贵州省遵义市绥阳中学2019届高三模拟卷(二)文科数学试题(解析版)
2019届高三数学(文)二模试卷有解析
2019届高三数学(文)二模试卷有解析数学试题(文)第I卷(选择题,共60分)一、选择题:本大题共12小题.每小题5分。
满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合M= { } ,N= {-2,-1,0,1,2},则等于A. {1}B. {-2,-1}C. {1,2}D. {0,1,2}2.设是虚数单位,则复数的模是A.10B.C.D.3. 己知是等差数列{ }的前n项和,,则A.20B.28C.36D.44.函数,若实数满足,则A.2B.4C. 6D.85. 如图,正三棱柱ABC—A1B1C1的侧棱长为a,底面边长为b,一只蚂蚁从点A出发沿每个侧面爬到A1,路线为A-M-N-A1,则蚂蚁爬行的最短路程是A. B.C. D.6. 函数的图象的大致形状是7.“勾股圆方图”是我国古代数学家赵爽设计的一幅用来证明勾股定理的图案,如图所示在“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形。
若直角三角形中较小的锐角满足,则从图中随机取一点,则此点落在阴影部分的概率是A. B.C. D.8.为了计算,设计如图所示的程序框图,则在空白框中应填入A.B.C.D.9.若函数在R上的最大值是3,则实数A.-6B. -5C.-3D. -210. 直线是抛物线在点(-2,2)处的切线,点P是圆上的动点,则点P 到直线的距离的最小值等于A.0B.C. D.11.如图是某个几何体的三视图,根据图中数据(单位:cm) 求得该几何体的表面积是A. B.C. D.12.将函数的图象向左平移个单位后得到函数的图象,且函数满足,则下列命题中正确的是A.函数图象的两条相邻对称轴之间距离为B.函数图象关于点( )对称C.函数图象关于直线对称D.函数在区间内为单调递减函数二、填空题:本大题共4小题,每小题5分,满分20分。
13.向量与向量(-1,2)的夹角余弦值是.14. 若双曲线的一条渐近线方程是,则此双曲线的离心率为.15.设实数满足不等式,则函数的最大值为.16.在△ABC中,AB= 1,BC = ,C4 = 3, 0为△ABC的外心,若,其中,则点P的轨迹所对应图形的面积是.三、解答题:本大题满分60分。
贵州省遵义市绥阳中学2019届高三模拟(二)数学试题(解析版)
绥阳中学2019届高三模拟卷(二)数学(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则()A. B. C. D.【答案】B【解析】【分析】根据对数的性质,求得集合B,再根据集合的交集和并集的运算,即可求解.【详解】由题意,可得.故选B.【点睛】本题主要考查了集合的运算,其中解答中正确求解集合B,再利用集合的运算,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.2.若复数满足(为虚数单位),则复数的共轭复数的模是()A. B. C. D.【答案】B【解析】【分析】根据复数的四则运算,化简复数为,再根据复数模的运算公式,即可求解.【详解】由题意,因为,所以所以,所以. 故选B.【点睛】本题主要考查了复数的运算,以及共轭复数的概念和模的运算,其中解答中熟记复数的四则运算,正确求解复数是解答的关键,着重考查了运算与求解能力,属于基础题.3.已知,则的大小为()A. B.C. D.【答案】C【解析】【分析】根据指数幂的运算性质,求得的取值范围,即可得到答案.【详解】由题意,根据指数幂的运算性质,可得所以. 故选C.【点睛】本题主要考查了实数指数幂的运算性质的应用,其中解答中熟记指数幂的运算性质,合理计算的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.已知数列的前项和为,若,则()A. B. C. D.【答案】C【解析】【分析】根据数列的递推公式,化简求得,进而可求解的值,得到答案.【详解】由题意,可知,所以,所以,所以,所以.又因为,所以. 故选C.【点睛】本题主要考查了数列的递推公式的应用,以及等比数列的应用,其中解答中根据数列的递推公式,求的,再利用等比数列的通项公式求解是解答的关键,着重考查了运算与求解能力,属于中档试题. 5.已知实数满足不等式组,则的最小值为()A. B. C. D.【答案】A【解析】【分析】作出不等式组所表示的平面区域,结合图象得出目标函数的最优解,即可求解目标函数的最小值,得到答案. 【详解】由题意,作出不等式组,表示的平面区域(阴影区域)如图:令,则,当直线经过点B时,在y轴上的截距最小,此时目标函数取得最小值,又由,解得,即,所以目标函数的最小值为. 故选A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6.若执行如图所示的程序框图,则输出的值是()A. B. C. D.【答案】D【解析】【分析】执行如图所示的程序框图,得到的值呈周期性变化,且周期为,进而可求解输出的结果,得到答案.【详解】由题意,执行如图所示的程序框图,可知:第一次循环:第二次循环:第三次循环:第四次循环:第五次循环,可以看出的值呈周期性变化,且周期为.因为,所以输出的是.故选D.【点睛】本题主要考查了循环结构的程序框图的输出结果的计算问题,其中解答中执行循环体,得出每次循环的计算规律是解答的关键,着重考查了推理与运算能力,属于基础题.7.函数的部分图像大致是()A. B.C. D.【答案】C【解析】【分析】根据函数的奇偶性和特殊点的函数值,进行合理排除,即可作出选择,得到答案.【详解】由题意,因为,所以,所以函数是偶函数,图象关于y轴对称,排除选项D;又因为当时,,所以排除选项A;令,则,则,故选C.【点睛】本题主要考查了具体函数图象的识别问题,其中解答中熟练应用函数的奇偶性和特殊点的函数值进行合理排除是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.若函数为奇函数,则()A. B. C. D.【答案】D【解析】【分析】根据函数的奇偶性,求得函数的解析式,进而求解相应的函数值,得到答案.【详解】由题意知,函数为奇函数,可得当时,,所以函数的解析式为,所以.故选D.【点睛】本题主要考查了函数的奇偶性的应用,以及函数值的求解,其中解答中根据函数的奇偶性,准确求解函数的解析式是解答的关键,着重考查了推理与运算能力,属于中档试题.9.若一个几何体的三视图如图所示,则该集合体的体积为()A. B. C. D.【答案】A【解析】【分析】由三视图,得到该几何体是两个相同的直三棱柱的组合体,利用体积公式,即可求解.【详解】根据三视图分析知,该几何体的直观图如图所示,O为AB的中点,其中该几何体是两个相同的直三棱柱的组合体,所以该几何体的体积.故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.10.在侦破某一起案件时,警方要从甲、乙、丙、丁四名可疑人员中揪出真正的嫌疑人,现有四条明确的信息:(1)此案是两人共同作案;(2)若甲参与此案,则丙一定没参与;(3)若乙参与此案,则丁一定参与;(4)若丙没参与此案,则丁也一定没参与.据此可以判断参与此案的两名嫌疑人是()A. 甲、乙B. 乙、丙C. 甲、丁D. 丙、丁【答案】D【解析】若甲乙参加此案,则不符合(3);若乙丙参加此案,则不符合(3);若甲丁参加此案,则不符合(4);当丙丁参加此案,全部符合.故选D.11.已知双曲线的右焦点为,若双曲线的离心率为,则双曲线的渐近线与圆的位置关系是()A. 相离B. 相交C. 相切D. 不确定【答案】B【解析】【分析】根据双曲线的几何性质,求得双曲线的渐近线的方程,再利用直线与圆的位置关系的判定方法,即可得到直线与圆的位置关系,得到答案.【详解】据题意,双曲线的离心率为,即,可得.又因为,所以,所以双曲线的渐近线方程为.圆的圆心为,半径为.点到渐近线的距离.又因为,所以双曲线的渐近线与圆相交.故选B.【点睛】本题主要考查了双曲线的几何性质的应用,以及直线与圆的位置关系的判定,其中解答中根据双曲线的几何性质求得双曲线的渐近线的方程,再根据圆心到直线的距离与圆的半径的关系进行判定是解答的关键,着重考查了推理与运算能力,属于中档试题.12.已知数列的前项和为,且,那么的值为()A. B.C. D.【答案】A【解析】【分析】根据题意,求得,且,得到成以为首项、为公比的等比数列,成以为首项,为公比的等比数列,进而可求解的值,得到答案.【详解】由题意,知,所以,且,所以,即,所以成以为首项、为公比的等比数列,成以为首项,为公比的等比数列,所以,故选A.【点睛】本题主要考查了数列的递推公式的应用,以及数列的求和问题,其中解答中根据数列递推关系式,求得成以为首项、为公比的等比数列,成以为首项,为公比的等比数列是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题(将答案填在答题纸上)13.已知向量,若向量共线,则的最大值为______.【答案】【解析】【分析】根据向量共线的坐标运算,求得,再利用基本不等式,即可求解的最大值,得到答案.【详解】据题意知,向量共线,可得,即.又因为,所以,所以,所以.【点睛】本题主要考查了向量共线条件的应用,以及基本不等式求最值,其中解答中根据向量的共线条件,再利用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.14.二项展开式中的系数为________.【答案】【解析】【分析】由二项式求得展开式的通项,令,求得,代入即可求解x的系数,得到答案.【详解】由二项式的展开式的通项为:.令,则,所以二项展开式中的系数为.【点睛】本题主要考查了二项式定理的应用,其中解答中得出二项展开式的通项,利用通项确定r的值,代入求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.若,则_________.【答案】【解析】【分析】利用诱导公式,化简得,再利用余弦的二倍角公式,即可求解,得到答案.【详解】由题意知,所以,所以,所以.【点睛】本题主要考查了三角函数的诱导公式,以及余弦的二倍角公式的应用,其中解答中根据三角函数的诱导公式和余弦的倍角公式,合理化简、运算是解答的关键,着重考查了推理与运算能力,属于基础题.16.已知点在球表面上,且,若三棱锥的体积为,球心恰好在棱上,则这个球的表面积为________.【答案】【解析】【分析】根据条件可知球心是侧棱中点.利用三棱锥的体积公式,求得设点到平面的距离,又由球的性质,求得,利用球的表面积公式,即可求解.【详解】由题意,满足,所以为直角三角形,根据条件可知球心是侧棱中点.设点到平面的距离为,则,解得,又由球的性质,可得球半径为,满足,所以,所以这个球的表面积.【点睛】本题主要考查了球的表面积的计算,以及球的组合体的应用,其中解答中正确认识组合体的结构特征,合理利用球的性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算步骤.)17.在中,为线段的中点.(1)求线段的长;(2)求的面积.【答案】(1) (2)【解析】【分析】(1)在中,利用余弦定理,求得,又由为的中点,求得,利用余弦定理,即可求解的长;(2)由(1)知,求得,利用三角形的面积公式,即可求解.【详解】(1)在中,,所以,所以又因为为的中点,所以所以所以(2)由(1)求解知,,又,所以所以的面积【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.18.某大型商场2019年元旦期间累计生成万张购物单,现从中随机抽取张,并对抽出的每张单消费金额统计得到下表:注:由于工作人员失误,后两栏数据无法辨识,只分别用字母代替,不过工作人员清楚记得的关系是.(1)求的值;(2)为鼓励顾客消费,该商场计划在2019年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次.抽奖规则:从装有个红球和个黑球(个球大小、材质完全相同)的不透明口袋中随机摸出个小球;记两种颜色小球数量差的绝对值为;当时,消费者可获得价值元的购物券,当时,消费者可获得价值元购物券,当时,消费者可获得元购物券.求参与抽奖的消费者获得购物券价值的分布列及数学期望.【答案】(1) (2)见解析【解析】【分析】(1)据题意,列出方程组,即可求解的值;(2)根据题意,分别求得当时对应的概率,得到关于变量的分布列,利用,期望的公式,即可求解数学期望.【详解】(1)据题意,得,解得所以(2)根据题意,得,,抽奖顾客获得的购物券价值的分布列为故(元)【点睛】本题主要考查了随机变量的分布列及其数学期望的求解,以及概率的应用,其中解答中认真审题、正确理解题意,得到随机变量的取值,求得随机变量取值的概率,得出随机变量的分布列是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.如图,四边形与四边形均为菱形,(1)求证:;(2)求直线与平面所成角的正弦值.【答案】(1)见证明;(2)【解析】【分析】(1)设交于点,连接,证得,,利用线面垂直的判定定理,证得平面,再由线面垂直的性质,即可得到;(2)连接,以分别为轴,轴,轴建立空间直角坐标系,求得平面的一个法向量,以及向量的坐标,利用向量的夹角公式,即可求解.【详解】(1)证明:设交于点,连接.因为四边形为菱形,所以为中点.又因为,所以又平面平面,所以平面又因为平面,所以,即.(2)连接,因为四边形为菱形,且,所以为等边三角形.又因为中点,所以又平面平面,所以平面.又四边形为菱形,所以两两垂直,以分别为轴,轴,轴建立空间直角坐标系如图:设,则所以所以设平面的一个法向量,则令,得.设直线与平面所成角为,则.【点睛】本题考查了直线与平面垂直的判定及应用,以及直线与平面所成的角的计算,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能合理利用直线与直线、直线与平面、平面与平面关系的相互转化,作出判定与证明,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.已知椭圆的离心率为分别为其左、右焦点,为椭圆上一点,且的周长为.(1)求椭圆的方程;(2)过点作关于轴对称的两条不同的直线,若直线交椭圆于一点,直线交椭圆于一点,证明:直线过定点.【答案】(1) (2)见证明【解析】【分析】(1)根据椭圆的离心率为,及的周长为,列出方程组,求得的值,即可得到椭圆的方程;(2)设直线方程为,联立方程组,利用二次方程根与系数的关系,求得,又由关于轴对称的两条不同直线的斜率只和为,化简、求得,得到直线方程,即可作出证明.【详解】(1)根据椭圆的离心率为,及的周长为,可得,解得,所以故椭圆的方程为.(2)证明:设直线方程为.联立方程组,整理得,所以.因为关于轴对称的两条不同直线的斜率只和为,所以,即,所以,所以,所以.所以直线方程为,所以直线过定点.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.已知函数.(1)求函数在区间的最小值;(2)当时,若,求证:.【答案】(1)见解析;(2)见证明【解析】【分析】(1)求得函数的导数,利用导数,分类讨论得出函数的单调性,即可求解函数的最小值,得到答案.(2)当时,可得函数在区间上单调递增,进而得到,即,,进而可作出证明.【详解】(1)因为,所以.令,则.分析知,;当时,,所以函数在区间上单调递增,在区间上单调递减.当,即时,函数在区间上的最小值;当,即时,函数在区间上的最小值;当,即时,函数在区间上的最小值.(2)证明:当时,,所以.分析知,函数在区间上单调递增.因为,所以,所以,所以,即.同理可得,所以,所以.所以.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程以及圆的直角坐标方程;(2)若直线与圆交于两点,求线段的长.【答案】(1) , (2)【解析】【分析】(1)根据直线的参数方程,消去参数,即可得到直线的普通方程,再根据极坐标与直角坐标的互化公式,即可求解圆的直角坐标方程;(2)圆的圆心坐标为,半径为,利用圆心的弦长公式,即可求解.【详解】(1)由直线的参数方程(为参数),消去参数,得直线的普通方程为.因为,所以,所以,所以,所以,所以,故圆的直角坐标方程为.(2)圆的圆心坐标为,半径为,所以点圆心到直线的距离,由圆的弦长公式,可得弦长.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标的互化,以及圆的弦长公式的应用,其中解答中熟记极坐标方程与直角坐标的互化公式,以及合理消去参数是解答的关键,着重考查了运算与求解能力,属于基础题.23.已知函数.(1)当时,求的解集;(2)若对任意恒成立,求实数的取值范围.【答案】(1) . (2)【解析】【分析】(1)分类讨论去掉绝对值号,即可求解不等式的解集;(2)由对任意成立,即对任意成立,分类讨论,即可求解实数的取值范围.【详解】(1)当时,不等式为.当时,,解答当时,,解得当时,,解得综上,所求不等式的解集为.(2)据题意,得对任意成立,对任意成立.当时,;当时,,所以,所以若,分析知,满足题设;若,则,所以,所以满足题设;若,则,所以综上,所求实数的取值范围是.【点睛】本题主要考查了含绝对值不等式的求解,以及含绝对值不等式的恒成立问题,其中解答中合理分类讨论去掉绝对值,转化为等价不等式求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.。
2019-2020年高三二模文科数学试卷含解析
2019-2020年高三二模文科数学试卷含解析本试卷第一部分共有8道试题。
一、单选题(共8小题)A.B.C.D.1. 复数=()【考点】复数乘除和乘方【试题解析】故答案为:D【答案】D2. 过点(2,0)且圆心为(1,0)的圆的方程是()A.B.C.D.【考点】圆的标准方程与一般方程【试题解析】由题知:所以圆的方程是:即。
故答案为:B【答案】B3. 在不等式组表示的平面区域内任取一个点,使得的概率为()A.B.C.D.【考点】几何概型【试题解析】作图:所以故答案为:C【答案】C4. 已知点在抛物线上,它到抛物线焦点的距离为5,那么点的坐标为()A.(4, 4),(4,-4)B.(-4,4),(-4,-4)C.(5,),(5,)D.(-5,),(-5,)【考点】抛物线【试题解析】抛物线中,准线方程为:x=-1.因为P它到抛物线焦点的距离为5,所以P到准线的距离为5,所以所以故答案为:A【答案】A5. 已知函数的定义域为,则“是奇函数”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】充分条件与必要条件【试题解析】若是奇函数,则有所以成立;反过来,不成立,对任意的x才是奇函数,只有一个,不能说明是奇函数。
故答案为:A【答案】A6. 将函数的图象向左平移个单位后与函数的图象重合,则函数为()A.B.C.D.【考点】三角函数图像变换【试题解析】将函数的图象向左平移个单位得到:故答案为:D【答案】D7. 已知,那么()A.B.C.D.【考点】对数与对数函数【试题解析】因为所以。
故答案为:C【答案】C8. 下表为某设备维修的工序明细表,其中“紧后工序”是指一个工序完成之后必须进行的下一个工序将这个设备维修的工序明细表绘制成工序网络图,如图,那么图中的1,2,3,4表示的工序代号依次为()A.E,F,G,G B.E,G,F,GC.G,E,F,F D.G,F,E,F【考点】函数模型及其应用【试题解析】由设备维修的工序明细表知:D后可以是E,G;因为G 后是H,所以4是G, 1是E。
2019届全国高考高三模拟考试卷数学(文)试题(二)(解析版)
π 6
上单调递增
D.函数
g
x
在
0,
π 6
上最大值是
1
8.[2019·临沂质检]执行如图所示的程序框图,输出的值为( )
A.0
B. 1 2
9.[2019·重庆一中] 2sin 80 cos 70 ( cos 20
A. 3
B.1
C.1 ) C. 3
D. 1 D.2
32
3
9
7.【答案】C
【解析】将函数
f
x
横坐标缩短到原来的
1 2
后,得到
g x
2sin
2
x
π 6
1,
当
x
π 12
时,
f
π 12
1,即函数
g x
的图象关于点
π 12
,
1
对称,故选项
A
错误;
周期 T 2π π ,故选项 B 错误; 2
则有 3 12
0
22
8 ,则
P
在圆 C
上,此时
KCP
20 13
1 ,则切线的斜率 k
1,
则切线的方程为 y x 3 ,即 x y 3 0 ,故选 B.
5.【答案】C
【解析】设圆的半径为 r ,则圆与正方形面积分别为 πr2 , 2r2 ,
∴此点不落在圆内接正方形内部的概率为
16.[2019·甘肃联考]过点 M 1,0 引曲线 C : y 2x3 ax a 的两条切线,这两条切线与 y 轴分别交于 A ,
2019年贵州省高考数学模拟试卷(文科)含答案解析
2019年贵州省普通高等学校高考数学模拟试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x=2k﹣1,k∈Z},B={﹣1,0,1,2,3,4},则集合A∩B中元素的个数为()A.1 B.2 C.3 D.42.已知复数z满足(z﹣2)i=1+i(i是虚数单位),则z=()A.3﹣i B.﹣3+i C.﹣3﹣i D.3+i3.在等差数列{a n}中,a3﹣a2=﹣2,a7=﹣2,则a9=()A.2 B.﹣2 C.﹣4 D.﹣64.某工厂生产A、B、C三种不同型号的产品,其数量之比依次是3:4:7,现在用分层抽样的方法抽出样本容量为n的样本,样本中A型号产品有15件,那么n等于()A.50 B.60 C.70 D.805.不等式组所表示的平面区域的面积为()A.1 B.2 C.3 D.46.一个几何体的三视图如图所示,其中正视图是正三角形,则该几何体的体积为()A.B.8 C.D.7.设α、β是两个不重合的平面,m、n是两条不重合的直线,则以下结论错误的是()A.若α∥β,m⊂α,则m∥βB.若m∥α,m∥β,α∩β=n,则m∥nC.若m⊂α,n⊂α,m∥β,n∥β,则α∥βD.若m∥α,m⊥β,则α⊥β8.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣89.阅读如图所示的程序框图,若输出的结果是63,则判断框内n的值可为()A.8 B.7 C.6 D.510.如图,圆与两坐标轴分别切于A,B两点,圆上一动点P从A开始沿圆周按逆时针方向匀速旋转回到A点,则△OBP的面积随时间变化的图象符合()A.B.C.D.11.经过双曲线﹣y2=1右焦点的直线与双曲线交于A,B两点,若|AB|=4,则这样的直线的条数为()A.4条B.3条C.2条D.1条12.若函数f(x)=﹣lnx﹣(a>0,b>0)的图象在x=1处的切线与圆x2+y2=1相切,则a+b的最大值是()A.4 B.2C.2 D.二、填空题:(本题共4小题,每题5分,共20分)13.设函数f(x)=,则f(f(﹣1))的值为.14.已知平面向量,满足||=3,||=2,与的夹角为60°,若(﹣m)⊥,则实数m=.15.已知命题p:∃x∈R,ax2+2x+1≤0是假命题,则实数a的取值范围是.16.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n﹣1,则=.三、简答题:解答应写出文字说明,证明过程或演算步骤)17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(A+C).(Ⅰ)求角B的大小;(Ⅱ)求函数f(x)=2sin2x+sin(2x﹣B)(x∈R)的最大值.18.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=AB=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到如图2所示的几何体D﹣ABC(Ⅰ)求证:AD⊥平面BCD;(Ⅱ)求点C到平面ABD的距离.19.在某次考试中,全部考生参加了“科目一”和“科目二”两个科目的考试,每科成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩数据统计如图所示,其中“科目一”成绩为D的考生恰有4人.(1)分别求该考场的考生中“科目一”和“科目二”成绩为A的考生人数;(2)已知在该考场的考生中,恰有2人的两科成绩均为A,在至少一科成绩为A的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为A的概率.20.设椭圆C: +=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且F1恰是QF2的中点.若过A、Q、F2三点的圆恰好与直线l:x﹣y﹣3=0相切.(1)求椭圆C的方程;(2)设直线l1:y=x+2与椭圆C交于G、H两点.在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.21.已知函数f(x)=x2﹣mlnx,g(x)=x2﹣2x,F(x)=f(x)﹣g(x)(Ⅰ)当m>0,求函数f(x)的单调区间;(Ⅱ)当m=﹣1时,试问过点(2,5)可作多少条直线与曲线y=F(x)相切?说明理由.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.已知BC为圆O的直径,点A为圆周上一点,AD⊥BC于点D,过点A作圆O的切线交BC的延长线于点P,过点B作BE垂直PA的延长线于点E.求证:(1)PA•PD=PE•PC;(2)AD=AE.[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cos(θ﹣)(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)若点P(x,y)是直线l上位于圆内的动点(含端点),求x+y的最大值和最小值.[选修4-5:不等式选讲].24.已知函数f(x)=m﹣|x﹣2|(m>0),且f(x+2)≥0的解集为[﹣3,3](Ⅰ)求m的值;(Ⅱ)若a>0,b>0,c>0且++=,求证:2a+3b+4c≥9.2019年贵州省普通高等学校高考数学模拟试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2019-2020年高三第二次模拟考试 文科数学 含答案
2019-2020年高三第二次模拟考试 文科数学 含答案本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试时间120分钟。
考试结束后,务必将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和答题纸相应的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后再选涂其他答案标号。
答案不能答在试题卷上。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式: 锥体的体积公式:Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 球的表面积公式:24R S π=,其中R 为球的半径.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.已知全集U = R ,集合A =}2|||{<x x ,B =}1|{>x x ,则等于 A .{x | 1<x <2}B .{x | x ≤-2}C .{x | x ≤1或x ≥2}D .{x | x <1或x >2} 2.复数ii z +-=1)1(2(i 是虚数单位)的共扼复数是 A .i +1 B .i +-1 C .i -1 D .i --13.平面向量a 与b 的夹角为3π,)0 ,2(=a ,1||=b ,则||b a +等于 A .7 B .3 C .7 D .794.已知曲线2331x x y -=的切线方程为b x y +-=,则b 的值是 A .31- B .31 C .32 D .32- 5.已知圆C :222)()(r b y a x =-+-的圆心为抛物线x y 42=的焦点,直线3x +4y +2=0与圆C 相切,则该圆的方程为A .2564)1(22=+-y xB .2564)1(22=-+y xC .1)1(22=+-y xD .1)1(22=-+y x6.对于平面α和直线m 、n ,下列命题是真命题的是A .若m 、n 与α所成的角相等,则m //nB .若m //α,n //α,则m //nC .若m ⊥α,m ⊥n ,则n //αD .若m ⊥α,n ⊥α,则m //n7.已知命题p :“存在正实数a ,b ,使得b a b a lg lg )lg(+=+”;命题q :“异面直线是不同在任何一个平面内的两条直线”.则下列命题为真命题的是A .)(q p ⌝∧B .q p ∧⌝)(C .)()(q p ⌝∨⌝D .q p ∧ 8.已知二次函数)R (4)(2∈+-=x c x ax x f 的值域为)0[∞+,,则a c 91+的最小值为 A .3 B .29 C .5 D .79.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos C ,b cos B ,c cos A 成等差数列,则角B 等于A .6πB .4πC .3πD .32π 10.已知双曲线1922=-mx y 的离心率为35,则此双曲线的渐近线方程为 A .x y 34±= B .x y 43±= C .x y 53±= D .x y 54±= 11.已知函数f (x )=sin ωx 在[0,43π]恰有4个零点,则正整数ω的值为 A .2或3 B .3或4 C .4或5 D .5或6 12.已知⎩⎨⎧>-≤-=0,230,2)(2x x x x x f ,若ax x f ≥|)(|在]1,1[-∈x 上恒成立,则实数a 的取值范围是A .[-1,0]B .(-∞,-1]C .[0,1]D .(-∞,0]∪[1,+∞)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题.每小题4分,共16分.13.某小学对学生的身高进行抽样调查,如图,是将他们的身高(单位:厘米)数据绘制的频率分布直方图,由图中数据可知a = ▲ .14.已知53)6sin(=+απ,653παπ<<,则cos α= ▲ . 15.已知实数x ,y 满足⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,则函数y x z 24=的最大值为 ▲ . 16.下列命题:①线性回归方程对应的直线a x b y ˆˆˆ+=至少经过其样本数据点(x 1,y l ),(x 1,y l ),……,(x n ,y n )中的一个点;⑧设f (x )为定义在R 上的奇函数,当x >0时,x x f =)(.则当x <0时,x x f -=)(; ③若圆)04(02222>-+=++++F E D F Ey Dx y x 与坐标轴的交点坐标分别为(x 1,0),(x 2,0),(0,y l ),(0,y 2),则02121=-y y x x ;④若圆锥的底面直径为2,母线长为2,则该圆锥的外接球表面积为4π。
2019年贵州省高考文科数学模拟试题与答案(二)
2019年贵州省高考文科数学模拟试题与答案(二)(试卷满分150分,考试时间120分钟)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}3,1{=A ,},30|{N x x x B ∈<<=,则=B AA .}1{B .}2,1{C .}3,2,1{D . }3,1{2. 在复平面内,复数i1iz =+所对应的点位于A. 第一象限B.第二象限C.第三象限D.第四象限 3. 下列函数中,既是奇函数又是增函数的为 A .y =x +1 B .y =-x3C .y =1xD .y =x |x |4.已知命题:p 若(,0)2x π∀∈-,tan 0x <,命题()0:0,q x ∃∈+∞,0122x =,则下列命题为真命题的是A.p q ∧B. ()()p q ⌝∧⌝C. ()p q ∧⌝D. ()p q ⌝∧5.如右图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的的体积为 A .π238+ B .π+38C .π24+D .π+4 6. 已知sin 2cos 0αα-=,则sin 3cos sin ααα=-A .15-B.12-C .15D .27. 图中的程序框图所描述的算法称为欧几里得辗转相除法,若输入m =209,n =121,则输出m 的值等于A. 10B.11C.12D.138.已知双曲线()222210,0x y a b a b-=>>的一条渐近线平行于直线:2l y x =+,一个焦点在直线l上,则双曲线的方程为A.22122x y -= B. 22144x y -= C. 22133x y -= D. 221x y -= 9. 已知数列{}n a 的前n 项和2621n n S a a =-⋅=,则A.164B.116C.16D.6410.将函数()2sin(2)6f x x π=-的图象向左平移6π个单位,再向上平移1个单位,得到()g x 图象,若12()()6g x g x +=,且[]12,2,2x x ππ∈-,则12x x -的最大值为 A .π B .2π C.3π D .4π11.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 12.函数的图象不可能是A. B.C. D.二、填空题:本大题共4小题,每小题5分,共20分.13. 若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则z y x =-的最小值为 .14. 边长为2的等边ABC ∆的三个顶点A ,B ,C 都在以O 为球心的球面上,若球O 的表面积为1483π,则三棱锥O ABC -的体积为 . 15. 若中心在原点,对称轴为坐标轴的双曲线的渐近线方程式为x y 2±=,则该双曲线的离心率为 。
贵州省2019届高三第二次模拟考试数学(文)试题 Word版含答案
2019届高三第二次模拟考试试题数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x 2+x -6<0},N ={x |1≤x ≤3},则M ∩N =( )A .[1,2)B .[1,2]C .(2,3]D .[2,3]2.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ). A .B .C .D .3. 观察下面频率等高条形图,其中两个分类变量x y ,之间关系最强的是A .B .C .D .4.命题:",ln 0"p x e a x ∀>-< 为真命题的一个充分不必要条件是( ) A .1a ≤ B .1a < C .1a ≥ D .1a >5. 已知x =log 23-log 23,y =log 0.5π,z =0.9-1.1,则( )A .x <y <zB .z <y <xC .y <z <xD .y <x <z为( ) A. 7 B. 15 C. 31 D. 639.已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则此几何体的体积V 为( ). A .323 B .163 C . 403 D . 4010. 已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则PA PB PC ++的最大值为( ) A.6 B.7 C.8 D.911. 设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左右焦点,双曲线上存在一点P 使得12||||3PF PF b +=,129||||4PF PF ab ⋅=,则该双曲线的离心率为( )(A )43 (B )94 (C )53(D )312. 已知偶函数)(x f y =满足条件f(x+1)=f(x-1),且当]0,1[-∈x 时,f(x)=,943+x 则=)5(log 31fA 1.- B.5029 C.45101 D. 1二、填空题(每题5分,满分20分)13. 已知y x ,满足不等式⎪⎩⎪⎨⎧≥≤+≤-010x y x y x ,则y x z 2+=的最大值 .14. 已知等比数列{}n a 的前n 项和为n S ,且482,10S S ==,则16S = .15. 设曲线1()n y x n +=∈*N 在点(1,1)处的切线与x 轴的交点的横坐标为n x ,201212012220122011log log log x x x +++的值为16. 设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点第9题图(,)P x y ,则||||PA PB ⋅的最大值是 。
贵州省遵义市绥阳中学2019届高三模拟(二)数学试题(含参考答案)
绥阳中学2019届高三模拟卷(二)数学(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则()A. B. C. D.【答案】B【解析】【分析】根据对数的性质,求得集合B,再根据集合的交集和并集的运算,即可求解.【详解】由题意,可得.故选B.【点睛】本题主要考查了集合的运算,其中解答中正确求解集合B,再利用集合的运算,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.2.若复数满足(为虚数单位),则复数的共轭复数的模是()A. B. C. D.【答案】B【解析】【分析】根据复数的四则运算,化简复数为,再根据复数模的运算公式,即可求解.【详解】由题意,因为,所以所以,所以. 故选B.【点睛】本题主要考查了复数的运算,以及共轭复数的概念和模的运算,其中解答中熟记复数的四则运算,正确求解复数是解答的关键,着重考查了运算与求解能力,属于基础题.3.已知,则的大小为()A. B.C. D.【答案】C【解析】【分析】根据指数幂的运算性质,求得的取值范围,即可得到答案.【详解】由题意,根据指数幂的运算性质,可得所以. 故选C.【点睛】本题主要考查了实数指数幂的运算性质的应用,其中解答中熟记指数幂的运算性质,合理计算的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.已知数列的前项和为,若,则()A. B. C. D.【答案】C【解析】【分析】根据数列的递推公式,化简求得,进而可求解的值,得到答案.【详解】由题意,可知,所以,所以,所以,所以.又因为,所以. 故选C.【点睛】本题主要考查了数列的递推公式的应用,以及等比数列的应用,其中解答中根据数列的递推公式,求的,再利用等比数列的通项公式求解是解答的关键,着重考查了运算与求解能力,属于中档试题.5.已知实数满足不等式组,则的最小值为()A. B. C. D.【答案】A【解析】【分析】作出不等式组所表示的平面区域,结合图象得出目标函数的最优解,即可求解目标函数的最小值,得到答案.【详解】由题意,作出不等式组,表示的平面区域(阴影区域)如图:令,则,当直线经过点B时,在y轴上的截距最小,此时目标函数取得最小值,又由,解得,即,所以目标函数的最小值为. 故选A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6.若执行如图所示的程序框图,则输出的值是()A. B. C. D.【答案】D【解析】【分析】执行如图所示的程序框图,得到的值呈周期性变化,且周期为,进而可求解输出的结果,得到答案.【详解】由题意,执行如图所示的程序框图,可知:第一次循环:第二次循环:第三次循环:第四次循环:第五次循环,可以看出的值呈周期性变化,且周期为.因为,所以输出的是.故选D.【点睛】本题主要考查了循环结构的程序框图的输出结果的计算问题,其中解答中执行循环体,得出每次循环的计算规律是解答的关键,着重考查了推理与运算能力,属于基础题.7.函数的部分图像大致是()A. B.C. D.【答案】C【解析】【分析】根据函数的奇偶性和特殊点的函数值,进行合理排除,即可作出选择,得到答案.【详解】由题意,因为,所以,所以函数是偶函数,图象关于y轴对称,排除选项D;又因为当时,,所以排除选项A;令,则,则,故选C.【点睛】本题主要考查了具体函数图象的识别问题,其中解答中熟练应用函数的奇偶性和特殊点的函数值进行合理排除是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.若函数为奇函数,则()A. B. C. D.【答案】D【解析】【分析】根据函数的奇偶性,求得函数的解析式,进而求解相应的函数值,得到答案.【详解】由题意知,函数为奇函数,可得当时,,所以函数的解析式为,所以.故选D.【点睛】本题主要考查了函数的奇偶性的应用,以及函数值的求解,其中解答中根据函数的奇偶性,准确求解函数的解析式是解答的关键,着重考查了推理与运算能力,属于中档试题.9.若一个几何体的三视图如图所示,则该集合体的体积为()A. B. C. D.【答案】A【解析】【分析】由三视图,得到该几何体是两个相同的直三棱柱的组合体,利用体积公式,即可求解.【详解】根据三视图分析知,该几何体的直观图如图所示,O为AB的中点,其中该几何体是两个相同的直三棱柱的组合体,所以该几何体的体积.故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.10.在侦破某一起案件时,警方要从甲、乙、丙、丁四名可疑人员中揪出真正的嫌疑人,现有四条明确的信息:(1)此案是两人共同作案;(2)若甲参与此案,则丙一定没参与;(3)若乙参与此案,则丁一定参与;(4)若丙没参与此案,则丁也一定没参与.据此可以判断参与此案的两名嫌疑人是()A. 甲、乙B. 乙、丙C. 甲、丁D. 丙、丁【答案】D【解析】若甲乙参加此案,则不符合(3);若乙丙参加此案,则不符合(3);若甲丁参加此案,则不符合(4);当丙丁参加此案,全部符合.故选D.11.已知双曲线的右焦点为,若双曲线的离心率为,则双曲线的渐近线与圆的位置关系是()A. 相离B. 相交C. 相切D. 不确定【答案】B【解析】【分析】根据双曲线的几何性质,求得双曲线的渐近线的方程,再利用直线与圆的位置关系的判定方法,即可得到直线与圆的位置关系,得到答案.【详解】据题意,双曲线的离心率为,即,可得.又因为,所以,所以双曲线的渐近线方程为.圆的圆心为,半径为.点到渐近线的距离.又因为,所以双曲线的渐近线与圆相交.故选B.【点睛】本题主要考查了双曲线的几何性质的应用,以及直线与圆的位置关系的判定,其中解答中根据双曲线的几何性质求得双曲线的渐近线的方程,再根据圆心到直线的距离与圆的半径的关系进行判定是解答的关键,着重考查了推理与运算能力,属于中档试题.12.已知数列的前项和为,且,那么的值为()A. B.C. D.【答案】A【解析】【分析】根据题意,求得,且,得到成以为首项、为公比的等比数列,成以为首项,为公比的等比数列,进而可求解的值,得到答案.【详解】由题意,知,所以,且,所以,即,所以成以为首项、为公比的等比数列,成以为首项,为公比的等比数列,所以,故选A.【点睛】本题主要考查了数列的递推公式的应用,以及数列的求和问题,其中解答中根据数列递推关系式,求得成以为首项、为公比的等比数列,成以为首项,为公比的等比数列是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题(将答案填在答题纸上)13.已知向量,若向量共线,则的最大值为______.【答案】【解析】【分析】根据向量共线的坐标运算,求得,再利用基本不等式,即可求解的最大值,得到答案.【详解】据题意知,向量共线,可得,即.又因为,所以,所以,所以.【点睛】本题主要考查了向量共线条件的应用,以及基本不等式求最值,其中解答中根据向量的共线条件,再利用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.14.二项展开式中的系数为________.【答案】【解析】【分析】由二项式求得展开式的通项,令,求得,代入即可求解x的系数,得到答案.【详解】由二项式的展开式的通项为:.令,则,所以二项展开式中的系数为.【点睛】本题主要考查了二项式定理的应用,其中解答中得出二项展开式的通项,利用通项确定r的值,代入求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.若,则_________.【答案】【解析】【分析】利用诱导公式,化简得,再利用余弦的二倍角公式,即可求解,得到答案.【详解】由题意知,所以,所以,所以.【点睛】本题主要考查了三角函数的诱导公式,以及余弦的二倍角公式的应用,其中解答中根据三角函数的诱导公式和余弦的倍角公式,合理化简、运算是解答的关键,着重考查了推理与运算能力,属于基础题.16.已知点在球表面上,且,若三棱锥的体积为,球心恰好在棱上,则这个球的表面积为________.【答案】【解析】【分析】根据条件可知球心是侧棱中点.利用三棱锥的体积公式,求得设点到平面的距离,又由球的性质,求得,利用球的表面积公式,即可求解.【详解】由题意,满足,所以为直角三角形,根据条件可知球心是侧棱中点.设点到平面的距离为,则,解得,又由球的性质,可得球半径为,满足,所以,所以这个球的表面积.【点睛】本题主要考查了球的表面积的计算,以及球的组合体的应用,其中解答中正确认识组合体的结构特征,合理利用球的性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算步骤.)17.在中,为线段的中点.(1)求线段的长;(2)求的面积.【答案】(1) (2)【解析】【分析】(1)在中,利用余弦定理,求得,又由为的中点,求得,利用余弦定理,即可求解的长;(2)由(1)知,求得,利用三角形的面积公式,即可求解.【详解】(1)在中,,所以,所以又因为为的中点,所以所以所以(2)由(1)求解知,,又,所以所以的面积【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.18.某大型商场2019年元旦期间累计生成万张购物单,现从中随机抽取张,并对抽出的每张单消费金额统计得到下表:消费金额(单位:元)购物单张数252530a b注:由于工作人员失误,后两栏数据无法辨识,只分别用字母代替,不过工作人员清楚记得的关系是.(1)求的值;(2)为鼓励顾客消费,该商场计划在2019年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次.抽奖规则:从装有个红球和个黑球(个球大小、材质完全相同)的不透明口袋中随机摸出个小球;记两种颜色小球数量差的绝对值为;当时,消费者可获得价值元的购物券,当时,消费者可获得价值元购物券,当时,消费者可获得元购物券.求参与抽奖的消费者获得购物券价值的分布列及数学期望.【答案】(1) (2)见解析【解析】【分析】(1)据题意,列出方程组,即可求解的值;(2)根据题意,分别求得当时对应的概率,得到关于变量的分布列,利用,期望的公式,即可求解数学期望.【详解】(1)据题意,得,解得所以(2)根据题意,得,,抽奖顾客获得的购物券价值的分布列为X420Y500200100P故(元)【点睛】本题主要考查了随机变量的分布列及其数学期望的求解,以及概率的应用,其中解答中认真审题、正确理解题意,得到随机变量的取值,求得随机变量取值的概率,得出随机变量的分布列是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.如图,四边形与四边形均为菱形,(1)求证:;(2)求直线与平面所成角的正弦值.【答案】(1)见证明;(2)【解析】【分析】(1)设交于点,连接,证得,,利用线面垂直的判定定理,证得平面,再由线面垂直的性质,即可得到;(2)连接,以分别为轴,轴,轴建立空间直角坐标系,求得平面的一个法向量,以及向量的坐标,利用向量的夹角公式,即可求解.【详解】(1)证明:设交于点,连接.因为四边形为菱形,所以为中点.又因为,所以又平面平面,所以平面又因为平面,所以,即.(2)连接,因为四边形为菱形,且,所以为等边三角形.又因为中点,所以又平面平面,所以平面.又四边形为菱形,所以两两垂直,以分别为轴,轴,轴建立空间直角坐标系如图:设,则所以所以设平面的一个法向量,则令,得.设直线与平面所成角为,则.【点睛】本题考查了直线与平面垂直的判定及应用,以及直线与平面所成的角的计算,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能合理利用直线与直线、直线与平面、平面与平面关系的相互转化,作出判定与证明,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.已知椭圆的离心率为分别为其左、右焦点,为椭圆上一点,且的周长为.(1)求椭圆的方程;(2)过点作关于轴对称的两条不同的直线,若直线交椭圆于一点,直线交椭圆于一点,证明:直线过定点.【答案】(1) (2)见证明【解析】【分析】(1)根据椭圆的离心率为,及的周长为,列出方程组,求得的值,即可得到椭圆的方程;(2)设直线方程为,联立方程组,利用二次方程根与系数的关系,求得,又由关于轴对称的两条不同直线的斜率只和为,化简、求得,得到直线方程,即可作出证明.【详解】(1)根据椭圆的离心率为,及的周长为,可得,解得,所以故椭圆的方程为.(2)证明:设直线方程为.联立方程组,整理得,所以.因为关于轴对称的两条不同直线的斜率只和为,所以,即,所以,所以,所以.所以直线方程为,所以直线过定点.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.已知函数.(1)求函数在区间的最小值;(2)当时,若,求证:.【答案】(1)见解析;(2)见证明【解析】【分析】(1)求得函数的导数,利用导数,分类讨论得出函数的单调性,即可求解函数的最小值,得到答案.(2)当时,可得函数在区间上单调递增,进而得到,即,,进而可作出证明.【详解】(1)因为,所以.令,则.分析知,;当时,,所以函数在区间上单调递增,在区间上单调递减.当,即时,函数在区间上的最小值;当,即时,函数在区间上的最小值;当,即时,函数在区间上的最小值.(2)证明:当时,,所以.分析知,函数在区间上单调递增.因为,所以,所以,所以,即.同理可得,所以,所以.所以.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程以及圆的直角坐标方程;(2)若直线与圆交于两点,求线段的长.【答案】(1) , (2)【解析】【分析】(1)根据直线的参数方程,消去参数,即可得到直线的普通方程,再根据极坐标与直角坐标的互化公式,即可求解圆的直角坐标方程;(2)圆的圆心坐标为,半径为,利用圆心的弦长公式,即可求解.【详解】(1)由直线的参数方程(为参数),消去参数,得直线的普通方程为.因为,所以,所以,所以,所以,所以,故圆的直角坐标方程为.(2)圆的圆心坐标为,半径为,所以点圆心到直线的距离,由圆的弦长公式,可得弦长.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标的互化,以及圆的弦长公式的应用,其中解答中熟记极坐标方程与直角坐标的互化公式,以及合理消去参数是解答的关键,着重考查了运算与求解能力,属于基础题.23.已知函数.(1)当时,求的解集;(2)若对任意恒成立,求实数的取值范围.【答案】(1). (2)【解析】【分析】(1)分类讨论去掉绝对值号,即可求解不等式的解集;(2)由对任意成立,即对任意成立,分类讨论,即可求解实数的取值范围.【详解】(1)当时,不等式为.当时,,解答当时,,解得当时,,解得综上,所求不等式的解集为.(2)据题意,得对任意成立,对任意成立.当时,;当时,,所以,所以若,分析知,满足题设;若,则,所以,所以满足题设;若,则,所以综上,所求实数的取值范围是.【点睛】本题主要考查了含绝对值不等式的求解,以及含绝对值不等式的恒成立问题,其中解答中合理分类讨论去掉绝对值,转化为等价不等式求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.。
2019届高三文科数学测试题(二)附答案
2019届高三文科数学测试题(二)附答案2019届高三理科数学测试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合(){}2log 2A x y x ==-,若全集U A =,{}12B x x =<<,则U B =( )A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞2.设i 是虚数单位,若复数()5i12ia a +∈-R 是纯虚数,则a =( ) A .1-B .1C .2-D .23.若()0,πα∈,()2sin πcos 3αα-+=,则sin cos αα-的值为( ) A .23B .23-C .43D .43-4.设平面向量()3,1=a ,(),3x =-b ,⊥a b ,则下列说法正确的是( )A .3x =是⊥a b 的充分不必要条件B .-a b 与a 的夹角为π3 C .12=bD .-a b 与b 的夹角为π65.已知双曲线()2222:10,0y x C a b a b-=>>的离心率为3,且经过点()2,2,则双曲线的实轴长为( ) A .12B .1C .22D .26.若321n xdx =+⎰,则二项式22nx x ⎛- ⎪⎝⎭的展开式中的常数项为( ) A .45256B .45256-C .45128D .45128-7.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a ,b 分别为10,4,则输出的a =( )A .0B .14C .4D .28.某几何体的三视图如图所示,则该几何体的体积为( )A .163B .203C .169D .209 9.已知0a >,1a ≠,()2x f x x a =-,当()1,1x ∈-时,均有()12f x <则实数a 的取值范围是( )A .[)10,2,2⎛⎤+∞ ⎥⎝⎦B .(]10,1,22⎛⎤ ⎥⎝⎦C .(]1,11,22⎡⎫⎪⎢⎣⎭D .[)1,12,2⎡⎫+∞⎪⎢⎣⎭10.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ) A .31200元B .36000元C .36800元D .38400元11.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象经过点()0,1B -,在区间ππ,183⎛⎫⎪⎝⎭上为单调函数,且()f x 的图象向左平移π个单位后与原来的图象重合,当1t ,217π2π,123t ⎛⎫∈-- ⎪⎝⎭,且12t t ≠时,()()12f t f t =,则()12f t t +=( ) A .3-B .1-C .1D .312.已知点P 是曲线sin ln y x x =+上任意一点,记直线OP (O 为坐标原点)的斜率为k ,则( )A .存在点P 使得1k ≥B .对于任意点P 都有1k <C .对于任意点P 都有0k <D .至少存在两个点P 使得1k =-第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知平面向量()1,x y =-a ,1≤a ,则事件“y x ≥”的概率为__________.14.已知抛物线24x y =的焦点为F ,准线与y 轴的交点为M ,N 为抛物线上任意一点,且满足32NF MN =,则NMF ∠=_________. 15.如图所示,在平面四边形ABCD 中,2AB =,3BC =,AB AD ⊥,AC CD ⊥,3AD AC =,则AC =__________.16.在三棱锥A BCD -中,底面为Rt △,且BC CD ⊥,斜边BD 上的高为1,三棱锥A BCD -的外接球的直径是AB ,若该外接球的表面积为16π,则三棱锥A BCD -的体积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{}n a 的前n 项和为n S ,11a =,11n n a S +=+, (1)求{}n a 的通项公式;(2)记()21log n n n b a a +=⋅,数列{}n b 的前n 项和为n T ,求证:12111...2nT T T +++<.18.(12分)如图,在四棱锥E ABCD -中,底面ABCD 为矩形,平面ABCD ⊥平面ABE ,90AEB ∠=︒,BE BC =,F 为CE 的中点. (1)求证:平面BDF ⊥平面ACE ;(2)2AE EB =,在线段AE 上是否存在一点P ,使得二面角P DB F --10请说明理由.21.(12分)已知()()()ln f x x m mx m =+-∈R , (1)求()f x 的单调区间;(2)设1m >,1x ,2x 为函数()f x 的两个零点,求证:120x x +<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线1C 的参数方程为cos sin x a y b ϕϕ=⎧⎨=⎩(0a b >>,ϕ为参数),在以O为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 是圆心在极轴上,且经过极点的圆.已知曲线1C上的点1,2M ⎛ ⎝⎭对应的参数π3ϕ=,射线π3θ=与曲线2C 交于点π1,3D ⎛⎫⎪⎝⎭, (1)求曲线1C 、2C 的直角坐标方程;(2)若点A ,B 在曲线1C 上的两个点且OA OB ⊥,求2211OAOB+的值.23.(10分)【选修4-5:不等式选讲】 已知函数()34f x x x =-++. (1)求()()4f x f ≥的解集;(2)设函数()()()3g x k x k =-∈R ,若()()f x g x >对x ∀∈R 成立,求实数k 的取值范围.高三理科数学(二)答 案一、选择题. 1.【答案】B 2.【答案】D 3.【答案】C 4.【答案】B 5.【答案】C 6.【答案】A 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】C 11.【答案】B 12.【答案】B 二、填空题.13.【答案】1142π-14.【答案】π615.【答案】3 16.【答案】43三、解答题. 17.【答案】(1)12n n a -=;(2)见解析.【解析】(1)11n n a S +=+,2n ≥,11n n a S -=+,所以()122n n a a n +=≥, 又11a =,所以22a =,212a a =符合上式,所以{}n a 是以1为首项,以2为公比的等比数列.所以12n n a -=. (2)由(1)知()()1212log log 2221n n n n n b a a n -+=⋅=⨯=-,所以()21212n n T n n +-==, 所以()22212111111111......1...1212131n T T T n n n+++=+++≤++++⋅⋅- 11111223=+-+-111...221n n n++-=-<-.18.【答案】(1)见解析;(2)见解析.【解析】(1)∵平面ABCD ⊥平面ABE ,BC AB ⊥,平面ABCD 平面ABE AB =,∴BC ⊥平面ABE ,又∵AE ⊂平面ABE , ∴BC AE ⊥,又∵AE BE ⊥,BCBE B =,∴AE ⊥平面BCE ,BF ⊂平面BCE ,即AE BF ⊥, 在BCE △中,BE CB =,F 为CE 的中点, ∴BF CE ⊥,AE CE E =,∴BF ⊥平面ACE , 又BF ⊂平面BDF ,∴平面BDF ⊥平面ACE . (2)如图建立空间直角坐标系,设1AE =,则()2,0,0B ,()0,1,2D ,()2,0,2C ,()1,0,1F ,()0,0,0E ,设()0,,0P a ,()2,1,2BD =-,()1,0,1BF =-,()2,,0PB a =-,()2,0,2EC =,因为0EC BD ⋅=,0EC BF ⋅=,所以EC ⊥平面BDF ,故()2,0,2EC =为平面BDF 的一个法向量, 设⊥n 平面BDP ,且(),,x y z =n ,则由BD ⊥n 得220x y z -++=, 由PB ⊥n 得20x ay -=,从而(),2,1a a =-n ,cos ,EC EC EC ⋅<>==n n n,∴cos ,10EC <>=n ,解得0a =或1a =,即P 在E 处或A 处. 19.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)依题意可知, 4.5x =,21y =,88i ix y x yr -==∑940.924 4.58 5.57===≈⨯⨯,因为[]0.920.75,1∈,所以变量x ,y 线性相关性很强.(2)818222188508 4.521ˆ 2.242048 4.58i ii i i x yx ybx x===⋅-⨯⨯===-⨯-∑∑, ˆˆ21 2.24 4.510.92ay bx =-=-⨯=, 即y 关于x 的回归方程为ˆ 2.2410.92yx =+, 当10x =,ˆ 2.241010.9233.32y=⨯+=, 所以预计2018年6月份的二手房成交量为33. (3)二人所获奖金总额X 的所有可能取值有0,3,6,9,12千元, ()1110224P X ==⨯=,()11132233P X ==⨯⨯=,()1111562336218P X ==⨯+⨯⨯=,()11192369P X ==⨯⨯=,()111126636P X ==⨯=, 所以奖金总额的分布列如下表:()03691244318936E X =⨯+⨯+⨯+⨯+⨯=千元.20.【答案】(1)2212x y +=;(2).【解析】(1,∴22b a=, ∵离心率为2,∴2c a =,又222a b c =+,解得a =1c =,1b =, ∴椭圆C 的方程为2212x y +=.(2)①当直线MN 的斜率不存在时,直线PQ 的斜率为0, 此时4MN =,PQ =,PMQN S =四边形②当直线MN 的斜率存在时,设直线MN 的方程为()()10y k x k =-≠,联立24y x =, 得()()22222400k x k x k ∆-++=>, 设M ,N 的横坐标分别为M x ,N x ,则242M N x x k +=+,∴244M NMN x x p k =++=+, 由PQ MN ⊥可得直线PQ 的方程为()()110y x k k =--≠,联立椭圆C 的方程,消去y,得()()222242200k x x k ∆+-+-=>,设P ,Q 的横坐标为P x ,Q x ,则242P Q x x k+=+,22222P Q k x x k -=+, ∴)2212k PQ k +==+,)()22221122PMQNk S MN PQ k k +=⋅=+四边形,令()211k t t +=>,则()()2222111111PMQNS t t t t ⎫===+>⎪-+--⎭四边形 综上()minPMQNS =四边形21.【答案】(1)见解析;(2)见解析.【解析】(1)∵()()ln f x x m mx =+-,∴()1f x m x m'=-+, 当0m ≤时,∴()10f x m x m'=->+, 即()f x 的单调递增区间为(),m -+∞,无减区间;当0m >时,∴()11m x m m f x m x m x m⎛⎫-+- ⎪⎝⎭'=-=++, 由()0f x '=,得()1,x m m m =-+∈-+∞,1,x m m m ⎛⎫∈--+ ⎪⎝⎭时,()0f x '>,1,x m m ⎛⎫∈-++∞ ⎪⎝⎭时,()0f x '<,∴当0m >时,()f x 的单调递增区间为1,m m m ⎛⎫--+ ⎪⎝⎭,单调递减区间为1,m m ⎛⎫-++∞ ⎪⎝⎭.(2)由(1)知()f x 的单调递增区间为1,m m m ⎛⎫--+ ⎪⎝⎭,单调递减区间为1,m m ⎛⎫-++∞ ⎪⎝⎭,不妨设12m x x -<<,由条件知()()1122ln ln x m mx x m mx +=⎧⎪⎨+=⎪⎩,即1212e e mxmx x m x m ⎧+=⎪⎨+=⎪⎩, 构造函数()e mx g x x =-,()e mx g x x =-与y m =图象两交点的横坐标为1x ,2x ,由()e 10mx g x m '=-=可得ln 0mx m-=<, 而()2ln 1m m m >>,∴()ln ,mm m-∈-+∞, 知()e mx g x x =-在区间ln ,m m m -⎛⎫- ⎪⎝⎭上单调递减,在区间ln ,m m -⎛⎫+∞⎪⎝⎭上单调递增, 可知12ln mm x x m--<<< 欲证120x x +<,只需证122ln m x x m +<-,即证212ln ln ,m m x x m m ⎛⎫<--∈-+∞ ⎪⎝⎭, 考虑到()g x 在ln ,m m -⎛⎫+∞⎪⎝⎭上递增,只需证()212ln m g x g x m -⎛⎫<- ⎪⎝⎭, 由()()21g x g x =知,只需证()112ln m g x g x m -⎛⎫<-⎪⎝⎭, 令()()2ln 2ln 2ln e 2e mx m mx m m h x g x g x x m m ---⎛⎫=--=--- ⎪⎝⎭, 则()()2ln 2ln e e 2ee 222220e m mxm mxmx mx h x m m m ---⎛⎫'=---=+-≥== ⎪⎝⎭,所以()h x 为增函数,又ln 0m h m ⎛⎫-= ⎪⎝⎭,结合1ln m m x m --<<知()10h x <, 即()112ln m g x g x m -⎛⎫<-⎪⎝⎭成立,即120x x +<成立. 22.【答案】(1)见解析;(2)54.【解析】(1)将M ⎛ ⎝⎭及对应的参数π3ϕ=,代入cos sin x a y b ϕϕ=⎧⎨=⎩,得π1cos 3πsin 3a b ⎧=⎪⎪=,即21a b =⎧⎨=⎩,所以曲线1C 的方程为2cos sin x y ϕϕ=⎧⎨=⎩,ϕ为参数,即2214x y +=.设圆2C 的半径为R ,由题意可得,圆2C 的极坐标方程为2cos R ρθ= (或()222x R y R -+=),将点π1,3D ⎛⎫⎪⎝⎭代入2cos R ρθ=,得π12cos 3R =,即1R =,所以曲线2C 的极坐标方程为2cos ρθ=即()2211x y -+=.(2)设()1,A ρθ,2π,2B ρθ⎛⎫+ ⎪⎝⎭在曲线1C 上,所以222211cos sin 14ρθρθ+=,222222sin cos 14ρθρθ+=,所以22222222121111cos sin 5sin cos 444OAOBθθθθρρ⎛⎫⎛⎫+=+=+++= ⎪ ⎪⎝⎭⎝⎭. 23.【答案】(1){5x x ≤-或}4x ≥;(2)12k -<≤.【解析】(1)()34f x x x =-++,∴()()4f x f ≥,即349x x -++≥,∴4349x x x ≤-⎧⎨---≥⎩①或43349x x x -<<⎧⎨-++≥⎩②或3349x x x ≥⎧⎨-++≥⎩③,解不等式①:5x ≤-;②:无解;③:4x ≥, 所以()()4f x f ≥的解集为{5x x ≤-或}4x ≥.(2)()()f x g x >即()34f x x x =-++的图象恒在()()3g x k x =-,k ∈R 图象的上方,可以作出()21,4347,4321,3x x f x x x x x x --≤-⎧⎪=-++=-<<⎨⎪+≥⎩的图象,而()()3g x k x =-,k ∈R 图象为恒过定点()3,0P ,且斜率k 变化的一条直线, 作出函数()y f x =,()y g x =图象如图,其中2PB k =,可得()4,7A -,∴1PA k =-,由图可知,要使得()f x 的图象恒在()g x 图象的上方, 实数k 的取值范围为12k -<≤.。
贵州省遵义市中学2019年高三数学文测试题含解析
贵州省遵义市中学2019年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图,矩形ABCD中,点A的坐标为(-3,0),点B的坐标为(1,0).直线BD的方程为,四边形BDFE为正方形.若在五边形ABEFD内随机取一点,则该点取自三角形BCD(阴影部分)的概率为A. B. C. D.参考答案:D在中,令,得,即,则,所以,,由几何概型概率公式,得在五边形内随机取一点,该点取自三角形(阴影部分)的概率.故选D.2. 设集合,,则(A);(B);(C);(D)或.参考答案:C略3. 若x∈R,则“-1≤x≤2”是“|x|<1”的( )(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件参考答案:B略4. 如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,三星销量约占30%,苹果销量约占20%),根据该图,以下结论中一定正确的是()A. 四个季度中,每季度三星和苹果总销量之和均不低于华为的销量B. 苹果第二季度的销量小于第三季度的销量C. 第一季度销量最大的为三星,销量最小的为苹果D. 华为的全年销量最大参考答案:D【分析】根据华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图,分析出每个季度华为、苹果、三星三种品牌的手机各季度销量的百分比,再对每个选项进行分析判断即可. 【详解】对于A,第四季度中,华为销量大于50%,三星和苹果总销量之和低于华为的销量,故A错误;对于B,苹果第二季度的销量大于苹果第三季度的销量,故B错误;对于C,第一季度销量最大的是华为,故C错误;对于D,由图知,四个季度华为的销量都最大,所以华为的全年销量最大,D正确,故选D.【点睛】本题主要考查百分比堆积图的应用,考查了数形结合思想,意在考查灵活应用所学知识解决实际问题的能力,属于中档题.5. 已知等差数列的公差为2,若成等比数列,则前6项的和为()A.-20 B.-18 C. -16 D.-14参考答案:B6. 已知S n是等差数列{a n}的前n项和,,则=A.68 B.76 C.78 D.86参考答案:A7. 若表示不超过的最大整数,执行如图所示的程序框图,则输出的值为()A.4B.5C.7D.9参考答案:C8. 已知函数,则下列判断错误的是()A. f(x)的最小正周期为πB. f(x)的值域为[-1,3]C. f(x)的图象关于直线对称D. f(x)的图象关于点对称参考答案:D【分析】先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.9. 与事定义在R上的偶函数,若时=,则-为( )A.正数B.负数C.零D.不能确定参考答案:A==则恒成立是单调递增原式0恒成立注意点:若关于轴对称,T=2a若关于点对称,T=2a若关于对称,T=4a10. 已知函数f(x)=,则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是()(注:e为自然对数的底数)A.(0,)B.[,)C.(0,)D.[,e]参考答案:B【考点】分段函数的应用.【分析】由题意,方程f(x)=ax恰有两个不同实数根,等价于y=f(x)与y=ax有2个交点,又a表示直线y=ax的斜率,求出a的取值范围.【解答】解:∵方程f(x)=ax恰有两个不同实数根,∴y=f(x)与y=ax有2个交点,又∵a表示直线y=ax的斜率,∴y′=,设切点为(x0,y0),k=,∴切线方程为y﹣y0=(x﹣x0),而切线过原点,∴y0=1,x0=e,k=,∴直线l1的斜率为,又∵直线l2与y=x+1平行,∴直线l2的斜率为,∴实数a的取值范围是[,).故选:B.二、填空题:本大题共7小题,每小题4分,共28分11. 如图,与圆相切于点又点在圆内,与圆相交于点若那么该圆的半径的长为参考答案:如图所示,延长与圆相交于点直线与圆相交于点设根据切割线定理得又根据相交弦定理得12. 四棱锥P-ABCD的底面ABCD是正方形,PA⊥平面ABCD,各顶点都在同一球面上,若该棱锥的体积为4,,则此球的表面积等于______.参考答案:17π【分析】根据该四棱锥内嵌于长方体中,计算长方体体对角线再算外接球表面积即可.【详解】因为四边形ABCD是正方形,且平面ABCD,所以可以将该四棱锥内嵌于长方体中,因为棱锥体积.则该长方体的长、宽、高分别为2、2、3,它们的外接球是同一个,设外接球直径为,所以,所以表面积为.故答案为:【点睛】本题主要考查了四棱锥外接球表面积的计算,其中外接球直径为内嵌长方体的体对角线,属于中等题型.13. 设a>0.若曲线与直线x=a,y=0所围成封闭图形的面积为a,则a=____ __.参考答案:略14. 设是定义在上且以3为周期的奇函数,若,,则实数的取值范围是.参考答案:【知识点】函数的周期性与奇偶性;B4【答案解析】解析:解解:∵f(x)是定义在R上且以3为周期的奇函数∴f(x+3)=f(x),f(-x)=-f(x)∴f(2)=f(2-3)=f(-1)=-f(1)又f(1)≤1,∴f(2)≥-1即.故答案为:.【思路点拨】根据函数的性质求出的取值范围,然后求出a的值.15. 与向量垂直的单位向量的坐标是___________.参考答案:或设向量坐标为,则满足,解得或,即所求向量坐标为或16. 已知平面向量,满足|β|=1,且与﹣的夹角为120°,则的模的取值范围为.参考答案:(0,]【考点】平面向量数量积的运算.【分析】设=, =,得到∠ABC=60°由正弦定理得:||=sinC≤,从而求出其范围即可.【解答】解:设=, =如图所示:则由=﹣,又∵与﹣的夹角为120°∴∠ABC=60°又由||=||=1由正弦定理=得:||=sinC≤,∴||∈(0,]故答案为:(0,].17. 函数的最小正周期为_____.参考答案:函数,所以周期为。
贵州省遵义市绥阳中学2019届高三模拟卷(二)文科数学试题(原卷版)
绥阳中学2019届高三模拟卷(二)数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则()A. B.C.D.2.复数(为虚数单位)的虚部为()A. B.C.D.3.知,则的大小为()A.B.C. D.4.若等差数列的前项和为,则()A.B.C.D.5.已知实数满足不等式组,则的最小值为() A.B.C.D.6.若执行如图所示的程序框图,则输出的值是()A. B.C. D.7.函数的部分图像大致是()A. B. C.D.8.若函数为奇函数,则()A. B. C. D.9.将曲线向右平移个单位长度后得到曲线,若函数的图像关于轴对称,则()A. B. C. D.10.若一个几何体的三视图如图所示,则该集合体的体积为()A. B. C. D.11.在侦破某一起案件时,警方要从甲、乙、丙、丁四名可疑人员中揪出真正的嫌疑人,现有四条明确的信息:(1)此案是两人共同作案;(2)若甲参与此案,则丙一定没参与;(3)若乙参与此案,则丁一定参与;(4)若丙没参与此案,则丁也一定没参与.据此可以判断参与此案的两名嫌疑人是()A. 甲、乙B. 乙、丙C. 甲、丁D. 丙、丁12.已知双曲线的右焦点为,若双曲线的离心率为,则双曲线的渐近线与圆的位置关系是()A. 相离B. 相交C. 相切D. 不确定二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量,若,则实数__________.14.某校有高三年级学生人,为了了解一次模拟考试数学及格人数,按性别采用分层抽样的方法抽取了一个容量为的样本,若样本中有男生人,则高三学生中共有女生__________人.15.在锐角中,角的对边分别为.若,则角的大小为为____.16.已知点在球表面上,且,若三棱锥的体积为,球心恰好在棱上,则这个球的表面积为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在各项均为正数的等比数列中,(1)求数列的通项公式;(2)若,求数列的前项和 .18.2018年世界服装市场是富有经济活力的一年,某国有企业为了使2019年服装效益更上一层楼,决定进一步深化企业改革、制定好的政策,为此,该企业对某品牌服装2018年1月份~5月份的销售量(万件)与利润(万元)作统计数据如下表:(1)从这个月的利润(单位:万元)中任选个月,求此个月利润均大于万元且小于万元的概率;(2)已知销售量(万件)与利润(万元)大致满足线性相关关系,请根据前个月的数据,求出关于的线性回归方程;(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过万元,则认为得到的利润的估计数据是理想的.请用表格中第个月的数据检验由(2)中回归方程所得的第个月的利润的估计数据是否理想.注:19.如图所示,在四棱锥中,(1)证明:平面;(2)若的中点为,求四棱锥的体积.20.已知椭圆的离心率为分别为其左、右焦点,为椭圆上一点,且的周长为.(1)求椭圆的方程;(2)过点作关于轴对称的两条不同的直线,若直线交椭圆于一点,直线交椭圆于一点,证明:直线过定点.21.已知函数.(1)求函数的极值;(2)若,是否存在整数使对任意成立?若存在,求出的最小值;若不存在,请说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程以及圆的直角坐标方程;(2)若直线与圆交于两点,求线段的长.23.已知函数.(1)当时,求的解集;(2)若对任意恒成立,求实数的取值范围.。
贵州省遵义市绥阳县私立育才中学2019年高三数学文模拟试卷含解析
贵州省遵义市绥阳县私立育才中学2019年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 实数x,y满足,使z=ax+y取得最大值的最优解有两个,则z=ax+y+1的最小值为()A.0 B.﹣2 C.1 D.﹣1参考答案:A【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z=ax+y取得最大值的最优解有2个,利用数形结合确定a的取值即可得到结论.【解答】解:不等式组等价为或不等式对应的平面区域如图:由z=ax+y得y=﹣ax+z,若a=0时,直线y=﹣ax+z=z,此时取得最大值的最优解只有一个,不满足条件.若﹣a>0,则直线y=﹣ax+z截距取得最大值时,z取的最大值,此时满足直线y=﹣ax+z 经过点A,D时满足条件,此时﹣a=1,解得a=﹣1.若﹣a<0,则直线y=﹣ax+z截距取得最大值时,z取的最大值,此时z=ax+y取得最大值的最优解有1个或者无数个,不满足条件.综上满足条件的a=﹣1,即z=﹣x+y+1,则y=x+z﹣1,当直线y=x+z﹣1经过B(1,0),C(0,﹣1)时,目标函数取得最小值,此时z=﹣1+0+1=0,故选:A2. 执行右面的程序框图,那么输出S的值为A.9 B.10 C.45 D.55参考答案:D略3. 已知集合,若,则实数的取值范围是A.B.C.D.参考答案:C4. 设,,,则A.B.C.D.参考答案:C略5. 下列四个函数中,既是偶函数又在(0,+∞)上为增函数的是()A.y=x2﹣2x B.y=x3 C.y=ln D.y=|x|+1参考答案:D【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】逐一分析四个函数的奇偶性,单调性,判断是否满足既是偶函数又在(0,+∞)上为增函数,可得答案.【解答】解:函数y=x2﹣2x为非奇非偶函数;函数y=x3为奇函数;函数y=ln的定义域为(﹣1,1),函数y=|x|+1既是偶函数又在(0,+∞)上为增函数,故选:D【点评】本题考查的知识点是函数的单调性,函数的奇偶性,熟练掌握各种基本初等函数的图象和性质是解答的关键.6. 通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由算得,.参照附表,得到的正确结论是( )A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”参考答案:C考点:独立性检验的应用.专题:常规题型.分析:题目的条件中已经给出这组数据的观测值,我们只要把所给的观测值同节选的观测值表进行比较,发现它大于6.635,得到有99%以上的把握认为“爱好这项运动与性别有关”.解答:解:由题意算得,.∵7.8>6.635,∴有0.01=1%的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”故选:C.点评:本题考查独立性检验的应用,这种问题一般运算量比较大,通常是为考查运算能力设计的,本题有创新的地方就是给出了观测值,只要进行比较就可以,本题是一个基础题.7. 函数的定义域是(A). (B). (C). (D) .参考答案:C略8. 函数在区间的简图是(▲)参考答案:A略9. 给出下列命题:①函数y=cos(﹣2x)是偶函数;②函数y=sin(x+)在闭区间上是增函数;③直线x=是函数y=sin(2x+)图象的一条对称轴;④将函数y=cos(2x﹣)的图象向左平移单位,得到函数y=cos2x的图象,其中正确的命题的个数为()A.1 B.2 C.3 D.4参考答案:B【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】利用诱导公式化简①,然后判断奇偶性;求出函数y=sin(x+)的增区间,判断②的正误;直线x=代入函数y=sin(2x+)是否取得最值,判断③的正误;利用平移求出解析式判断④的正误即可.【解答】解:①函数y=sin(﹣2x)=sin2x,它是奇函数,不正确;②函数y=sin(x+)的单调增区间是,k∈Z,在闭区间上是增函数,正确;③直线x=代入函数y=sin(2x+)=﹣1,所以x=图象的一条对称轴,正确;④将函数y=cos(2x﹣)的图象向左平移单位,得到函数y=cos(2x+)的图象,所以④不正确.故选:B.10. 已知P是边长为2的正边BC上的动点,则()A.最大值为8 B.最小值为2C.是定值6 D.与P的位置有关参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 当n为正整数时,定义函数N(n)表示n的最大奇因数.如N(3)=3,N(10)=5,….记S(n)=N(1)+N(2)+N(3)+…+N(2n).则(1)S(3)=____;(2)S(n)=____.参考答案:22;略12. 如图,在中,斜边,直角边,如果以C为圆心的圆与AB相切于,则的半径长为___________.参考答案:略13. 二项式的展开式中常数项为(用数字作答)参考答案:14. 在锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知,,则△ABC的面积取最小值时有c2= .参考答案:由正弦定理,即为,又,即,由于,即有,即有,由,即有,解得,当且仅当,取得等号,当取得最小值,又(为锐角),则,则.15. 已知个面向量,满足||=1,|﹣2|=,且与夹角为120°,则||= .参考答案:2【考点】9R:平面向量数量积的运算.【分析】利用已知等式以及平面向量的数量积得到关于||的方程解之.【解答】解:向量,满足||=1,|﹣2|=,且与夹角为120°,所以|﹣2|2=21,且与夹角为120°,则,整理得,解得||=2;故答案为:2.16. 设平面点集,则所表示的平面图形的面积为__________参考答案:17. 定义在上的奇函数f(x)的导函数为,且.当x>0时,.则不等式的解集为__________.参考答案:三、解答题:本大题共5小题,共72分。
【全国百强校】贵州省遵义市绥阳中学2019届高三模拟(二)数学试题-1d1e8b49504a4224b992988316159721
绝密★启用前 【全国百强校】贵州省遵义市绥阳中学2019届高三模拟(二)数学试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.若集合 ,则( ) A . B . C . D . 2.若复数 满足 ( 为虚数单位),则复数 的共轭复数的模是( ) A . B . C . D . 3.已知 ,则 的大小为( ) A . B . C . D . 4.已知数列 的前 项和为 ,若 ,则 ( ) A . B . C . D . 5.已知实数 满足不等式组 ,则 的最小值为( ) A . B . C . D . 6.若执行如图所示的程序框图,则输出 的值是( )○…………外…………装…………○…………订…○…………线…………○……不※※要※※在※※装※※订※※线※※内※※答○…………内…………装…………○…………订…○…………线…………○…… A . B . C . D .7.函数的部分图像大致是( )A .B .C .D .8.若函数为奇函数,则 ( )A .B .C .D .9.若一个几何体的三视图如图所示,则该集合体的体积为( )10.在侦破某一起案件时,警方要从甲、乙、丙、丁四名可疑人员中揪出真正的嫌疑人,现有四条明确的信息:(1)此案是两人共同作案;(2)若甲参与此案,则丙一定没参与;(3)若乙参与此案,则丁一定参与;(4)若丙没参与此案,则丁也一定没参与.据此可以判断参与此案的两名嫌疑人是()A.甲、乙B.乙、丙C.甲、丁D.丙、丁11.已知双曲线的右焦点为,若双曲线的离心率为,则双曲线的渐近线与圆的位置关系是()A.相离B.相交C.相切D.不确定12.已知数列的前项和为,且,那么的值为()A.B.C.D.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.已知向量,若向量共线,则的最大值为______.14.二项展开式中的系数为________.15.若,则_________.16.已知点在球表面上,且的体积为,球心恰好在棱上,则这个球的表面积为________.三、解答题17.在中,为线段的中点.(1)求线段的长;(2)求的面积.18.某大型商场2019年元旦期间累计生成万张购物单,现从中随机抽取张,并对抽出的每张单消费金额统计得到下表:注:由于工作人员失误,后两栏数据无法辨识,只分别用字母代替,不过工作人员清楚记得的关系是.(1)求的值;(2)为鼓励顾客消费,该商场计划在2019年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次.抽奖规则:从装有个红球和个黑球(个球大小、材质完全相同)的不透明口袋中随机摸出个小球;记两种颜色小球数量差的绝对值为;当…………线…………………线………当 时,消费者可获得 元购物券.求参与抽奖的消费者获得购物券价值 的分布列及数学期望. 19.如图,四边形 与四边形 均为菱形,(1)求证: ; (2)求直线 与平面 所成角的正弦值. 20.已知椭圆 的离心率为 分别为其左、右焦点, 为椭圆 上一点,且 的周长为 . (1)求椭圆 的方程; (2)过点 作关于轴 对称的两条不同的直线 ,若直线 交椭圆 于一点 ,直线 交椭圆 于一点 ,证明:直线 过定点. 21.已知函数 . (1)求函数 在区间 的最小值; (2)当 时,若 ,求证: . 22.已知在平面直角坐标系 中,直线 的参数方程为 ( 为参数),以坐标原点为极点, 轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆 的极坐标方程为 . (1)求直线 的普通方程以及圆 的直角坐标方程; (2)若直线 与圆 交于 两点,求线段 的长. 23.已知函数 . (1)当 时,求 的解集; (2)若 对任意 恒成立,求实数 的取值范围.参考答案1.B【解析】【分析】根据对数的性质,求得集合B,再根据集合的交集和并集的运算,即可求解.【详解】由题意,可得.故选B.【点睛】本题主要考查了集合的运算,其中解答中正确求解集合B,再利用集合的运算,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.2.B【解析】【分析】根据复数的四则运算,化简复数为,再根据复数模的运算公式,即可求解.【详解】由题意,因为,所以所以,所以. 故选B.【点睛】本题主要考查了复数的运算,以及共轭复数的概念和模的运算,其中解答中熟记复数的四则运算,正确求解复数是解答的关键,着重考查了运算与求解能力,属于基础题.3.C【解析】【分析】根据指数幂的运算性质,求得的取值范围,即可得到答案.【详解】由题意,根据指数幂的运算性质,可得所以. 故选C.本题主要考查了实数指数幂的运算性质的应用,其中解答中熟记指数幂的运算性质,合理计算的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 4.C【解析】【分析】根据数列的递推公式,化简求得,进而可求解的值,得到答案.【详解】由题意,可知,所以,所以,所以,所以.又因为,所以. 故选C.【点睛】本题主要考查了数列的递推公式的应用,以及等比数列的应用,其中解答中根据数列的递推公式,求的,再利用等比数列的通项公式求解是解答的关键,着重考查了运算与求解能力,属于中档试题.5.A【解析】【分析】作出不等式组所表示的平面区域,结合图象得出目标函数的最优解,即可求解目标函数的最小值,得到答案.【详解】由题意,作出不等式组,表示的平面区域(阴影区域)如图:令,则,当直线经过点B时,在y轴上的截距最小,此时目标函数取得最小值,又由,解得,即,所以目标函数的最小值为.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6.D【解析】【分析】执行如图所示的程序框图,得到的值呈周期性变化,且周期为,进而可求解输出的结果,得到答案.【详解】由题意,执行如图所示的程序框图,可知:第一次循环:第二次循环:第三次循环:第四次循环:第五次循环,可以看出的值呈周期性变化,且周期为.因为,所以输出的是.故选D.【点睛】本题主要考查了循环结构的程序框图的输出结果的计算问题,其中解答中执行循环体,得出每次循环的计算规律是解答的关键,着重考查了推理与运算能力,属于基础题.7.C【分析】根据函数的奇偶性和特殊点的函数值,进行合理排除,即可作出选择,得到答案.【详解】由题意,因为,所以,所以函数是偶函数,图象关于y轴对称,排除选项D;又因为当时,,所以排除选项A;令,则,则,故选C.【点睛】本题主要考查了具体函数图象的识别问题,其中解答中熟练应用函数的奇偶性和特殊点的函数值进行合理排除是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 8.D【解析】【分析】根据函数的奇偶性,求得函数的解析式,进而求解相应的函数值,得到答案.【详解】由题意知,函数为奇函数,可得当时,,所以函数的解析式为,所以.故选D.【点睛】本题主要考查了函数的奇偶性的应用,以及函数值的求解,其中解答中根据函数的奇偶性,准确求解函数的解析式是解答的关键,着重考查了推理与运算能力,属于中档试题.9.A【解析】【分析】由三视图,得到该几何体是两个相同的直三棱柱的组合体,利用体积公式,即可求解. 【详解】根据三视图分析知,该几何体的直观图如图所示,O为AB的中点,其中该几何体是两个相同的直三棱柱的组合体,所以该几何体的体积.故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.10.D【解析】若甲乙参加此案,则不符合(3);若乙丙参加此案,则不符合(3);若甲丁参加此案,则不符合(4);当丙丁参加此案,全部符合.故选D.11.B【解析】【分析】根据双曲线的几何性质,求得双曲线的渐近线的方程,再利用直线与圆的位置关系的判定方法,即可得到直线与圆的位置关系,得到答案.【详解】据题意,双曲线的离心率为,即,可得.又因为,所以,所以双曲线的渐近线方程为.圆的圆心为,半径为.点到渐近线的距离.又因为,所以双曲线的渐近线与圆相交.故选B.【点睛】本题主要考查了双曲线的几何性质的应用,以及直线与圆的位置关系的判定,其中解答中根据双曲线的几何性质求得双曲线的渐近线的方程,再根据圆心到直线的距离与圆的半径的关系进行判定是解答的关键,着重考查了推理与运算能力,属于中档试题.12.A【解析】【分析】根据题意,求得,且,得到成以为首项、为公比的等比数列,成以为首项,为公比的等比数列,进而可求解的值,得到答案.【详解】由题意,知,所以,且,所以,即,所以成以为首项、为公比的等比数列,成以为首项,为公比的等比数列,所以,故选A.【点睛】本题主要考查了数列的递推公式的应用,以及数列的求和问题,其中解答中根据数列递推关系式,求得成以为首项、为公比的等比数列,成以为首项,为公比的等比数列是解答的关键,着重考查了推理与运算能力,属于中档试题.13.【解析】【分析】根据向量共线的坐标运算,求得,再利用基本不等式,即可求解的最大值,得到答案.【详解】据题意知,向量共线,可得,即.又因为,所以,所以,所以.【点睛】本题主要考查了向量共线条件的应用,以及基本不等式求最值,其中解答中根据向量的共线条件,再利用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.14.【解析】【分析】由二项式求得展开式的通项,令,求得,代入即可求解x的系数,得到答案.【详解】由二项式的展开式的通项为:. 令,则,所以二项展开式中的系数为.【点睛】本题主要考查了二项式定理的应用,其中解答中得出二项展开式的通项,利用通项确定r的值,代入求解是解答的关键,着重考查了运算与求解能力,属于基础题.15.【解析】【分析】利用诱导公式,化简得,再利用余弦的二倍角公式,即可求解,得到答案. 【详解】由题意知,所以,所以,所以.【点睛】本题主要考查了三角函数的诱导公式,以及余弦的二倍角公式的应用,其中解答中根据三角函数的诱导公式和余弦的倍角公式,合理化简、运算是解答的关键,着重考查了推理与运算能力,属于基础题.16.【解析】【分析】根据条件可知球心是侧棱中点.利用三棱锥的体积公式,求得设点到平面的距离,又由球的性质,求得,利用球的表面积公式,即可求解.【详解】由题意,满足为直角三角形,根据条件可知球心是侧棱中点.设点到平面的距离为,则,解得,又由球的性质,可得球半径为,满足,所以,所以这个球的表面积.【点睛】本题主要考查了球的表面积的计算,以及球的组合体的应用,其中解答中正确认识组合体的结构特征,合理利用球的性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.17.(1) (2)【解析】【分析】(1)在中,利用余弦定理,求得,又由为的中点,求得,利用余弦定理,即可求解的长;(2)由(1)知,求得,利用三角形的面积公式,即可求解.【详解】(1)在中,,所以,所以又因为为的中点,所以所以所以(2)由(1)求解知,,又,所以所以的面积【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.18.(1) (2)见解析【解析】【分析】(1)据题意,列出方程组,即可求解的值;(2)根据题意,分别求得当时对应的概率,得到关于变量的分布列,利用,期望的公式,即可求解数学期望.【详解】(1)据题意,得,解得所以(2)根据题意,得,,抽奖顾客获得的购物券价值的分布列为故(元)【点睛】本题主要考查了随机变量的分布列及其数学期望的求解,以及概率的应用,其中解答中认真审题、正确理解题意,得到随机变量的取值,求得随机变量取值的概率,得出随机变量的分布列是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题. 19.(1)见证明;(2)【解析】【分析】(1)设交于点,连接,证得,,利用线面垂直的判定定理,证得平面,再由线面垂直的性质,即可得到;(2)连接,以分别为轴,轴,轴建立空间直角坐标系,求得平面的一个法向量,以及向量的坐标,利用向量的夹角公式,即可求解.【详解】(1)证明:设交于点,连接.因为四边形为菱形,所以为中点.又因为,所以又平面平面,所以平面又因为平面,所以,即.(2)连接,因为四边形为菱形,且,所以为等边三角形.又因为中点,所以又平面平面,所以平面.又四边形为菱形,所以两两垂直,以分别为轴,轴,轴建立空间直角坐标系如图:设,则所以所以设平面的一个法向量,则令,得.设直线与平面所成角为,则.【点睛】本题考查了直线与平面垂直的判定及应用,以及直线与平面所成的角的计算,意在考查学生的空间想象能力和逻辑推理能力,解答本题关键在于能合理利用直线与直线、直线与平面、平面与平面关系的相互转化,作出判定与证明,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.(1) (2)见证明【解析】【分析】(1)根据椭圆的离心率为,及的周长为,列出方程组,求得的值,即可得到椭圆的方程;(2)设直线方程为,联立方程组,利用二次方程根与系数的关系,求得,又由关于轴对称的两条不同直线的斜率只和为,化简、求得,得到直线方程,即可作出证明.【详解】(1)根据椭圆的离心率为,及的周长为,可得,解得,所以故椭圆的方程为.(2)证明:设直线方程为.联立方程组,整理得,所以.因为关于轴对称的两条不同直线的斜率只和为,所以,即,所以,所以,所以.所以直线方程为,所以直线过定点.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.(1)见解析;(2)见证明【解析】【分析】(1)求得函数的导数,利用导数,分类讨论得出函数的单调性,即可求解函数的最小值,得到答案.(2)当时,可得函数在区间上单调递增,进而得到,即,,进而可作出证明.【详解】(1)因为,所以.令,则.分析知,;当时,,所以函数在区间上单调递增,在区间上单调递减.当,即时,函数在区间上的最小值;当,即时,函数在区间上的最小值;当,即时,函数在区间上的最小值.(2)证明:当时,,所以.分析知,函数在区间上单调递增.因为,所以,所以,所以,即.同理可得,所以,所以.所以.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.(1) , (2)【解析】【分析】(1)根据直线的参数方程,消去参数,即可得到直线的普通方程,再根据极坐标与直角坐标的互化公式,即可求解圆的直角坐标方程;(2)圆的圆心坐标为,半径为,利用圆心的弦长公式,即可求解.【详解】(1)由直线的参数方程(为参数),消去参数,得直线的普通方程为.因为,所以,所以,所以,所以,所以,故圆的直角坐标方程为.(2)圆的圆心坐标为,半径为,所以点圆心到直线的距离,由圆的弦长公式,可得弦长.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标的互化,以及圆的弦长公式的应用,其中解答中熟记极坐标方程与直角坐标的互化公式,以及合理消去参数是解答的关键,着重考查了运算与求解能力,属于基础题.23.(1) . (2)【解析】【分析】(1)分类讨论去掉绝对值号,即可求解不等式的解集;(2)由对任意成立,即对任意成立,分类讨论,即可求解实数的取值范围.【详解】(1)当时,不等式为.当时,,解答当时,,解得当时,,解得综上,所求不等式的解集为.(2)据题意,得对任意成立,对任意成立.当时,;当时,,所以,所以若,分析知,满足题设;本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2019-2020高三第二次模拟考试-文科数学答案
(2)设数学和语文两科的平均数和方差分别为 x1, x2, s12s22,
x1
ห้องสมุดไป่ตู้
81
84
93 5
90
92
88
,
x2
79
89
84 5
86
87
85
,
s12
72
42
52 5
22
42
22 ,
s22
62
42
22 5
12
12
11.6 ,
因为 88 85,11.6 22 ,所以数学二等奖考生较语文二等奖考生综合测试平均分高,但是稳定性
设 A(x1,y1),B(x2,y2),则 y1+y2=3+6k4k2,y1y2=3-+94kk22,又―AF→1 =2―F1→B ,所以 y1=-2y2,
所以
y1y2=-2(y1+y2)2,则
3+4k2=8,解得
k=± 25,又
k>0,所以
k=
5 2.
21.(本小题满分 12 分)(1)由 f(x)=ex-ax,得 f′(x)=ex-a. 因为 f′(0)=1-a=-1,所以 a=2,所以 f(x)=ex-2x,f′(x)=ex-2, 令 f′(x)=0,得 x=ln 2, 当 x<ln 2 时,f′(x)<0,f(x)单调递减; 当 x>ln 2 时,f′(x)>0,f(x)单调递增.
15. 3 ; 2
16.8.
三、解答题:共 70 分.解答应写出相应的文字说明,证明过程或演算步骤.
17. (本小题满分 12 分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绥阳中学2019届高三模拟卷(二)数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则()A. B. C. D.【答案】D【解析】【分析】求解出集合为整数集,根据交集定义得到结果.【详解】因为,所以本题正确选项:【点睛】本题考查集合间的运算,属于基础题.2.复数(为虚数单位)的虚部为()A. B. C. D.【答案】C【解析】【分析】由可得,则可得虚部为.【详解】因为所以复数的虚部为本题正确选项:【点睛】本题考查复数的基本概念和运算,属于基础题.3.知,则的大小为()A. B. C. D.【答案】C【解析】【分析】根据指数幂的运算性质,求得的取值范围,即可得到答案.【详解】由题意,根据指数幂的运算性质,可得所以. 故选C.【点睛】本题主要考查了实数指数幂的运算性质的应用,其中解答中熟记指数幂的运算性质,合理计算的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.若等差数列的前项和为,则()A. B. C. D.【答案】B【解析】【分析】根据等差数列和的公式,建立方程,求解出和,从而求得.【详解】令,则所以本题正确选项:【点睛】本题考查等差数列基本量的计算,关键在于能够将已知条件转化为关于基本量的方程,属于基础题.5.已知实数满足不等式组,则的最小值为()A. B. C. D.【答案】A【解析】【分析】作出不等式组所表示的平面区域,结合图象得出目标函数的最优解,即可求解目标函数的最小值,得到答案.【详解】由题意,作出不等式组,表示的平面区域(阴影区域)如图:令,则,当直线经过点B时,在y轴上的截距最小,此时目标函数取得最小值,又由,解得,即,所以目标函数的最小值为. 故选A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6.若执行如图所示的程序框图,则输出的值是()A. B. C. D.【答案】D【解析】【分析】执行如图所示的程序框图,得到的值呈周期性变化,且周期为,进而可求解输出的结果,得到答案.【详解】由题意,执行如图所示的程序框图,可知:第一次循环:第二次循环:第三次循环:第四次循环:第五次循环,可以看出的值呈周期性变化,且周期为.因为,所以输出的是.故选D.【点睛】本题主要考查了循环结构的程序框图的输出结果的计算问题,其中解答中执行循环体,得出每次循环的计算规律是解答的关键,着重考查了推理与运算能力,属于基础题.7.函数的部分图像大致是()A. B. C. D.【答案】C【解析】【分析】根据函数的奇偶性和特殊点的函数值,进行合理排除,即可作出选择,得到答案.【详解】由题意,因为,所以,所以函数是偶函数,图象关于y轴对称,排除选项D;又因为当时,,所以排除选项A;令,则,则,故选C.【点睛】本题主要考查了具体函数图象的识别问题,其中解答中熟练应用函数的奇偶性和特殊点的函数值进行合理排除是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8.若函数为奇函数,则()A. B. C. D.【答案】B【解析】【分析】根据为奇函数求解出的解析式;代入自变量,求解得到结果.【详解】因为为奇函数当时,则即所以本题正确选项:【点睛】本题考查利用奇偶性求解对称区间解析式、根据分段函数解析式求解函数值的问题,关键在于能够准确求出对称区间的解析式,属于基础题.9.将曲线向右平移个单位长度后得到曲线,若函数的图像关于轴对称,则()A. B. C. D.【答案】D【解析】曲线向右平移个单位长度后得到曲线,若函数的图象关于轴对称,则,则,又,所以.故选D.点睛:三角函数中函数图象的平移变化是常考知识点,也是易错题型.首项必须看清题目中是由哪个函数平移,平移后是哪个函数;其次,在平移时,还要注意自变量x的系数是否为1,如果x有系数,需要将系数提出来求平移量,平移时遵循“左加右减”.10.若一个几何体的三视图如图所示,则该集合体的体积为()A. B. C. D.【答案】A【解析】【分析】由三视图,得到该几何体是两个相同的直三棱柱的组合体,利用体积公式,即可求解.【详解】根据三视图分析知,该几何体的直观图如图所示,O为AB的中点,其中该几何体是两个相同的直三棱柱的组合体,所以该几何体的体积.故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.11.在侦破某一起案件时,警方要从甲、乙、丙、丁四名可疑人员中揪出真正的嫌疑人,现有四条明确的信息:(1)此案是两人共同作案;(2)若甲参与此案,则丙一定没参与;(3)若乙参与此案,则丁一定参与;(4)若丙没参与此案,则丁也一定没参与.据此可以判断参与此案的两名嫌疑人是()A. 甲、乙B. 乙、丙C. 甲、丁D. 丙、丁【答案】D【解析】若甲乙参加此案,则不符合(3);若乙丙参加此案,则不符合(3);若甲丁参加此案,则不符合(4);当丙丁参加此案,全部符合.故选D.12.已知双曲线的右焦点为,若双曲线的离心率为,则双曲线的渐近线与圆的位置关系是()A. 相离B. 相交C. 相切D. 不确定【答案】B【解析】【分析】根据双曲线的几何性质,求得双曲线的渐近线的方程,再利用直线与圆的位置关系的判定方法,即可得到直线与圆的位置关系,得到答案.【详解】据题意,双曲线的离心率为,即,可得.又因为,所以,所以双曲线的渐近线方程为.圆的圆心为,半径为.点到渐近线的距离.又因为,所以双曲线的渐近线与圆相交.故选B.【点睛】本题主要考查了双曲线的几何性质的应用,以及直线与圆的位置关系的判定,其中解答中根据双曲线的几何性质求得双曲线的渐近线的方程,再根据圆心到直线的距离与圆的半径的关系进行判定是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量,若,则实数__________.【答案】或【解析】【分析】求解出,根据构造方程,求解得到结果.【详解】因为所以又,所以解得或本题正确结果:或【点睛】本题考查向量的坐标运算、已知模长求参数值问题,属于基础题.14.某校有高三年级学生人,为了了解一次模拟考试数学及格人数,按性别采用分层抽样的方法抽取了一个容量为的样本,若样本中有男生人,则高三学生中共有女生__________人.【答案】750【解析】【分析】由题意可知女生在样本中所占比例与在高三年级学生中所占比例相同,由此可得方程,解方程求得结果.【详解】设该校高三共有女生人,则,解得所以该校高三年级有女生人本题正确结果:【点睛】本题考查随机抽样中的分层抽样问题,关键在于明确分层抽样基本原则为按比例抽样,属于基础题.15.在锐角中,角的对边分别为.若,则角的大小为为____.【答案】【解析】由,两边同除以得,由余弦定理可得是锐角,,故答案为.16.已知点在球表面上,且,若三棱锥的体积为,球心恰好在棱上,则这个球的表面积为__________.【答案】【解析】【分析】根据条件可知球心是侧棱中点.利用三棱锥的体积公式,求得设点到平面的距离,又由球的性质,求得,利用球的表面积公式,即可求解.【详解】由题意,满足,所以为直角三角形,根据条件可知球心是侧棱中点.设点到平面的距离为,则,解得,又由球的性质,可得球半径为,满足,所以,所以这个球的表面积.【点睛】本题主要考查了球的表面积的计算,以及球的组合体的应用,其中解答中正确认识组合体的结构特征,合理利用球的性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在各项均为正数的等比数列中,(1)求数列的通项公式;(2)若,求数列的前项和 .【答案】(1);(2)【解析】【分析】(1)将改写为基本量的形式,得到方程,求解得到,从而得到;(2)利用分组求和的方式,将的前项和变为等比数列的前项和与等差数列的前项和的形式,求解得到结果.【详解】(1)设等比数列的公比为又因为所以又因为,所以所以(舍),又,所以(2)据(1)求解知,,所以所以【点睛】本题考查等比数列通项公式求解、分组求和法求解数列前项和的问题,关键在于能够根据数列通项的形式,确定求和时所采用的具体方法.18.2018年世界服装市场是富有经济活力的一年,某国有企业为了使2019年服装效益更上一层楼,决定进一步深化企业改革、制定好的政策,为此,该企业对某品牌服装2018年1月份~5月份的销售量(万件)与利润(万元)作统计数据如下表:(1)从这个月的利润(单位:万元)中任选个月,求此个月利润均大于万元且小于万元的概率;(2)已知销售量(万件)与利润(万元)大致满足线性相关关系,请根据前个月的数据,求出关于的线性回归方程;(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过万元,则认为得到的利润的估计数据是理想的.请用表格中第个月的数据检验由(2)中回归方程所得的第个月的利润的估计数据是否理想.注:【答案】(1);(2);(3)理想【解析】【分析】(1)列举法列出所有基本事件,然后找到满足题意的基本事件,从而求得结果;(2)分别求解出,代入公式求解得到结果;(3)将代入回归直线,求得估计值与实际值作差,差的绝对值小于,可知是理想的.【详解】(1)由题意知:所有的基本事件为,共个,其中利润均大于万元且小于万元的事件为,共个,所以所求概率(2)据前个月的数据,得所以,所以线性回归方程为(3)由题意,得当时,又所以利用(2)中的回归方程所得的第个月的利润估计数据是理想的【点睛】本题考查古典概型的计算、求解回归直线与利用回归直线估计数据问题,属于基础题.19.如图所示,在四棱锥中,(1)证明:平面;(2)若的中点为,求四棱锥的体积.【答案】(1)见解析;(2)【解析】【分析】(1)根据,可得,又,可证得结论;(2)根据为中点且,可得,又可知为所求四棱锥的高;再利用边长和角度关系求解出四边形的面积,根据棱锥体积公式求解得到结果.【详解】(1)因为又因为平面平面所以平面(2)因为的中点为,,所以以线段为直径的圆过点所以又因为,所以因为,即又平面平面所以平面又所以【点睛】本题考查线面垂直关系的证明、棱锥体积的求解.求解体积问题的关键是能够通过线面垂直的证明得到几何体的高.20.已知椭圆的离心率为分别为其左、右焦点,为椭圆上一点,且的周长为.(1)求椭圆的方程;(2)过点作关于轴对称的两条不同的直线,若直线交椭圆于一点,直线交椭圆于一点,证明:直线过定点.【答案】(1) (2)见证明【解析】【分析】(1)根据椭圆的离心率为,及的周长为,列出方程组,求得的值,即可得到椭圆的方程;(2)设直线方程为,联立方程组,利用二次方程根与系数的关系,求得,又由关于轴对称的两条不同直线的斜率只和为,化简、求得,得到直线方程,即可作出证明.【详解】(1)根据椭圆的离心率为,及的周长为,可得,解得,所以故椭圆的方程为.(2)证明:设直线方程为.联立方程组,整理得,所以.因为关于轴对称的两条不同直线的斜率只和为,所以,即,所以,所以,所以.所以直线方程为,所以直线过定点.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.已知函数.(1)求函数的极值;(2)若,是否存在整数使对任意成立?若存在,求出的最小值;若不存在,请说明理由.【答案】(1)极大值不存在极小值;(2)2【解析】【分析】(1)通过求导,令导函数等于零,求得为的极大值点,求解得到函数极大值,根据单调性可知无极小值;(2)将问题转化为:对任意,恒成立问题,分别在和两种情况下讨论;当时,由可知不合题意;当时,可求得最大值为,只需最大值即可,由此得到,经验证可得为满足题意的最小整数.【详解】(1)令,则分析知,当时,;当时,函数在区间上单调递增,在区间上单调递减函数在处取得极大值,不存在极小值(2)据题意,得对任意成立对任意成立设函数可知对任意成立①当时,对任意成立,此时在区间上单调递增又不满足题设;②当时,令,则(舍),分析知,函数在区间上单调递增,在区间上单调递减又函数在上单调递减所求整数的最小值为【点睛】本题考查利用导数求解函数极值、研究不等式恒成立的问题.解决恒成立问题的关键是能够将问题转化为函数最值所满足的关系,从而通过导数求解最值,得到关于所求变量的式子,通过分析求得结果.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆的极坐标方程为.(1)求直线的普通方程以及圆的直角坐标方程;(2)若直线与圆交于两点,求线段的长.【答案】(1) , (2)【解析】【分析】(1)根据直线的参数方程,消去参数,即可得到直线的普通方程,再根据极坐标与直角坐标的互化公式,即可求解圆的直角坐标方程;(2)圆的圆心坐标为,半径为,利用圆心的弦长公式,即可求解.【详解】(1)由直线的参数方程(为参数),消去参数,得直线的普通方程为.因为,所以,所以,所以,所以,所以,故圆的直角坐标方程为.(2)圆的圆心坐标为,半径为,所以点圆心到直线的距离,由圆的弦长公式,可得弦长.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标的互化,以及圆的弦长公式的应用,其中解答中熟记极坐标方程与直角坐标的互化公式,以及合理消去参数是解答的关键,着重考查了运算与求解能力,属于基础题.23.已知函数.(1)当时,求的解集;(2)若对任意恒成立,求实数的取值范围.【答案】(1) . (2)【解析】【分析】(1)分类讨论去掉绝对值号,即可求解不等式的解集;(2)由对任意成立,即对任意成立,分类讨论,即可求解实数的取值范围.【详解】(1)当时,不等式为.当时,,解答当时,,解得当时,,解得综上,所求不等式的解集为.(2)据题意,得对任意成立,对任意成立.当时,;当时,,所以,所以若,分析知,满足题设;若,则,所以,所以满足题设;若,则,所以综上,所求实数的取值范围是.【点睛】本题主要考查了含绝对值不等式的求解,以及含绝对值不等式的恒成立问题,其中解答中合理分类讨论去掉绝对值,转化为等价不等式求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.。