(1)多元函数微分学复习课
高等数学复习-多元函数微分法及其应用

高等数学复习-多元函数微分法及其应用
一、列举二元函数的例子?
二、求多元函数的极限?
三、证明函数的连续性?
四、多元函数的性质?
五、求多元函数再某点的偏导数?
六、求多元函数的偏导数?
七、求多元函数的高阶偏导数?
八、二阶混合偏导数定理?
九、求函数的全微分?
十、全微分的应用?
十一、一元函数与多元函数复合定理?
十二、多元函数与多元函数复合定理?
十三、其它复合定理?
十四、求复合函数的偏导数?
十五、求复合函数的全导数?
十六、利用全微分形式不变形求偏导数?
十七、利用隐函数求导?
十八、利用方程组求偏导数?
十九、求函数的单位切向量?
二十、求曲线的切线及法平面方程?
二十一、求球面的切线及法平面方程?
二十二、求旋转抛物面的切线及法平面方程?
二十三、求某个方向的方向导数?
二十四、求函数在某点的梯度?
函数在某点的梯度是这样一个向量,他的方向是函数再这点方向导数取得最大值的方向,它的模就等于方向导数的最大值。
(1)求出函数在各个自变量上的偏导数
(2)带入点惊醒计算
(3)表示出该向量(记得加上i、j、k)
二十五、求函数再某个方向的变化率?
二十六、举例说明多元函数最值及极值?
二十七、有极值定理?
二十八、求多元函数的极值?
二十九、拉个朗日乘数法求极值?。
多元函数微分学知识点梳理

多元函数微分学知识点梳理
第九章多元函数微分学
内容复
一、基本概念
1.多元函数的基本概念包括n维空间、n元函数、二重极限、连续等。
其中,偏导数和全微分也是重要的概念。
2.重要定理:
1)二元函数中,可导、连续、可微三者的关系为偏导数
连续→可微。
同时,偏导数存在和函数连续是可微的必要条件。
2)二元函数的极值必须满足必要条件和充分条件。
二、基本计算
一)偏导数的计算
1.偏导数值的计算有三种方法:先代后求法、先求后代法
和定义法。
2.偏导函数的计算包括简单的多元初等函数和复杂的多元
初等函数。
对于复杂的函数,可以使用链式法则,或者隐函数求导法。
3.高阶导数的计算需要注意记号表示和求导顺序。
二)全微分的计算
1.叠加原理可以用于计算全微分,即dz=∂z/∂x dx+∂z/∂y dy。
2.一阶全微分形式不变性对于自变量和中间变量均成立。
三、偏导数的应用
在优化方面,多元函数的极值和最值是常见的应用。
1.无条件极值可以用必要条件和充分条件来求解。
2.条件极值可以使用Lagrange乘数法来求解。
3.最值可以通过比较区域内部驻点处函数值和区域边界上最值的大小来确定。
第1节多元函数的基本概念

的示 . 意图
y
解 要使函数有意义须满足
1x2y20, 即 x2y21,
所以函数的定义域为
x
D {(x,y) x2y21}.有界闭区域
2.二元函数的定义域
例2 求 函 z数 lny(x) xy 的 定D 义 . 域 x2y21
解 要使函数有意义须满足
y
y x0
二. 多元函数的概念
注意 (1) 多元函数也有单值函数和多值函数,如
x2y2z2a2
在讨论过程中通常将其拆成几个单值函数后 再分别加以讨论.
(2) 多元函数也有分段函数,如
xy f(x,y)x2y2
0
x2y20 x2y20
(3) 点函数u=f(P)能表示所有的函数.
(4) 函数有加减乘除数乘及复合运算(略)
确定空间一点 M(x,y,z),当(x, y) 取遍
D上的一切点时, 得到空间点集
z
M(x, y,z)
{x ,(y ,z)zf(x ,y )(x ,,y ) D }
这个点集称为二元函数的图形.
该几何图形通常是一张曲面.
而定义域 D 正是这曲面在Oxy 平面上的投影.
D (x, y) y
x
3.二元函数的几何图形
xy
0
x
2
y2
1
0
函数的定义域为
D {(x ,y )y x 0 ,x 0 y ,x 2 y 2 1 }
yx
x
无界开区域
2.二元函数的定义域 例3 求 zarcxs2 in y2 x2y21的 定. 义
4
解 要使函数有意义,必须
x2 4
多元函数微积分知识点

多元函数微积分知识点多元函数微积分是微积分学中的一个重要分支,主要研究有多个自变量的函数的导数、偏导数、微分、积分等问题。
它是单变量函数微积分的拓展与推广,涉及涉及多元函数的极限、连续性、可微性、可导性、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等内容。
本文将从多元函数的定义与性质、偏导数与全微分、多元复合函数的求导、隐函数的求导、多重积分等几个方面介绍多元函数微积分的知识点。
1.多元函数的定义与性质多元函数是指有多个自变量的函数,一般形式为f(x1, x2, ..., xn),其中x1, x2, ..., xn是自变量,f是因变量。
多元函数的定义域是自变量可能取值的集合。
在多元函数中,可以分别将每个自变量视为其他自变量的常数,对应单变量函数的概念。
多元函数的性质包括定义域、值域、可视化、极值等。
2.偏导数与全微分偏导数是多元函数在其中一变量上的导数,其他变量视为常数。
偏导数的计算与单变量函数的导数计算类似,可以通过极限或者求偏导数的定义计算。
全微分是多元函数在特定点的一个线性逼近,可以用于计算函数值的近似值。
全微分的表示为df = (∂f/∂x1)dx1 + (∂f/∂x2)dx2 + ... + (∂f/∂xn)dxn,其中∂f/∂xi表示对变量xi的偏导数。
3.多元复合函数的求导多元复合函数是指多个函数通过复合而成的函数,其中一个函数的导数是另一个函数的自变量。
类似于链式法则,多元复合函数的求导需要使用偏导数和全导数的概念。
对于函数z = f(g(x, y)),链式法则可以表示为dz = (∂z/∂x)dx + (∂z/∂y)dy = (∂f/∂g)(dg/dx)dx +(∂f/∂g)(dg/dy)dy。
4.隐函数的求导5.多重积分多重积分是多元函数的积分形式,与单变量函数的定积分类似。
多重积分有二重积分、三重积分等,分别对应二元函数、三元函数等的积分。
多重积分可以用于计算函数在区域内的面积、体积等。
第9章多元函数微分法及其应用课本基础知识

本章目录第一节多元函数的基本概念第二节偏导数第三节全微分第四节多元复合函数的求导法则第五节隐函数的求导公式(第五节掌握的不是很好)第六节多元函数微分学的几何应用第七节方向导数与梯度第八节多元函数的极值及其解法第九节二元函数的泰勒公式几道比较好的题第一节多元函数基本概念1、基本了解∈,是在一条数轴上看定义域那么在二元中,一元函数()y f x=的定义域是x R就是在一个平面上看定义域,有(,)=(其中x,y互相没关系。
如果有关z f x y系,那么y就可以被x表示,那么就成了一元函数了),定义为二元函数2x y R∈(,)2、多元函数的邻域二元邻域三元函数邻域3、内点4、外点5、边界点边界点:点的邻域既存在外点又存在内点边界点可以看成内点,也可以看成外点,看你怎么定义了。
6、聚点邻域内存在内点则称为聚点。
可见,边界点一部分也含内点,因此内点,边界点都是聚点。
7、开集不包括边界点的内点;一元函数的开区间就是开集8包含了边界点的内点;一元函数的闭区间就是闭集9一元中有半开半闭的区间二元也是,如10、连通集连通集就是连在一起的区域。
定义是,在定义域内两点可以用折线连起来连通集与非连通集,如:11、开区域:连通的开集;闭区域:连通的闭集12、有界点集这个圆的半径可以有限充分大。
无界点集:找不到一个有限大的圆包含该区域。
如平面第一象限就是无界的点集13、二元函数的定义域图像二元定义域要有x,y的范围。
解出f1(x)<y<f2(x)(很多时候是y与x复合的函数,所以最好是化成y在一边看大于还是小于)14、二元函数的图像:空间曲面即z=f(x,y)15、多元函数极限的定义注意是去心的,去边界的圆域一元需要左极限等于右极限,二元就各个方向的极限 都要相等了。
趋近的方式有时候甚至是有技巧的,一般先用y=kx 趋近,再试试y=kx^2。
16、多元函数的连续性 设在定义域内,若lim (,)(,)00(,)(,)00f x y f x y x y x y =→则称二元函数(,)f x y 在(,)00x y 点处连续。
多元函数微分学

函数可导
函数可微 偏导数连续
(五)复合函数求导法则
定理1 如果函数 uu(t) 及 v v(t) 都在 t 点可导,
函数 zf(u,v)在对应点( u , v ) 具有连续偏导数,则
复合函数 zf[u (t),v(t)]在点t 可导,且
dzzduzdv. dt udt vdt
求全导数 d z .
u
dt
zv
t
解 dzzduzdvzdw dt udt vdt wdt
w
vetu ( sin t) co sw
e tc o s t e ts i n t c o s t
测试点 复合函数求导的链式法则.
例5 设 zz(x,y) 是由方程 xyzx2y2z22
(二)方向导数和梯度的公式
设函数 f(x, y,z)在点 P(x, y,z)可微, 方向 l 的
方向余弦为 c o s,c o s,c o s,则函数 f(x, y,z)
在点 P(x, y,z) 沿方向 l 的方向导数为
ffcosfcosfcos.
l x y
z
dz z dxzdy x y
所确定的隐函数.求 zz(x,y)在点 (1,0,1)的全微分.
解 令F (x ,y ,z ) x y z x 2 y 2 z 22
Fx yz
x ,
x2 y2 z2
Fy xz
y x2 y2 z2
z Fz xy x2y2z2
二、偏导数的应用
(一)微分法在几何上的应用 1 空间曲线的切线与法平面
空间曲线 :x ( t ) ,y ( t ) , z ( t ) .
其上一点 P0(x0,y0,z0)
多元函数微分习题课

x
x
z
y
x
( ) du
dx
=
f1 +
f2 cos x −
1 f3 ϕ3
2 xϕ1 + esin xϕ2 cos x
十.设u = f ( x, y,z),ϕ( ) x2,ey,z = 0, y = sinx,
其中 f ,ϕ 都具有一阶连续偏导数,且 ∂ϕ ≠ 0 ,求 du .
∂z
dx
解法二:用微分形式不变性:
(A). f ( x, y) 在 P 点连续; (B). f ( x, y) 在 P 点必可微;
(C). lim x → x0
f
( x,
y0 )
及 lim y→ y0
f
( x0 ,
y)
都存在;
(D). lim f ( x, y) 存在. x → y→ y0
答:(C)
三.求由方程 xyz + x2 + y2 + z2 = 2 所确定的函 数 z = z ( x, y) 在点(1,0,−1) 处的全微分dz .
答:dz = dx − 2dy
四.设 z = z ( x , y ) 定义在全平面上 (1).若 ∂z ≡ 0 ,试证 z = f ( y ) ,其中 f ( y )
∂x
是任意待定的函数; (2).若 ∂ 2 z ≡ 0 ,试证 z = f ( x ) + g ( y ) ,其
∂x∂y
中 f ( x ), g ( y ) 是可导的待定函数.
;
有二阶连续偏导数,
解: z y = x4 f1 + x2 f2 , z yy = x5 f11 + 2 x3 f12 + xf22
(前5节)复习第9章多元函数微分法及其应用(1)共73页

确定二重极限不存在的方法:
( 1 )令 P ( x ,y ) 沿 y k 趋 向 x 于 P 0 ( x 0 ,y 0 ) ,若 极 限 值
与 k 有 关 , 则 可 断 言 极 限 不 存 在 ; limf(x,y)xy ykx yx2x
x 0
xy
y 0
(2)找 两 种 不 同 趋 近 方 式 , 使 lim f(x,y)存 在 , (x,y)(x0,y0)
但 两 者 不 相 等 , 此 时 也 可 断 言 f(x,y)在 点 P0(x0,y0)处
极 限 不 存 在 .
21
例5
考察
f
( x,
y)
xy x2 y2
当 ( x,
y) (0,0) 时的极限.
解
沿
x
轴考察,
lim
(x,y)(0,0)
f(x,
y)0,
y0
沿 y 轴考察, lim f(x, y)0,
去 心 邻 域 内 有 定 义 ,如 果 存 在 常 数 A, 对 0,0,
只 要 0 (xx0)2(yy0)2,恒 有 f(x,y)A,
则 称 函 数 z f(x ,y )当 (x ,y ) (x 0 ,y 0 )时 以 A 为 极
限 , 记 为
limf(x,y)A.
导 数 , 为
lim f(x0,y0 y)f(x0,y0)
y 0
y
z
记为
,或
y x x0
y y0
z y x x 0 . y y0
z z 偏导函数: , ,
x y
或
zx ,zy .
说明: 1.偏导数实质上仍然是一元函数的微分问题.
第一轮复习之多元函数微分学

( x0 , y0 )
∂f ( x0 , y0 ) f ( x0 + ∆x, y0 ) − f ( x0 , y0 ) = lim 0 ∆ x → ∂x ∆x
与一元函数连续性的概念相似:
f ( x) = f ( x0 ) xlim →x
0
f ( x) lim f ( x) f ( x0 ) = = xlim →x + x→ x −
(二) 多元函数取得极值的充分条件和必要条件 必要条件:
在点 ( x0 , y0 ) 具有二 阶偏导数
在点 ( x0 , y0 ) 具有偏导数
f x′( x0 , y0 ) = 0 f y′( x0 , y0 ) = 0
f ( x, y ) 在 M 0 ( x0 , y0 ) 取得极值
充分条件:
极限与无穷小的关系
( x , y ) → ( x0 , y0 )
lim
f ( x, y ) = A
f ( x, y )= A + ∂ ( x, y )
其中:
x , y → x0 , y0
lim ∂ ( x, y ) = 0
2、 二元函数与一元函数有相同的极限运算法则与极限性质 求二元函数极限常用的方法:
f ( x, y ) 在 M 0 ( x0 , y0 ) 有极大值,点 M 0 ( x0 , y0 ) 称为 f ( x, y ) 的极值点。
极大值和极小值统称为极值。
驻点:
(x, y) 称为 f ( x, y ) 能够使 f x′( x, y ) = 0 和 f y′( x, y ) = 0 同时成立的点 的驻点。
二. 二元函数的极限 1、 二元函数极限的定义:
设函数 f ( x, y ) 在开区域内或闭区域 D 内有定义, M 0 ( x0 , y0 ) 是 D 的内点, 或者边界点。
多元函数微分学(1)

微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
9
二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
10
题型 1 求二元函数的极限
解题思路 (1) 利用多元初等函数的连续性求二元
函数的极限 (如例 1); 如例 (2) 利用变量替换将求二元函数极限的问题转化为 求一元函数极限的问题 (如例 2); 如例 (3) 利用夹逼定理求二元函数的极限 (如例 3); 如例 (4) 判定二元函数的极限不存在 (如例 4). 如例
多元函数微分学
21
例 5 设 z = z(x, y) 是由方程 x2 + y2 − z = ϕ( x + y + z) 所确定的函数, 所确定的函数 其中 ϕ 具有二阶导数且 ϕ′ ≠ −1 , (1) 求 dz ;
∂u 1 ∂z ∂z ( − ), 求 (2) 记 u( x, y) = . ∂x x − y ∂x ∂y
第八章
多元函数微分学
1
多元函数微分学】 【多元函数微分学】习题课 一、主要内容 二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
2
一、主要内容
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
3
1、区域 、 (1) 邻域
U ( P0 , δ ) = { P | PP0 | < δ }
= {( x , y ) | ( x − x0 ) 2 + ( y − y0 ) 2 < δ }.
F ( x , y , u, v ) = 0 (1)F ( x , y ) = 0; (2)F ( x , y , z ) = 0; (3) . G ( x , y , u, v ) = 0
第7章多元函数的微分学总复习剖析

x2 y2
x2 y2
总复习(第7章) 四、抽象复合函数的一阶偏导数
——填空、选择
2、设z f( x2 y2,e xy ),其中f 为可微函数,求zx ,zy .
解 设u x2 y2 ,v e xy , 则z f(u,v),
zx zu ux zv vx fu(u,v) 2x fv(u,v) ye xy
1. u xe y z2
解 du u dx u dy u dz
x
y
z
e y z2dx xe y z2dy 2 xze ydz.
2. z ln( x2 y2)
解 dz z dx z dy
x
y
( x2
y
2
) x
dx
( x2
y
2
) y
dy
x2 y2
x2 y2
2x
2 y
dx
dy
1. x 2 y z 2xyz 0.
解 令F( x, y,z) x 2 y z 2xyz
Fx 1 2 yz, Fy 2 2xz, Fz 1 2xy
z Fx
x
Fz
1 2yz 1 2xy
z Fy
y
Fz
2 2xz 1 2xy
总复习(第7章)
2. x2 z2 ln z ln y
2 xf ( x2 y2 ,e xy ) ye xy f ( x2 y2 ,e xy )
zy zu uy zv v y fu(u,v) (2 y) fv(u,v) xexy 2 yf ( x2 y2 ,e xy ) xe xy f ( x2 y2 ,e xy )
总复习(第7章)
144 p1 4 p2
总复习(第7章)
多元函数微分学讲座.

第八章 多元函数微分学 第一节 基本概念、定理与公式一、二元函数的定义及定义域 1 二元函数的定义定义1 设x ,y ,z 是三个变量.如果当变量x ,y 在在一定范围D 内任意取定一对数值时,变量z 按照一定的法则f 总有确定的数值与它们对应,则称变量z 是变量x ,y 的二元函数,记为(,)zf x y =.其中x ,y 称为自变量,z 称为因变量.自变量x ,y 的取值范围D 称为函数的定义域.二元函数在点()00,x y 所取得的函数值记为00x x y y z==,(,)x y z 或00(,)f x y2 二元函数的定义域二元函数的定义域一般为平面区域上的点集.二元函数的定义域较复杂,它可以是一个点,也可能是一条曲线或几条曲线所围成的部分平面,甚至可能是整个平面.整个平面或由曲线围成的部分平面称为区域;围成区域的曲线称为该区域的边界;边界上的点称为边界点,边界内的点称为内点.不包括边界的区域称为开区域,连同边界在内的区域称为闭区域,部分包括边界的区域称为半开半闭区域.能用封闭曲线围成的区域称为有界区域,反之称为无界区域.开区域如: {}22(,)14x y x y <+<闭区域 如:{}22(,)14x y xy ≤+≤注:和一元函数一样,二元和二元以上的函数也只与定义域和对应关系有关,,与用什么字母表示自变量与因变量无关.例1 求下列函数的定义域,并画出的图形.(1)ln z = (2)arcsin()zx y =+解(1) 要使函数有意义,应有2210x y --> 即221x y +<,定义域为有界开区域{}22(,)1x y x y +< (2)要使函数有意义,应有1x y +≤,即11x y -≤+≤xx定义域为无界闭区域{}(,)11x y x y -≤+≤3 二元函数的几何意义设(,)P x y 是二元函数(,)z f x y =的定义域D 内的任一点,则相应的函数值为(,)z f x y =,有序数组x ,y ,z 确定了空间一点(,,)M x y z ,称点集{}(,,)(,),(,)x y z z f x y x y D =∈为二元函数的图形. 二元函数(,)zf x y =的图形通常是一张曲面.注:和一元函数一样,二元和二元以上的函数也只与定义域和对应关系有关,与用什么字母表示自变量与因变量无关.二、二元函数的极限与连续 1.二元函数的极限以点000(,)P x y 为中心,δ为半径的圆内所有点的集合{}2200(,)()()x y x x y y δ-+-<称为点0P 的δ邻域,记作0(,)U P δ.定义2 设二元函数(,)zf x y =在点000(,)P x y 的某一邻域内有定义(点0P 可以除外),点(,)P x y 是该领域内异于0P 的任意一点.如果当点(,)P x y 沿任意路径趋于点000(,)P x y 时,函数(,)f x y 总无限趋于常数A ,那么称A 为函数(,)z f x y =当00(,)(,)x y x y →时的极限,记为0lim (,)x x y y f x y A →→= 或 00(,)(,)lim(,)x y x y f x y A →=说明:(1)定义中0P P →的方式可能是多种多样的,方向可能任意多,路径可以是千姿百态的,所谓极限存在是指当动点从四面八方以可能有的任何方式和任何路径趋于定点时,函数都趋于同一常数.(2)倘若沿两条不同的路径,0lim (,)x x y y f x y →→不相等,则可断定0lim (,)x x y y f x y →→不存在,这是证明多元函数极限不存在的有效方法.(3)二元函数的极限运算法则与一元函数类似,如局部有界性、局部保号性、夹逼准则、无穷小、等价无穷小代换等.例2 求极限22200sin()lim x y x y x y →→+解 22200sin()lim x y x y x y →→+2222200sin()lim x y x y x y x y x y →→=+ 其中 22212x y x x y ≤+ 22200sin()lim 0x y x y x y →→∴=+ 例3 证明 36200lim x y x y x y →→+不存在.证明:设3y kx =,则36200lim x y x y x y →→+6626200lim 1x y kx k x k x k →→==++其值随k 的不同而变化,故极限不存在.确定极限不存在的方法:(1)令点(,)P x y 沿y kx =趋向于000(,)P x y ,若极限值与k 有关,则(,)f x y 在点000(,)P x y 处极限不存在;(2)找出两种不同趋近方式,使0lim (,)x xy y f x y →→存在,但两者不相等,则此时(,)f x y 在点000(,)P x y 处极限不存在;2.二元函数的连续性 定义 3 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,如果000lim (,)(,)x xy y f x y f x y →→=,则称函数(,)f x y 在点000(,)P x y 处连续.定义4 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,分别给自变量x ,y 在0x ,0y 处以增量x ∆,y ∆,得全增量0000(,)(,)z f x x y y f x y ∆=+∆+∆-如果极限 00lim 0x y z ∆→∆→∆=则称(,)z f x y =在000(,)P x y 处连续.如果函数(,)z f x y =在区域D 内每一点都连续,则称函数(,)f x y 在区域D 内连续.如果函数(,)z f x y =在点000(,)P x y 不连续,则称点000(,)P x y 是函数(,)f x y 的间断点. 例4 求23limx y x yxy→→+. 解 因为函数(,)x y f x y xy+=是初等函数,且点(2,3)在该函数的定义域内,故235lim (2,3)6x y x y f xy →→+==. 例5 讨论函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩的连续性.解 当(,)(0,0)x y ≠时,(,)f x y 为初等函数,故函数在(,)(0,0)x y ≠点处连续.当(,)(0,0)x y =时,由例6知00lim (,)x y f x y →→=22lim x y xyx y →→+不存在,所以函数(,)f x y 在点(0,0)处不连续,即原点(0,0)是函数的间断点.3.有界闭区域上连续函数的性质性质1(最值定理) 在有界闭区域上连续的二元函数,在该区域上一定有最大值和最小值.性质2(介值定理) 在有界闭区域上连续的二元函数,必能取得介于函数的最大值与最小值之间的任何值.三、偏导数 1.偏导数的定义 定义 5 设函数(,)z f x y =在000(,)P x y 的某邻域内有定义, 固定0y y =,在0x 处给自变量x 以增量x ∆,相应地得到函数z 关于x 的得增量(称为偏增量):0000(,)(,)x z f x x y f x y ∆=+∆-如果极限000000(,)(,)limlimx x x z f x x y f x y x x∆→∆→∆+∆-=∆∆ 存在, 则称此极限值为函数(,)z f x y =在点000(,)P x y 处对x 的偏导数,记为00x x y y zx==∂∂,00x x y y f x==∂∂,00x x xy y z =='或00(,)x f x y '.类似地,函数(,)z f x y =在点00(,)x y 处对y 的偏导数定义为:00000(,)(,)limlimy y y z f x y y f x y yy∆→∆→∆+∆-=∆∆,记为 00x x y y zy==∂∂,00x x y y fy==∂∂,00x x yy y z =='或00(,)y f x y '.例6 求223z x xy y =++在点(1, 2)处的偏导数. 解 把 y 看成常数,得23zx y x∂=+∂,则1221328x y z x ==∂=⨯+⨯=∂;把x 看成常数,得32z x y y ∂=+∂,则1231227x y z y==∂=⨯+⨯=∂.例7 求函数(,)arctan x f x y y=的偏导数. 解:222111z y xy x y x y ∂==∂+⎛⎫+ ⎪⎝⎭,222211z x x xy x yx y ⎛⎫∂-=-= ⎪∂+⎛⎫⎝⎭+ ⎪⎝⎭例8设u =,证明2221u u u x y z ⎛⎫∂∂∂⎛⎫⎛⎫++= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭. 证明:因为u xx u∂=∂,u y y u ∂=∂,u zz u∂=∂, 所以2222222221u u u x y z u x y z u u ⎛⎫∂∂∂++⎛⎫⎛⎫++=== ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 例9 已知理想气体的状态方程(R 为常数).求证:1P V TV T P∂∂∂⋅⋅=∂∂∂ 证: 因为RT P V=,2P RT V V∂=-∂;RTV P=,V RT P∂=∂;PV T R=,T VP R∂=∂.所以P V T V T P ∂∂∂⋅⋅∂∂∂2RTV ⎛⎫=- ⎪⎝⎭R P ⋅1VRT RPV ⋅=-=-. 注:偏导数的记号z x ∂∂,zy∂∂是一个整体,不能看成微商,否则导致运算错误.例10 求222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处的偏导数. 解:220000(0,0)(0,0)()0(0,0)lim lim 0x x x x f x f x f x x∆→∆→∆⋅-+∆-∆+===∆∆ 220000(0,0)(0,0)()0(0,0)lim lim 0y y y y f y f y f y y∆→∆→∆⋅-+∆-∆+===∆∆. 注意: (1)二元函数在某点存在偏导数,并不能保证函数在该点连续,与一元函数可导必连续是不相同的.(2)在分界点处的偏导数,用偏导数定义求. (3)由偏导数的概念可知,(,)f x y 在点00(,)x y 处关于x 的偏导数00(,)x f x y '显然就是偏导数(,)x f x y '在点00(,)x y 处的函数值;00(,)y f x y '是偏导数(,)y f x y '在点00(,)x y 处的函数值.从偏导数的定义中可以看出,偏导数的实质就是把一个自变量固定,而将二元函数看作另一自变量的一元函数的导数.2.偏导数的几何意义:设00000(,,(,))P x y f x y 为曲面(,)z f x y =上的一点,过0P 作平面0y y =截此曲面(,)z f x y =得一曲线,其方程为0(,)z f x y =,则导数00(,)x f x y '就是曲线0(,)z f x y =在点00000(,,(,))P x y f x y 处的切线对x 轴的斜率(设切线与x 轴的倾斜角为α,则00(,)tan x f x y α'=).同样,偏导数00(,)y f x y '是曲面(,)z f x y =与平面0x x =的交线在点00000(,,(,))P x y f x y 处的切线对y 轴的斜率(设切线与y 轴的倾斜角为β,则00(,)tan y f x y β'=). 3、高阶偏导数 函数(,)z f x y =的两个偏导数(,)x zf x y x∂'=∂,(,)y z f x y y ∂'=∂它们都是x ,y 的二元函数,如果这两个函数关于x ,y 的偏导数也存在, 即z x x ∂∂⎛⎫ ⎪∂∂⎝⎭,z y x ∂∂⎛⎫ ⎪∂∂⎝⎭,z x y ⎛⎫∂∂ ⎪∂∂⎝⎭,z y y ⎛⎫∂∂ ⎪∂∂⎝⎭,称它们为二元函数(,)z f x y =的的二阶偏导数.二元函数的二元偏导数最多有4个.将z x x ∂∂⎛⎫⎪∂∂⎝⎭表为22z x ∂∂或(,)xxf x y ''或xx z ''; z y x ∂∂⎛⎫⎪∂∂⎝⎭表为2z x y ∂∂∂或(,)xy f x y ''或xy z ''; z x y ⎛⎫∂∂ ⎪∂∂⎝⎭表为2z y x ∂∂∂或(,)yxf x y ''或yx z ''; z y y ⎛⎫∂∂ ⎪∂∂⎝⎭表为22z y ∂∂或(,)yyf x y ''或yy z ''. 其中,2(,)xy xy z z f x y z y x x y ∂∂∂⎛⎫''''=== ⎪∂∂∂∂⎝⎭,2(,)yx yx z zf x y z x y y x⎛⎫∂∂∂''''=== ⎪∂∂∂∂⎝⎭是二阶混合偏导数类似地,二阶偏导数的偏导数,称为原来函数的三阶偏导数,二元函数(,)z f x y =的三阶偏导数最多有8个:xxxf ''',xxy f ''',xyx f ''',xyy f ''',yxx f ''',yxy f ''',yyx f ''',yyy f ''' 一般地,1n -阶偏导数的偏导数,称为原来函数的n 阶偏导数,二元函数(,)z f x y =的n 阶偏导数最多有2n 个.二阶及二阶以上的偏导数称为高阶偏导数,而z x∂∂和z y∂∂称为函数的一阶偏导数.注:二阶偏导数的计算方法是逐次求偏导数. 定理1(求偏导数次序无关的定理) 如果函数(,)z f x y =的两个二阶混合偏导数2z x y∂∂∂,2z y x∂∂∂在区域D 内连续,则对任何(,)x y D ∈有2z x y ∂∂∂2zy x ∂=∂∂. 即二阶混合偏导数连续的条件下,混合偏导数与求导的次序无关,对更高阶的偏导数也有类似的结论.4.全导数的定义 设(,)z f u v =,()u t ϕ=,()v t ψ=,且f、ϕ、ψ均可导,则关于t 的一元函数[(),()]z f t t ϕψ=也可导,且有dz f du f dvdt u dt v dt∂∂=+∂∂ z 对t 的导数叫全导数.四、全微分 1.定义 设函数(,)z f x y =在点000(,)P x y 的某邻域内有定义,给x ,y 在00(,)x y 分别以增量x ∆、y ∆,相应地得到函数的全增量z ∆,若其可表示为()z A x B y o ρ∆=∆+∆+其中A 、B 与x ∆、y ∆无关.ρ=()o ρ为0x ∆→,0y ∆→时ρ的高阶无穷小.则称函数(,)f x y 在000(,)P x y 处可微.A x B y ∆+∆称为(,)f x y 在000(,)P x y 处的全微分,记为00(,)(,)x y dz df x y A x B y ==∆+∆当(,)z f x y =在000(,)P x y 可微时,0000(,)x x x y y zA f x y x==∂'==∂,0000(,)y x x y y z B f x y y==∂'==∂,于是000(,)x y x x x x y y y y z z dz x y xy====∂∂=∆+∆∂∂注意:规定自变量的增量等于自变量的微分,即x dx ∆=,y dy ∆=,则全微分又可记为z zdz dx dy x y∂∂=+∂∂. 五、二元函数的连续、偏导数及全微分之间的关系 定理 2 若函数(,)z f x y =在点(,)P x y 处可微,则函数在点(,)P x y 连续.定理3 (可微的必要条件)如果函数(,)z f x y =在点(,)P x y 处可微,则在该点处的两个偏导数zx∂∂、z y∂∂必都存在,且z zdz dx dy x y∂∂=+∂∂. 定理4 (可微的充分条件)若函数(,)z f x y =的两个偏导数z x∂∂、z y ∂∂在点(,)P x y 的某领域存在,并且在点(,)P x y 处连续,则函数(,)z f x y =在点(,)P x y 处必可微.注:若(,)z f x y =在(,)P x y 处,z x∂∂、z y∂∂都存在,不能保证(,)z f x y =在(,)P x y 处可微分.例如:222222,0(,)0,0xyx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处(0,0)0x f =,(0,0)0y f '=但它在点(0,0)处不可微分.注:(1)关于二元函数全微分的定义及可微分的充分条件可以完全类似地推广到三元和三元以上的多元函数.(2)函数(,)z f x y =的偏导数存在与否与函数是否连续毫无关系.六、多元复合函数微分定理(复合函数的偏导数)设函数(,)u x y ϕ=,(,)v x y ψ=在点(,)x y 处有偏导数,函数(,)z f u v =在对应点(,)u v 处有连续偏导数,,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 处的偏导数存在,且z z u z v x u x v x∂∂∂∂∂=+∂∂∂∂∂z z u z v y u y v y∂∂∂∂∂=+∂∂∂∂∂七、隐函数微分zu vxy1.一元隐函数求导公式方程 (,)0()F x y y y x =⇒=,(,())0F x y x ≡,链式图两边对x 求导,得:0F F dy x y dx∂∂+⋅=∂∂, 则xy FFdy x F dx F y∂∂=-=-∂∂2.二元隐函数求导公式方程(,,)0(,)F x y z z z x y =⇒=得(,,(,))0F x y z x y ≡ 两边对x 求导:0F F z x z x∂∂∂+⋅=∂∂∂ 两边对y 求导:0F F z y z y∂∂∂+⋅=∂∂∂ 得x zF zx F ∂=-∂ y zFz yF ∂=-∂7.2 偏导数在几何上的应用一、空间曲线的切线与法平面空间曲线()()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩,下面给出曲线Γ的切线的定义.定义:设点0000(,,)M x y z 是空间曲线Γ上的一个定点,M 是曲线Γ上的一个动点,当点M 沿着曲线Γ趋近于0M 时,割线0M M 的极限位置0M T (如果存在)称为曲线Γ在点0M 的切线,并称过点0M 而且垂直于切线0M T的平面为曲线Γ在点0M 的法平面.下面推导曲线Γ在点0M 的切线和法平面方程.Fxyx设对应于定点0M 的参数为0t ,令00()x x t =,00()y y t =,00()z z t =,则点0M 的坐标为000(,,)x y z ,设曲线Γ上对应于参数为0t t +∆的点M 的坐标为000(,,)x x y y z z +∆+∆+∆,根据解析几何知识,割线0M M 的方向向量为{,,}x y z ∆∆∆,也可取为{,,}x y zt t t∆∆∆∆∆∆,当0t ∆→时,点M 沿着曲线Γ趋于0M ,割线0M M 的极限位置就是曲线Γ在点0M 的切线,若()x t ,()y t ,()z t 在0t 处可导且导数不同时为零,那么此时切线的方向向量为000{(),(),()}x t y t z t ''',从而曲线Γ在点0000(,,)M x y z 处的切线方程为000000()()()x x y y z z x t y t z t ---=='''曲线Γ在点0M 的法平面方程为000000()()()()()()0x t x x y t y y z t z z '''-+-+-=二、曲面的切平面与法线设曲面方程为(,,)0F x y z =,过点0000(,,)M x y z 且完全在曲面上的曲线为Γ,其参数方程为()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩,因此((),(),())0F x t y t z t =.对t 求导,在0t t =处(即在点0M 处)有000000000000(,,)()(,,)()(,,)()0x y z F x y z x t F x y z y t F x y z z t ''''''++=向量000{(),(),()}x t y t z t '''是曲线Γ在点0M 的切线的方向向量,向量000000000{(,,),(,,),(,,)}x y z F x y z F x y z F x y z '''和这些切线垂直,又由于所取曲线Γ的任意性,可知曲面上任意一条过0M 的曲线,它在点0M 的切线皆垂直于向量000000000{(,,),(,,),(,,)}x y z F x y z F x y z F x y z ''',因此这些切线应位于同一平面上,这个平面称为曲面在点0M 处的切平面,向量000000000{(,,),(,,),(,,)}x y z F x y z F x y z F x y z '''是切平面的法向量.曲面在点0M 处的切平面方程为000000000000(,,)()(,,)()(,,)()0x y z F x y z x x F x y z y y F x y z z z '''-+-+-=曲面在点0M 处的法线方程为000000000000(,,)(,,)(,,)x y z x x y y z z F x y z F x y z F x y z ---=='''. 7.3 二元函数的极值一、二元函数的极值 定义1:设函数(,)z f x y =在点000(,)P x y 的某个邻域内有定义,若该邻域内00(,)(,)f x y f x y ≤,点00(,)x y 为极大点,00(,)f x y 为极大值;00(,)(,)f x y f x y ≥,点00(,)x y 为极小点,00(,)f x y 为极小值.极小值点和极大值点统称为极值点,极小值和极大值通称为极值. 定义2:方程组(,)0(,)0x yf x y f x y '=⎧⎨'=⎩的解,称为函数(,)z f x y =的驻点. 定理1(取极值的必要条件):若函数(,)z f x y =在点000(,)P x y 一阶偏导数存在,且000(,)P x y 是(,)z f x y =的极值点,则该点的偏导数必为零,即0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩.定理2(极值存在的充分条件):设点000(,)P x y 是函数(,)z f x y =的驻点,且函数在点000(,)P x y 的某邻域内二阶偏导数连续,令00(,)xxA f x y ''=00(,)xyB f x y ''=00(,)yyC f x y ''= 则 (1)当20B AC -<时,点000(,)P x y 是极值点,且(i )当0A <(或0C <)时,点000(,)P x y 是极大值点;()当0A >(或0C >)时,点000(,)P x y 是极小值点.(2)当20B AC ->时,点000(,)P x y 不是极值点.(3)当20B AC -=时,点000(,)P x y 可能是极值点也可能不是极值点.例1 求函数322(,)421f x y x x xy y =-+-+的极值. 解: (1)求偏导数2(,)382x f x y x x y '=-+,(,)22y f x y x y '=-,(,)68xxf x y x '=-,(,)xy f x y y '=,(,)2yy f x y '=-(2)解方程组2(,)3820(,)220x y f x y x x y f x y x y '⎧=-+=⎪⎨'=-=⎪⎩得驻点(0,0)及(2,2) 在(0,0)处,8A =-,2B =,2C =-,20B AC ∆=-< 在(2,2)处,4A =,2B =,2C =-,20B AC ∆=->结论: 函数在(0,0)处取得极大值(0,0)1f =,在(2,2)无极值. 注意:对一般函数,可能的极值点包括驻点或至少一个偏导数不存在的点.二、条件极值与无条件极值 1.求二元函数无条件极值步骤如下: (1)求(,)x f x y ',(,)y f x y ',并解方程组(,)0(,)0x y f x y f x y '=⎧⎨'=⎩,求得所有驻点;(2)对于每一个驻点(,)x y ,求出二阶偏导数的值00(,)xxA f x y ''=,00(,)xyB f x y ''=,00(,)yyC f x y ''=; (3)定出2B AC -的符号,利用极值存在的充分条件判断驻点(,)x y 是否为极值点,若是,是极大值点还是极小值点,并求出极值.2.求二元函数(,)z f x y =在约束条件(,)0x y ϕ=下的极值的方法和步骤如下:方法一:条件极值⇒无条件极值 (1)从约束条件(,)0x y ϕ=中求出()y x ψ=;(2)将()y x ψ=代入二元函数(,)f x y 中化为一元函数(,())f x x ψ,变为无条件极值;(3)求出一元函数(,())f x x ψ的极值即为所求.方法二:条件极值不能转化为无条件极值(运用拉格朗日乘数法).(1)构造辅助函数(,,)(,)F x y f x y λ=(,)x y λϕ+,称为拉格朗日函数,其中参数λ称为拉格朗日乘数;(2)由(,,)F x y λ的一阶偏导数组成如下方程组:(,)(,)(,)0(,)(,)(,)0(,)0x x x y y y F x y f x y x y F x y f x y x y x y λϕλϕϕ'''=+=⎧⎪'''=+=⎨⎪=⎩(3)结上述方程组得驻点00(,)x y ,则00(,)x y 就是函数的极值点,依题意判断00(,)f x y 是极大值还是极小值.上述方法即拉格朗日乘数法可平行地推广到多元函数、多个限制条件上去.例2 求表面积为2a ,而体积为最大的长方体的体积. 解:设长方体长、宽、高分别为x ,y ,z ,则长方体体积为V xyz =,约束条件为22()xy yz xz a ++=即2(,,)2()0x y z xy yz xz a ϕ=++-=构造辅助函数2(,,)2()2a F x y z xyz xy yz xz λ=+++-解联立方程组2(,,)2()0(,,)2()0(,,)2()02()0x yz F x y z yz y z F x y z xz x z F x y z xy x y xy yz xz a λλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪++-=⎩解得x y z ===λ=因为是唯一可能的极值点,所以由问题的实际意义知3max 36V a =. 三、最值的求解在有界闭区域D 上连续的函数一定在该区域D 上取得最大值和最小值,最值点可能在D 的内部也可能在D 的边界点上,如果假定函数在D 上连续,在D 内可微分且只有有限个驻点,这时如果函数在D 的内部取得最大值(最小值),那么这个最大值(最小值)也是函数的极大值(极小值).因此在上述假定下,求函数的最大值和最小值的一般方法是:将函数(,)f x y 在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较,其中最大的就是最大值,最小的就是最小值.但是这种做法并不简单,因为求函数在边界上的最大值和最小值一般来说仍然是相当复杂的,在通常遇到的实际问题中,如果根据问题的性质,知道函数(,)f x y 的最大值(最小值)一定在D 的内部取得,而函数在D 内只有一个驻点,那么可以肯定该驻点处的函数值就是函数(,)f x y 在D 上的最大值(最小值).例 3 要做一个容积为V 的长方体箱子,问箱子各边的尺寸多大时,所用材料最省?解 设箱子的长、宽分别为, x y ,则高为Vxy .箱子所用材料的表面积为2()V VS xy y x xy xy=+⋅+⋅2()V V xy x y =++ (0x >,0y >).当面积S 最小时,所用材料最省.为此求函数(, )S x y 的驻点,222()0,2()0,SV y x x S V x yy ∂⎧=-=⎪∂⎪⎨∂⎪=-=∂⎪⎩解这个方程组,得唯一驻点. 根据实际问题可以断定,S 一定存在最小值且在区域D 内取得.而在区域D内只有唯一驻点,则该点就是其最小值点,即当===z y x 3V 时,所用的材料最省.最新文件仅供参考已改成word文本。
高等数学 多元函数微分学复习

第六章 多元函数微分学及其应用6.1 多元函数的基本概念一、二元函数的极限定义 f (P )= f (x ,y )的定义域为D , 0P ),(00y x 是D 的聚点. 对常数A ,对于任意给定的正数ε,总存在正数δ,使得当点P (x ,y )∈D ),(0δP U o⋂,即δ<-+-<<20200)()(||0y y x x P P时,都有|f (P )–A |=|f (x ,y )–A |<ε成立,那么就称常数A 为函数f (x ,y )当(x ,y )→),(00y x 时的极限,记作A y x f y x y x =→),(lim),(),(00或f (x ,y )→A ((x ,y )→),(00y x ),也记作A P f P P =→)(lim 0或 f (P ) →A (P →0P )为了区别于一元函数的极限,上述二元函数的极限也称做二重极限. 二、二元函数的连续性=→),(lim),(),(00y x f y x y x f ),(00y x ,0lim )0,0(),(=∆→∆∆z y x如果函数f (x , y )在D 的每一点都连续,那么就称函数f (x , y )在D 上连续,或者称f (x , y )是D 上的连续函数.如果函数f (x , y )在点0P ),(00y x 不连续,则称0P ),(00y x 为函数f (x , y )的间断点. 多元连续函数的和、差、积仍为连续函数;连续函数的商在分母不为零处仍连续;多元连续函数的复合函数也是连续函数。
一切多元初等函数在其定义区域内是连续的.多元初等函数的极限值就是函数在该点的函数值,即)()(lim00P f P f p p =→.有界性与最大值最小值定理 在有界闭区域D 上的多元连续函数,必定在D 上有界,且能取得它的最大值和最小值. 介值定理 在有界闭区域D 上的多元连续函数必取复介于最大值和最小值之间的任何值。
多元函数的微分学(第九讲)

第九讲 多元函数的微分一、主要知识点1.主要概念(以二元函数为主)(1)函数的极限与连续定义极限定义(εδ-定义)A y x f y y x x =→→),(lim 00:如果对于任意给定0ε>,总存在0δ>,使得对于适合不等式00pp δ<=的一切点(,)p x y ,都有ε<-A y x f ),(成立.连续函数定义 设函数),(y x f z =在区域D 内有定义,且000(,)p x y D ∈,若),(),(lim 0000y x f y x f y y x x =→→则称函数),(y x f 在点000(,)p x y 处连续. 注意:二元函数与一元函数的差异. (2)偏导数的定义设函数),(y x f z =在点),(y x p 的某邻域内有定义,函数的偏导数为0(,)(,)lim x z f x x y f x y x x ∆→∂+∆-=∂∆,0(,)(,)lim y z f x y y f x y y y∆→∂+∆-=∂∆. 注意:分段函数在分段点的偏导数用偏导数定义计算. (3)全微分定义设函数),(y x f z =在点),(y x p 的某邻域内有定义,若()z A x B y o ρ∆=∆+∆+,其中22)()(y x ∆+∆=ρ,全微分dy yzdx x z y B x A dz ∂∂+∂∂=∆+∆=. 2. 主要理论(1)定理1(求偏导数与次序无关的定理)若函数),(y x f z =的两个混合偏导数x y z y x z ∂∂∂∂∂∂22,在区域D 内连续,则xy zy x z ∂∂∂=∂∂∂22.(2)定理2(可微与偏导数存在关系定理)若函数),(y x f z =在点),(y x p 可微,则在该点处yzx z ∂∂∂∂,存在,且 dy yzdx x z dz ∂∂+∂∂=. (3)定理3(偏导连续与可微的关系定理)若函数),(y x f z =偏导数yzx z ∂∂∂∂,在点),(y x p 的某邻域内存在且连续,则),(y x f 在点),(y x p 可微.3.主要公式(1) 全导数公式设函数),(v u f z =偏导数连续,而)(),(t v t u ψϕ==导数连续,则)](),([t t f z ψϕ=的全导公式为dtdvv f dt du u f dt dz ⋅∂∂+⋅∂∂=. (2)显函数 ),,(z y x f u =的偏导数求u 对x 的偏导数xu∂∂时,将z y ,视作常数,利用一元函数求导公式及法则求之. 求u 对y 的偏导数yu∂∂时,将z x ,视作常数,利用一元函数求导公式及法则求之. 求u 对z 的偏导数zu∂∂时,将y x ,视作常数,利用一元函数求导公式及法则求之. (3)复合函数的偏导数1)设),(),,(),,(y x v y x u v u f z ψϕ===的偏导数连续,则)],(),,([y x y x f z ψϕ=偏导数为xv v x x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 2)设),,,(v u y x f z =,),(),,(y x v y x u ψϕ==的偏导数连续,则函数)],(),,(,,[y x y x y x f z ψϕ=的偏导数为x v v f x u u f x f x z ∂∂∂∂+∂∂∂∂+∂∂=∂∂,yv v f y u u f y f y z ∂∂∂∂+∂∂∂∂+∂∂=∂∂.注意:1)偏导函数yzx z ∂∂∂∂,的复合关系同原函数一样,求二阶偏导数方法同一阶方法类似.2)抽象函数的二阶偏导数的求法及其重要. (4)隐函数的偏导数1) 由方程0),(=y x F 确定的隐函数)(x y y =的导数公式为),(),(y x F y x F dx dyy x''-= , (0),(≠y x F y ). 2)由方程0),,(=z y x F 确定的隐函数),(y x z z =的偏导数公式为),(),(,),(),(y x F y x F y z y x F y x F x zz y z x ''-=∂∂''-=∂∂ , (0),(≠'y x F z ). 3)由三个变量两个方程所构成的方程组⎩⎨⎧==0),,(0),,(z y x G z y x F 确定的隐函数),(x y y =)(x z z =,求导数dx dz dx dy ,可通过解关于dxdzdx dy ,的线性方程组来完成,即解方程组⎪⎪⎩⎪⎪⎨⎧'-=+'-='+'x z y x z y G dx dz G dxdy G F dxdz F dx dy F ''. 4)由四个变量两个方程所构成的方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F , 确定的隐函数(,),(,)u u x y v v x y ==,求偏导数yvx v y u x u ∂∂∂∂∂∂∂∂,,,,可通过解关于x v x u ∂∂∂∂,),(yvy u ∂∂∂∂的线性方程组来完成,即解方程组 ⎪⎪⎩⎪⎪⎨⎧'-=∂∂+∂∂''-=∂∂'+∂∂'x v u x v u G x v G xu G F xv F x u F ' , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎩⎪⎪⎨⎧'-=∂∂'+∂∂''-=∂∂'+∂∂'y v u y v u G y v G y u G F y vF y u F . 4.主要计算方法(1)显函数求偏导数的方法(包含二阶偏导数,抽象函数); (2)隐函数求偏导数的方法(包含二阶偏导数,抽象函数,方程组);二、例题分析1.二元函数极限、连续、偏导数与全微分之间的联系例1.设223222(,)()0x y f x y x y ⎧⎪=⎨+⎪⎩2222,0,0x y x y +≠+=,证明函数),(y x f 在点)0,0(连续且偏导数存在,但不可微分. 证明:(1)证明连续性因为32240cos sin 232222)0,0(),()0,0(),(cos sin lim )(lim),(lim rr y x yx y x f r r x r y y x y x θθθθ→==→→====+=2220lim sin cos 0r r θθ→==)0,0(f =. 所以),(y x f 在点)0,0(连续.(2)证明偏导数存在.因为 232200()0(0,0)(0,0)(()0)(0,0)limlim 0x x x x f x f x f x x∆→∆→∆⋅-+∆-∆+'===∆∆22200()0(0,0)(0,0)(0())(0,0)limlim 0y y y y f y f y f y y∆→∆→⋅∆-+∆-+∆'===∆∆所以函数(,)(0,0)f x y 在处偏导数存在且为0. (3)证明(,)f x y 在点(0,0)不可微.因为 223222()()[(0,0)(0,0)][()()]x y x y z f x f y z x y ∆∆''∆-∆-∆=∆=∆+∆,所以41])(2[)(lim ])()[()()(lim ])()[()()(lim224,0222220,02322220,0=∆∆=∆+∆∆∆=∆+∆∆∆∆=∆→∆→∆→∆→∆→∆x x y x y x y x y x x y x y x y x ρ于是函数)0,0(),(o y x f 在点不可微.说明:通常判断函数(,)f x y 在点00(,)x y 是否可微,可以按以下步骤考虑:(1)考察函数(,)f x y 在点00(,)x y 是否连续.若不连续,则函数(,)f x y 在点00(,)x y 不可微;(2)若函数(,)f x y 在点00(,)x y 连续,再考察偏导数0000(,),(,)x y f x y f x y 是否存在.若两个偏导数有一个不存在,则函数(,)f x y 在点00(,)x y 不可微;(3)若函数(,)f x y 在点00(,)x y 连续,偏导数0000(,),(,)x y f x y f x y 存在,再考察偏导数0000(,),(,)x y f x y f x y 是否连续,若偏导数0000(,),(,)x y f x y f x y 连续,则函数(,)f x y 在点00(,)x y 可微;(4)若偏导数0000(,),(,)x y f x y f x y 不连续,则利用全微分定义判别,如例1.练习题:设222222(0(,)00x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩,证明函数),(y x f 在点)0,0(连续且偏导数存在,但是偏导数在点)0,0(不连续,而函数点)0,0(可微分.二元函数),(y x f z =连续,偏导存在与可微三者关系函数连续 偏导数存在2.多元复合显函数求导问题例2.设函数(,,)f x y z 是k 次齐次函数,即(,,)(,,)kf tx ty tz t f x y z =,k 为某一常数,求证:(,,)f f f xy z kf x y z x y z∂∂∂++=∂∂∂. 证明:令,,u tx v ty w tz ===,则(,,)(,,)k f tx ty tz t f x y z =化为(,,)(,,)k f u v w t f x y z =,上式两边对t 求导得1(,,)k f u f v f wkt f x y z u t v t w t -∂∂∂∂∂∂++=∂∂∂∂∂∂, 又 ,u v w x y z t t t ∂∂∂===∂∂∂ 有 1(,,)k f f f x y z k t f x y z u v w-∂∂∂++=∂∂∂上式两边同乘以t ,得(,,)k f f f txty tz kt f x y z u v w ∂∂∂++=∂∂∂ 即有 (,,)f f f u v w kf u v w u v w∂∂∂++=∂∂∂ 于是得 (,,)f f fxy z kf x y z x y z∂∂∂++=∂∂∂. 例3.已知函数(,)u u x y =,满足方程2222()0u u u u a x y x y∂∂∂∂-++=∂∂∂∂ (1)试选择参数α,β,利用变量(,)(,)x y u x y v x y e αβ+=,将原方程变形使得新方程中不含一阶偏导数项;(2)再令x y ξ=+,x y η=-,使新方程变换形式 解:(1)()x y x y x y u v v e v e v e x x xαβαβαβαα+++∂∂∂=+=+∂∂∂ 2222()()x y x y u v v ve v e x x x xαβαβααα++∂∂∂∂=+++∂∂∂∂ 222(2)x y v vv e x xαβαα+∂∂=++∂∂, ()x y u vv e y yαββ+∂∂=+∂∂, 22222(2)x yu v v v e y y yαβββ+∂∂∂=++∂∂∂ 将上述式子代入已知方程中,消去x yeαβ+变得到222222(2)(2)()0u u v va a a a v x y x yαβαβαβ∂∂∂∂-+++-++-++=∂∂∂∂, 由题意,令2020a a αβ+=⎧⎨-+=⎩,解出22a a αβ⎧=-⎪⎪⎨⎪=⎪⎩,故原方程为 22220u ux y∂∂-=∂∂.(2)令x y ξ=+,x y η=-,则v v v v vx x x ξηξηξη∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂, v v v v vy y y ξηξηξη∂∂∂∂∂∂∂=+=-∂∂∂∂∂∂∂ 22222222v v v v v x x x x xξηξηξξηξηη∂∂∂∂∂∂∂∂∂=+++∂∂∂∂∂∂∂∂∂∂∂ 222222v v vξξηη∂∂∂=++∂∂∂∂ 同理 2222222v v v v y ξξηη∂∂∂∂=-+∂∂∂∂∂ 将上面式子代入22220u ux y∂∂-=∂∂中得到20vξη∂=∂∂. 例4.证明:若u =20d u ≥.(二阶全微分)记号:222222(),(),()dx dx dy dy dz dz ===,()0,()0,()0d dx d dy d dz ===. 证明:因为一阶全微分为xdx ydy zdzdu u++=则 22222()()u dx dy dz xdx ydy zdz dud u u++-++= 2222()()xdx ydy zdzu dx dy dz xdx ydy zdz u u ++++-++=222223()()u dx dy dz xdx ydy zdz u ++-++=22222223()()()x y z dx dy dz xdx ydy zdz u++++-++= 2223()()()0xdy ydx ydz zdy zdx xdz u -+-+-=≥于是有20d u ≥.练习题:1.设函数(,,),(,,),(,),(,)u f x y z x z s t y x t z s t ϕψω====偏导数存在,求,u u s t∂∂∂∂. 2.设函数(,)()z f x y x y g x ky =-+++,其中,f g 具有二阶连续偏导数,且"0g ≠,如果222"222224z z z f x x y y∂∂∂++=∂∂∂∂,求常数k 的值.(2120k k ++=,故1k =-) 3.设z =,求二阶全微分20d z ≥.(222223222()()()()x y dx dy xdx ydy x y ++-++)3.隐函数的求导问题例5.设),(t x f y =,而t 是由方程0),,(=t y x G 所确定的y x ,的隐函数,求dxdy(其中),,(),,(t y x G t x f 为可微函数).解:设方程组⎩⎨⎧==0),,(),(t y x G t x f y 确定t y ,皆为x 的函数,将方程组对x 求导数,得0x t dy t f f dx x G G dy G tx y dx t x∂⎧''=+⎪∂⎪⎨∂∂∂∂⎪++=∂∂∂∂⎪⎩或 t x dy tf f dx xG dy G t G ydx t x x∂⎧''-=⎪∂⎪⎨∂∂∂∂⎪+=-∂∂∂∂⎪⎩解方程组,得1x t x t t t f f G G G G f f dy x t t x G G f dx f t y G Gy t''-∂∂∂∂-''-∂∂∂∂==∂∂'-'+∂∂∂∂∂∂. 例6.设(,,)u f x y z =,2(,,)0yx e z ϕ=,sin y x =,其中,f ϕ具有一阶连续偏导数,且0x ϕ∂≠∂,求dudx. 解:这是有显函数,隐函数构成的复合函数的求导问题,x yzxyxu从复合关系图看出复合关系后求导,有x y z du u u dy u dz dy dz f f f dx x y dx z dx dx dx∂∂∂'''=++=++∂∂∂ 由2(,,)0y x e z ϕ=两边对x 求导,得12320ydy dzx e dx dxϕϕϕ'''++= , 又cos dyx dx=,代入上式得 1231(2cos )y dz x e x dx ϕϕϕ''=-+'于是123cos (2cos )y z x y f duf f x x e x dx ϕϕϕ'''''=+-+'. 例7.设(,)z z x y =是由方程(,)z z f xy e =确定的隐函数,求偏导数,z zx y∂∂∂∂. 解法1:设(,,)(,)z F x y z f xy e z =-,求偏导数1x F f y''=⋅,1y F f x ''=⋅,21z z F f e '=⋅-, 应用公式得112211x z zz F yf yf zx F f e e f '''∂=-=-='''∂--,112211y z zz F xf xf zy F f e e f '''∂=-=-='''∂--. 方法2:直接应用复合函数求导法则,方程两边关于x 求偏导数,此时z 是,x y 得函数,于是12(,)(,)z z z z zf xy e y f xy e e x x∂∂''=⋅+⋅∂∂, 从上述方程中解出z x ∂∂,即得121z yf zx e f '∂='∂-.方程两边关于y 求偏导数,此时z 是,x y 得函数, 于是12(,)(,)z z z z z f xy e x f xy e e y y∂∂''=⋅+⋅∂∂,从上述方程中解出z y ∂∂,即得121zxf zy e f '∂='∂-. 方法3:应用一阶全微分形式不变性12(,)()z z dz df xy e f d xy f de ''==⋅+⋅ 112z f ydx f xdy f e dz '''=⋅+⋅+⋅,移项得 211(1)zf e d z y f d x x f d y '''-⋅=⋅+⋅, 解出112211z zyf yf dz dx dy e f e f ''=+''--, 因此121z yf z x e f '∂='∂-,121z xf zy e f '∂='∂-. 例8.设sin ,sin u xu v x y v y+=+=,求22,,,du dv d u d v . 解:方程组sin sin u v x yy u x v+=+⎧⎨=⎩对x 求微分,得sin cos sin cos du dv dx dy udy y udu vdx x vdv +=+⎧⎨+=+⎩(1)解方程组的1[(sin cos )(sin cos )]cos cos du v x v dx u x v dy x v y u=+--+1[(sin cos )(sin cos )]cos cos dv u y u dy v y u dx x v y u=+--+(1) 式方程组再微分一次,得222222cos 2cos sin cos 2cos sin d u d v y ud u udydu y udu x vd v vdxdv x vdv⎧+=⎨+-=+-⎩ (2) 解方程组(2),得221[(2cos sin )(2cos sin )]cos cos d u d v vdx x vdv dv udy y udu du x v y u=-=---+.例9.设函数(,)z f x y =有连续的一阶偏导数,(,)w w u v =是由方程组2211w x y u x y v x y z e++⎧=+⎪⎪=+⎨⎪⎪=⎩所确定的隐函数,试将方程()()z z y x y x z x y x y∂∂-=-≠∂∂化为,w w u v ∂∂∂∂所满足的关系式. 解:由方程组可以看出(,,),(,)w x y z f x y w e w w u v ++===,则1321()(2)w x y w x y z w u w v w w z z e e x x u x v x u x v++++∂∂∂∂∂∂∂=++=+-∂∂∂∂∂∂∂ 2321()(2)w x y w x y z w u w v w w z z e e y y u y v y u y v++++∂∂∂∂∂∂∂=++=+-∂∂∂∂∂∂∂ 因此 左边22()()w x y y x z z v y x∂=-+-∂,右边()y x z =-, 于是方程()()z z y x y x z x y x y∂∂-=-≠∂∂化为 22()0w x y z v y x∂-=∂, 又由于3322220x y x y y x x y--=≠,故0w v ∂=∂. 例10.设)(u f 有连续的二阶导数,且)sin (y e f z x=满足方程z e y z x z x 22222=∂∂+∂∂,求)(u f .解:设sin xu e y =,则 '()'()sin '()x z u f u f u e y uf u x x∂∂===∂∂, '()'()cos x z u f u f u e y y y∂∂==∂∂, 222"()'()z f u u f u u x∂=+∂,(u u x ∂=∂), 2222'()sin cos "()'()"()cos x x x z u f u e y e yf u uf u f u e y y y∂∂=-+=-+∂∂,所以 22222"()x z z e f u x y∂∂+=∂∂. 由已知条件,得22"()()x x e f u e f u =,即"()()0f u f u -=,这是二阶常系数线性微分方程,其特征方程为210r -=,特征根为1r =±,则12()u u f u c e c e -=+为所求.练习题:1.已知ty y e x =+,而t 是由方程2221y t x +-=所确定的,x y 的函数,求dy dx. (22()tytydy t xye dx t y t e +=+-) 2.设2222221x y z a b c++=,求全微分2,dz d z . 3.设函数222),(z y x r r f u ++==,在0>r 内满足0222222=∂∂+∂∂+∂∂zu y u x u , 其中)(r f 为二阶可导函数,且1)1()1(='=f f ,试将方程化为以y 为自变量的常微分方程,并求)(r f .(1()2f r r=-+)。
高等数学讲义——多元函数微分法

dz Ax By
定理2 (必要条件) 若函数 z f (x, y)在点(x, y)可微,则
(1) f (x, y)在(x, y)处连续;
xy
yx
例4 证明u
1
满足拉普拉斯方程
x2 y2 z2
2u x 2
2u y 2
2u z 2
0
证明:
u
1
(x2
y2
z
2
)
3 2
2x
x 2
x
3
(x2 y2 z2)2
2u x 2
(x2
1 y2
3
z2)2
x[ 3 (x2 2
y2
5
z2) 2
2x]
2x2 y2 z2
5
(x2 y2 z2)2
F f xy (x 3x, y 4y)xy 0 3 , 4 1
f yx (x 2x, y 4y) f xy (x 3x, y 4y)
由于f xy , f yx连续, 令x 0, y 0得 : f xy (x, y) f yx (x, y)
二. 全微分
1. 概念
x
(3)u z yx
z 6x2 y 2 ex y
(2) z x
1
1
y2 x2
(
y) x2
x2
y
y2
;
z x y x2 y2
(3) u z y x ln z y x ln y; u z y x ln z xy x1;
x
y
u y x z y x 1 z
多元函数微积分知识点

多元函数微积分知识点一、向量值函数向量值函数是指函数的取值为向量的函数,常用符号表示为r(t)或F(t)。
向量值函数的微分即为向量的微分。
二、多元函数的连续性与可微性多元函数在点(x0,y0)连续的充分必要条件是其分量函数在(x0,y0)连续;多元函数在点(x0,y0)可微的充分必要条件是其分量函数在(x0,y0)可微。
三、多元函数的偏导数多元函数f(x,y)对x的偏导数记为∂f/∂x,对y的偏导数记为∂f/∂y。
偏导数可以通过限制一个变量,将多元函数转化为一元函数进行求导。
四、多元函数的微分与高阶导数对于多元函数f(x, y),其微分为df = (∂f/∂x)dx + (∂f/∂y)dy。
高阶偏导数的计算可以通过多次对一个变量进行偏导来得到。
五、多元函数的极值与最值多元函数的极值包括极大值与极小值,可以通过偏导数的方法求得。
为了确定是极大值或极小值,还需要进行二阶偏导数的判别。
六、多元函数的不定积分多元函数的不定积分即求解原函数,其中一个变量看作常数即可。
不定积分具有可加性,也可以用变量代换等方法来简化计算。
七、多元函数的定积分多元函数的定积分是指对多元函数在一个区域上的积分。
定积分的计算需要根据具体的区域进行定积分化简。
八、偏导数的几何意义与方向导数偏导数的几何意义是函数在其中一点上沿各个坐标轴方向的切线的斜率。
方向导数是函数在其中一点沿其中一方向的变化率。
九、梯度与梯度的性质多元函数的梯度是一个向量,表示的是函数在其中一点上沿着变化最快的方向。
梯度具有线性和方向导数的性质。
十、拉格朗日乘数法拉格朗日乘数法是一种用于求解带有约束条件的极值问题的方法。
通过引入拉格朗日乘子,将问题转化为无约束条件的极值问题。
综上所述,多元函数微积分是研究多变量函数的微积分学科,其知识点包括向量值函数、多元函数的连续性与可微性、多元函数的偏导数、多元函数的微分与高阶导数、多元函数的极值与最值、多元函数的不定积分、多元函数的定积分等。
习题课多元函数微分学

下列选项正确的是( )
提示: 设
()
代入()得
D
(2006考研)
作业(4-13)
而
所以 f 在点(0,0)不可微 !
二、多元函数微分法
显示结构
隐式结构
1. 分析复合结构
自变量个数 = 变量总个数 – 方程总个数
自变量与因变量由所求对象判定
2. 正确使用求导法则
“分段用乘,分叉用加,单路全导,叉路偏导”
注意正确使用求导符号
3. 利用一阶微分形式不变性
练习题
1. 设函数 f 二阶连续可微, 求下列函数的二阶偏导数
2. P134 题12
解答提示:
第 1 题
P134 题12 设
求
提示:
①
②
利用行列式解出 du, dv :
代入①即得
求曲线在切线及法平面
(关键: 抓住切向量)
求曲面的切平面及法线 (关键: 抓住法向量)
2. 极值与最值问题
故
6. 在第一卦限内作椭球面
的切平面
使与三坐标面围成的四面体体积最小,并求此体积.
提示: 设切点为
用拉格朗日乘数法可求出
则切平面为
所指四面体体积
V 最小等价于 f ( x, y, z ) = x y z 最大,
故取拉格朗日函数
7. 设
均可微, 且
在约束条件(x, y) 0下的一个极值点,
第九章
习题课
一、 基本概念
二、多元函数微分法
三、多元函数微分法的应用
多元函数微分法
一、 基本概念
连续性
偏导数存在
方向导数存在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 z xy
.
解 记 u1 2 x 3 y, u2 x 2 y, u xy 2
z x 2 z fu1 u1 x f1
y
fu2
u2 x
gu
u
xy
2
2 xf 2 2 xy u2 y u
x f 2
2 f1 2 xyf 2 y 2 g
x3 y x y
6 2
x 3 kx 3 x (kx )
6 3 2
k 1 k2
点(x, y)沿不同的曲线 y=kx3 趋于点(0, 0)时,函数趋于不同的值. 因此, 极限 lim
x 0 y 0
x3 y x y
6 2
不存在.
注: 如果当P以两种不同方式趋于P0时, 函数趋于不同的值, 则函数的极限不存在
.
u1 u2 u 2u11 2 xyff22 y g gu ff u x x x x f 2 2 z f1 2 g 2 xf 2 2 xy 2 yg y 2 xy y y y
3 2[3 f11 x 2 f12 ] 2xf 2 2 xy[3 f 21 x 2 f 22 ] 2 yg 2xy g
2 yg y
2
g y f 22 u2 y ]
y
2[ f11
u1 y
f12
] 2xf 2 2 xy[ f 21
u1 y
y x 2 f12 ] 2xf 2 2 xy[3 f 21 x 2 f 22 ] 2 yg 2xy 3 g 2[3 f11
2 z xy
.
解 记 u1 2 x 3 y, u2 x 2 y, u xy 2
z x 2 z fu1 u1 x f1
y
fu2
u2 x
gu
u
xy
2
2 xf 2 2 xy u2 y u
x f 2
2 f1 2 xyf 2 y 2 g
多元函数微分学复习课
一、内容提要 二、典型例题
首页
上页
返回
下页
结束
内容提要
偏导数
f (x x, y) f (x, y) x x0 注: (1) f x ( x0 , y0 ) df ( x, y0 ) x x 0 dx df ( x0 , y ) (2) f y ( x0 , y0 ) y y0 dy (3) f x ( x0 , y0 , z0 ) df ( x, y0 , z0 ) x x 0 dx 偏导数的求法 f x (x, y) lim
z
首页 上页 返回 下页 结束 知识点
例6 求函数 z ( x 2 y ) xy 的偏导数.
v 解 令 u x 2 y, v xy, 则 z u
z u z v x u x v x
z
vu v 1 1 u v ln u y
y ( x 2 y ) xy 1[ x ( x 2 y ) ln( x 2 y )]
Fx dy dx Fy
F(x, y, z)0 确定 zf(x, y) 的偏导数公式
Fy Fx z z , Fz x Fz y
首页
上页
返回
下页
结束
内容提要
曲线的切向量 • 光滑曲线 xx(t), yy(t), zz(t) 在 tt0 对应点处的切向量为 T ( x(t0 ), y(t0 ), z(t0 )). • 曲面F(x, y, z)0与曲面G(x, y, z)0的交线的切向量为 T ( Fx , Fy , Fz ) (Gx , Gy , Gz ). 曲面的法向量 • 曲面 F(x, y, z)0在点M0(x0, y0, z0)处的法向量为 n ( Fx , Fy , Fz ) |M 0
z u z v y u y v y z
vu v 1 2 u v ln u x
x( x 2 y ) xy 1[2 y ( x 2 y ) ln( x 2 y )]
首页 上页 返回 下页 结束 知识点
例7 设 zf(2x3y, x2y)g(xy2), 求
2 yg y
2
g y f 22 u2 y ]
y
2[ f11
u1 y
f12
] 2xf 2 2 xy[ f 21
u1 y
y x 2 f12 ] 2xf 2 2 xy[3 f 21 x 2 f 22 ] 2 yg 2xy 3 g 2[3 f11
x
x y 2 x x y 2 1
1
x
( )x y x ( y x
2
y
x y
)
f x (2,1) 4
解2 f ( x,1) x 2 , f x ( x,1) ( x 2 )x 2 x, f x (2,1) 4.
首页 上页 返回 下页 结束 知识点
例5 验证函数 z arctan
•计算公式:dz z dx z dy
重要关系
x y
函数连续 函数可微 偏导数连续
首页 上页 返回
函数可导
下页
结束
内容提要
复合函数求导公式 设 zf(u1,…, un) 可微, ui(x, y,…)偏导数存在, 则有
z u1 z un . x u1 x un x z
2 yg y 2 ( g
)
6 f11 (2 x 2 6 xy ) f12 2xf 2 2x3 yf 22 2 yg 2xy 3 g
首页 上页 返回 下页 结束
例7 设 zf(2x3y, x2y)g(xy2), 求 解
2 z xy
2 yg y 2 ( g
)
6 f11 (2 x 2 6 xy ) f12 2xf 2 2x3 yf 22 2 yg 2xy 3 g
首页 上页 返回 下页 结束 知识点
例7 设 zf(2x3y, x2y)g(xy2), 求
求函数对一个自变量的偏导数时, 只要把其它自变量看 作常数, 然后按一元函数求导法求导即可
首页 上页 返回 下页 结束
内容提要
全微分 函数zf(x, y)在点(x, y)可微分:
z z x ( x, y )x z y ( x, y )y o( ) ( (x) 2 (y ) 2 )
2 z x
2
y x
满足拉普拉斯(Laplace)方程
证
y z 1 y y ( 2 ) 2 x 1 ( y ) 2 x x y2 x 2 z 2 xy 2 2 x ( x y 2 )2
2
2 z
0.
2 z 2 xy 1 1 x 2 2 , 2 2 y 1 ( y ) 2 x x y y ( x y 2 )2 x 2 z 2 z 2 0 2 x y
解 (2) D {( x, y ) | y 0, y x 0, 4 x
x
首页
上页
返回
下页
结束
例2 求下列极限.
(1) lim
x 2 y 0
(1 cos xy ) ln(1 xy ) ( 1 xy 1)sin y
解 (1) D {( x, y ) | y x 2 0, 2 x y 0} y y x2 x y 2
O
首页 上页 返回 下页
x
结束
典型例题
例1 求下列函数的定义域, 并画出定义域的图形.
(1) z y x 2 ln(2 x y );
(2) z ln( y x) 4 x 2 y 2 .
首页 上页 返回 下页 结束
则
内容提要
可微函数最值的求法 将函数在有界闭区域 D内的所有驻点处的函数值及在 D 的边界上的最值相互比较, 其中最大的就是最大值, 最小的就 是最小值 • 如果函数的最值一定在 D的内部取得, 而函数在 D内只有一 个驻点, 那么该驻点处的函数值就是函数在 D上的最值 拉格朗日乘数法 函数 u f(x, y, z) 在条件 j(x, y, z)0 下的可能极值点为 拉格朗日函数 L(x, y, z, l) 的驻点, 其中
首页 上页 返回 下页 结束
例4 f ( x, y ) x ( y 1) arctan
2
y x
(
, 求 f x (2,1).
y x )x
解1 f x ( x, y ) 2 x ( y 1)
1 y 1 x
2 x ( y 1) 2 x ( y 1)
x 2 y 0 2
; (2) lim
x 0 y 0
xy x y
2 2
.
解 (1) lim
(1 cos xy ) ln(1 xy ) ( 1 xy 1)sin y 2
( xy ) 2 xy lim 2 lim x 2 4 x 2 x 2 xy 2 y 0 y 0 y 2 | y| (2) 1, lim x 0 2 2 x 0 x y y 0 xy lim 0 x 0 x2 y 2 y 0
L( x, y, z, l ) f ( x, y, z ) lj ( x, y, z ).
首页 上页 返回 下页 结束
典型例题
例1 求下列函数的定义域, 并画出定义域的图形.
(1) z y x 2 ln(2 x y );
(2) z ln( y x) 4 x 2 y 2 .