以,当x0>0时,所以.综上可得.故选:B.二、填空题(本大题共5小题,每小题5分,共25分)11.【答案】3.【分析】利用向量共线定理求解.【解答】解:因为向量与向量共线,所以,解得x=3.故答案为:3.12.【答案】.【分析】由平行线间的距离公式可求得结果.【解答】解:易知直线2x﹣y﹣1=0与2x﹣y+1=0平行,这两条直线间的距离为.故答案为:.13.【答案】(x﹣3)2+(y﹣6)2=10.【分析】利用圆的标准方程待定系数计算即可.【解答】解:易知该圆圆心为A(2,3),B(4,9)的中点C(3,6),半径,所以该圆方程为:(x﹣3)2+(y﹣6)2=10.故答案为:(x﹣3)2+(y﹣6)2=10.14.【答案】见试题解答内容【分析】如图:设;由向量的加、减运算知:,,代入上式即得结论.【解答】解:如图,设=,=,=,则,=,=,=.所以,==0故答案是:015.【答案】①②③.【分析】根据锥体的体积公式判断①,将将△ABC翻折到与矩形ACC1A1共面时连接A1B交AC 于点D,此时A1D+DB取得最小值,利用勾股定理求出距离最小值,即可判断②,建立空间直角坐标系,利用空间向量法求出点到距离,再根据函数的性质计算可得③,利用,即可判断④.【解答】解:∵BB1⊥平面ABC,对于①:直三棱柱ABC﹣A1B1C1中,AC⊥BC,CC1⊥平面ABC,BC⊂平面ABC,∴CC1⊥BC,又CC1⋂AC=C,∴BC⊥平面ACC1A1,又点D在棱AC上滑动,∴,∴,∴三棱锥C1﹣A1DE的体积不变,故①正确;对于②:如图将△ABC翻折到与矩形ACC1A1共面时连接A1B交AC于点D,此时A1D+DB取得最小值,∵A1C1=CC1=2,BC=1,∴A1B==,∴A1D+DB的最小值为,故②正确;对于③:如图建立空间直角坐标系,设D(a,0,0),a∈[0,2],E(0,1,c),c∈[0,2],C1(0,0,2),∴,,则点D到直线C1E的距离d===,当c=2时,,当0≤c<2时,0<(c﹣2)2≤4,∴,∴,∴,∴∈(0,],∴当取最大值,且a2=0时,,即当D在C点E在B点时,点D到直线C1E的距离的最小值为,故③正确;对于④:A1(2,0,2),,,∴,∵c∈[0,2],∴当c=2时,,∴,即A1D⊥C1E,故④错误.故答案为:①②③.三、解答题(本大题共6小题,共85分)16.【答案】(1);(2)3x+14y﹣46=0或3x+4y﹣26=0.【分析】(1)求出三角形的三边长,并求其中一个角的余弦值,代入公式即可求得面积.(2)过点C的直线l与点A(1,2),点B(﹣3,5)距离相等,即直线l与直线AB平行或经过AB的中点,代入求解即可.【解答】解:(1)由点A(1,2),B(﹣3,5),C(6,2)可得,,,,在△ABC中,,所以,△ABC的面积为.(2)过点C的直线l与点A(1,2),点B(﹣3,5)距离相等,即直线l与直线AB平行或经过AB的中点,当过点C的直线l与平行时,,则直线方程为3x+4y﹣26=0;当过点C的直线l过AB的中点,AB的中点坐标,,所以直线方程为,即3x+14y﹣46=0.所以直线方程为3x+14y﹣46=0或3x+4y﹣26=0.17.【答案】(1)证明过程请见解答;(2).【分析】(1)由A1O⊥DE,平面A1DE⊥平面BCED,可知A1O⊥平面BCED,再由面面垂直的判定定理,即可得证;(2)作DP⊥BC于P,以D为坐标原点建立空间直角坐标系,利用向量法求点到平面的距离,即可得解.【解答】(1)证明:由题意知,A1D=A1E,因为点O是DE的中点,所以A1O⊥DE,因为平面A1DE⊥平面BCED,平面A1DE∩平面BCED=DE,A1O⊂平面A1DE,所以A1O⊥平面BCED,又A1O⊂平面A1OB,所以平面A1OB⊥平面BCED.(2)解:作DP⊥BC于P,则BP=1,因为DE∥BC,所以DP⊥DE,以D为坐标原点,DP,DE所在直线分别为x,y轴,作Dz⊥平面BCED,建立如图所示的空间直角坐标系,则A1(0,1,2),O(0,1,0),B(2,﹣1,0),C(2,3,0),因为F为A1C的中点,所以F(1,2,1),所以=(0,0,2),=(2,﹣2,0),=(1,1,1),设面A1OB的法向量为=(x,y,z),则,即,取x=1,则y=1,z=0,所以=(1,1,0),故点F到面A1OB的距离为==.18.【答案】(1)x=2或7x+24y﹣86=0;(2)10.【分析】(1)将圆的方程化为标准式,再分斜率存在与不存在两种情况讨论;(2)依题意直线l过圆心C,即可求出直线l的方程,即可得到,利用锐角三角函数求出|AD|,从而求出|CD|,从而得解.【解答】解:(1)圆C:x2+4x+y2﹣12=0,即(x+2)2+y2=16,所以圆心C(﹣2,0),半径r=4,当斜率不存在时直线的方程为x=2,符合题意;当斜率存在时,设斜率为k,则y﹣3=k(x﹣2),即kx﹣y﹣2k+3=0,则,解得,所以切线方程为7x+24y﹣86=0,综上可得切线方程为x=2或7x+24y﹣86=0.(2)因为直线l是圆C的一条对称轴,所以直线l过圆心C,则直线l的方程,即3x﹣4y+6=0,则,又,即,所以|AD|=3,则,同理可得|CE|=5,所以|DE|=10.19.【答案】(1)证明见解答;(2);(3)线段CE上不存在点G,使得AG⊥平面BCF.【分析】(1)先证明四边形CDFE为平行四边形,从而得到DF∥CE,再利用线面平行的判定定理证明即可;(2)在平面ABEF内,过A作Az⊥AB,证明AD⊥AB,AD⊥Az,Az⊥AB,建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面BCF的法向量,由向量的夹角公式求解即可;(3)利用待定系数法求出平面ACE的法向量,利用向量垂直的坐标表示,证明平面ACE与平面BCF不可能垂直,即可得到答案.【解答】(1)证明:因为CD∥EF,且CD=EF,所以四边形CDFE为平行四边形,所以DF∥CE,因为DF⊄平面BCE,CE⊂平面BCE,所以DF∥平面BCE;(2)解:在平面ABEF内,过A作Az⊥AB,因为平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,又Az⊂平面ABEF,Az⊥AB,所以Az⊥平面ABCD,所以AD⊥AB,AD⊥Az,Az⊥AB,如图建立空间直角坐标系A﹣xyz.由题意得,A(0,0,0),B(0,4,0),C(2,2,0),E(0,3,),F(0,1,),所以=(2,﹣2,0),=(0,﹣3,),设平面BCF的法向量为=(x,y,z),则,令y=1,则x=1,z=,所以=(1,1,),平面ABF的一个法向量为=(1,0,0),则cos<,>==,所以平面CBF和平面BFA的夹角的余弦值为;(3)解:线段CE上不存在点G,使得AG⊥平面BCF,理由如下:设平面ACE的法向量为=(a,b,c),所以,令b=1,则a=﹣1,c=﹣,所以=(﹣1,1,﹣),因为•=﹣1+1﹣3≠0,所以平面ACE与平面BCF不可能垂直,从而线段CE上不存在点G,使得AG⊥平面BCF.20.【答案】(1)(﹣2,+2);(2)k=;(3)(,)或(,).【分析】(1)利用相交时圆心距的位置关系可求r的取值范围;(2)联立直线与圆C1,写出韦达定理,结合数量积代换可求实数k的值;(3)由两圆半径相等,两直线11和12截得圆C1和圆C2,弦长相等可得弦心距相等,得=,转化为求方程组的解即可.【解答】解:(1)由题意得,圆C1的圆心C1(﹣3,1),r1=2,圆C2的圆心C2(4,5),半径为r,|C1C2|==,∵圆C1与圆C2相交,∴|r﹣2|<|C1C2|<r+2,即|r﹣2|<<r+2,解得:﹣2<r<+2,∴r∈(﹣2,+2).(2)设点P(x1,y1),Q(x2,y2),直线与圆C1联立,得(1+k2)x2+6x+5=0,由Δ>0得k2<,x1+x2=,x1x2=,∴y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1,∵,∴x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=4,∴5+﹣3=0,解得:k=,∵k2<,∴k=.(3)由题意得C2:(x﹣4)2+(y﹣5)2=4,设P(m,n),直线l1和l2的方程分别为y﹣n=k(x﹣m),y﹣n=﹣(x﹣m),即kx﹣y+n﹣kn=0,﹣x﹣y+n+=0,由题意可知,圆心C1到直线l1的距离等于C2到直线l2的距离,则=,化简得(2﹣m﹣n)k=m﹣n﹣3或(m﹣n+8)k=m+n﹣5,则有或,故P(,)或(,).21.【答案】见试题解答内容【分析】(Ⅰ)由于A=(1,0,1,0,1),B=(0,1,1,1,0),由定义,求d(A,B)的值.(Ⅱ)利用反证法进行证明即可;(Ⅲ)根据存在正整数j使得,A j为12维T向量序列中的项,求出所有的m.【解答】解:(Ⅰ)由于A=(1,0,1,0,1),B=(0,1,1,1,0),由定义,可得d(A,B)=4.…(Ⅱ)反证法:若结论不成立,即存在一个含5维T向量序列,A1,A2,A3,…A n,使得A1=(1,1,1,1,1),A m=(0,0,0,0,0).因为向量A1=(1,1,1,1,1)的每一个分量变为0,都需要奇数次变化,不妨设A1的第i(i=1,2,3,4,5)个分量1变化了2n i﹣1次之后变成0,所以将A1中所有分量1变为0共需要(2n1﹣1)+(2n2﹣1)+(2n3﹣1)+(2n4﹣1)+(2n5﹣1)=2(n1+n2+n3+n4+n5﹣2)﹣1次,此数为奇数.又因为,说明A i中的分量有2个数值发生改变,进而变化到A i+1,所以共需要改变数值2(m﹣1)次,此数为偶数,所以矛盾.所以该序列中不存在5维T向量(0,0,0,0,0).…(9分)(Ⅲ)存在正整数j使得,A j为12维T向量序列中的项,此时m=1,2,3,4,5,6,7,8,9,10,11,12.…(13分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
训练26 三角函数(推荐时间:75分钟)1.已知sin α=55,α∈(0,π2),tan β=13. (1)求tan α的值;(2)求tan (α+2β)的值.2.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且1-c 2a =sin (B -C )sin (B +C ),求 cos B 2的值.3.若函数f (x )=sin 2ax -sin ax cos ax (a >0)的图象与直线y =m (m 为常数)相切,并且切点的横坐标依次成公差为π2的等差数列.(1)求m 的值;(2)若点A (x 0,y 0)是y =f (x )图象的对称中心,且x 0∈[0,3π4],求点A 的坐标.4.已知△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c .m =(1,1),n =⎝⎛⎭⎫32-sin B sin C ,cos B cos C ,且m ⊥n . (1)求A 的大小;(2)若a =1,b =3c .求S △ABC .5.设函数f (x )=2sin x cos 2φ2+cos x sin φ-sin x (0<φ<π),在x =π处取最小值.(1)求φ的值;(2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知a =1,b =2,f (A )=32,求角C .6.(2010·福建)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.答案1.解 (1)∵sin α=55,α∈(0,π2), ∴cos α=1-sin 2α=1-15=255∴tan α=sin αcos α=55255=12. (2)∵tan β=13,∴tan 2β=2tan β1-tan 2β=2×131-(13)2=34. ∴tan (α+2β)=tan α+tan 2β1-tan αtan 2β=12+341-12×34=2. 2.解 由已知得2a -c 2a =sin (B -C )sin A, ∴2sin A -sin C 2sin A =sin (B -C )sin A, ∴2sin A -sin C =2sin (B -C ),∴2sin (B +C )-sin C =2sin (B -C ),2sin B cos C +2cos B sin C -sin C ,=2sin B cos C -2cos B sin C ,∴4cos B sin C =sin C , 又sin C ≠0,∴cos B =14. B 为锐角.∴cos B 2=1+cos B 2=1043.解 (1)f (x )=12(1-cos 2ax )-12sin 2ax =-12(sin 2ax +cos 2ax )+12=-22sin (2ax +π4)+12∵y =f (x )的图象与y =m 相切.∴m 为f (x )的最大值或最小值.即m =1+22或m =1-22.(2)又因为切点横坐标依次成公差为π2所以f (x )最小正周期为π2. 又T =2π|2a |=π2,a >0, 所以a =2.即f (x )=-22sin ⎝⎛⎭⎫4x +π4+12令sin ⎝⎛⎭⎫4x +π4=0,则4x 0+π4=k π(k ∈Z ) x 0=k π4-π16. 由0≤k π4-π16≤34π及k ∈Z . 得k =1,2,3,因此对称中心点A 的坐标为⎝⎛⎭⎫316π,12、⎝⎛⎭⎫716π,12、⎝⎛⎭⎫1116π,12. 4.解 因为m ⊥n ,所以32-sin B sin C +cos B cos C =0, 所以cos (B +C )=-32,即cos A =32, 因为A 为△ABC 的内角,所以0<A <π,所以A =π6(2)若a =1,b =3c .由余弦定理得b 2+c 2-a 2=2bc cos A ,所以得c 2=1,所以S △ABC =12bc ·sin A =34c 2=34. 5.解 (1)∵f (x )=2sin x cos 2 φ2+cos x sin φ-sin x =2sin x ·1+cos φ2+cos x sin φ-sin x =sin x +sin x cos φ+cos x sin φ-sin x=sin x cos φ+cos x sin φ=sin (x +φ)又∵f (x )在x =π处取最小值.∴sin (π+φ)=-1.又∵0<φ<π,∴φ=π2.(2)由(1)知f (x )=sin (x +π2)=cos x . ∵f (A )=32,∴cos A =32. 又∵A 是三角形的内角,∴A =π6. 又∵a =1,b =2,∴由正弦定理得sin B =b sin A a =2×121=22. 又∵a <b ,∴B =π4或B =3π4, 当B =π4时,C =7π12; 当B =3π4时,C =π12. ∴C =π12或7π12. 6.解 方法一 (1)如图(1),设相遇时小艇航行的距离为S 海里,则S =900t 2+400-2×30t ×20×cos (90°-30°) =900t 2-600t +400图(1) =900(t -13)2+300. 故当t =13时,S min =103, 此时v =10313=30 3. 即小艇以30 3 海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2×20×30t ×cos(90°-30°),故v 2=900-600t +400t2. ∵0<v ≤30,∴900-600t 400t2≤900,即2t 2-3t ≤0,解得t ≥23. 又t =23时,v =30. 故v =30时,t 取得最小值,且最小值为23. 此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.图(2)方法二 (1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇(如图(2).在Rt △OAC 中,OC =20cos 30°=103,AC =20sin 30°=10.又AC =30t ,OC =v t .此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以30 3 海里/时的速度航行,相遇时小艇的航行距离最小.图(3)(2)猜想v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,∴AD =DO =OA =20,解得t =23. 据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30海里/时.这样,小艇能以最短时间与轮船相遇.证明如下:如图(3),由(1)得OC =103,AC =10,故OC >AC ,且对于线段AC 上的任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30海里/时,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt △COD 中,CD =103tan θ,OD =103cos θ. 由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103v cos θ, ∴10+103tan θ30=103v cos θ. 由此可得,v =153sin (θ+30°). 又v ≤30,故sin(θ+30°)≥32. 从而,30°≤θ<90°.由于θ=30°时,tan θ取得最小值,且最小值为33. 于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为23.图(4)方法三 (1)同方法一或方法二.(2)设小艇与轮船在B 处相遇.依据题意得:v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), (v 2-900)t 2+600t -400=0.①若0<v <30,则由Δ=360 000+1 600(v 2-900)=1 600(v 2-675)≥0,得v ≥15 3.从而,t =-300±20v 2-675v 2-900,v ∈[153,30). 当t =-300-20v 2-675v 2-900时, 令x =v 2-675,则x ∈[0,15),t =-300-20x x 2-225=-20x -15≥43 当且仅当x =0,即v =153时等号成立.当t =-300+20v 2-675v 2-900时,同理可得23<t ≤43. 综上得,当v ∈[153,30)时,t >23. ②若v =30,则t =23. 综合①②可知,当v =30时,t 取最小值,且最小值等于23. 此时,在△OAB 中,OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。