白噪声的产生与测试实验
随机实验理想白噪声和带限白噪声的产生与分析-5页word资料

实验八理想白噪声和带限白噪声的产生与分析1.实验目的了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用matlab或c/c++软件仿真和分析理想白噪声和带限白噪声的方法。
⒉实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。
确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。
然而白噪声在数学处理上比较方便,所以它在通信系统的分析中有十分重要的作用。
一般地说,只要噪声的功率谱密度的宽度远大于它所作用的系统的带宽,并且在系统的带内,它的功率谱密度基本上是常数,就可以作为白噪声处理了。
白噪声的功率谱密度为:其中为单边功率谱密度。
2 ) ( 0 N f S n 0 N白噪声的自相关函数位:白噪声的自相关函数是位于τ =0 处,强度为的冲击函数。
这表明白噪声在任何两个不同的瞬间的取值是不相关的。
同时也意味着白噪声能随时间无限快的变化,因为它含一切频率分量而无限宽的带宽。
) ( 20 N R )( 20 N若一个具有零均值的平稳随机过程,其功率谱密度在某一个有限频率范围内均匀分布,而在此范围外为零,则称这个过程为带限白噪声。
带限白噪声分为低通型和带通型。
⒊实验任务与要求⑴用matlab 或c/c++语言编写和仿真程序。
系统框图如图19、图20 所示:特性测试绘制图形低通滤波特性测试绘制图形白噪声图1 低通滤波器系统框图特性测试绘制图形带通滤波特性测试绘制图形白噪声图2 带通滤波器系统框图⑵输入信号为:高斯白噪声信号和均匀白噪声信号,图为高斯白噪声。
⑶设计一个低通滤波器和一个带通滤波器。
要求低通滤波器的通带为0KHz-2KHz、通带衰减小于1db、阻带衰减大于35db。
带通滤波器的通带为10KHz-20KHz、通带衰减小于1db、阻带衰减大于35db。
⑷首先计算白噪声的均值、均方值、方差、概率密度、频谱及功率谱密度、自相关函数。
白噪声特性测量实验

实验:白噪声特性测量一,实验目的1, 了解白噪声的性质与特点。
2, 掌握噪声对通信系统性能的影响。
二,实验内容1,开关的状态设置如下:(1)K102设置在1-2状态(跳线器置于左端);(1)K103设置在1-2状态(跳线器置于左端);2,伪码特性观察:测量TP101波形;图1.TP101波形3, 伪码噪声谱分析:用频谱仪测量TP101的伪码噪声谱4,2MHz噪声源分析:观察TP102信号波形图2.TP102波形5,限带噪声源观察:测量TP105信号波形图3.TP105信号波形6,低频噪声源观察:测量TP106基带噪声源。
图4.TP106基带噪声源波形图7,信号+噪声观察:在第一输入中频通道的输入端S001端加入1NHz 的信号,K201设置成3-4,5-6,如图3.1-3所示:分别测量TP201(输入)在有噪声与无噪声情况下的波形。
在加噪时K104的设置如图3.1-1所示,无加噪是K104的设置见图3.1-2所示。
通过电位器W101调整输出噪声的大小。
图6.有噪声的情况下波形图图7.无噪声的情况波形图三,实验总结与体会在做实验前,我以为不会难做,就像以前做物理实验一样,做完实验,然后两下子就将实验报告做完•直到做完测试实验时,我才知道其实并不容易做,但学到的知识与难度成正比,使我受益匪浅.在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间•做实验时,一定要亲力亲为,务必要将每个步骤每个细节弄清楚,弄明白,实验后,还要复习,思考,这样,你的印象才深刻,记得才牢固,否则,过后不久你就会忘得一干二净,这还不如不做.做实验时,老师还会根据自己的亲身体会,将一些课本上没有的知识教给我们,拓宽我们的眼界,使我们认识到这门课程在生活中的应用是那么的广泛.通过这次的实验,使我学到了不少实用的知识,更重要的是,做实验的过程,思考问题的方法,这与做其他的实验是通用的,真正使我们受益匪浅.。
白噪声的生成

白噪声的研究与生成目录白噪声的研究与生成 (1)目录 (1)1. 白噪声的定义 (2)2. 统计特性 (2)3. 白噪声的生成 (3)3.1 高斯白噪声的生成 (3)3.1.1. WGN:产生高斯白噪声 (3)3.1.2. AWGN:在某一信号中加入高斯白噪声 (3)3.1.3.注释 (4)3.2 均匀分布的白噪声的产生 (5)4.白噪声的应用 (6)1.白噪声的定义白噪声是指功率密度在整个频域内均匀分布的噪声。
所有频率具有相同能量的随机噪声称为白噪声。
从我们耳朵的频率响应听起来它是非常明亮的“咝”(每高一个八度,频率就升高一倍。
因此高频率区的能量也显著增强)。
即,此信号在各个频段上的功率是一样的。
由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。
相对的,其他不具有这一性质的噪声信号被称为有色噪声。
理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。
实际上,我们常常将有限带宽的平整信号视为白噪声,以方便进行数学分析。
2.统计特性术语白噪声也常用于表示在相关空间的自相关为0的空域噪声信号,于是信号在空间频率域内就是“白色”的,对于角频率域内的信号也是这样,例如夜空中向各个角度发散的信号。
右面的图片显示了计算机产生的一个有限长度的离散时间白噪声过程。
需要指出,相关性和概率分布是两个不相关的概念。
“白色”仅意味着信号是不相关的,白噪声的定义除了要求均值为零外并没有对信号应当服从哪种概率分布作出任何假设。
因此,如果某白噪声过程服从高斯分布,则它是“高斯白噪声”。
类似的,还有泊松白噪声、柯西白噪声等。
人们经常将高斯白噪声与白噪声相混同,这是不正确的认识。
根据中心极限定理,高斯白噪声是许多现实世界过程的一个很好的近似,并且能够生成数学上可以跟踪的模型,这些模型用得如此频繁以至于加性高斯白噪声成了一个标准的缩写词:AWGN。
实验一 白噪声测试

白噪声测试一、 实验目的⑴ 了解白噪声信号的特性,包括均值(数学期望)、均方值、方差、相关函数、概率密度、频谱及功率谱密度等。
⑵ 掌握白噪声信号的分析方法。
二、 实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。
确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。
然而白噪声在数学处理上比较方便,所以它在通信及电子工程系统的分析中有十分重要的作用。
一般地说,只要噪声的功率谱密度的宽度远大于它所作用的系统的带宽,并且在系统的带内,它的功率谱密度基本上是常数,就可以作为白噪声处理了。
白噪声的功率谱密度为:2)(0N f S n =其中0N 为单边功率谱密度。
白噪声的自相关函数为:)(20τδτN R =)( 白噪声的自相关函数是位于τ=0处、强度为20N 的冲击函数。
这表明白噪声在任何两个不同的瞬间的取值是不相关的。
同时也意味着白噪声能随时间无限快的变化,因为它的带宽是无限宽的。
下面我们给出几种分布的白噪声。
随机过程的几种分布前人已证明,要产生一个服从某种分布的随机数,可以先求出其分布函数的反函数的解析式,再将一个在[0,1]区间内的均匀分布的随机数的值代入其中,就可以计算出服从某种分布的随机数。
下面我们就求解这些随机数。
[0,1]区间均匀分布随机信号的产生:采用混合同余法产生[0,1]区间的均匀分布随机数。
混合同余法产生随机数的递推公式为:c ay y n n +=+1 n=0,1,2…… My x n n = n=1,2,3…… 由上式的出如下实用算法: ][1M c ax M c ax x n n n +-+=+ My x 00=其中:k M 2=,其中k 为计算几种数字尾部的字长14+=t a ,t 为任意选定的正整数0y ,为任意非负整数c ,为奇数 Matlab 语言中的rand ()函数是服从[0,1]均匀分布的,所以在以后的实验中如果用到均匀分布的随机数,我们统一使用rand()函数。
理想白噪声和带限白噪声的产生与分析

理想白噪声和带限白噪声的产生与分析摘要 利用Matlab 仿真分析产生的高斯白噪声和均匀白噪声通过低通滤波器和带通滤波器后的时域及频域波形,以便更好地理解白噪声。
背景 在实际应用中,通信设备的各种电子器件、传输线、天线等都会产生噪声,伴随着信号的产生、传输和处理的全过程。
噪声也是一种随机过程,而白噪声具有均匀功率谱密度,在数学处理上具有方便、简单的优点。
电子设备中的起伏过程如电阻热噪声、散弹噪声等,在相当宽的频率范围内具有均匀的功率谱密度,可以当做白噪声处理,因而研究白噪声的特性显得非常重要。
实验特点与原理(1)随机信号的分析方法在信号系统中,把信号分为确知信号与随机信号两类。
在工程技术中,一般用概率密度、均值、均方值、方差、自相关函数、频谱、功率谱密度等描述随机过程的统计特性。
①均值均值E[x(t)](μ)表示集合平均值或数学期望值。
基于随机过程的各态历经性,可用时间间隔T 内的幅值平均值表示:∑-==10/)()]([N t N t x t x E均值表达了信号变化的中心趋势,或称之为直流分量。
②均方值均方值E[x 2(t)](2ϕ),或称为平均功率:N t x t x E N t /)()]([(1022∑-==均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。
③方差定义: N t x E t x N t /)]]([)([122∑-=-=σ可以证明,2ϕ=2σ+2μ。
其中:2σ描述了信号的波动量;2μ 描述了信号的静态量。
④自相关函数信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程x(t)和y(t)在两个不同时刻t 和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:∑∑-=-+=101N t xy N /)t (y )t (x ),t (N R τττ τ,t=0,1,2,……N-1随机信号的自相关函数表示波形自身不同时刻的相似程度。
产生白噪声的实验报告

一、实验背景白噪声是一种具有平坦频谱特性的噪声,其功率谱密度在所有频率范围内均相等。
白噪声在信号处理、通信、噪声控制等领域具有广泛的应用。
本实验旨在通过搭建实验装置,产生白噪声,并对其进行测量和分析。
二、实验目的1. 了解白噪声的产生原理;2. 掌握白噪声的产生方法;3. 学习白噪声的测量方法;4. 分析白噪声的特性。
三、实验原理白噪声的产生原理是通过随机信号源产生具有平坦频谱特性的噪声。
在实验中,我们可以通过以下方法产生白噪声:1. 采用随机噪声发生器,将随机信号经过滤波器处理后,得到具有平坦频谱特性的白噪声;2. 利用数字信号处理技术,通过随机信号生成算法产生白噪声。
四、实验仪器与设备1. 随机噪声发生器;2. 滤波器;3. 信号分析仪;4. 示波器;5. 数据采集卡;6. 计算机。
五、实验步骤1. 连接实验装置,将随机噪声发生器的输出信号输入滤波器;2. 调整滤波器参数,使滤波器输出信号具有平坦频谱特性;3. 将滤波器输出信号输入信号分析仪,进行频谱分析;4. 使用示波器观察白噪声的波形;5. 使用数据采集卡采集白噪声信号,进行进一步分析。
六、实验结果与分析1. 频谱分析通过信号分析仪对白噪声进行频谱分析,得到白噪声的功率谱密度。
从分析结果可以看出,白噪声的功率谱密度在所有频率范围内均相等,符合白噪声的特性。
2. 波形观察使用示波器观察白噪声的波形,可以看到白噪声的波形具有随机性,无明显规律。
3. 数据分析使用数据采集卡采集白噪声信号,进行进一步分析。
通过分析白噪声的时域特性、频域特性等,可以进一步了解白噪声的特性。
七、实验结论1. 成功搭建了白噪声产生实验装置,并产生了具有平坦频谱特性的白噪声;2. 掌握了白噪声的产生方法、测量方法和特性分析;3. 为后续白噪声在信号处理、通信、噪声控制等领域的应用奠定了基础。
八、实验总结本实验通过对白噪声的产生、测量和分析,使我们了解了白噪声的特性及其应用。
模拟噪声算法实验报告

一、实验目的1. 理解模拟噪声算法的基本原理和实现方法。
2. 掌握不同类型噪声算法的优缺点和适用场景。
3. 通过实验验证模拟噪声算法在实际应用中的效果。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 开发工具:PyCharm4. 库:NumPy、SciPy、Matplotlib三、实验内容1. 白噪声模拟2. 紫噪声模拟3. 红噪声模拟4. 噪声滤波四、实验步骤1. 白噪声模拟(1)导入NumPy库,生成随机白噪声信号。
(2)绘制白噪声信号时域图和频谱图。
(3)分析白噪声信号的特性。
2. 紫噪声模拟(1)导入NumPy库,生成随机紫噪声信号。
(2)绘制紫噪声信号时域图和频谱图。
(3)分析紫噪声信号的特性。
3. 红噪声模拟(1)导入NumPy库,生成随机红噪声信号。
(2)绘制红噪声信号时域图和频谱图。
(3)分析红噪声信号的特性。
4. 噪声滤波(1)导入SciPy库,实现低通滤波器。
(2)将模拟的噪声信号进行滤波处理。
(3)绘制滤波后的信号时域图和频谱图。
(4)分析滤波后的信号特性。
五、实验结果与分析1. 白噪声模拟实验结果显示,白噪声信号在时域图上呈现随机分布,频谱图上呈现出均匀分布的特性。
白噪声模拟适用于通信、信号处理等领域。
2. 紫噪声模拟实验结果显示,紫噪声信号在时域图上呈现缓慢变化的特性,频谱图上呈现出蓝色斜率的特性。
紫噪声模拟适用于模拟自然界中的某些现象,如大气湍流等。
3. 红噪声模拟实验结果显示,红噪声信号在时域图上呈现缓慢变化的特性,频谱图上呈现出红色斜率的特性。
红噪声模拟适用于模拟自然界中的某些现象,如地震波等。
4. 噪声滤波实验结果显示,经过滤波处理后,噪声信号中的高频成分被有效抑制,信号质量得到提高。
滤波器的设计和参数选择对滤波效果有较大影响。
六、实验结论1. 通过本次实验,我们了解了不同类型噪声算法的原理和实现方法。
2. 实验结果表明,模拟噪声算法在实际应用中具有较高的准确性和实用性。
实验1 白噪声和M序列的产生

%-------------------------------------------(2.1) disp('实验二 生成高斯白噪声') disp(' ') for i=1:100 sTo=0; for j=1:12 sTo=sTo+T(12*i-j+1); end Y(i)=sTo-6; end aY=mean(Y); vY=var(Y); disp([' disp(' disp([' disp(' 该白噪声均值为 ' num2str(aY)]) ') 该白噪声方差为 ' num2str(vY) ]) ')
图 3 随机序列频率曲线图
对上述随机序列进行独立性检验,采取相关系数检验法,计算得到相关系数 r=6.3919 ×10-5,非常接近于 0,充分验证了该随机数列的随机性。
图 4 白噪声序列曲线图 9
利用上一步产生的均匀分布随机序列,令 n=12,生成服从 N(0,1)的白噪声,序列长度 为 100,绘制曲线如图 4 所示。计算得到该白噪声均值为-0.1143,接近于理论值 0;该白噪 声方差为 1.0623,接近于理论值 1. M 序列的循环周期取为 N P 2 1 63 ,时钟节拍 t 1Sec ,幅度 a 1 ,逻辑“0”
choice = input(' 是否查看白噪声序列曲线图形?(按数字 1 查看,其他均忽略)');
6
if choice == 1 disp(' 白噪声序列曲线图形如 figure 3 所示。') disp(' ') figure(3) plot(1:100,Y) title('白噪声序列曲线') end %-------------------------------------------(3.1) disp('实验三 生成 M 序列') disp(' ') for i=1:6 PP(1,i)=1; end for j=2:200 for i=2:6 PP(j,i)=PP(j-1,i-1); end PP(j,1)=mod(PP(j-1,5)+PP(j-1,6),2); end choice = input(' 是否查看 M 序列图形?(按数字 1 查看,其他均忽略)'); if choice ==1 disp(' M 序列图形如 figure 4 所示。') disp(' ') figure(4) stairs(1:200,PP(:,6)); axis([1 200 -0.5 1.5]); set(gca,'yTickLabel',{'' '-a' '' 'a' ''}) title('M 序列') xlabel('时序脉冲') end end
白噪声信道模拟实验报告

白噪声信道模拟实验报告一、实验目的本实验旨在通过模拟白噪声信道,研究其在无线通信系统中的性能影响。
通过对比分析白噪声信道与理想信道下的通信性能,进一步理解白噪声信道对通信系统性能的影响,为实际无线通信系统的设计和优化提供理论依据。
二、实验原理白噪声是一种具有特定统计特性的随机信号,其功率谱密度在整个频率范围内均匀分布。
在无线通信系统中,白噪声信道是常见的信道模型之一,它描述了信号在传输过程中受到的加性噪声。
白噪声信道模型有助于研究无线通信系统的性能极限和优化方法。
三、实验步骤1. 搭建实验平台:搭建一个包含发射机、接收机、白噪声信道和测量设备的实验平台。
2. 初始化参数:设置发射机参数,如调制方式、码率等;设置接收机参数,如解调方式、滤波器等;设置白噪声信道参数,如信噪比(SNR)等。
3. 发送数据:通过发射机发送数据信号,经过白噪声信道传输,被接收机接收。
4. 测量性能:通过测量设备对接收到的信号进行测量,记录误码率(BER)、频谱效率(SE)等性能指标。
5. 改变参数:改变白噪声信道的SNR,重复步骤3和4,记录不同SNR下的性能指标。
6. 数据分析:对实验数据进行处理和分析,绘制性能曲线,分析白噪声信道对通信系统性能的影响。
四、实验结果通过实验,我们获得了不同SNR下白噪声信道的性能指标。
在误码率(BER)方面,随着SNR的增加,误码率逐渐降低;在频谱效率(SE)方面,随着SNR的增加,频谱效率逐渐提高。
这些结果与理论分析一致,表明白噪声信道对通信系统性能存在一定的影响。
五、实验结论通过本次实验,我们验证了白噪声信道对通信系统性能的影响。
在无线通信系统中,白噪声信道是一种常见的信道模型,它描述了信号在传输过程中受到的加性噪声。
在设计和优化无线通信系统时,需要考虑白噪声信道的影响,以提高系统的性能和可靠性。
同时,本次实验也为后续研究提供了理论依据和实验基础。
湘潭大学移动通信实验报告实验3-白噪声信道模拟实验

湘潭大学移动通信实验报告实验3-白噪声信道模拟实验第一篇:湘潭大学移动通信实验报告实验3-白噪声信道模拟实验实验三、白噪声信道模拟实验一、实验目的1、了解白噪声产生原因。
2、了解多径干扰对信号的影响。
二、实验内容观察白噪声对信号的干扰。
三、基本原理在移动通信中,严重影响移动通信性能的主要噪声与干扰大致可分为3类:加性正态白噪声、多径干扰和多址干扰。
这里加性是指噪声与信号之间的关系服从叠加原理的线性关系,正态则是指噪声分布遵从正态(高斯)分布,而白则是指频谱是平坦的,仅含有这类噪声的信道一般文献上称为AWGN信道。
这类噪声是最基本的噪声,非移动信道所特有,一般简称这类噪声为白噪声。
这类噪声以热噪声、散弹噪声及宇宙噪声为代表,其特点是,无论在时域内还是在频域内它们总是普遍存在和不可避免的。
热噪声是在电阻一类导体中,自由电子的布朗运动引起的噪声。
导体中的每一个自由电子由于其热能而运动。
电子运动的途径,由于和其他粒子碰撞,是随机的和曲折的,即呈现布朗运动。
所有电子运动的总结果形成通过导体的电流。
电流的方向是随机的,因而其平均值为零。
然而,电子的这种随机运动还会产生一个交流电流成分。
这个交流成分称为热噪声。
散弹噪声是由真空电子管和半导体器件中电子发射的不均匀性引起的。
散弹噪声的物理性质可由平行板二极管的热阴极电子发射来说明。
在给定的温度下,二极管热阴极每秒发射的电子平均数目是常数,不过电子发射的实际数目随时间是变化的和不能预测的。
这就是说,如果我们将时间轴分为许多等间隔的小区间,则每一小区间内电子发射数目不是常量而是随机变量。
因此,发射电子所形成的电流并不是固定不变的,而是在一个平均值上起伏变化。
总电流实际上是许多单个电子单独作用的总结果。
由于从阴极发射的每一个电子可认为是独立出现的,且观察表明,每1安培多平均电流相当于在1秒钟内通过约6×1018个电子,所以总电流便是相当多的独立小电流之和。
于是,根据中心极限定理可知,总电流是一个高斯随机过程。
一种窄带高斯白噪声的生成与实现方法

一种窄带高斯白噪声的生成与实现方法窄带高斯白噪声是一种在频率范围较窄的情况下服从高斯分布的信号。
在通信系统中,窄带高斯白噪声经常用于模拟真实的通信环境以进行性能测试。
生成窄带高斯白噪声的一种简单方法是通过随机过程模拟。
下面将详细介绍生成与实现这种噪声的方法。
1.窄带高斯白噪声的特点:窄带高斯白噪声具有以下特点:-平稳性:在时间上是平稳的,即任意时刻的统计特性与时间无关。
-高斯性:噪声样本服从高斯分布,即符合正态分布。
-白噪声:在频率上是平坦的,即在所有频率上的功率谱密度相等。
2.实现窄带高斯白噪声的步骤:为了实现窄带高斯白噪声,我们可以按照以下步骤进行:-生成高斯分布的白噪声信号。
-通过一个窗函数将信号限制在指定的频带内。
接下来对每个步骤进行详细说明。
2.1.生成高斯分布的白噪声信号:生成服从高斯分布的白噪声信号可以通过伪随机数生成器来实现。
伪随机数生成器可以产生类似于高斯分布的随机数,我们可以利用这个特性来生成噪声信号。
生成随机数时需要注意选择合适的随机数生成算法,如Box-Muller变换等。
2.2.通过窗函数限制信号频带:生成的白噪声信号在频率上是平坦的,为了将其转换为窄带的噪声信号,我们需要通过一个窗函数来限制信号的频带。
常用的窗函数有矩形窗、汉宁窗、布莱克曼窗等。
矩形窗函数是一种简单的窗函数,它在指定的频带内给予信号全功率,在其他频带内给予信号零功率。
这样,只要我们选择一个合适的频带,并对生成的白噪声信号进行截断操作,就能获得窄带信号。
在Python中,我们可以使用NumPy和SciPy库中的函数来实现窄带高斯白噪声的生成。
以下是一个简单的示例代码:```pythonimport numpy as npfrom scipy.signal import windows#生成高斯白噪声信号#选择窗函数window = windows.hann(100)#对信号进行窗函数处理,限制在指定的频带内narrowband_noise = white_noise[:100] * window#打印信号的功率谱密度power_spectrum_density =np.abs(np.fft.fft(narrowband_noise))**2print(power_spectrum_density[:50]) # 前50个频率点的功率谱密度```总结:窄带高斯白噪声的生成与实现方法主要包括生成高斯分布的白噪声信号和通过窗函数限制信号频带。
实验室噪声测定实验报告(3篇)

第1篇一、实验目的1. 了解噪声的基本概念和测量方法;2. 掌握噪声测量仪器的使用方法;3. 培养实验操作能力和数据分析能力。
二、实验原理噪声是指不规则、无规律的声音。
噪声的测量通常采用声级计,声级计是一种用于测量声音强度的仪器。
本实验采用声级计对实验室噪声进行测量,测量结果以分贝(dB)为单位。
三、实验仪器与设备1. 声级计:用于测量实验室噪声;2. 音频信号发生器:用于产生标准噪声信号;3. 电脑:用于数据采集和存储;4. 话筒:用于接收噪声信号;5. 实验室:实验场地。
四、实验步骤1. 准备工作:检查实验仪器是否完好,连接好声级计、音频信号发生器和电脑;2. 校准声级计:按照声级计说明书进行校准,确保测量结果的准确性;3. 测量实验室噪声:将声级计放置在实验室中央,距离地面1.2米处,开启声级计,调整测量频率为1kHz,开始测量实验室噪声;4. 数据采集:将测量结果记录在实验记录表上;5. 重复测量:为了提高测量结果的可靠性,对实验室噪声进行多次测量,取平均值;6. 测量标准噪声信号:开启音频信号发生器,产生标准噪声信号,调整声级计至标准噪声信号处,记录声级计读数;7. 数据分析:将实验室噪声测量结果与标准噪声信号进行对比,分析实验室噪声水平。
五、实验结果与分析1. 实验室噪声测量结果:经多次测量,实验室噪声平均值为60dB;2. 标准噪声信号测量结果:标准噪声信号声级为70dB;3. 实验室噪声分析:实验室噪声平均值为60dB,略低于标准噪声信号声级,说明实验室噪声水平相对较低。
六、实验结论通过本次实验,我们掌握了噪声的基本概念和测量方法,学会了使用声级计测量实验室噪声。
实验结果表明,实验室噪声水平相对较低,符合国家标准。
七、实验注意事项1. 实验过程中,注意保持实验室安静,避免外界噪声干扰;2. 声级计放置位置要稳定,避免晃动;3. 校准声级计时,要严格按照说明书进行操作;4. 实验结束后,将实验仪器归位,保持实验室整洁。
白噪声检验的方法及原理

白噪声检验的方法及原理咱得明白啥是白噪声。
白噪声啊,就像是一种杂乱无章但又有规律可循的声音信号。
在统计学和时间序列分析里,白噪声可是个重要的概念呢。
它具有一些特定的性质,比如说均值为零,方差是一个常数,不同时间点的取值相互独立。
简单来说,白噪声就是一种随机的、没有明显趋势和规律的信号。
那为啥要进行白噪声检验呢?这可重要啦!如果一个时间序列是白噪声,那就意味着它没有可预测的模式,是完全随机的。
在很多情况下,我们需要确定一个时间序列是不是白噪声,因为这关系到我们后续的分析和预测方法的选择。
如果一个时间序列不是白噪声,那就可能存在某种趋势、季节性或者周期性,我们就可以利用这些特征来进行预测和分析。
但如果它是白噪声,那我们就知道用传统的预测方法可能不太管用啦。
接下来,咱说说白噪声检验的方法。
常见的方法有好几种呢,比如说自相关函数检验、Ljung-Box 检验和单位根检验等。
自相关函数检验呢,就是看时间序列的自相关函数。
如果一个时间序列是白噪声,那么它的自相关函数在所有的滞后阶数上都应该接近于零。
啥意思呢?就是说不同时间点的取值之间没有明显的相关性。
我们可以通过计算时间序列的自相关函数,并观察它在不同滞后阶数上的值来判断是不是白噪声。
如果自相关函数的值都很小,接近零,那很可能就是白噪声;如果自相关函数在某些滞后阶数上有较大的值,那就不是白噪声啦。
Ljung-Box 检验也是个常用的方法。
这个检验主要是通过计算统计量来判断时间序列的自相关性。
它会比较实际的自相关系数和在白噪声假设下的预期自相关系数。
如果统计量的值很大,那就说明时间序列不是白噪声;如果统计量的值比较小,那就有可能是白噪声。
Ljung-Box 检验通常会给出一个p 值,我们可以根据p 值来判断是否拒绝白噪声假设。
如果p 值小于某个显著性水平,比如0.05,那就拒绝白噪声假设,说明时间序列不是白噪声;如果p 值大于显著性水平,那就不能拒绝白噪声假设,可能是白噪声。
高斯白噪声特性仿真实验报告心得

高斯白噪声特性仿真实验报告心得实验介绍本次实验是对高斯白噪声特性进行仿真实验。
通过计算机模拟,我们对高斯白噪声的频谱特性、均值和方差进行了研究,并对实验结果进行了分析和讨论。
实验步骤1. 首先,我们通过随机数发生器生成高斯白噪声信号。
为了得到较好的仿真结果,我们根据指定的均值和方差参数,以及采样频率和信号长度,生成了相应的高斯白噪声信号。
2. 接下来,我们对生成的噪声信号进行了分析。
首先,我们绘制了噪声信号的时域波形图,以观察信号的分布情况。
然后,我们计算了噪声信号的均值和方差,并进行了统计学的分析。
3. 在频域分析方面,我们使用傅里叶变换对噪声信号进行了频谱分析。
通过绘制频谱图,我们观察到了噪声信号在不同频率处的能量分布情况。
同时,我们计算了频谱的均值和方差,以进一步了解信号的特性。
4. 最后,我们对实验结果进行了总结和讨论。
我们从理论和实验结果进行了对比分析,发现实验结果与理论相符合,并且实验结果的统计学特征与理论模型一致。
实验结果与分析通过实验,我们得到了以下主要结果:1. 高斯白噪声的时域波形呈现出类似随机分布的特点。
在均值为0的情况下,噪声信号的波形基本上在0附近波动,并且没有明显的规律。
这表明高斯白噪声在时域上呈现出随机性的特点。
2. 高斯白噪声的均值接近于0。
根据理论计算和实验结果,我们发现随着信号长度的增加,均值的值越来越接近于0,并且方差也逐渐接近于预设的参数值。
3. 高斯白噪声的频谱特性呈现出均匀分布的特点。
通过频谱分析,我们观察到噪声信号在不同频率处的能量分布比较均匀,没有明显的频率偏移。
这与高斯白噪声的定义相符合。
4. 高斯白噪声的频谱均值和方差与理论一致。
通过对频谱的统计分析,我们计算出了频谱的均值和方差,并与理论模型进行了对比。
实验结果与理论模型相符合,验证了高斯白噪声的频谱特性。
总结与展望通过本次高斯白噪声特性仿真实验,我们对高斯白噪声的频谱特性、均值和方差进行了研究,并获得了一系列实验结果。
白噪声的产生与测试实验

lim
T
(5)
取20480个点时的功率谱密度和自相关函数,如下图 (1) 功率谱密度:
(2) 随机信号叠加:
4.随机信号检验:
五、实验总结
这次试验让我们对白噪声有了很大的理解,最主要是在实验过程中用到了好 久不用的matlab软件,由于好长时间不用好多的函数的功能都忘记了,而且实验 过程中用到的好多函数以前都没接触过,所以还得花好长时间去查阅相关资料。 这次试验的目的其实让我们学会是利用matlab软件对信号分析,同时加深我们 对信号和噪声参数处理的理解,锻炼我们的实践动手能力。 参考文献:
x2=normrnd(0,1,1,1024);%生成长度为1024的正态分布 x3=exprnd(1,1,1024);%生成长度为1024的指数分布均值为零 x4=raylrnd(1,1,1024);%生成长度为1024的瑞利分布 x5=chi2rnd(1,1,1024);%生成长度为1024的卡方分布 %时域特性曲线: figure; subplot(3,2,1),plot(1:1024,x1);grid on;title('均匀分布 时域特性曲线');xlabel('时 间(t)');ylabel('幅度(v)');axis([0 1000 -2 2 ]); subplot(3,2,2),plot(1:1024,x2);grid on;title('正态分布');xlabel('时间(t) ');ylabel('幅度(v)');axis([0 1000 -2 5 ]); subplot(3,2,3),plot(1:1024,x3);grid on;title('指数分布');xlabel('时间(t) ');ylabel('幅度(v)');axis([0 1000 -2 5 ]); subplot(3,2,4),plot(1:1024,x4);grid on;title('瑞利分布');xlabel('时间(t) ');ylabel('幅度(v)');axis([0 1000 -2 5 ]); subplot(3,2,5),plot(1:1024,x5);grid on;title('卡方分布');xlabel('时间(t) ');ylabel('幅度(v)');axis([0 1000 -2 5 ]); %求各种分布的均值 figure; m1=mean(x1),m2=mean(x2),m3=mean(x3),m4=mean(x4),m5=mean(x5); subplot(3,2,1),plot(1:1024,m1);grid on;title('均匀分布均值');xlabel('时间(t) ');ylabel('幅度(v)'); subplot(3,2,2),plot(1:1024,m2);grid on;title('高斯分布均值');xlabel('时间(t) ');ylabel('幅度(v)'); subplot(3,2,3),plot(1:1024,m3);grid on;title('指数分布均值');xlabel('时间(t) ');ylabel('幅度(v)'); subplot(3,2,4),plot(1:1024,m4);grid on;title('瑞利分布均值');xlabel('时间(t) ');ylabel('幅度(v)'); subplot(3,2,5),plot(1:1024,m5);grid on;title('卡方分布均值');xlabel('时间(t) ');ylabel('幅度(v)'); %求各种分布的方差 figure; v1=var(x1),v2=var(x2),v3=var(x3),v4=var(x4),v5=var(x5); subplot(3,2,1),plot(1:1024,v1);grid on;title('均匀分布方差');xlabel('时间(t) ');ylabel('幅度(w)'); subplot(3,2,2),plot(1:1024,v2);grid on;title('高斯分布方差');xlabel('时间(t) ');ylabel('幅度(w)'); subplot(3,2,3),plot(1:1024,v3);grid on;title('指数分布方差');xlabel('时间(t) ');ylabel('幅度(w)'); subplot(3,2,4),plot(1:1024,v4);grid on;title('瑞利分布方差');xlabel('时间(t) ');ylabel('幅度(w)'); subplot(3,2,5),plot(1:1024,v5);grid on;title('卡方分布方差');xlabel('时间(t) ');ylabel('幅度(w)'); %求各种分布的自相关函数 figure;
实验二 白噪声信道实验

实验二 白噪声信道实验一、实验目的1、掌握用matlab 中高斯白噪声信道的产生方法。
2、掌握理想低通和高通白噪声的时频域特性。
3、掌握高斯白噪声对信号的影响。
4、掌握白噪声的消除方法。
二、实验原理 1、高斯过程高斯过程又称为随机过程,它的一维概率密度函数为:概率密度221()()exp 22X x a p x σπσ⎡⎤-=-⎢⎥⎣⎦。
式中,σ > 0, a = 常数。
概率密度曲线:正态分布的概率密度特征:(1)p(x)对称于直线 x = a ,即有:()()p a x p a x +=-(2)p(x)在区间(-∞, a)内单调上升,在区间(a, ∞)内单调下降,并且在点a 处达到其极大值1/(2)πσ。
当x → - ∞或 x → + ∞时,p(x) → 0。
(3)()1p x dx ∞-∞=⎰;()()1/2a ap x dx p x dx ∞-∞==⎰⎰(4)若a = 0, σ = 1,则称这种分布为标准化正态分布:21()exp 22x p x π⎡⎤=-⎢⎥⎣⎦2、白噪声 (1)白噪声白噪声是指具有均匀功率谱密度()n P f 的噪声,即0()/2n P f n =,式中,0n 为单边功率谱密度(W/Hz 。
白噪声的自相关函数可以从它的功率谱密度求得:2200()()()22j f j f X n nR P f edf e df πτπττδτ∞∞-∞-∞===⎰⎰由上式看出,白噪声的任何两个相邻时间(即τ ≠ 0时)的抽样值都是不相关的。
白噪声的平均功率:0(0)(0)2n R δ==∞。
上式表明,白噪声的平均功率为无穷大。
若白噪声的概率分布服从高斯分布,则称为高斯白噪声。
(2)低通白噪声低通白噪声:白噪声通过理想低通滤波器的输出。
低通白噪声的功率谱密度:0()/2,()0,n H HnP f n f f f P f =-≤≤⎧⎨=⎩其他其自相关函数为:20002sin 2sin 2()2222HHf j f H H H Hf H H n n f f R e df f n f f f πτπτπττπτπτ-===⎰(3)带通白噪声带通白噪声:带宽受到限制的白噪声。
实验1---白噪声和M序列的产生

实验1 白噪声和M序列的产生实验报告1.实验题目:白噪声和M序列的产生.实验对象或参数、生成均匀分布随机序列1)利用混合同余法生成[0, 1]区间上符合均匀分布的随机序列,并计算该序列的均值和方差,与理论值进行对比分析。
要求序列长度为1200,推荐参数为a=655395.程序框图7.实验结果及分析1、生成均匀分布随机序列 (1)生成的0-1均布随机序列如下所示:200400600800100012000.10.20.30.40.50.60.70.80.91计算序列的均值和方差程序代码:mean_R = mean(R)var_R = var(R)均值和方差实际值:mean_R =0.4969var_R =0.0837随机变量X服从均匀分布U(a,b),则均值为(a+b)/2,方差为(b-a)先平方再除以12。
[0,1]区间均值和方差理论值:mean_R =(0+1)/2=0.5;var_R =1/12 = 0.083333。
结论:容易看到,实际值与理论值较接近。
(2)该随机序列落在10个子区间的频率曲线图如下:结论:从结果图可以容易看到,该序列的均匀性较好。
2、生成高斯白噪声生成的白噪声如下图:-2.5-2-1.5-1-0.500.511.52生成的白噪声的频率统计图如下:0510152025结论:从结果图知,生成的白噪声基本服从N(0,1)分布。
3、生成M 序列生成的M 序列如下(n = 63):010203040506070-1.5-1-0.50.511.5验证M 序列性质:均衡特性:m 序列每一周期中 1 的个数比 0 的个数多 1 个(-a 和a 的个数差1) 测试程序:number_a = sum(M_XuLie == a);number_a_c = sum(M_XuLie == -a);number_anumber_a_c 结果:number_a =31number_a_c =32结论:从测试结果看性质成立游程特性:m 序列的一个周期(p =2n -1)中,游程总数为2n -1。
指定功率的白噪声的产生方案

指定功率的白噪声的产生方案产生指定功率的白噪声有多种方案,以下是其中的一种方案:1.基于模拟电路的产生方案:这种方案利用模拟电路生成白噪声信号。
具体的电路包括电压放大器、带通滤波器、频率可调的随机信号源等组成。
随机信号源可以采用噪声二极管、噪声发生器等。
白噪声信号可以通过调整滤波器的通带带宽来控制功率。
放大器可以将信号放大到所需的功率,然后经过滤波器输出白噪声信号。
2.基于数字信号处理的产生方案:这种方案利用数字信号处理技术产生白噪声信号。
具体的步骤包括生成随机数序列、通过数字滤波器进行滤波、进行数值放大等。
随机数序列可以通过伪随机数发生器生成,滤波器可以设计为具有平坦的幅频特性的低通滤波器。
通过调整滤波器的参数和放大系数,可以实现所需的功率。
3.基于计算机程序的产生方案:这种方案利用计算机程序生成白噪声信号。
可以使用编程语言如Python、MATLAB等编写程序。
具体的步骤包括生成随机数序列、进行数值放大和滤波等。
随机数序列可以采用伪随机数生成算法如线性反馈移位寄存器(LFSR)、梅森旋转算法等。
通过调整放大系数和滤波器的参数,可以实现所需的功率。
无论采用哪种产生方案,都需要注意以下几点:1.信号源的质量:信号源应具有良好的随机性,以确保产生的噪声信号符合白噪声的统计特性。
可以通过选用高质量的噪声二极管、噪声发生器或使用先进的随机数生成算法来提高信号源的质量。
2.滤波器的设计:滤波器的设计应该尽量满足白噪声的幅频特性,即在通带内具有平坦的频率响应。
可以通过设计高阶巴特沃斯滤波器或其他滤波器来实现。
3.功率控制:功率的控制可以通过调整放大器的增益来实现,也可以通过调整滤波器的通带带宽来实现。
总结:产生指定功率的白噪声可以通过模拟电路、数字信号处理和计算机程序等多种方案实现。
具体的方案选择取决于具体需求和实际情况。
无论采用哪种方案,都需要注意信号源的质量、滤波器的设计和功率的控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验课题:白噪声的产生与测试第二组白噪声的产生与测试一、实验目的了解白噪声信号自身的特性,包括均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度等。
掌握白噪声的分析方法。
熟悉常用的信号处理仿真软件平台matlab 软件仿真。
了解估计功率谱密度的几种方法,掌握功率谱密度估计在随机信号处理中的作用二、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。
确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。
然而白噪声在数学处理上比较方便,所以它在通信系统的分析中有十分重要的作用。
一般地说,只要噪声的功率谱密度的宽度远大于它所作用的系统的带宽,并且在系统的带内,它的功率谱密度基本上是常数,就可以作为白噪声处理了。
白噪声的功率谱密度为: 2)(0N f S n =其中0N /2就是白噪声的均方值。
白噪声的自相关函数位:)(20τδτN R =)( 白噪声的自相关函数是位于τ=0处、强度为20N 的冲击函数。
这表明白噪声在任何两个不同的瞬间的取值是不相关的。
同时也意味着白噪声能随时间无限快的变化,因为它的带宽是无限宽的。
下面我们给出几种分布的白噪声。
随机过程的几种分布均匀分布随机信号、正态分布(高斯分布)随机信号、指数分布随机信号等。
三实验任务与要求⑴通过实验要求掌握几种分布的随机噪声共同点和不同点,以及从随机噪声的相关和功率普中得到白噪声的特征,重点在于系统测试与分析。
实验系统框图如图2-1、图2-2所示:图2-1 各种分布随机信号测试图2-2 随机信号叠加后的特性测试⑵自选matlab或c/c++软件之一产生几种概率分布的仿真随机信号:随机数的长度N=1024,这些随机数包括均匀分布、正态分布、指数分布、瑞利分布、2 方分布。
并计算这些随机数的均值、均方值、方差,自相关函数、概率密度、频谱及功率谱密度并绘图。
分析实验结果,搞清楚均值、均方值、方差,自相关函数、频谱及功率谱密度的物理意义。
⑶验证当N增大时,白噪声的功率普密度逼近20N。
设产生N=20480长度的(2,3)正态随机随机数,从中取1024、10240、20480个点的功率普密度,做比较,观察这些随机数的功率谱密度随长度的变化。
实际的白噪声功率普密度不是常数。
⑷根据白噪声的特性,确定哪些随机信号属于白噪声范畴。
根据分析确定白噪声与概率分布有关系吗?⑸通过编程分别确定当5个均匀分布过程、5个指数分布分别叠加时,结果是否是高斯分布。
叠加次数对结果的影响?四、实验步骤与结果1.产生五种概率分布的信号,如下图:2.均匀分布、正态分布、指数分布、瑞利分布、2 方分布均值、均方值、方差,自相关函数、概率密度、频谱及功率谱密度等参数图像:,如下图:均值:均值E[x(t)]表示集合平均值或数学期望值。
基于随机过程的各态历经性,可用时间间隔t内的幅值平均值表示:均值表达了信号变化的中心趋势,或称之为直流分量。
在MATLAB中,可以用mean()函数来计算。
(1)方差:随机过程的方差函数描述了随机过程所有样本函数在t时刻的函数值相对于其数学期望的偏离程度。
定义:其中σ(t)是随机过程的标准差。
当随即过程表征的是接收机输出端的噪声电压时,σ2(t)表示小号在单位电阻上的瞬时交流功率统计平均值,而σ(t)表示噪声电压相对于电压统计平均值的交流分量。
在MATLAB中,可以用std()函数计算出标准差σ(t),再平方就可以得到方差。
自相关:信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程x(t)和y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:随机信号的自相关函数表示波形自身不同时刻的相似程度。
与波形分析、频谱分析相比,它具有能够在强噪声干扰情况下准确地识别信号周期的特点。
(2)概率密度函数:一维分布函数为:若F x(x1;t1)对x1的一阶偏导存在,则一维概率密度为:在MATLAB中,可以用ksdensity()函数来计算一维概率密度。
(3)频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号x(f),从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:在MA TLAB中,对信号进行快速傅立叶变换fft()就可以得到频谱函数。
(4)功率谱密度:随机信号的功率谱密度是随机信号的各个样本在单位频带内的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示x(t)的平均功率在频域上的分布。
它只反映随机信号的振幅信息,而没有反映相位信息。
在MA TLAB中,可由下式得到功率谱密度:limT∞→(5)取20480个点时的功率谱密度和自相关函数,如下图(1)功率谱密度:(2)随机信号叠加:4.随机信号检验:五、实验总结这次试验让我们对白噪声有了很大的理解,最主要是在实验过程中用到了好久不用的matlab软件,由于好长时间不用好多的函数的功能都忘记了,而且实验过程中用到的好多函数以前都没接触过,所以还得花好长时间去查阅相关资料。
这次试验的目的其实让我们学会是利用matlab软件对信号分析,同时加深我们对信号和噪声参数处理的理解,锻炼我们的实践动手能力。
参考文献:《随机信号分析教程》高等教育出版社主编:李兵兵《matlab7.x 程序设计语言》西安电子科技大学出版社主编:楼顺天《现代通信原理与技术》西安电子科技大学出版社主编:张辉《高频电子线路》高等教育出版社主编:曾兴文%生成各种分布的随机数x1=unifrnd(-1,1,1,1024);%生成长度为1024的均匀分布x2=normrnd(0,1,1,1024);%生成长度为1024的正态分布x3=exprnd(1,1,1024);%生成长度为1024的指数分布均值为零x4=raylrnd(1,1,1024);%生成长度为1024的瑞利分布x5=chi2rnd(1,1,1024);%生成长度为1024的卡方分布%时域特性曲线:figure;subplot(3,2,1),plot(1:1024,x1);grid on;title('均匀分布时域特性曲线');xlabel('时间(t)');ylabel('幅度(v)');axis([0 1000 -2 2 ]);subplot(3,2,2),plot(1:1024,x2);grid on;title('正态分布');xlabel('时间(t)');ylabel('幅度(v)');axis([0 1000 -2 5 ]);subplot(3,2,3),plot(1:1024,x3);grid on;title('指数分布');xlabel('时间(t)');ylabel('幅度(v)');axis([0 1000 -2 5 ]);subplot(3,2,4),plot(1:1024,x4);grid on;title('瑞利分布');xlabel('时间(t)');ylabel('幅度(v)');axis([0 1000 -2 5 ]);subplot(3,2,5),plot(1:1024,x5);grid on;title('卡方分布');xlabel('时间(t)');ylabel('幅度(v)');axis([0 1000 -2 5 ]);%求各种分布的均值figure;m1=mean(x1),m2=mean(x2),m3=mean(x3),m4=mean(x4),m5=mean(x5);subplot(3,2,1),plot(1:1024,m1);grid on;title('均匀分布均值');xlabel('时间(t)');ylabel('幅度(v)'); subplot(3,2,2),plot(1:1024,m2);grid on;title('高斯分布均值');xlabel('时间(t)');ylabel('幅度(v)');subplot(3,2,3),plot(1:1024,m3);grid on;title('指数分布均值');xlabel('时间(t)');ylabel('幅度(v)'); subplot(3,2,4),plot(1:1024,m4);grid on;title('瑞利分布均值');xlabel('时间(t)');ylabel('幅度(v)'); subplot(3,2,5),plot(1:1024,m5);grid on;title('卡方分布均值');xlabel('时间(t)');ylabel('幅度(v)'); %求各种分布的方差figure;v1=var(x1),v2=var(x2),v3=var(x3),v4=var(x4),v5=var(x5);subplot(3,2,1),plot(1:1024,v1);grid on;title('均匀分布方差');xlabel('时间(t)');ylabel('幅度(w)'); subplot(3,2,2),plot(1:1024,v2);grid on;title('高斯分布方差');xlabel('时间(t)');ylabel('幅度(w)'); subplot(3,2,3),plot(1:1024,v3);grid on;title('指数分布方差');xlabel('时间(t)');ylabel('幅度(w)'); subplot(3,2,4),plot(1:1024,v4);grid on;title('瑞利分布方差');xlabel('时间(t)');ylabel('幅度(w)'); subplot(3,2,5),plot(1:1024,v5);grid on;title('卡方分布方差');xlabel('时间(t)');ylabel('幅度(w)'); %求各种分布的自相关函数figure;title('自相关函数图');[x_c1,lags]=xcorr(x1,200,'unbiased');[x_c2,lags]=xcorr(x2,200,'unbiased');[x_c3,lags]=xcorr(x3,200,'unbia sed');[x_c4,lags]=xcorr(x4,200,'unbiased');[x_c5,lags]=xcorr(x5,200,'unbiased');subplot(3,2,1),plot(lags,x_c1);grid on;title('均匀分布自相关函数图');subplot(3,2,2),plot(lags,x_c2);grid on;title('正态分布');subplot(3,2,3),plot(lags,x_c3);grid on;title('指数分布');subplot(3,2,4),plot(lags,x_c4);grid on;title('瑞利分布');subplot(3,2,5),plot(lags,x_c5);grid on;title('卡方分布');%求各种分布的概率密度函数y1=unifpdf(x1,-1,1);y2=normpdf(x2,0,1);y3=exppdf(x3,1);y4=raylpdf(x4,1);y5=chi2pdf(x5,1);%各种分布的概率密度估计figure;[k1,n1]=ksdensity(x1);[k2,n2]=ksdensity(x2);[k3,n3]=ksdensity(x3);[k4,n4]=ksdensity(x4);[k5,n5]=ksdensity(x5); subplot(3,2,1),plot(n1,k1);grid on;title('均匀分布概率密度');xlabel('时间');ylabel('幅度') subplot(3,2,2),plot(n2,k2);grid on;title('正态分布');xlabel('时间');ylabel('幅度')subplot(3,2,3),plot(n3,k3);grid on;title('指数分布');xlabel('时间');ylabel('幅度(') subplot(3,2,4),plot(n4,k4);grid on;title('瑞利分布');xlabel('时间');ylabel('幅度')subplot(3,2,5),plot(n5,k5);grid on;title('卡方分布');xlabel('时间');ylabel('幅度')%功率谱密度figure;f1=fft(x1,1024);f2=fft(x2,1024);f3=fft(x3,1024);f4=fft(x4,1024);f5=fft(x5,1024);p1=mean(f1.*conj(f1))/1024; p2=mean(f2.*conj(f2))/1024; p3=mean(f3.*conj(f3))/1024;p4=mean(f4.*conj(f4))/1024; p5=mean(f5.*conj(f5))/1024;subplot(3,2,1),plot(1:1024,abs(p1));grid on;title('均匀分布功率谱密度');Xlabel('频率Hz'); Ylabel('幅值');%axis([0 511 -5*10^-5 10*10^-5]);subplot(3,2,2),plot(1:1024,abs(p2));grid on;title('正态分布功率谱密度');Xlabel('频率Hz'); Ylabel('幅值')%axis([0 511 0 10]);subplot(3,2,3),plot(1:1024,abs(p3));grid on;title('指数分布功率谱密度');Xlabel('频率Hz'); Ylabel('幅值')%axis([0 511 0 10]);subplot(3,2,4),plot(1:1024,abs(p4));grid on;title('瑞利分布功率谱密度');Xlabel('频率Hz') ;Ylabel('幅值')%axis([0 511 0 10]);subplot(3,2,5),plot(1:1024,abs(p5));grid on;title('卡方分布功率谱密度');Xlabel('频率Hz'); Ylabel('幅值')%axis([0 511 0 10]);%幅频特性曲线%%%%%%%%%%%%%%%figure;subplot(3,2,1),plot(abs(f1)),axis([0 1023 0 50]);grid on;title('均匀分布幅频特性');Xlabel('频率Hz'); Ylabel('幅值V')subplot(3,2,2),plot(abs(f2));axis([0 1023 0 50]);grid on;title('正态分布');Xlabel('频率Hz'); Ylabel('幅值V')subplot(3,2,3),plot(abs(f3)),axis([0 1023 0 100]);grid on;title('指数分布');Xlabel('频率Hz'); Ylabel('幅值subplot(3,2,4),plot(abs(f4)),axis([0 1023 0 50]);grid on;title('瑞利分布');Xlabel('频率Hz'); Ylabel('幅值V')subplot(3,2,5),plot(abs(f5)),axis([0 1023 0 100]);grid on;title('卡方分布');Xlabel('频率Hz'); Ylabel('幅值V')%随机数长度为20480时figure;x11=normrnd(2,3,1,20480);%生成长度为20480的正态分布[x_c11,lags]=xcorr(x11,20480,'unbiased');f_c1=fft(x11,20480);f_c2=fft(x11,10240);f_c3=fft(x11,1024);p11=mean(f_c1.*conj(f_c1))/20480;p22=mean(f_c2.*conj(f_c2))/10240;p33=mean(f_c3.*conj(f_c3))/1024;subplot(2,2,1);plot(1:20480,abs(p11));grid on;title('N为20840正态分布功率谱密度');Xlabel('频率Hz'); Ylabel('幅值')subplot(2,2,2);plot(1:10240,abs(p22));grid on;title('N为10240 正态分布功率谱密度');Xlabel('频率Hz'); Ylabel('幅值')subplot(2,2,3);plot(1:1024,abs(p33));grid on;title('N为1024 正态分布功率谱密度');Xlabel('频率Hz'); Ylabel('幅值')%figure;plot(x_c11);grid on;title('正态分布自相关函数');%判断是否是高斯分布s=zeros(1,1024);for i=0:4z=unifrnd(0,1,1,1024);s=s+z;ends1=zeros(1,1024);for j=0:4z1=exprnd(3,1,1024);s1=s1+z1;endfigure;[j1,l1]=ksdensity(s);[j2,l2]=ksdensity(s1);subplot(2,2,1),hist(s);grid on;title('均匀分布叠加'); subplot(2,2,2),plot(l1,j1);grid on;title('均匀分布叠加'); subplot(2,2,3),hist(s1);grid on;title('指数分布叠加'); subplot(2,2,4),plot(l2,j2);grid on;title('指数分布叠加'); figure;subplot(1,2,1),normplot(s);title('均匀分布正态检验'); subplot(1,2,2),normplot(s1);title('指数分布正态检验');%参数估计[muhat,sigmahat,muci,sigmaci]=normfit(s); [muhat1,sigmahat1,muci1,sigmaci1]=normfit(s1); %假设检验[h,sig,ci]=ttest(s,muhat)[h1,sig1,ci1]=ttest(s1,muhat1)。