数字图像处理第二版中文版冈萨雷斯习题答案[全]
数字图像处理(冈萨雷斯)第二章_数字图像处理基础题稿
√当平均亮度适中时,能分辨的最大亮度和最小 亮度之比为1000:1;当平均亮度很低时,这个比 值只有10:1
√主观亮度是进入人眼的光强度的对数函数;
(2)辨别光强度变化的能力
2.1.3亮度适应和鉴 别
灰度和色彩:
2.2 光和电磁波谱
彩色模型: RGB 加色法 CMY,CMYK 减色法 HSB(色泽,饱和度,明亮度
彩色光源的三个基本属性:
2.2 光和电磁波谱
①发光强度——从光源流出的能量的总量。单位:瓦特(W) ②光通量——观察者从光源感受到的能量。单位:流明(lm)
③亮度——光感受的主观描绘子。单位:不能测量
2.4.4 图像的收缩与放大
(1)、图像的收缩—— 行、列删除
2.4.5 图像的收缩与放大 (2)图像的放大——①创立新的象素位置;②给新象素赋灰度值
最近邻域内插方法
在原图像上寻找最靠近的像素并 把它的灰度值赋给栅格上的新像 素。
双线性内插方法
2.4.5 图像的收缩与放大 (2)图像放大的效果比较(例2.4)
√当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以察
间变化,一般观察者可以辨别12到24级不同强度的变化.
图2.5 亮度辨 别特性的基本 实验
图2.6 作为强
度函数 √韦伯定理说明:
的典型 √人眼视觉系统对亮度的对比度敏 韦伯 感比而非对亮度本身敏感;
√低照度,韦伯比高,亮度辨别能力差;高照度,韦伯比低,亮
2.5 像素间的一些基本关系
◆ 4
两种邻接及其关系见下图所示,相似性准则为V={1}, p与q: 4邻接,也8邻接; q与r :8邻接但非4邻接。
数字图像处理第二版参考解答
参考解答第2章2.2一阶矩或平均值; 二阶矩或自相关函数;自协方差;方差2.5压缩能力更强,码书控制着量化失真量的大小,计算量大,定长码,容易处理。
2.7二进制图像,索引图像,灰度图像,多帧图像,RGB 图像。
可以。
2.8采样间隔是决定图像空间分辨率的主要参数。
2.9如果1S 中的某些像素与2S 中的某些像素连接,则两个图像子集是相连接的。
在图2.9中,1S p ∈和2S q ∈在V 中取值,且q 在)(8p N 中,因此p 和q 是8连接的,1S 和2S 也是8连接的。
q 在)(p N D 中,且)()(44q N p N 是空集,即满足m 连接条件,因此p 和q 是m 连接的,p 和q 是8连接的,1S 和2S 也是8连接的。
也是m 连接的。
但是,1S 和2S 中所有像素之间都不存在4连接,因此1S 和2S 不是4连接的。
2.10当V={0, 1}时,p 与q 之间不可能存在4通路,下图(a)中的红色箭显示是没有办法到达q 的。
最短的8通路可在图中看出(蓝色),它的最短长度是4。
m 通路(黑色)的最短长度是5。
qpqp当V={1, 2}时,最短的4通路的一种可能显示在图(b)中(红色箭),它的长度是6。
最短的8通路的一种可能显示蓝色箭,它的长度是4。
m通路(黑色)的长度是6。
这些从p到q的同样长度的4、8、m通路不是唯一的。
2.11p和q之间的D4和D8距离与任何通路无关,仅与点的坐标有关。
对于像素p, q其坐标分别为(x, y),(s,t),D4(p, q) = | x - s | + | y – t | = 6D8(p, q) = max ( | x - s | , | y – t | ) = 3然而,如果选择考虑m邻接,则两点间的Dm距离用点间最短的通路定义。
在这种情况下,两像素间的距离将依赖于沿通路的像素值以及它们的邻点值。
Dm(p, q) = 6。
第3章3.1FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
数字图像处理第二章课后习题及中文版解答
数字图像处理(冈萨雷斯版,第二版)课后习题及解答(部分)Ch 22.1使用2.1节提供的背景信息,并采用纯几何方法,如果纸上的打印点离眼睛0.2m 远,估计眼睛能辨别的最小打印点的直径。
为了简明起见,假定当在黄斑处的像点变得远比视网膜区域的接收器(锥状体)直径小的时候,视觉系统已经不能检测到该点。
进一步假定黄斑可用1.5mm × 1.5mm 的方阵模型化,并且杆状体和锥状体间的空间在该阵列上的均匀分布。
解:对应点的视网膜图像的直径x 可通过如下图题2.1所示的相似三角形几何关系得到,即()()220.20.014d x = 解得x =0.07d 。
根据2.1节内容,我们知道:如果把黄斑想象为一个有337000个成像单元的正方形传感器阵列,它转换成一个大小580×580成像单元的阵列。
假设成像单元之间的间距相等,这表明在总长为1.5 mm 的一条线上有580个成像单元和579个成像单元间隔。
则每个成像单元和成像单元间隔的大小为s =[(1.5 mm)/1159]=1.3×10-6 m 。
如果在黄斑上的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。
换句话说,眼睛不能检测到以下直径的点:x =0.07d<1.3×10-6m ,即d <18.6×10-6 m 。
下图附带解释:因为眼睛对近处的物体聚焦时,肌肉会使晶状体变得较厚,折射能力也相对提高,此时物体离眼睛距离0.2 m ,相对较近。
而当晶状体的折射能力由最小变到最大时,晶状体的聚焦中心与视网膜的距离由17 mm 缩小到14 mm ,所以此图中选取14mm(原书图2.3选取的是17 mm)。
图 题2.12.2 当在白天进入一个黑暗的剧场时,在能看清并找到空座位时要用一段时间适应,2.1节(视觉感知要素)描述的视觉过程在这种情况下起什么作用?解:根据人眼的亮度适应性,1)由于户外与剧场亮度差异很大,因此当人进入一个黑暗的剧场时,无法适应如此大的亮度差异,在剧场中什么也看不见;2)人眼不断调节亮度适应范围,逐渐的将视觉亮度中心调整到剧场的亮度范围,因此又可以看见、分清场景中的物体了。
《数字图像处理》冈萨雷斯-Matlab函数汇总(完整版)
[资料] 《数字图像处理》冈萨雷斯,函数汇总Matlab转载▼(2012-05-07 14:24:20)标签:杂谈图像显示显示彩条colorbar由坐标轴得到图像数据getimageice(DIPUM)交互彩色编辑创建和显示图像对象image缩放数据并显示为图像imagesc由多帧图像制作电影immovie显示图像imshowimview在Image Viewer 中显示图像将多个图像帧显示为矩阵蒙太奇montage播放录制的电影帧movie显示一个彩色RGB立方rgbcube体在单个图形中显示多幅图像subimage调整图像的显示尺寸truesize将图像显示为纹理映射的表面warp图像文件输入/ 输出从一条DICOM消息中读取元数Dicominfo据读一幅DICOM图Dicomread像写一幅DICOM图Dicomwrite像包含DICOM数据字典的文本文Dicom-dict.txt件产生DICOM唯一的识别Dicomuid器返回关于图像的文件的信息Imfinfo读图像文件Imread写图像文件Imwrite图像算术计算两幅图像的绝对差Imabsdiff两幅图像相加或把常数加到图像上Imadd图像求补Imcomplement两幅图像相除,或用常数除图像Imdivide计算图像的线性组合Imlincomb两幅图像相乘或用常数乘图像Immultiply两幅图像相减,或从图像中减去常数Imsubtract几何变换创建棋盘格图像Checkerboard求几何变换的输出范围FindboundsFliptform颠倒TFOR M结构的输入/ 输出修剪图像Imcrop调整图像大小Imresize旋转图像Imrotate对图像应用几何变换Imtransform整数坐标线绘制算法Intline创建重取样器结构Makersampler创建几何变换结构(TFOR M)MaketformPixeldup(DIPUM)在两个方向上复制图像的像素Tformarray对N-D 数组应用几何变换应用正向几何变换Tformfwd应用反向几何变换TforminvVstformfwd (DIPUM)可视化正向几何变换图像匹配将CPSTRUC转T换为有效的控制点Cpstruct2pairs对由控制点对推断几何变换Cp2tform使用互相关校准控制点位置Cpcorr控制点选择工具Cpselect归一化二维互相关Normxcorr2像素值及统计计算二维相关系数Corr2Covmatrix (DIPUM)计算向量族的协方差矩阵创建图像数据的轮廓线Imcontour显示图像数据的直方图Imhist确定像素的彩色点Impixel计算沿着线段的像素值横截面Improfile计算矩阵元素的均值Mean2显示关于像素的信息Pixval测量图像区域的属性RegionpropsStatmoments (DIPUM)计算一幅图像直方图的统计中心距计算矩阵元素的标准偏差Std2图像分析(包括分割、描述和识别)Bayesgauss(DIPUM)高斯模式的贝叶斯分类器Bound2eight(DIPUM)将4连接边界转换为8连接边界Bound2four(DIPUM)将8连接边界转换为4连接边界追踪区域边界Bwboundaries追踪单个边界BwtraceboundaryBound2im(DIPUM)将边界转换为图像Boundaries(DIPUM)追踪区域边界Bsubsamp(DIPUM)对边界二次取样Colorgrad (DIPUM)计算一幅RGB图像的向量梯度Colorseq(DIPUM)分割一幅彩色图像Connectpoly(DIPUM)连接多边形的顶点Diameter(DIPUM)测量图像区域的直径Edge(DIPUM)在一幅亮度图像中寻找边缘Fchcode(DIPUM)计算边界的freeman 链码Frdescp (DIPUM)计算傅里叶描绘子使用Ostu 方法计算图像的全局阈值GraythreshHough(DIPUM)变换HoughHoughlines(DIPUM)基于Hough变换提取线段Houghpeaks(DIPUM)在Hough变换中检测峰值Houghpixels(DIPUM)计算属于Hough 变换bin 的图像像素Ifrdescp (DIPUM)计算逆傅里叶描绘子Imstack2vectors (DIPUM)从图像堆栈提取向量Invmoments (DIPUM)计算图像不变距Mahalanobis(DIPUM)计算Mahalanobis 距离Minperpoly(DIPUM)计算最小周长多边形Polyangles(DIPUM)计算多边形内角Princomp(DIPUM)得到主分量向量和相关量执行四叉树分解Qtdecomp得到四叉树分解中的块值Qtgetblk在四叉树中设置块值QtsetblkRandvertex(DIPUM)随机置换多边形顶点Regiongrow(DIPUM)由区域生长来执行分割Signature (DIPUM)计算边界的标记Specxture (DIPUM)计算图像的谱纹理Splitmerge(DIPUM)使用分离- 合并算法分割图像Statxture (DIPUM)计算图像中纹理的统计度量Strsimilarity(DIPUM)两个串间的相似性度量X2majoraxis(DIPUM)以区域的主轴排列坐标x图像压缩Compare(DIPUM)计算和显示两个矩阵间的误差Entropy (DIPUM)计算矩阵的熵的一阶估计Huff2mat (DIPUM)解码霍夫曼编码矩阵Huffman (DIPUM)为符号源建立一个变长霍夫曼码Im2jpeg(DIPUM)使用JPEG近似压缩一幅图像Im2jpeg2k (DIPUM)使用JPEG2000近似压缩一幅图像Imratio (DIPUM)计算两幅图像或变量中的比特率Jpeg2im(DIPUM)解码IM2JPEG压缩的图像Jpeg2k2im (D IPUM)解码IM2JPEG2K压缩的图像Lpc2mat(DIPUM)解压缩一维有损预测编码矩阵Mat2huff (DIPUM)霍夫曼编码矩阵Mat2lpc(DIPUM)使用一维有损预测编码矩阵Quantize(DIPUM)量化UINT8类矩阵的元素图像增强自适应直方图量化Adapthisteq对多通道图像应用去相关拉伸DecorrstretchGscale(DIPUM)按比例调整输入图像的亮度使用直方图均衡化来增强对比度HisteqIntrans (DIPUM)执行亮度变换调整图像亮度值或彩色映射Imadjust寻找对比度拉伸图像的限制Stretchlim图像噪声给一幅图像添加噪声ImnoiseImnoise2(DIPUM)使用指定的PDF生成一个随机数数组Imnoise3(DIPUM)生成周期噪声线性和非线性空间滤波Adpmedian(DIPUM)执行自适应中值滤波计算二维卷积矩阵Convmtx2Dftcorr (DIPUM)执行频率域相关Dftfilt (DIPUM)执行频率域滤波创建预定义滤波器Fspecial执行二维中值滤波Medfilt2滤波二维和N维图Imfilter像执行二维顺序统计滤波Ordfilter2Spfilt (DIPUM)执行线性和非线性空间滤波执行二维去噪滤波Wiener2线性二维滤波器设计确定二维频率响应间隔Freqspace计算二维频率响应Freqz2Fsamp2使用频率取样设计二维FIR 滤波器使用频率变换设计二维FIR 滤波器Ftrans2使用一维窗法设计二维滤波器Fwind1使用二维窗法设计二维滤波器Fwind2Hpfilter(DIPUM)计算频率域高通滤波器Lpfilter(DIPUM)计算频率域低通滤波器图像去模糊(复原)使用盲去卷积去模糊图像DeconvblindDeconvlucy使用Lucy-Richardson 方法去模糊使用规则化滤波器去模糊Deconvreg使用维纳滤波器去模糊Deconvwnr使用点扩散函数锐化边缘Edgetaper光传递函数到点扩散函数Otf2psf点扩散函数到光传递函数Pst2otf图像变换二维离散余弦变换Dct2离散余弦变换矩阵Dctmtx将扇形束投影变换为并行射束Fan2para计算扇形射束变换Fanbeam二维快速傅里叶变换Fft2维快速傅里叶变换Fftn NFftshift颠倒FFT 输出的象限二维逆离散余弦变换Idct2计算扇形射束逆变换Ifanbeam二维快速傅里叶逆变换Ifft2维快速傅里叶逆变换Ifftn N计算逆Radon变Iradon换将并行射束投影变换为扇形射束Para2fan生成头部仿真模型的图像Phantom计算Radon变Radon换小波Wave2gray(DIPUM)显示小波分解系数Wavebac k(DIPUM)执行多灰度级二维快速小波逆变换Wavecop y(DIPUM)存取小波分解结构的系数Wavecut(DIPUM)在小波分解结构中置零系数Wavefast (DIPUM)执行多灰度级二维快速小波变换Wavefilter (DIPUM)构造小波分解和重构滤波器Wavepaste(DIPUM)在小波分解结构中放置系数Wavewor k(DIPUM)编辑小波分解结构Wavezero(DIPUM)将小波细节系数设置为零领域和块处理为块处理选择块大小Bestblk为图像实现不同的块处理Blkproc将矩阵列重排为块Col2im按列邻域操作Colfilt将图像块重排为列Im2col执行一般的滑动邻域操作Nlfilter形态学操作(亮度和二值图像)默认连通性Conndef执行底帽滤波Imbothat抑制与图像边框相连的亮结构Imclearborder关闭图像Imclose膨胀图像Imdilate腐蚀图像Imerode最大扩展变换Imextendedmax最小扩展变换Imextendedmin填充图像区域和孔洞Imfill最大变换Imhmax H最小变换Imhmin H强制最小Imimposemin打开图像Imopen形态学重构Imreconstruct局部最大区域Imregionalmax局部最小区域Imregionalmin执行顶帽滤波Imtophat分水岭变换Watershed形态学操作(二值图像)使用查表法执行邻域操作Applylut计算二值图像中的对象面积Bwarea打开二值区域(删除小对象)Bwareaopen计算二值图像的距离变换Bwdist计算二值图像的欧拉数Bweuler二值击不中操作Bwhitmiss在二维图像中标记连接分量BwlabelBwlabeln在N 维二值图像中标记连接分量对二值图像执行形态学操作Bwmorph打包二值图像Bwpack确定二值图像中的对象的周长Bwperim选择二值图像中的对象Bwselect最终腐蚀Bwulterode解包二值图像BwunpackEndpoints (DIPUM)计算二值图像的端点Makelut构建applylut 使用的查找表结构元素(STREL)的创建和操作得到的高度Getheight strel得到邻域的偏移位置和高度Getneighbors strelGetnhood得到strel 邻域得到分解的strel 序列Getsequence对平坦的strel 返回值Isflat以其中心反射Reflect strel创建形态学结构元素StrelTranslate变换strel基于区域的处理Histroi(DIPUM)计算图像中的ROI 的直方图Poly2mask将ROI 多边形转换为掩膜基于颜色选择Roicolor ROI在任意区域内平稳地内插RoifillRoifilt2对ROI 进行滤波选择多边形Roipoly ROI彩色映射处理加亮或加暗彩色映射Brighten在彩色映射中重排颜色Cmpermute寻找唯一的彩色映射颜色和相应的图像Cmunique设置或得到彩色查找表Colormap以很少的颜色近似被索引的图像Imapprox绘制RGB彩色映射分Rgbplot量彩色空间转换应用独立于设备的彩色空间变换Applyform将HSV值转换为RGB彩色空Hsv2rgb间Iccread读ICC 彩色配置文件将L*a*b* 彩色值转换为double 类Lab2double将L*a*b* 彩色值转换为uint16 类Lab2uint16将L*a*b* 彩色值转换为uint8 类Lab2uint8创建独立于设备的彩色空间变换结构Makecform将NTSC值转换为RGB彩色空Ntsc2rgb间将RGB值转换为HSV彩色空Rgb2hsv间将RGB值转换为NTSC彩色空Rgb2ntsc间将RGB值转换为YCBCR彩色空间Rgb2ycbcr将YCBCR值转换为RGB彩色空间Ycbcr2rgbRgb2hsi(DIPUM)将RGB值转换为HSI 彩色空间Hsi2rgb(DIPUM)将HSI 值转换为RGB彩色空间返回标准照明的XYZ值Whitepoint将XYZ彩色值转换为类Xyz2double double将XYZ彩色值转换为类Xyz2uint16 uint16数组操作循环地移位数组CircshiftDftuv (DIPUM)计算网格数组填充数组PadarrayPaddedsize(DIPUM)计算用于FFT 的最小填充尺寸图像类型和类型转换改变一幅图像的类Changeclass使用抖动转换图像Dither将亮度图像转换为索引图像Gray2ind通过阈值处理从亮度图像创建索引图像Grayslice通过阈值处理将图像转换为二值图像Im2bw将图像数组转换为双精度Im2double将图像转换为Java 图像Im2java将图像转换为Java 缓存的图像对象Im2java2d将图像数组转换为8比特无符号整数Im2uint8将图像数组转换为16比特无符号整Im2uint16数将索引图像转换为亮度图像Ind2gray将索引图像转换为RGB图Ind2rgb像将标记矩阵转换为RGB图Label2rgb像将矩阵转换为亮度图像Mat2gray将RGB图像或彩色映射转换为灰度图Rgb2gray像将RGB图像转换为索引图Rgb2ind像其他函数Conwaylaws(DIPUM)对单个像素应用Conway的遗传定律Manualhist(DIPUM)交互地生成2模式直方图Twomodegaus s(DIPUM)生成一个2模式高斯函数基于查找表计算新数组值Uintlut工具箱参数获得图像处理工具箱参数的值Iptgetpref设置图像处理工具箱参数的值Iptsetpref。
胡学龙《数字图像处理(第二版)》课后习题解答
2
1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘 莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 P扫描仪、数码相机等图像输入设备采集的图 像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能 可以很方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对 图像进行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色 模式的转换、改变图像的尺寸和分辨率、制作网页图像等。
1.5 常见的数字图像处理开发工具有哪些?各有什么特点? 答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。两种开发工具各有所长且有相互 间的软件接口。 Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发 出来的 Win 32 程序有着运行速度快、可移植能力强等优点。VC++所提供的 Microsoft 基础 类库 MFC 对大部分与用户设计有关的 Win 32 应用程序接口 API 进行了封装,提高了代码 的可重用性,大大缩短了应用程序开发周期,降低了开发成本。由于图像格式多且复杂,为 了减轻程序员将主要精力放在特定问题的图像处理算法上,VC++ 6.0 提供的动态链接库 ImageLoad.dll 支持 BMP、JPG、TIF 等常用 6 种格式的读写功能。 MATLAB 的图像处理工具箱 MATLAB 是由 MathWorks 公司推出的用于数值计算的有 力工具,是一种第四代计算机语言,它具有相当强大的矩阵运算和操作功能,力求使人们摆 脱繁杂的程序代码。MATLAB 图像处理工具箱提供了丰富的图像处理函数,灵活运用这些 函数可以完成大部分图像处理工作,从而大大节省编写低层算法代码的时间,避免程序设计 中的重复劳动。MATLAB 图像处理工具箱涵盖了在工程实践中经常遇到的图像处理手段和 算法,如图形句柄、图像的表示、图像变换、二维滤波器、图像增强、四叉树分解域边缘检 测、二值图像处理、小波分析、分形几何、图形用户界面等。但是,MATLAB 也存在不足 之处限制了其在图像处理软件中实际应用。首先,强大的功能只能在安装有 MATLAB 系统 的机器上使用图像处理工具箱中的函数或自编的 m 文件来实现。其次,MATLAB 使用行解 释方式执行代码,执行速度很慢。第三,MATLAB 擅长矩阵运算,但对于循环处理和图形 界面的处理不及 C++等语言。为此,通应用程序接口 API 和编译器与其他高级语言(如 C、 C++、Java 等)混合编程将会发挥各种程序设计语言之长协同完成图像处理任务。API 支持 MATLAB 与外部数据与程序的交互。编译器产生独立于 MATLAB 环境的程序,从而使其他 语言的应用程序使用 MATLAB。
数字图像处理课后参考答案
... ............................................................. 北為................................................. .......................................数字图像处理第一章1.1解释术语(2)数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。
(3)图像处理:是指对图像信息进行加工以满足人的视觉或应用需求的行为。
1.7包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。
彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术和方法。
1.8基本思路是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。
1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。
1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储和实时传输的应用需求。
1.11基本思路是,通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。
1.12基本目的是,找出便于区分和描述一幅图像中背景和目标的方法,以方便图像中感兴趣的目标的提取和描述。
第二章2.1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。
数字图像处理中文版课后答案
数字图像处理中文版课后答案【篇一:数字图像处理课后题答案】s=txt>答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。
空域法:直接对获取的数字图像进行处理。
频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。
图像变换:对图像进行正交变换,以便进行处理。
图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。
图像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。
图像编码:在满足一定的图形质量要求下对图像进行编码,可以压缩表示图像的数据。
图像分析:对图像中感兴趣的目标进行检测和测量,从而获得所需的客观信息。
图像识别:找到图像的特征,以便进一步处理。
图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从而指导和规划行为。
3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。
答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。
通常,表示图像的二维数组是连续的,将连续参数x,y,和 f 取离散值后,图像被分割成很多小的网格,每个网格即为像素图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。
单位是“像素点/单位长度”图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表示,这一数据位的位数即为像素深度,也叫图像深度。
图像深度越深,能够表现的颜色数量越多,图像的色彩也越丰富。
)图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。
最新数字图像处理第二版上机作业答案
1.创建命令文件creatmatrix.m,实现以下功能:(1)建立一个A矩阵,大小为8×10,该矩阵为符合正态分布的随机矩阵;建立一个B矩阵,大小和A矩阵一样,是一个全1矩阵。
(2)将(1)中生成的A、B矩阵存储在junzhen.mat中。
A=randn(8,10) eye 生成单位矩阵ones全1阵zeros 全零阵B=ones(8,10)rand 均匀随机阵randn 正态随机阵2.创建命令文件imagep.m,实现以下功能:(1)读入cameraman.tif图像文件,查询其文件信息;(2)将该图像数据保存在矩阵I中;(3)显示原始图像,保存为cameraman1.jpg;(4)新建图形窗口,显示16个灰度等级下的图像,保存为cameraman2.bmp;(5)新建图形窗口,显示灰度范围在20到100之间的图像,保存为cameraman3.jpg;I=imread('cameraman.tif');imshow (I);figure,imshow(I,16);figure,imshow(I,[20, 100]);3创建命令文件process.m,实现以下功能:(1)读入football.jpg彩色图像文件,将该图像转换为灰度图像I;(2)设置阈值0.6,将灰度图像I转换为二值图像J1;(3)将图形窗口划分为一行三列,第一个子窗口显示I,第二个子窗口显示J1。
将该图形保存为process.jpgRGB=imread('football.jpg');I=rgb2gray(RGB);J1=im2bw(I,0.6);subplot(1,2,1); imshow(I);subplot(1,2,2); imshow(J1);4创建命令文件process1.m,实现以下功能:读入图像fabric.png彩色图像文件,转换为灰度图像A;将A图像的灰度缩小0.6倍,存入图像矩阵B中;将A图像的灰度放大 1.2倍,存入图像矩阵C中;将图形窗口划分为三行一列,第一个子窗口显示A,第二个子窗口显示B,第三个子窗口显示C。
数字图像处理第二版上机作业答案
1.创建命令文件creatmatrix.m,实现以下功能:(1)建立一个A矩阵,大小为8×10,该矩阵为符合正态分布的随机矩阵;建立一个B矩阵,大小和A矩阵一样,是一个全1矩阵。
(2)将(1)中生成的A、B矩阵存储在junzhen.mat中。
A=randn(8,10) eye 生成单位矩阵ones全1阵zeros 全零阵B=ones(8,10)rand 均匀随机阵randn 正态随机阵2.创建命令文件imagep.m,实现以下功能:(1)读入cameraman.tif图像文件,查询其文件信息;(2)将该图像数据保存在矩阵I中;(3)显示原始图像,保存为cameraman1.jpg;(4)新建图形窗口,显示16个灰度等级下的图像,保存为cameraman2.bmp;(5)新建图形窗口,显示灰度范围在20到100之间的图像,保存为cameraman3.jpg;I=imread('cameraman.tif');imshow (I);figure,imshow(I,16);figure,imshow(I,[20, 100]);3创建命令文件process.m,实现以下功能:(1)读入football.jpg彩色图像文件,将该图像转换为灰度图像I;(2)设置阈值0.6,将灰度图像I转换为二值图像J1;(3)将图形窗口划分为一行三列,第一个子窗口显示I,第二个子窗口显示J1。
将该图形保存为process.jpgRGB=imread('football.jpg');I=rgb2gray(RGB);J1=im2bw(I,0.6);subplot(1,2,1); imshow(I);subplot(1,2,2); imshow(J1);4创建命令文件process1.m,实现以下功能:读入图像fabric.png彩色图像文件,转换为灰度图像A;将A图像的灰度缩小0.6倍,存入图像矩阵B中;将A图像的灰度放大1.2倍,存入图像矩阵C中;将图形窗口划分为三行一列,第一个子窗口显示A,第二个子窗口显示B,第三个子窗口显示C。
冈萨雷斯数字图像处理第第章习题..
冈萨雷斯-数字图像处理第版第章习题-.-.————————————————————————————————作者:————————————————————————————————日期:4.16 证明连续和离散二维傅里叶变换都是平移和旋转不变的。
首先列出平移和旋转性质:002(//)00(,)(,)j u x M v y N f x y e F u u v v π+⇔-- (4.6-3) 002(//)00(,)(,)j x r M y v N f x x y y F u v e π-+--⇔ (4.6-4)旋转性质:cos ,sin ,cos ,sin x r y r u v θθωϕωϕ====00(,)(,)f r F θθωϕϕ+⇔+ (4.6-5) 证明:由式(4.5-15)得:由式(4.5-16)得:依次类推证明其它项。
4.17 由习题4.3可以推出1(,)u v δ⇔和(,)1t z δ⇔。
使用前一个性质和表4.3中的平移性质证明连续函数00(,)cos(22)f t z A u t v z ππ=+的傅里叶变换是0000(,)[(,)(,)]2AF u v u u v v u u v v δδ=+++-- 证明:000000002()2()002()2()2()2()2()2()2((,)(,)cos(22)[]222j ut vz j ut vz j u t v z j u t v z j ut vz j u t v z j u t v z j ut vz j u F u v f t z e dtdzA u t v z e dtdzA e e e dtdzA A e e dtdz e e πππππππππππ∞∞-+-∞-∞∞∞-+-∞-∞∞∞+-+-+-∞-∞∞∞+-+-+--∞-∞==+=+=+⎰⎰⎰⎰⎰⎰⎰⎰)00000000(,)(,)22[(,)(,)]2t vz dtdz A Au u v v u u v v Au u v v u u v v δδδδ∞∞+-∞-∞=--+++=--+++⎰⎰ 4.18 证明离散函数(,)1f x y =的DFT 是1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它证明:离散傅里叶变换112(//)00(,)(,)M N j ux M vy N x y F u v f x y e π---+===∑∑112(//)00112(//)00{1}M N j ux M vy N x y M N j ux M vy N x y e e ππ---+==---+==ℑ==∑∑∑∑如果0u v ==,{1}1ℑ=,否则:1100{1}{cos[2(//)]sin[2(//)]}M N x y ux M vy N j ux M vy N ππ--==ℑ=+-+∑∑考虑实部,1100{1}cos[2(//)]M N x y ux M vy N π--==ℑ=+∑∑,cos[2(//)]ux M vy N π+的值介于[-1, 1],可以想象,1100{1}cos[2(//)]0M N x y ux M vy N π--==ℑ=+=∑∑,虚部相同,所以1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它4.19 证明离散函数00cos(22)u x v y ππ+的DFT 是00001(,)[(,)(,)]2F u v u Mu v Nv u Mu v Nv δδ=+++--证明:000000112(//)00112(//)0000112()2()2(//)00112()2(//)00(,)(,)cos(22)1[]21{2M N j ux M vy N x y M N j ux M vy N x y M N j u x v y j u x v y j ux M vy N x y M N j u x v y j ux M vy N x y F u v f x y e u x v y e e e e e e πππππππππ---+==---+==--+-+-+==--+-+====+=+=∑∑∑∑∑∑∑∑000000112()2(//)0011112(//)2(//)2(//)2(//)00000000}1{}21[(,)(,)]2M N j u x v y j ux M vy N x y M N M N j Mu x M Nv y N j Mu x M Nv y N j ux M vy N j ux M vy N x y x y e e e e e e u Mu v Nv u Mu v Nv ππππππδδ---+-+==----+-+-+-+====+=+=+++--∑∑∑∑∑∑4.20 下列问题与表4.1中的性质有关。
数字图像处理第二版上机作业答案
1.创建命令文件creatmatrix.m,实现以下功能:(1)建立一个A矩阵,大小为8×10,该矩阵为符合正态分布的随机矩阵;建立一个B矩阵,大小和A矩阵一样,是一个全1矩阵。
(2)将(1)中生成的A、B矩阵存储在junzhen.mat中。
A=randn(8,10) eye 生成单位矩阵ones全1阵zeros 全零阵B=ones(8,10)rand 均匀随机阵randn 正态随机阵2.创建命令文件imagep.m,实现以下功能:(1)读入cameraman.tif图像文件,查询其文件信息;(2)将该图像数据保存在矩阵I中;(3)显示原始图像,保存为cameraman1.jpg;(4)新建图形窗口,显示16个灰度等级下的图像,保存为cameraman2.bmp;(5)新建图形窗口,显示灰度范围在20到100之间的图像,保存为cameraman3.jpg;I=imread('cameraman.tif');imshow (I);figure,imshow(I,16);figure,imshow(I,[20, 100]);3创建命令文件process.m,实现以下功能:(1)读入football.jpg彩色图像文件,将该图像转换为灰度图像I;(2)设置阈值0.6,将灰度图像I转换为二值图像J1;(3)将图形窗口划分为一行三列,第一个子窗口显示I,第二个子窗口显示J1。
将该图形保存为process.jpgRGB=imread('football.jpg');I=rgb2gray(RGB);J1=im2bw(I,0.6);subplot(1,2,1); imshow(I);subplot(1,2,2); imshow(J1);4创建命令文件process1.m,实现以下功能:读入图像fabric.png彩色图像文件,转换为灰度图像A;将A图像的灰度缩小0.6倍,存入图像矩阵B中;将A图像的灰度放大1.2倍,存入图像矩阵C中;将图形窗口划分为三行一列,第一个子窗口显示A,第二个子窗口显示B,第三个子窗口显示C。
合肥工业大学研究生数字图像处理冈萨雷斯第二版考试范围及重点知识整理
●试题类型单项选择题:10×1=10分填空题:20×1=20分;简答题:5×5=25分;计算题:25分;应用题:20分●考试形式:开卷,you need a textbook!●数字图像处理基础图像的线性变换图像采样;图像的邻域;●图像变换傅立叶变换,余弦变换,K-L变换,小波变换等试题一.小波变换和傅里叶变换的特征差异:一个能描述局部特征,一个不能解:小波分析是傅立叶分析思想的发展与延拓,它自产生以来,就一直与傅立叶分析密切相关,他的存在性证明,小波基的构造以及结果分析都依赖于傅立叶分析,二者是相辅相成的,两者主要的不同点:1、傅立叶变换实质是把能量有限信号f(t)分解到以{exp(jωt)}为正交基的空间上去;小波变换的实质是把能量有限信号f(t)分解到W-j和V-j所构成的空间上去的。
2、傅立叶变换用到的基本函数只有sin(ωt),cos(ωt),exp(jωt),具有唯一性;小波分析用到的函数(即小波函数)则具有多样性,同一个工程问题用不同的小波函数进行分析有时结果相差甚远。
小波函数的选用是小波分析运用到实际中的一个难点问题(也是小波分析研究的一个热点问题),目前往往是通过经验或不断地试验(对结果进行对照分析)来选择小波函数。
3、在频域分析中,傅立叶变换具有良好的局部化能力,特别是对于那些频率成分比较简单的确定性信号,傅立叶变换很容易把信号表示成各频率成分的叠加和的形式,如sin(ω1t)+0.345sin(ω2t)+4.23cos(ω3t),但在时域中傅立叶变换没有局部化能力,即无法从f(t)的傅立叶变换中看出f(t)在任一时间点附近的性态。
事实上,F(w)dw是关于频率为w的谐波分量的振幅,在傅立叶展开式中,它是由f(t)的整体性态所决定的。
4、在小波分析中,尺度a的值越大相当于傅立叶变换中w的值越小。
5、在短时傅立叶变换中,变换系数S(ω,τ)主要依赖于信号在[τ-δ,τ+δ]片段中的情况,时间宽度是2δ(因为δ是由窗函数g(t)唯一确定的,所以2δ是一个定值)。
数字图像处理冈萨雷斯第二版答案
数字图像处理冈萨雷斯第二版答案数字图像处理冈萨雷斯第二版答案【篇一:数字图像处理第三版 (冈萨雷斯,自己整理的2)】特数。
通常的传输是以一个开始比特,一个字节(8 比特)的信息和一个停止比特组成的包完成的。
基于这个概念回答以下问题:(b) 以750k 波特 [这是典型的电话dsl(数字用户线)连接的速度]传输要用多少时间?2.两个图像子集s1和s2图下图所示。
对于v={1},确定这两个子集是(a)4-邻接,(b)8-邻接,(c)m-邻接。
a) s1 和s2 不是4 连接,因为q 不在n4(p)集中。
(b) s1 和s2 是8 连接,因为q 在n8(p)集中。
(c) s1 和s2 是m 连接,因为q 在集合nd(p)中,且n4(p)∩ n4(q)没有v 值的像素3. 考虑如下所示的图像分割(a) 令v={0,1}并计算p 和q 间的4,8,m 通路的最短长度。
如果在这两点间不存在特殊通路,试解释原因。
(b) 对于v={1,2}重复上题。
解:(a) 当v={0,1}时,p 和q 之间不存在4 邻接路径,因为不同时存在从p 到q 像素的4 毗邻像素和具备v 的值,如图(a)p 不能到达q。
8 邻接最短路径如图(b),最短长度为4。
m邻接路径如图(b)虚线箭头所示,最短长度为5。
这两种最短长度路径在此例中均具有唯一性。
(b) 当v={1, 2}时,最短的4 邻接通路的一种情况如图(c)所示,其长度为6,另一种情况,其长度也为6;8 邻接通路的一种情况如图(d)实线箭头所示,其最短长度为4;m 邻接通路的一种情况如图(d)虚线箭头所示,其最短长度为6.或解: (1) 在v={0,1}时,p和q之间通路的d4距离为∞,d8距离为4,dm距离为5。
(2) 在v={1,2}时,p和q之间通路的d4距离为6,d8距离为4,dm距离为6。
4为什么一般情况下对离散图像的直方图均衡化并不能产生完全平坦的直方图?【因为同一个灰度值的各个象素没有理由变换到不同灰度级,所以数字图像的直方图均衡化的结果一般不能得到完全均匀分布的直方图,只是近似均匀的直方图。
第二版部分中文数字图像处理答案
第二版部分中文数字图像处理答案2.2亮度适应。
2.3 λ=c/v=2.998 * 108(m/s)/60(1/s) = 4.99 *106m = 5000 Km.2.4 a)若需看清物体,光源波长有题目知这几个物体波长均小于需与物体大小相等或小于物体,有题目中需观测的物体大小知,选择远紫外可以观测题目中的物体。
b) 只用一种即可。
2.5. 根据图2.3得:设能找到物体的长度为x mm,则有:500/x=35/7; 解得:x=100,所以相机的分辨率为:1024/100=10;所以能解析的线对为:10/2=5.2.6答:一个可能的解决办法是装备一个单色相机与机械装置, 顺序放置一个红色、绿色、蓝色的通滤波器在镜头前面。
最强的相机响应决定它的颜色。
如果这三位车手的反应是一致的, 对象是白色的。
一个更快的系统会利用三种配备有过滤器的不同相机。
然后基于各个相机的响应进行分析。
该系统将是一个有点贵, 但它将会更快、更可靠。
2.7 由题意:一个横截面的图像被显示在图P2.7(A)。
如果强度量化使用m 字节, 那么我们的情况如图P2.7 (b)所示,其中4 G =(255 + 1)= 2m。
因为一个8灰度层次突然改变是能够被眼睛检测到, 那么,4 G = 8 = 256 = 2m,或m = 5。
换句话说,32, 或更少, 会产生可见的虚假灰度值线性。
2.8 利用两位(m = 2)强度分辨率生产四个灰度级,其值在0到255之间。
对这个范围进一步划分的一个方法是被编码0和63之间的值全赋值为63, 被编码在64和127之间的值全赋值为127等等。
按照这方法分得的结果如图P2.8所示。
当然, 还有其他的办法细分范围[0,255]成四个波段。
2.9 (一) 在一个8位, 1024 * 1024的图像中,数据总量(包括启动、停止位) 为 (1024)* 1024 *[8+ 2]位。
在56 K波特的情况下,需要传送的总时间为1024*1024 *[8 + 2]= 56000 = 187.25秒或约3.1分钟。
数字图像处理每章课后题参考答案
数字图像处理每章课后题参考答案数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。