模电课程知识点

合集下载

模电知识点总结

模电知识点总结

模电知识点总结1. 电路基本原理电路是电子技术的基础,它是由电阻、电容和电感等元件组成的。

在模拟电子技术中,我们经常需要分析和设计各种电路。

因此,了解电路基本原理是学习模拟电子技术的第一步。

电路分析包括欧姆定律、基尔霍夫定律、节点电压法和网孔电流法等。

这些原理是分析电路的重要工具,可以帮助我们理解电路中各个元件之间的关系。

2. 放大器放大器是模拟电子技术中的重要部分,它的作用是放大电压或电流信号。

放大器包括各种类型,例如运放放大器、电子管放大器和功率放大器等。

学习放大器的原理和特性可以帮助我们设计各种类型的放大器电路。

在实际应用中,放大器经常用于音频放大、信号处理和通信系统等领域。

3. 滤波器滤波器是模拟电子技术中的重要部分,它的作用是通过滤波器电路来处理信号中的不同频率成分。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

了解滤波器的原理和特性可以帮助我们设计滤波器电路以及实现信号处理和分析等功能。

4. 模拟信号处理电路模拟信号处理电路是模拟电子技术的核心内容,它包括各种模拟信号处理和传输电路。

常见的模拟信号处理电路包括模拟加减法器、积分器、微分器、比较器和信号发生器等。

了解这些电路的原理和特性可以帮助我们设计各种模拟信号处理系统和仪器。

5. 模拟数字转换模拟数字转换(ADC和DAC)是模拟电子技术中的重要部分,它的作用是将模拟信号转换为数字信号或将数字信号转换为模拟信号。

了解ADC和DAC的原理和特性可以帮助我们设计各种模拟数字转换电路以及实现数字信号处理和传输等功能。

总之,模拟电子技术是电子工程中的一个重要分支,它在通信、音频、视频和医疗等领域都有广泛的应用。

通过学习模拟电子技术的知识点,我们可以掌握电子技术的基本原理和技能,为未来的工作和研究打下良好的基础。

希望以上总结的知识点能对学习模拟电子技术的朋友们有所帮助。

模电知识点总结讲义

模电知识点总结讲义

模电知识点总结讲义第一部分:基本概念1. 电子元件电子元件是指能处理信息的基本部件,包括电阻、电容、电感、二极管、晶体管等。

- 电阻:用于限制电流或降低电压的元件。

- 电容:用于储存电荷或储存能量的元件。

- 电感:用于储存磁场能量或阻碍电流变化的元件。

- 二极管:用于整流、开关、放大等功能的元件。

- 晶体管:用于放大、开关、稳压等功能的元件。

2. 电路电路是由电子元件连接而成的路径,用于传输电流或信号。

- 直流电路:电流方向不变的电路。

- 交流电路:电流方向时而正时而负的电路。

- 数字电路:用于处理数字信号的电路。

- 模拟电路:用于处理模拟信号的电路。

3. 电路分析电路分析是指根据电路中元件的特性和连接关系,计算电压、电流等参数的过程。

- 基尔霍夫定律:电路中各节点的电流代数和为零。

- 欧姆定律:电流与电压成正比,电阻是电压和电流的比值。

- 诺顿定理:任意线性电路均可用一个等效的电压源和串联电阻来替代。

- 戴维南定理:任意线性电路均可用一个等效的电流源和并联电阻来替代。

4. 信号处理信号是指传输信息的载体,信号处理是对信号进行增强、滤波、调制等操作的过程。

- 放大器:用于增强信号幅度的电路。

- 滤波器:用于去除或增强特定频率的电路。

- 调制器:用于将低频信号调制到高频载波上的电路。

第二部分:放大器1. 放大器类型- 基本放大器:包括共射、共集、共底极等类型。

- 差分放大器:用于抑制共模信号的放大器。

- 电压跟随器:用于输出跟随输入信号的放大器。

2. 放大器设计- 选型:根据放大器的功率、频率、噪声等性能要求选择适当的器件。

- 偏置:通过电阻、电容等元件来设置放大器工作点。

- 反馈:通过串联或并联的电阻、电容等元件来控制放大器的增益、带宽等性能。

3. 放大器应用- 信号放大:用于将传感器输出的微弱信号放大到可测量范围。

- 信号传输:用于增强信号以便传输到远处或驱动加载。

第三部分:滤波器1. 滤波器类型- 低通滤波器:允许低频信号通过,阻断高频信号。

模电笔记知识点总结

模电笔记知识点总结

模电笔记知识点总结一、模拟信号处理1. 模拟信号与数字信号模拟信号是指信号的数值是连续变化的,可以用连续的数学函数表示。

数字信号是指信号的数值是离散的,需要经过模数转换才能表示成数值输出。

模拟信号处理的目的是将模拟信号转换为数字信号,或者将数字信号转换为模拟信号。

2. 采样与保持采样是指将连续的模拟信号按照一定的时间间隔进行取样,得到一系列的离散数值。

保持是指在采样之后,保持所获得的信号值,直到下一次采样。

3. 模拟信号重构模拟信号重构是指将数字信号重新转换为模拟信号。

通常通过数字到模拟转换器(DAC)来实现。

4. 模拟信号滤波模拟信号滤波是指对模拟信号进行频率特性的调整,滤除不需要的频率成分,以及放大需要的频率成分。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

5. 模拟信号调制模拟信号调制是指将模拟信号转换为相应的调制信号,以便在传输和处理中更容易应用。

常见的模拟信号调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)。

二、放大器设计1. 放大器的基本原理放大器是一种电路,它可以放大输入信号的幅度,并输出相应的放大信号。

放大器的核心原理是利用晶体管或运算放大器等电子器件的非线性特性,实现信号的增益。

放大器的设计目标通常包括增益、带宽、输入/输出阻抗、噪声等方面的考虑。

2. 放大器的分类放大器可以根据其工作方式、频率响应等特性进行分类。

比较常见的放大器包括运算放大器、差分放大器、共模抑制放大器、功率放大器等。

3. 放大器的频率特性放大器的频率特性是指放大器对不同频率信号的响应。

常见的频率特性包括通频带、截止频率、增益带宽积等。

4. 放大器的非线性失真非线性失真是指放大器输出信号与输入信号之间存在非线性关系,导致输出信号不完全等于输入信号。

常见的非线性失真包括谐波失真、交调失真等。

5. 放大器的稳定性放大器的稳定性是指当放大器输出端负载发生变化时,放大器是否能够保持稳定的工作状态。

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。

2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。

3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。

三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。

2.共集电极放大电路---具有电压跟随和电流跟随的作用。

3.共基极放大电路---具有电压放大的作用,输入电阻较低。

4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。

四.三极管的应用1.放大器---将弱信号放大为较强的信号。

2.开关---控制大电流的通断。

3.振荡器---产生高频信号。

4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。

模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。

2.半导体具有光敏、热敏和掺杂特性。

3.本征半导体是纯净的具有单晶体结构的半导体。

4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。

5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。

根据掺杂元素的不同,可分为P型半导体和N型半导体。

6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。

7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。

8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。

二.半导体二极管半导体二极管是由PN结组成的单向导电器件。

1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。

2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。

3.分析半导体二极管的方法包括图解分析法和等效电路法等。

三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。

模电知识点识点总结

模电知识点识点总结

模电知识点识点总结一、电路分析电路分析是模拟电子技术中的基础知识点,它涉及到电路的基本元件、电路定律、戴维南定理、诺顿定理、等效电路、交流电路分析等内容。

在电路分析中,学生需要掌握电路元件的特性和参数,熟练掌握欧姆定律、基尔霍夫电压定律、基尔霍夫电流定律等基本定律,能够准确分析电路中的电压、电流和功率等参数。

二、放大电路放大电路是模拟电子技术中的重要内容之一,它是指通过放大器将输入信号放大的过程。

学生需要掌握放大器的基本分类、放大器的基本参数、放大器的频率特性等知识,理解放大器的工作原理,能够设计各种类型的放大电路。

三、模拟信号处理模拟信号处理是模拟电子技术中的核心内容之一,它涉及到模拟信号的获取、处理、传输和存储等过程。

学生需要掌握模拟信号的采样定理、量化处理、模拟信号滤波等知识,能够设计模拟信号处理系统,提高模拟信号处理的质量和效率。

四、模拟滤波器设计滤波器是模拟电子技术中的重要内容之一,它是指用于对信号进行滤波处理的电路。

学生需要掌握滤波器的分类、滤波器的性能指标、滤波器的设计方法等知识,能够设计各种类型的模拟滤波器,提高信号的质量和准确性。

五、集成电路设计集成电路设计是模拟电子技术中的核心内容之一,它涉及到集成电路的设计原理、工艺流程、器件制造等一系列内容。

学生需要掌握集成电路的基本结构、工作原理、设计方法等知识,能够设计各种类型的集成电路,提高集成电路的性能和可靠性。

总之,模拟电子技术是电子工程中非常重要的一门课程,它涉及到电路分析、放大电路、模拟信号处理、模拟滤波器设计、集成电路设计等方面的知识。

学生在学习模拟电子技术的过程中,需要注重理论与实践相结合,通过实验和项目设计来提高自己的技能水平,从而更好地应用模拟电子技术知识解决实际问题。

(完整word版)模拟电子技术基础-知识点总结

(完整word版)模拟电子技术基础-知识点总结

模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

模电必考知识点总结

模电必考知识点总结

模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。

2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。

3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。

4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。

二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。

2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。

3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。

4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。

三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。

2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。

四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。

2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。

3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。

五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。

模电 知识点总结

模电 知识点总结

模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。

其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。

2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。

常见的信号形式有直流信号、交流信号、脉冲信号等。

3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。

常见的放大器有运放放大器、晶体管放大器等。

4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。

5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。

调制解调技术是模拟电子技术中的重要应用之一。

二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。

常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。

2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。

常见的电容电路包括RC电路、LC电路、多级滤波器等。

3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。

常见的电感电路包括RLC电路、振荡电路、滤波器等。

4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。

5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。

常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。

6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。

常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。

7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。

模电知识点复习总结

模电知识点复习总结

模电知识点复习总结模拟电子技术(模电)是电子工程中的重要基础学科之一,主要研究电路中的电压、电流以及能量的传输和转换。

下面是我对模电知识点的复习总结:一.基础知识1.电路基本定律:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律、功率定律。

2.信号描述与频域分析:时间域与频域的关系。

傅里叶级数和傅里叶变换的基本概念和应用。

3.理想放大器:增益、输入/输出电阻、输入/输出阻抗的概念和计算方法。

4.放大器基本电路:共射、共集、共基放大器的特点、电路结构和工作原理。

二.放大器设计1.放大器的参数:增益、输入/输出电阻、输入/输出阻抗。

2.放大器的稳定性:稳态稳定性和瞬态稳定性。

3.放大器的频率响应:截止频率、增益带宽积、输入/输出阻抗对频率的影响。

4.放大器的非线性失真:交趾略失真、交调失真、互调失真等。

5.放大电路的优化设计:负反馈、输入/输出阻抗匹配、增益平衡等。

三.运算放大器1.运算放大器的基本性质:增益、输入阻抗、输出阻抗、共模抑制比。

2.电压放大器:非反转放大器、反转放大器、仪表放大器、差分放大器。

3.运算放大器的应用电路:比较器、积分器、微分器、换相器、限幅器等。

4.运算放大器的非线性失真:输入失真、输出失真、交调失真等。

四.双向可调电源1.双向可调电源的基本原理:输入电压、输出电压和控制信号之间的关系。

2.双向可调电源的电路结构:移相电路、比较器、反相放大器、输出级等。

3.双向可调电源的控制方式:串行控制和并行控制。

五.滤波器设计1.常见滤波器类型:低通、高通、带通和带阻滤波器。

2.滤波器的频率响应特性:通频带、截止频率、衰减量。

3.滤波器的传输函数:频率选择特性、阶数选择。

4.滤波器的实现方法:RC、RL、LC和电子管等。

六.可控器件1.二极管:理想二极管模型、二极管的非理想特性、二极管的应用。

2.可控硅:双向可控硅、单向可控硅、可控硅的触发电路和应用。

3.功率晶体管:NPN、PNP型功率晶体管的特性参数、功率放大电路设计。

模电基本知识点总结填空

模电基本知识点总结填空

模电基本知识点总结填空一、基本概念和基本器件1. 电压、电流与电阻电压(Voltage)是电子在电路中运动时所具有的能量,通常用V表示,是电子压力的一种表现形式。

电流(Current)是电荷在单位时间内通过导体的数量,通常用I表示。

电阻(Resistance)是导体阻碍电流通过的特性,通常用R表示,单位是欧姆(Ω)。

2. 二极管与三极管二极管(Diode)是一种具有双向导电性质的半导体器件,能够允许电流在一个方向上通过而在另一个方向上阻止通过。

三极管(Transistor)是一种控制电流的半导体器件,可以用来放大和开关电流。

3. 电容与电感电容(Capacitor)是一种能够储存电荷和能量的元件,通常用C表示。

电感(Inductor)是一种能够储存磁场能量的元件,通常用L表示。

4. 放大器与运算放大器放大器(Amplifier)是用来增大电压、电流或功率的器件。

运算放大器(Operational Amplifier,简称Op-Amp)是一种高增益、直流耦合的电子放大器。

5. 滤波器滤波器(Filter)是用来去除或衰减特定频率成分的电子器件,分为低通、高通、带通和带阻滤波器。

二、基本电路1. 电压和电流的关系欧姆定律:电流和电压成正比,电阻是电压和电流的比值。

基尔霍夫定律:电路中每个节点的电流和电压之和等于零,电压沿着闭合回路等于电压的代数和。

2. 放大器电路放大器电路是用来增大电压、电流或功率的电路,分为放大器的分类、滤波器设计等。

3. 振荡器电路振荡器电路是能够产生周期性信号的电路,包括正弦波振荡器、方波振荡器和脉冲振荡器等。

三、放大电路1. 放大器的基本工作原理放大器是通过放大输入信号的幅度来增加输出信号的功率或电压。

2. 放大器的分类按输入输出信号形式分为电压放大器、电流放大器、功率放大器等。

按放大器的结构分为共射、共基、共集放大器等。

四、滤波电路1. 滤波器的基本工作原理滤波器是通过选择性地衰减或放大输入信号的某些频率成分来实现信号的滤波处理。

模电知识点总结笔试

模电知识点总结笔试

模电知识点总结笔试一、基础理论知识1. 电子学基础(1)电子学的基本概念:电子、电荷、电流、电压等。

(2)半导体物理学:半导体材料的性质、PN结的特性等。

2. 电路基础(1)电路分析方法:基尔霍夫定律、戴维南定理、叠加原理等。

(2)电路中的元件:电阻、电容、电感等实际应用。

二、模拟信号处理1. 信号与系统(1)信号的分类:连续信号、离散信号、周期信号、非周期信号等。

(2)系统的分类:线性系统、非线性系统、时变系统、时不变系统等。

2. 模拟滤波(1)滤波器的分类:低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

(2)滤波器的设计:巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。

三、放大电路1. 放大器的基本概念(1)放大器的分类:按输入输出信号类型分为模拟放大器和数字放大器。

(2)放大器的性能参数:增益、带宽、输入阻抗、输出阻抗等。

2. 放大电路设计(1)基本放大电路:共射放大器、共集放大器、共基放大器等。

(2)放大电路稳定性分析:稳定性条件、负反馈、电容耦合等。

四、信号发生与调制1. 信号发生器(1)基本信号源:RC震荡器、LC震荡器、晶体振荡器等。

(2)信号源的稳定性分析:频率稳定度、振幅稳定度、相位噪声等。

2. 调制技术(1)调制原理:调频、调幅、调相等基本调制方式的原理和特点。

(2)调制电路设计:频率调制电路、幅度调制电路、相位调制电路等。

五、反馈电路1. 反馈的基本概念(1)反馈电路的分类:正反馈、负反馈。

(2)反馈电路的性能:增益稳定、带宽拓展、非线性失真降低等。

2. 反馈网络设计(1)反馈网络结构:电流负反馈、电压负反馈。

(2)反馈网络应用:放大电路、振荡器、滤波器等反馈电路的设计。

六、运算放大器1. 运算放大器的特性(1)运算放大器的基本原理:差分输入、单端输出、大增益、高输入阻抗等。

(2)运算放大器的理想模型:无输入偏置电流、无输入偏置电压等。

2. 运算放大器的应用(1)运算放大器在电路中的基本应用:比较器、积分器、微分器等。

模拟电子技术基础知识

模拟电子技术基础知识

模拟电子技术基础知识一、模拟电子技术基础- -模拟信号与模拟电路1、模拟信号我们将连续性的信号称为模拟信号,而将离散型的信号称为数字信号。

2、模拟电路模拟电路是对模拟信号进行处理的电路,其最基本的处理是对信号的放大,含有功能和性能各异的放大电路。

二、模拟电子技术基础- -电子信息系统的组成电子信息系统由信号的提取、信号的预处理、信号的加工和信号的驱动与执行四部分构成,如下列图所示。

三、模拟电子技术基础- -半导体1、基本概念导体:极易导电的物体;绝缘体:几乎不导电的物体;半导体:导电性介于导体和绝缘体之间的物质;2、本征半导体共价键:在硅和锗的结构中,每个原子与其相邻的原子之间形成共价键,共用一对价电子;自由电子:由于热运动,具有足够能量而摆脱共价键束缚的价电子;空穴:由于自由电子的产生,使得共价键中产生的空位置;复合:自由电子与空穴相碰同时消逝的现象;载流子:运载电荷的粒子;导电机理:在本征半导体中,电流包括两部分,一部分是自由电子移动产生的电流,另一部分是由空穴移动产生的电流,因此,本征半导体的导电技能取决于载流子的浓度。

温度越高,载流子浓度越高,本征半导体导电技能越强。

3、本征半导体共价键:在硅和锗的结构中,每个原子与其相邻的原子之间形成共价键,共用一对价电子;自由电子:由于热运动,具有足够能量而摆脱共价键束缚的'价电子;空穴:由于自由电子的产生,使得共价键中产生的空位置;复合:自由电子与空穴相碰同时消逝的现象;载流子:运载电荷的粒子;导电机理:在本征半导体中,电流包括两部分,一部分是自由电子移动产生的电流,另一部分是由空穴移动产生的电流,因此,本征半导体的导电技能取决于载流子的浓度。

温度越高,载流子浓度越高,本征半导体导电技能越强。

模电各章节主要知识点总结

模电各章节主要知识点总结

(2)若是开环(无反馈),或正反馈,则放大器处于饱和状态
2、理想运放条件: Ri ,由此得到虚断, i i 0 Avo ,由此得到虚短, v v
3、虚短和虚断:
RO 0 KCMRR
各种运算(比例,加减法,积分微分电路等)中,
i i 0,说明两个输入端无电流 ; v v,说明两个输入端等电位
例如:
vo ic (RL // RC ) ib(RL // RC )
vi ib (rbe (1 )Re )
Av

vo vi


RL // RC
rbe (1 )Re
如果该题有射极旁路电容存在,
则有:
Av

vo vi


RL // RC rbe
Ri
模电各章节主要知识点和解题关键
第一章 绪论
1. 放大电路四种模型 2. 输入电阻(P13) 3. 输出电阻(P13) 4.增益与放大 倍数(符号)(P15)
电压增益=20lg Av dB
5. 频率响应(P15,16)
第二章 运算放大器
主要知识点解读:
1、运算电路特点:
(1)要构成各种运算,必须要有负反馈******,才有虚短和虚断
2.动态分析方法:
采用小信号模型,即微变等效电路。
rbe rbb '(1 )(re re ')

rbb
'(1


)
VT IE
VT 26mV(常温)
一般情况下,取 rbb' 200
解题思路是:先画出交流通路,再将三极管的简化模型替代 三极管进行分析计算。做熟练以后,若没要求画微变等效电路, 就可以不画。提醒:有射极电阻的情况下,要看有没有旁路电容!

(完整版)模电知识总结

(完整版)模电知识总结

第一部分半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。

1、导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电半导体导电有两种载流子:自由电子和空穴均参与导电自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。

2、本征半导体的导电性很差,但与环境温度密切相关。

3、杂质半导体(1)N型半导体——掺入五价元素(2)P型半导体——掺入三价元素4、PN结——P型半导体和N型半导体的交界面在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层反向电压超过一定值时,就会反向击穿,称之为反向击穿电压5、PN结的单向导电性——外加电压正向偏置反向偏置6、二极管的结构、特性及主要参数(1)P区引出的电极——阳极;N区引出的电极——阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。

二极管的特性对温度很敏感。

其中,Is为反向电流,Uon为开启电压,硅的开启电压——0.5V,导通电压为0.6~0.8V,反向饱和电流<0.1μA,锗的开启电压——0.1V,导通电压为0.1~0.3V,反向饱和电流几十μA。

(2)主要参数1)最大整流电流I:最大正向平均电流2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性7、稳压二极管在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。

(1)稳压管的伏安特性(2)主要参数1)稳定电压U:规定电流下稳压管的反向击穿电压2)稳定电流I:稳压管工作在稳定状态时的参考电流。

电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。

模电常见知识点总结

模电常见知识点总结

模电常见知识点总结一、基本概念1. 电压、电流、功率:电压是电势差,单位是伏特;电流是电荷在单位时间内通过导体的数量,单位是安培;功率是单位时间内能量的转化率,单位是瓦特。

2. 电路元件:电路元件主要包括电阻、电容和电感。

电阻是电流对电压的阻碍作用,单位是欧姆;电容是储存电荷的能力,单位是法拉;电感是存储磁场能量的元件,单位是亨利。

3. 信号处理:模拟信号是连续的信号,可以采用模拟电子技术进行处理。

模拟信号的处理包括滤波、放大、混频等操作。

4. 放大器:放大器是一种能够增加信号幅度的电路,通常包括运放放大器、功率放大器等类型。

5. 混频器:混频器是一种能够将两个不同频率的信号进行混合的电路,主要用于调频、调相和倍频等应用。

6. 滤波器:滤波器可以根据频率特性对输入信号进行滤波,主要包括低通滤波器、带通滤波器和高通滤波器等。

7. 稳压器:稳压器是一种能够在负载变化时保持输出电压稳定的电路,主要包括线性稳压器和开关稳压器。

8. 模拟信号的采样与保持、量化与编码:在数字信号处理中,要将模拟信号转换为数字信号,需要进行模拟信号的采样与保持、量化与编码等操作。

二、基本电路分析方法1. 基尔霍夫定律:基尔霍夫定律是电路分析中的重要方法之一,包括基尔霍夫电流定律和基尔霍夫电压定律。

2. 节点分析法和支路分析法:节点分析法和支路分析法是电路分析中常用的两种方法,用于求解电路中的电压和电流。

3. 物理尺解法:物理尺解法是一种将电路问题转化为几何问题进行求解的方法,通常用于分析长线搭接、三角形回路等特殊电路。

4. 电压源法和电流源法:电压源法和电流源法是一种简化复杂电路的方法,适用于求解电路中的等效电阻和电流分布。

5. 理想变压器:理想变压器是一个重要的电路模型,可以通过它来求解电路中的电压和电流。

6. 交流电路分析:交流电路分析是模拟电子技术中的重要内容,包括交流电路中的阻抗、功率、相位等内容。

7. 电路的频率响应:电路的频率响应是指电路对不同频率信号的响应情况,可以通过传递函数或频率特性曲线来描述。

模电各章节主要知识点总结

模电各章节主要知识点总结

06
第六章:信号发生器与信号变换器
信号发生器的定义和分类
总结词
信号发生器是用于产生所需信号的电子设备 ,根据产生信号的方式不同,可以分为振荡 器和调制器两类。
详细描述
信号发生器是用来产生各种所需信号的电子 设备,这些信号可以是正弦波、方波、脉冲 波等。根据产生信号的方式不同,信号发生 器可以分为两类:振荡器和调制器。振荡器 是利用自激反馈产生所需信号的电子设备, 而调制器则是利用调制技术将低频信号加载
THANKS
感谢观看
限流、分压、反馈等
电阻的串并联
串联增大阻值,并联减小阻值
电容
电容的种类
电解电容、瓷片电容、薄膜电 容等
电容的参数
标称容量、允许偏差、额定电 压、绝缘电阻等
电容的作用
隔直流通交流、滤波、耦合等
电容的充电放电
在交流电下,电容具有“隔直 流通交流”的作用,即让高频 信号通过,阻止低频信号通过
电感
电感的种类
信号变换器的工作原理和应用
• 总结词:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化和 编码,转换成数字信号输出;数字式信号变换器则是将输入的数字信号进行解 码和数模转换,转换成模拟信号输出。
• 详细描述:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化 和编码,转换成数字信号输出。采样是将连续时间信号转换为离散时间信号的 过程,量化是将采样后的离散值进行近似取整的过程,编码则是将量化后的离 散值转换为二进制码元的过程。数字式信号变换器的工作原理是将输入的数字 信号进行解码和数模转换,转换成模拟信号输出。解码是将输入的数字码元进 行解码的过程,数模转换则是将解码后的离散值转换为连续时间信号的过程。 模拟式和数字式信号变换器在通信、测量、控制等领域有着广泛的应用。

模电基本知识点总结

模电基本知识点总结

模电基本知识点总结一、基本电子元件在模拟电子技术中,常用的基本电子元件包括电阻、电容、电感和二极管、晶体管等。

下面我们来介绍一下这些基本电子元件的特性和应用。

1. 电阻电阻是用来限制电流的一种电子元件,它的电阻值用欧姆(Ω)来表示。

电阻的大小取决于材料的电阻率和尺寸。

在实际电路中,电阻通常用来分压、限流、接地等。

电阻的连接方式有串联和并联两种。

2. 电容电容是用来存储电荷的一种电子元件,它的容量用法拉得(F)来表示。

电容的存储能力取决于材料的介电常数和结构。

在实际电路中,电容通常用来滤波、隔直、储能等。

电容的连接方式有串联和并联两种。

3. 电感电感是用来储存能量的一种电子元件,它的电感值用亨利(H)来表示。

电感的大小取决于线圈的匝数和磁芯的材料。

在实际电路中,电感通常用来滤波、隔交、振荡等。

电感的连接方式有串联和并联两种。

4. 二极管二极管是一种非线性元件,它的特性是只允许电流单向通过。

二极管的主要作用是整流、限流、反向保护等。

常见的二极管有硅二极管、锗二极管、肖特基二极管等。

5. 晶体管晶体管是一种半导体器件,它主要有三个端子:发射极、基极和集电极。

晶体管有两种类型:NPN型和PNP型。

晶体管可以作为信号放大、开关、振荡等。

常见的晶体管有通用型晶体管、场效应晶体管、双极型晶体管等。

二、放大器放大器是模拟电子电路中起放大作用的重要器件,其作用是放大输入信号的幅度,以便驱动负载。

根据放大器的工作方式和放大电路的结构,放大器大致可以分为三类:电压放大器、电流放大器和功率放大器。

1. 电压放大器电压放大器是将输入信号的电压放大到较大的幅度,以便驱动负载。

常见的电压放大器有共射放大器、共集放大器、共源放大器等。

这些电压放大器基本上由晶体管、耦合电容、电阻等元件组成。

2. 电流放大器电流放大器是将输入信号的电流放大到较大的幅度,以便驱动负载。

常见的电流放大器有共基放大器、共漏放大器、共栅放大器等。

这些电流放大器基本上由晶体管、耦合电容、电阻等元件组成。

模电知识点总结

模电知识点总结

第一章绪论1.把握放大电路的要紧性能指标:输入电阻,输出电阻,增益,频率响应,非线性失真2.依照增益,放大电路有那些分类:电压放大,电流放大,互阻放大,互导放大第二章预算放大器1.集成运放适合于放大差模信号2.判定集成运放2个输入端虚短虚断如:在运算电路中,集成运放的反相输入端是不是均为虚地。

3.运放组成的运算电路一样均引入负反馈4.当集成运放工作在非线性区时,输出电压不是高电平,确实是低电平。

5.依照输入输出表达式判定电路种类同相:两输入端电压大小接近相等,相位相等。

反相:虚地。

第三章二极管及其大体电路1.二极管最要紧的特点:单向导电性2.半导体二极管按其结构的不同,分为面接触型和点接触型3.面接触型用于整流。

点接触型用于高频电路和数字电路4.杂质半导体中少数载流子浓度只与温度有关5.搀杂半导体中多数载流子要紧来源于搀杂6.在常温下硅二极管的开启电压为伏,锗二极管的开启电压为伏7.硅二极管管压降伏,锗二极管管压降伏8.PN结的电容效应是势垒电容,扩散电容9.PN结加电压时,空间电荷区的转变情形正向电压:外电场将多数载流子推向空间电荷区,使其变窄,减弱内电场,扩散加重反向电压:外电场使空间电荷区变宽,增强内电场,阻止扩散运动进行10.当PN结处于正向偏置时,扩散电容大.当PN结反向偏置时,势垒电容大11.稳压二极管稳压时,工作在反向击穿区.发光二极管发光时,工作在正向导通区12.稳压管称为齐纳二极管13.光电二极管是将光信号转换为电信号的器件,它在PN结反向偏置状态下运行,反向电压下进行,反向电流随光照强度的增加而上升14.如何用万用表测量二极管的阴阳极和判定二极管的质量好坏?用万用表的欧姆档测量二极管的电阻,记录下数值,然后互换表笔在测量一次,记录下来.两个结果,应一大一小,读数小的那次,黑表笔接的是阳极,红表笔接的是阴极.那个读数相差越多,二极管的质量越好.当两个读数都趋于无穷大时,二极管断路.当两个读数都趋于零时,二极管短路第四章双极结型三极管及放大电路1.半导体三极管又称双极结型三极管,简称BJT是放大器的核心器件2.采纳微变等效电路求放大电路在小信号运历时,动态特性参数3.晶体三极管能够工作在:放大区,发射结正偏,集电极反偏饱和区,发射结集电极正偏截止区,发射结集电极反偏4.NPN,PNP,硅锗管的判定5.工作在放大区的三极管,假设当Ib 以12Aμ增大到22Aμ时,Ic从1mA变成2mA,β约为1006.直流偏置电路的作用是给放大电路设置一个适合的静态工作点,假设工作点选的太高——饱和失真。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电子技术》课程综述一、模拟电子技术课程的地位《电子技术》课程包括《模拟电子技术》和《数字电子技术》。

《电子技术》是自动化、电气、电子、信息、检测、机电等专业的主干课程。

它与高等数学、普通物理、电路和计算机基础紧密连接,广泛地融会于自动化专业几十门后续课程之中:电力电子技术、微机原理与应用、信号与系统、自动控制原理、电机与拖动、电子技术应用实训、电子工艺实习、课程设计、毕业设计等各实践环节、单片机原理与接口技术、检测与转换技术、电力拖动运动控制、电器设备控制技术、计算机控制技术、电力拖动运动控制、电气设备控制技术、计算机控制技术、供配电技术、PLC原理及应用、机床数控技术、虚拟电子线路与仿真、机电一体化技术、数字信号处理技术、传感器原理与应用、控制装置与仪表、机电传动控制、机械设备数控技术、检测技术与信号处理、自动化机械设计、光电一体化系统设计、光电技术与系统、数控原理与编程、机床电气控制与PLC、现代传感与检测技术等专业课程和专业实训、实习中。

它在工程技术中应用极为广泛:家用电器、办公电器、科学研究、文化教育、日常生活、工业、农业、国防、航空航天、遥感遥测等。

因此,它既是这些专业的必修和必考课程,也是这些专业考研得常考课程,还是应聘上述各专业岗位的主要面试内容。

二、《模拟电子技术》课程的主要内容和需要掌握的知识点第一部分基本概念和基本分析方法第1章绪论,分为5节,讲授1-3节;主要介绍信号、模拟信号、模拟电路等概念。

本章需要掌握的主要知识点:信号的分类、模拟信号、模拟电路,模拟电子技术为什么选择正弦信号作为研究对象?学习方法:攻其一点——信号,不计其余。

难点提醒:本章其它内容暂不必考虑,我们将其分散到各章相关内容中详细讲解和讨论。

第2章运算放大器,分为5节,讲授1-4节,主要介绍集成运放的基本概念、集成运放线性应用电路的分析等。

本章需要掌握的主要知识点:理想集成运放的含义;虚短、虚断和虚地概念;同相运放、反相运放、加法运算和减法运算等电路的输出电压与输入电压的关系。

学习方法:用“理想”代替“现实”,运用“两虚”和“KCL”分析运放输出电压和输入电压的运算关系(比例关系、通向与反相关系,加、减、微分和积分关系等)。

难点提醒:①何时存在“虚地”?②集成运放芯片内部电路为何不要进行分析?③由教材分析可见,各种运算结果似与集成运放芯片无关,那么,运放芯片是否可以去掉?第3章二极管及其基本电路,分为6节,讲授1-5节,主要介绍半导体的基本知识、PN结、二极管和二极管电路。

本章需要掌握的主要知识点:N型和P型半导体的形成、多子与少子;PN结与二极管的基本特性——单向导电性;导通电压、死区电压和反向击穿电压;二极管电路的4种模型;二极管整流、限幅、稳压等应用电路及其分析方法。

稳压管的稳压条件、稳压管的稳压原理。

学习方法:以二极管的单向导电性和四种等效模型为依据,分析各种二极管基本应用电路输出量与输入量的关系。

难点提醒:紧紧抓住二极管的单向导电性和四种等效模型,灵活应用于各个具体电路的分析中。

第4章双极结型三极管及放大电路基础,分为9节,详细讲授前5节,简介4.6和4.7节。

主要介绍BJT的结构、内部导电机制、内部电流分配关系,三极管的参数和特性;共发射极电路、共集电极电路和共基极电路的放大条件,工作原理和分析方法。

比较上述三种组态放大电路的性能特点及其使用场合;定性解析放大电路的幅频响应、相频相应、低通电路、高通电路、波特图、带宽等概念,分别弄懂影响电路低频相应和高频相应的器件。

本章需要掌握的主要知识点:BJT的结构、内部导电机制、内部电流分配关系;三极管工作在不同区域的条件和特点;共发、共集和共基极电路的分析方法;静态工作点的作用和计算;电压增益、输入电阻和输出电阻的计算;共发、共集和共基三种组态放大电路的性能特点;低通电路、高通电路、波特图、带宽、截止频率等概念。

学习方法:1.弄懂两个关系:a.三极管内部载流子的运行和分配,是理解放大电路工作原理的基础;b.只有设置合适的直流(静态)工作点,三极管电路才能成为放大电路;若只接入直流电源而不接入信号源,三极管电路的放大作用则是一句空话。

2.理解三种三极管电路的结构、直流和交流工作原理;分析每种电路的三个基本参数;区分每种电路的特点和应用场合。

难点提醒:三个电极电流的大小和相位关系、三种电路输出电量和输入电量的大小和相位关系、为什么要设置静态工作点、每个放大电路为什么要使用交、直流两个电源等问题,务必理解清楚。

第5章场效应管放大电路,分为6节,其中5.4和5.6节自学。

本章主要介绍MOSFET的种类,N沟道和P沟道MOS管的结构、导电机制及主要参数;讨论MOSFET放大电路的静态工作原理和动态参数计算,所用的分析方法与第4章所述内容相似,望进行对比学习,以收事半功倍之功效。

结型FET也是本章介绍的主要内容之一,其结构、工作原理、特性、参数和电路的构成、放大过程的分析与计算,与MOSFET电路有相似之处,但重点应注意其与前者的不同之处。

第4章所讨论的近似估算法、图解法和小信号模型法等3种分析方法,都可运用来分析本章的放大电路,望多加注意这一点。

除此之外,还应注意两个方面的问题:一是对各种放大电路进行性能比较,找出共性和特点,以便因地制宜,碰到不同的工程实际情况,运用不同组态的放大电路。

二是对场效应管而言,在选择、使用和存放中,要比晶体三极管更加小心,以免损坏这种娇生惯养的FET器件!以上各点便是本章应掌握的知识点。

本章需要掌握的主要知识点:MOSFET、JFET的种类及控制关系;NMOS管和PMOS管的工作条件;NMOS管和PMOS管三个工作区域的划分;场效应管放大电路的基本分析方法。

学习方法:利用第三章所学知识与分析方法,进行对比学习。

难点提醒:虽然分析方法也是第四章所用的方法,但场效应三极管与双极结型三极管在结构、内部导电机制、特性曲线、放大条件、Q点设置、电路模型、所求参数等方面是有差别的,必须细心区分。

第6章模拟集成电路本章与第二章实属同一内容,之所以单独讲述,是因为两个特殊的技术需要强调和详细研究,即直流偏置技术和零点漂移抑制技术。

因为模拟集成电路是高放大倍数的直接耦合的多级放大器,其内部所需直流偏置电流很小且要求十分稳定,故一方面需要用一种特殊的偏置电路来供电,这就是利用专门的直流偏置技术设计出来的各种电流源电路;另一方面需要将电源的波动、温度的变化、元器件的更换与老化等所带来的静态工作点的变化(简称零点漂移或零漂)尽量缩小,达到没有信号输入时便没有信号输出这种正常工作状态,这就需要对内部电路采取特殊措施,从源头上抑制零漂,差动放大器就是为了抑制零漂而引入的。

本章需要掌握的主要知识点:电流源的种类、电流源在模拟集成电路中的用途;差模信号、共模信号、共模抑制比等概念的含义;差分式放大器的种类、抑制零点漂移的原理;4类差动放大器的主要参数计算;实际集成运放的组成部分(5个)。

学习方法:由“mini”和“perfect”出发去思考本章各节内容;将第二章作为本章的基本应用电路一起思考。

难点提醒:1.为何要花这么多的心思来研发微电流技术?2.为何要花这么多的心思来研发差分式放大电路?3.为何要花这么多的心思来研究防干扰技术?这三个问题是理解本章全部内容的逻辑主线。

第7章反馈放大电路本章分为9节,详细讲授7.1~7.5节,简介7.6~7.8节,重点是7.1、7.2、7.4和7.5节。

本章由反馈的基本概念开始,分别讨论了各类反馈的识别、4种反馈组态的判断、负反馈对电路性能的影响、深度负反馈电路电压放大倍数的计算,以及引入负反馈的一般原则。

本章需要掌握的主要知识点:反馈的定义;;反馈电路的种类(电压/电流反馈、交流/直流反馈、正/负反馈、串联/并联反馈);分别用什么方法来判断这些反馈电路?负反馈对电路增益、输出量、输入/输出电阻、抑制噪声和干扰、减少非线性失真等有何影响?怎样根据式(7.3.5)来划分负反馈电路的种类?什么情况下引入什么样的反馈才合适?学习方法:抓住反馈电路的定义,判断反馈电路组态的类型,弄懂反馈电路的意义,计算反馈电路的参数,分析反溃电路的特性,探索反馈电路的应用。

难点提醒:反馈电路组态的判断,反馈电路设计思想的应用。

前者是基础,后者是提高。

第8章功率放大电路,分为6节,详细讲授8.1~8.4节,简介8.5节,重点是双电源乙类功放电路的计算、甲乙类功放的原理分析。

本章需要掌握的主要知识点:功放的特殊问题,功放的种类、功放的导通角、功放追求的主要性能指标——尽可能大的输出功率、尽可能大的电能转换效率和尽可能小的非线性失真。

甲类、乙类和甲乙类功放电路的划分及工作原理;乙类功放的主要计算方法、优点和缺点;实用甲乙类功放电路的中功放管的选择。

学习方法:“又要马儿长得好,又要马儿少吃草”——怎样实现资源的效率最大化?本章就是实现这一理想的典型实例难点提醒:单电源甲乙类功放电路的设计思路;集成功放保护电路的设计思路。

第9章信号处理与信号产生电路分为9节,详细讲授9.1、9.2、9.5、9.6和9.7节,简介9.4和9.8节。

其中要求定性理解9.1和9.2节的基本内容,了解9.4节的滤波思路;掌握9.5、9.6和9.7节各类正弦波振荡电路的工作原理和分析方法等。

本章要求掌握的主要知识点:无源滤波与有源滤波、通带与阻带等概念;有源滤波电路的种类;正弦波振荡电路的定义;正弦波振荡电路的组成部分、振荡条件、种类与特点;能否起振、稳幅原理;谐振频率的计算节;石英晶体振荡器的主要特点。

学习方法:如何使信号纯净(频率单一)?有源滤波便是常用方法之一。

利用RC电路的各种特性(阻直通交、微分、积分等),将无效频段的信号尽量阻挡,让有效频段的信号尽量通过。

沿着这条思路方能理解9.1_——9.4节的设计思想。

如何产生正弦信号?利用第七章“自激振荡能无中生有——没有正弦波输入却有正弦波输出”的观点,用正反馈构成自激振荡电路、用RC、LC和石英晶体选出微弱的正弦信号,用放大器来放大和控制这种信号,便得到人们所需要的不同频率不同幅度的正弦波信号。

难点提醒:反馈条件的判断;起振和稳定过程的理解。

第10章直流稳压电源,分为4节,详细讲授10.1和10.2节,简介10.3节。

本章首先介绍常用桥式整流电路和无源滤波电路的工作原理、参数计算、整流和滤波元器件的选择,引起直流电源不稳定的主要因素;重点讨论串联反馈式直流稳压电源的结构、稳压过程、三端集成稳压器的用途等。

本章需要掌握的主要知识点:直流稳压电源的组成部分及各部分的作用;整流、滤波电路的原理和参数计算、整流管的选择;影响直流稳压电源电压不稳定的主要因素;串联型直流稳压电源的组成部分;三端集成稳压器的组成部分、系列产品等。

相关文档
最新文档