2012-2013(2)概率论过程考核试题3-5
2012,2013,2014年概率论与数理统计期末考试试卷答案
2012年概率论与数理统计期末考试试卷一. 填空题(每题5分, 共30分)1. 设随机变量X 服从正态分布(1,4)N , 已知(1)a Φ=, 其中()x Φ表示标准正态分布的分布函数, 则{13}P X -≤≤=21a -.解: 111311{13}11(1)(1)2222(1)(1(1))2(1)12 1.X X P X P P a -----⎧⎫⎧⎫-≤≤=≤≤=-≤≤=Φ-Φ-=⎨⎬⎨⎬⎩⎭⎩⎭Φ--Φ=Φ-=- 2. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = 0.1 . 解: ()()()()0.2P AB P A P B P A B =+-+=,()()()0.30.20.1P AB P A P AB =-=-=.3. 设随机变量,X Y 的数学期望分布是-2, 1, 方差分别是1, 4, 两者相关系数是—0.5, 则由契比雪夫不等式估计(|2|6)P X Y +≥≤ 13/36 . 解: 由已知条件得, (2)2220E X Y EX EY +=+=-+=,(2)4()2(,2)4()4(,)D X Y DX D Y Cov X Y DX D Y Cov X Y +=++=++4()41164(1/2)213DX D Y ρ=++=++⋅-⋅=, 所以, 13(|2|6)36P X Y +≥≤. 4. 已知,X Y 是具有相同分布的两个独立随机变量, 且1(1)(1)2P X P Y =-==-=, 1(0)(0)2P X P Y ====, 则()P X Y == 1/2 . 解:()(0,0)(1,1)1(0)(0)(1)(1).2P X Y P X Y P X Y P X P Y P X P Y ====+=-=-===+=-=-=5. 设1216,,,X X X 是来自2(0,)N σ的样本, S 是样本均方差, 则1614ii XS=∑服从t (15).解: 由定理3(15)t ,161611(15)4i ii X X X t S ===∑∑.6. 设1281,,,(,9)X X X N μ, 要检验假设0:0H μ=, 则当0H 为真时, 用于检验的统计量3X 服从的分布是(0,1)N . 解: 由定理1(0,1)X N , 3(0,1)X N .二. 解答下列各题:7. (10分)已知男人中色盲人数所占比例是5%, 女人中色盲人数所占比例是0.25%. 现从男女人数各占一半的人群中随机选取一人, 求该人恰是色盲者的概率.解: 设A =“该人是色盲”, 1A =“该人是男人”, 2A =“该人是女人”.由全概率公式知, 2111()()()0.050.0025 2.625%22i i i P A P A P A A ===⨯+⨯=∑.8. (10分) 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i X ⎧=⎨⎩第次取出球第次取出白球,i 红i 1,2i =. 实在不放回模式下求12,X X 的联合分布律,4/7 3/7 j P因为1212{0,0}{0}{0}P X X P X P X ==≠==, 所以12,X X 不独立. 9. (10分)设随机向量(,)X Y 的联合概率密度函数为3,01,,(,)20,xx x y x f x y ⎧<<-<<⎪=⎨⎪⎩其他,求,X Y 的边缘概率密度函数. 解: 当01x <<时, 23()(,)32xX x xf x f x y dy dy x +∞-∞-===⎰⎰.所以,23,01,()0,.其他X x x f x ⎧<<=⎨⎩当10y -<<时, 1233()(1)24Y y x f y dx y -==-⎰;当01y ≤<时, 1233()(1)24Y y x f y dx y ==-⎰; 所以,23(1),11,()40,.其他Y y y f y ⎧--<<⎪=⎨⎪⎩10. (10分) 设,X Y 相互独立, 且(1)(1)0P X P Y p ====>, (0)(0)10P X P Y p ====->,令1,0,X Y Z X Y +⎧=⎨+⎩当为偶数,当为奇数,求Z 的分布律.解:{0}{0,1}{1,0}{0}{1}{1}{0}2(1)P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===- 22{1}{0,0}{1,1}{0}{0}{1}{1}(1).P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===+- 所以, Z11. (10分12,,X 是来自具有分布的总体的随机样本,试用中心极限定理计算()5P X >.(已知(2)0.508Φ=.)解: 由题知1()3i E X =,2()1i E X =,故()228()9i i i D X EX EX =-=. 由中心极限定理知,20012001600(,)39ii X N =∑. 所以, 11111()4014052005n i n n i i i i i X P X P P X P X ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪>=>=>=-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑1200200403311(2)(2)0.508404033n i i X P =⎛⎫-- ⎪ ⎪=-≤≈-Φ-=Φ= ⎪ ⎪⎝⎭∑. 12. (10分)设总体X 的密度函数为36(),0,(;)0,其他,xx x f x θθθθ⎧-<<⎪=⎨⎪⎩求θ的矩估计ˆθ并计算ˆD θ.解: 依题意,306()()2xE X xx dx X θθθθ=-==⎰,得参数θ的矩估计量为ˆ2X θ=. 4ˆ4D DX DX n θ==. 而2223063()()10x E X x x dx θθθθ=-=⎰,故22244ˆ()5D DX EX E X n n n θθ==-=.13. (10分) 某电器零件平均电阻一直保持在2.64Ω,使用新工艺后,测得100个零件平均电阻在2.62Ω,如改变工艺前后电阻均方差保持在0.06Ω,问新工艺对零件电阻有无显著影响?(取0.01α=)(1.96)0.975,Φ=(1.64)0.95,Φ=(2.58)0.995Φ=. 解: 设X 为零件的平均电阻, 则2~(,0.06)X N μ. (1)假设0: 2.64H μ=; (2)取统计量~(0,1)X U N=;(3)由0.01α=, 确定临界值22.58u α=, , 使得2{||}0.01P U u α>=;(4)由样本值 2.62x =, 得统计量U 的观察值3.33x u ==≈-.(5)因为 2.58u >,所以拒绝原假设0H ,认为新工艺对零件电阻有显著影响.2013年概率论与数理统计期末考试试卷一. 填空题(每题4分, 共20分)1. 设随机变量,X Y 相互独立, 且同分布, {1}{1}0.5P X P X =-===,{1}{1}0.5P Y P Y =-===, 则{}P X Y == 1/2 .解: 1{}{1,1}{1,1}{1}{1}{1}{1}.2P X Y P X Y P X Y P X P Y P X P Y ===-=-+====-=-+===2.22x edx +∞-=⎰2. 解:因为221x +∞--∞=⎰,所以22xe +∞--∞=⎰即2202x e +∞-=⎰. 3. 设连续型随机变量X的密度函数22()2()x f x μσ--=, x -∞<<+∞, 则EX =μ, DX =2σ. 解:因为22()2()x X f x μσ--=, 所以2(,)X N μσ.4. 设总体(3,10)XN , 12100,,,X X X 为来自总体X 的简单随机样本, 则10011100i i X X ==∑1~(3,)10X N . 解: 由定理1知, 1~(3,)10X N . 5. 设袋中有8个红球, 2个黑球, 每次从袋中摸取一个球并且不放回, 那么第一次与第三次都摸到红球的概率是 28/45 . 解: 记i A =“第i 次摸到红球”, 1,2,3i =.13131223123123()()(())()P A A P A A P A A A A P A A A A A A =Ω=+=+123123121312121312()()()()()()()()P A A A P A A A P A P A A P A A A P A P A A P A A A =+=+876827281098109845=⨯⨯+⨯⨯=. 二. 解答题6. (12分) 某矿内有甲乙两个报警系统, 单独使用时甲的有效性为0.92, 乙为0.93, 且在甲失灵的条件下乙有效的概率为0.85, 求意外发生时, 甲乙至少有一个有效的概率, 以及乙失灵时甲有效的概率. 参考练习册反12第4题. 解: 设A =“甲有效”, B =“乙有效”.题目转为: 已知()0.92,()0.93P A P B ==, {}0.85P B A =, 求()P A B +和{}P A B . 因为()()()(){}0.851()1()()P BA P B A P B P AB P B A P A P A P A --====--, 所以, ()0.862P AB =.所以, ()()()()0.988P A B P A P B P AB +=+-=;()()()()0.920.862{}0.831()1()10.93()P AB P A B P A P AB P A B P B P B P B ---====≈---. 7. (12分)设连续型随机变量X 的分布函数为()arctan ()F x a b x x =+-∞<<+∞, 求常数,a b 以及随机变量X 的密度函数. 解: 根据分布函数的性质得()1,2()0,2b F a b F a ππ⎧+∞=+=⎪⎪⎨⎪-∞=-=⎪⎩ 所以1,21.a b π⎧=⎪⎪⎨⎪=⎪⎩X 的密度函数为21()(1)f x x π=+.8. (14分) 设某种类型人造卫星的寿命X (单位: 年)的密度函数为21,0,()20,0.xe xf x x -⎧>⎪=⎨⎪≤⎩若2颗这样的卫星同时升空投入使用, 试求:(1) 3年后这2颗卫星都正常运行的概率;(2) 3年后至少有1颗卫星正常运行的概率. 参考教材P37例3 解: 1颗卫星3年内正常运行的概率为32231{3}2x P X e dx e +∞--≥==⎰. 记Y 表示2颗卫星在3年内正常运行的颗数, 则32(2,)Y B e -.(1) 3年后这2颗卫星都正常运行的概率2332{2}P Y e e --⎛⎫=== ⎪⎝⎭;(2) 3年后至少有1颗卫星正常运行的概率232{1}1{0}11P Y P Y e -⎛⎫≥=-≥=-- ⎪⎝⎭.9. (14分) 设某高校英语考试成绩近似服从均值为72的正态分布, 96分以上的考生占总数的2.3%(已知满分为100, 合格线为60), 试求: (1) 考生成绩在60-84之间的概率;(2) 该校考生的合格率.((2)0.977,(1)0.8413)Φ=Φ= 解: 设某高校英语考试成绩为X , 则2(72,)XN σ.由题意知{96}0.023P X ≥=, 即7296720.023X P σσ--⎧⎫≥=⎨⎬⎩⎭, 所以241()0.023σ-Φ=, 即24()0.977(2)σΦ==Φ.因此, 12σ=.(1) 考生成绩在60-84之间的概率6072728472{6084}(1)(1)2(1)10.6826;121212X P X P ---⎧⎫≤≤=≤≤=Φ-Φ-=Φ-=⎨⎬⎩⎭(2) 合格率726072{60}1(1)(1)0.8413.1212X P X P --⎧⎫≥=≥=-Φ-=Φ=⎨⎬⎩⎭10. (14分) 一工厂生产的某种电池的寿命服从正态分布(25,100)N , 现在从这种电池中随机抽取16个, 测得平均寿命为23.8小时, 由此能否断定: 在显著性水平为0.05α=时, 该种电池的平均寿命小于25小时. ((1.96)0.975,(1.64)0.95)Φ=Φ= 解: 设X 为电池寿命, 则~(,100)X N μ.(1)假设00:25H μμ≥=; (2)取统计量~(0,1)X U N=;(3) 由0.05α=, 确定临界值 1.64u α-=-, 使得{}0.05P U u α<-=; (4)由样本均值23.8x =, 得统计量U 的观察值00.48u ===-.(5)因为00.48 1.64u =->-,此时没有充分理由说明小概率事件{ 1.64}u <-一定发生. 所以接受原假设0H , 认为这种电池的平均寿命不小于25小时. 注: 原假设不能设为00:25H μμ<=,此时μ取不到0μ,统计量X U =就没有意义了!11. (14分)设总体X 是离散型随机变量, 其所有可能的取值为0, 1, 2, 已知2(1)EX θ=-, 2{2}(1)P X θ==-, θ为参数. 对X 取容量为10的样本如下 1, 1, 0, 2, 2, 1, 1, 1, 0, 2.求参数θ的矩估计和极大似然估计.解:(1) 由2(1)X θ=-, 得θ的矩估计量为12Xθ=-; 结合 1.1x =, θ的矩估计值为10.452x θ=-=.(2) 构造似然函数为11912101210(){1,1,,2}{1}{1}{2}32(1)L P X X X P X P X P X θθθ=========-,取对数ln ()ln3211ln(1)9ln L θθθ=+-+,求导数(ln ())11901d L d θθθθ=-+=-, 得θ的极大似然估计值为920θ=.2014年概率论与数理统计期末考试试卷一. 填空题(共40分, 每空5分)1. 设~(,)X B n p , ~(,)Y B m p , 且X 与Y 独立, 则X Y +~(),(p m n B +)分布;2. 设2~(,)X N μσ, 则X 的密度函数()f x =(222)(21σμσπ--x e);3. 设总体X 的方差为2σ, 12,,,n X X X 为样本, X 为样本均值, 则期望211()n i i E X X n =⎛⎫-= ⎪⎝⎭∑(21σn n -); 4. 设12,,,n X X X 为样本, 则统计量211n i i X n =∑的名称为(样本2阶原点矩);5. 设总体~(,1)X N μ, 12,,,n X X X 为来自该总体的样本, 则21()ni i X μ=-∑服从()(2n χ)分布;6. 一批产品中有5个正品, 3个次品, 从中任取2个, 恰有1个次品, 1个正品的概率为(2815281315=C C C );7. 样本的特性是(独立、同分布且与总体分布相同);8. 在假设检验中, 可能犯两类错误. 其中第一类错误也称为弃真, 弃真的确切含义为(当原假设是真的时,拒绝了它). 二. 计算题(60分, 每题10分)1. 假设某贪官收受一次贿赂而被曝光的概率为0.05, 到目前为止共收受80次贿赂, 假设案发前每次收受贿赂是否曝光相互独立. 试用概率说明 “多行不义必自毙”. (取20190.3520⎛⎫≈ ⎪⎝⎭)解:记i A 为事件“第i 次收受贿赂而被曝光”(1,2,,80i),---------------------2 于是案发的概率为 )(801∑=i i A P ------------- ------------- -----------------4 )(1)(1801801∏∏==-=-=i i i i A P A P----------------------6985.035.01)2019(195.0148080=-=-=-=。
2012―2013学年第二学期概率论与数理统计试卷(本科及专升本)
第 1 页 共 3 页一、单项选择题(每小题3分,共21分)1.对于事件B A ,,若∅=B A ,则下列说法中正确的是 ( ) A 、B A ,为对立事件B 、0)(=A P 或0)(=B PC 、B A ,互不相容D 、B A ,独立2.设随机变量X 的分布函数为)(x F ,下列说法中错误的是 ( ) A 、)(x F 是不减函数B 、)(x F 必为),(+∞-∞上的连续函数C 、0)(=-∞FD 、1)(≤x F3.设连续型二维随机变量的联合概率密度函数为),(y x f ,则必有 ( )A 、1),(0≤≤y x fB 、),(y x f 为xOy 平面上的连续函数C 、1),(=⎰⎰+∞∞-+∞∞-dxdy y x f D 、1),(=+∞+∞f4.设Y X ,是两个随机变量,则下式中一定成立的是 ( )A 、)()()(Y E X E Y X E +=+B 、)()()(Y E X E XY E =C 、)()()(YD X D Y X D +=+ D 、)()()(Y D X D XY D =5.随机变量 n X X X ,,,21 相互独立,服从同一分布,且具有期望和方差,0)(,)(2>==σμk k X D X E ,当n 充分大时,近似服从)1,0(N 的是 ( )A 、σμn n Xnk k∑=-1B 、21σμn n Xnk k∑=-C 、σμn n Xnk k∑=-1D 、21σμn n Xnk k∑=-6.设4321,,,X X X X 是来自均值为θ的指数分布的样本,其中θ未知, 以下估计量中哪个不是θ的无偏估计量? ( ) A 、443211X X X X T +++=B 、722343211X X X X T +++=C 、3643211X X X X T +++=D 、5243211X X X X T +++= 7.对于一个原假设为0H 的假设检验问题,有可能犯的第一类错误是指( )A 、0H 成立时,检验结果接受0HB 、0H 成立时,检验结果拒绝0HC 、0H 不成立时,检验结果接受0HD 、0H 不成立时,检验结果拒绝0H二、填空题(每小题3分,共24分)1.设C B A ,,为三个事件,则事件“C B A ,,都不发生” 可以用C B A ,,的运算关系表示为 .2.10片药片中有5片是安慰剂,从中任取2片,其中至少有1片是安慰剂的概率为 .3.三人独立地去破译一份密码,各人能译出的概率分别为3.0,2.0,1.0, 三人中至少有一人能将此密码译出的概率为 .第 2 页 共 3 页4.一射击运动员每次射击命中的概率为7.0,以X 表示他首次命中时 累计已射击的次数,则{}3=X P 为 .5.随机变量X 在4,3,2,1中等可能地取一个值,随机变量Y 在X ~1中 等可能地取一个整数值,则{}4=Y P 为 . 6.随机变量)2,0(~U X ,则=)(X D . 7.总体)6(~2χX ,1021,,,X X X 是来自X 的样本,则=)(X D.8.设n X X X ,,,21 是来自正态总体),(2σμN 的样本,X 是样本均值, 则~X .三、解答题(第1题8分,第2题9分,共17分)1.对以往的数据分析结果表明,当机器调整得良好时,产品的合格率为80%,而当机器发生某种故障时,产品的合格率为30%.每天早上机器开动时,机器调整良好的概率为90%.(1)求每天早上第一件产品是合格品的概率;(2)若某天早上第一件产品是合格品,求此时机器调整良好的概率.2.设随机变量X 具有概率密度⎪⎩⎪⎨⎧<≤<≤-=其它,031,10,1)(x kxx xx f(1)确定常数k ; (2)求()20<<X P .四、解答题(第1题10分,第2题10分,共20分)1.设随机变量X 与Y 的联合分布律为 求:(1)常数a 值;(2)X 与Y 是否独立?为什么?(3) 设Y X Z +=,求Z 的分布律.第 3 页 共 3 页X (以年计)服从指数分布,概率密度为⎪⎪≤>-0,00,313x x e x.1000800元,试求厂方出售一台设备净赢利的数学期望.五、解答题(第1题8分,第2题10分,共18分)X 具有分布律 )1<<θ为未知参数.,2,1,3321===x x x 求θ的矩估计值.2.某批铁矿石的9个样品中的含铁量,经测定为(%)35 36 36 38 38 39 39 40 41设测定值总体服从正态分布,但参数均未知, (1)求样本均值和样本标准差;(2)在01.0=α下能否接受假设:这批铁矿石的含铁量的均值为39%? (3554.3)8(005.0=t )。
概率论考试题及答案
概率论考试题及答案导言:概率论是数学中的一门基础学科,主要研究随机现象的规律性和不确定性。
它广泛应用于统计学、金融、工程学、计算机科学等领域。
本文将给出一些概率论考试题及答案,旨在帮助读者加深对概率论知识的理解和掌握。
题目一:计算概率已知一副扑克牌,共有52张牌,其中13张为红心。
从中任意抽取5张牌,求至少一张红心的概率。
解答:首先计算没有红心的情况,即全是黑桃、方片和梅花的概率。
抽取第一张牌时,没有红心的概率为39/52;抽取第二张牌时,没有红心的概率为38/51;以此类推,抽取第五张牌时,没有红心的概率为35/48。
将每次抽取没有红心的概率相乘,即可得到全是非红心牌的概率为(39/52) * (38/51) * (37/50) * (36/49) * (35/48) ≈ 0.359。
因此,至少一张红心的概率为1 - 0.359 ≈ 0.641。
题目二:条件概率在一批产品中,有30%的次品。
已知次品中的20%是由机器A生产的,而合格品中的15%是由机器A生产的。
现从这批产品中随机选取一件,发现该件品质合格。
求此件产品是由机器A生产的概率。
解答:设事件B表示所选产品是由机器A生产的,事件A表示所选产品是合格品。
根据题意,已知P(B) = 0.3,P(A|B) = 0.15,需要求的是P(B|A)。
根据条件概率的定义,我们有P(B|A) = P(A∩B) / P(A)。
首先计算P(A∩B),即既是合格品又是由机器A生产的概率,即P(A∩B) = P(B) * P(A|B) = 0.3 * 0.15 = 0.045。
其次,计算P(A),即产品为合格品的概率。
合格品中由机器A生产的概率为0.15,由机器B生产的概率为1 - 0.15 = 0.85。
所以,P(A) = P(A∩B) + P(A∩B') = 0.045 + 0.85 * (1 - 0.2) ≈ 0.881。
最后,根据条件概率的公式,可得P(B|A) = P(A∩B) / P(A) = 0.045 / 0.881 ≈ 0.051。
华南农业大学2012-2013概率论与数理统计试卷 答案
12012-2013学年第 2学期《概率论与数理统计》试卷评分标准一、1.B ;2. A ;3. C ; 4. B ;5. B ;6.B ;7. D 二、1. 1 ; 2. 0,0.5;3.37;4. 0.4 5.(每空0.5分)6. 22,X X αα-⎛⎫ ⎪⎝⎭; 7. 2(,),N n σμ或2(,)10N σμ 三、1.解:解:,1,)1(lim )(1=∴=-=+∞=-∞→A A e A F x x (3分)P{1≤X ≤3} =F(3)-F(1)=e -1-e -3, (3分)2.解: X 的概率密度为)()(x F x f '=⎪⎩⎪⎨⎧<≥=,a x a x x a ,0,,343(2分)⎰⎰∞+∞+∞-==adx xa dx x xf X E 333)()( (3分) 23a=(1分) 3.解:解:设事件12,A A 分别为任取一件产品,产品是甲、乙厂生产的,事件B 为任取的一件产品为次品,则由已知条件可知1()0.6P A = ,2()0.4P A =,1(|)0.01P B A =,2(|)0.02P B A = (2分) 由贝叶斯公式可得10.60.013(|)0.60.010.40.027P A B ⨯==⨯+⨯,20.40.024(|)0.60.010.40.027P A B ⨯==⨯+⨯,(3分)由上两式知,任取一件为次品,该产品是乙厂生产的可能性最大。
(1分)4.解:解: (,)X Y 的概率密度为2(2分)(2分)同理可得\ (2分)5.解:由于总体差已知,因此用U 检验法,设0:53H μ= ,1:53H μ≠ (1分)由已知条件可知,51.3x =,3σ=,|| 1.7 1.96U ==< , (3分) 所以在05.0=α不能拒绝0H 。
故认为该动物的体重平均值为53公斤。
(2分)四、1. 解:已知X 的概率密度函数为1,01,()0,.X x f x <<⎧=⎨⎩其它Y 的分布函数F Y (y )为11(){}{21}{}22Y X y y F y P Y y P X y P X F --⎛⎫=≤=+≤=≤= ⎪⎝⎭(4分) 因此Y 的概率密度函数为1,13,11()()2220,.Y Y X y y f y F y f ⎧<<⎪-⎛⎫'===⎨ ⎪⎝⎭⎪⎩其它 (4分) 或用代公式法也可以解出答案。
2012-2013下《概率论与数理统计》试卷3
概率论与数理统计练习一一、选择题(本大题共7 小题,每小题 3 分,共 21 分)1. 设A ,B 为随机事件, 若P (A )=P (B )>0.5, 则 ( )(A) A ,B 互不相容; (B) A ,B 非互不相容; (C) A ,B 相互独立; (D) A ,B 非相互独立.2.设2(,4)X N μ ,2(,5)Y N μ ,1(4)p P X μ=≤- ,2(5)p P Y μ=≥+,则( )(A) 对任意实数μ,都有12p p =; (B) 对任意实数μ,都有12p p <; (C) 只对μ的个别值,才有12p p = ; (D) 对任意实数μ,都有12p p >;3.己知随机变量X 服从区间[5,10]上的均匀分布, 则 ( ) (A) 2(9)0.3P X <= ; (B) 2(9)0.15P X <=; (C) 2(9)0P X ≤= ; (D){7X =}是不可能事件. 4.对随机变量X ,关于EX ,EX 2合适的值为 ( ) (A)3,8 (B) 3, 10 (C) 3,-8 (D) 3,-105. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则22X Y +服从( )(A) 自由度为1的2χ分布; (B) 自由度为2的2χ分布; (C) 自由度为1的F 分布;(D) 自由度为2的F 分布.6. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ,D (X )=2σ,则有 ( ) (A) X 1+X 2+X 3是μ的无偏估计量;(B)1233X X X ++是μ的无偏估计量;(C) 22X 是2σ的无偏估计量;(D) 21233X X X ++⎛⎫ ⎪⎝⎭是2σ的无偏估计量.7. 设总体X 服从二项分布),1(p B ,n X X ,,1 是来自总体X 的一个样本,则)(nkX P ==( )。
(A )p (B )p -1(C )k n k k n p p C --)1( (D )k n k kn p p C --)1(.二、填空题(本大题共7小题,每小题 3 分,共 21 分)1.设()P λX (泊松分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ= .2.设X的概率密度为2()x f x -=,则()E X = ,()D X = . 3.若事件A 和事件B 相互独立, P()=A α,P(B)=0.3,P(A B)=0.7 ,则α= .4.已知随机变量X 与Y 的联合分布律为 则(1)P X Y +== .5. 设X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<≤<=5.1,15.11,2110,20,0)(x x x x xx x F ,则=≤<}3.14.0{X P 。
概率试卷A12-13-2本科 评分标准
2012-2013学年 第2学期 概率论与数理统计A 卷评分标准一、单项选择题(本大题共5小题,每小题3分,共15分). 1. 事件,A B 独立,且0()1P A <<,则下列选项不正确的是(A )(|)()P B A P B =;(B )(|)()P B A P A =;(C )(|)()P B A P B =;(D )(|)()P B A P B =.答:(B )2. 已知离散型随机变量X 的分布律为4567125522a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭,则概率(6)P X ≥等于 (A )516; (B )58; (C )78; (D )1.答:(B ) 3. 设随机变量X 的概率密度函数为(),f x x R ∈,若2Y X =-,则Y 的概率密度函数为 (A )1,22y f y R ⎛⎫-∈ ⎪⎝⎭; (B ),2y f y R ⎛⎫-∈ ⎪⎝⎭; (C )2(2),f y y R -∈; (D )(2),f y y R -∈.答:(A )4. 已知随机变量X 服从正态分布2(,6)N μ,Y 服从正态分布2(,8)N μ,记1(6)p P X μ=≤-,2(8)p P Y μ=≥+,则 (A )12p p <; (B )12p p >; (C )12p p =; (D )无法判断12,p p 的大小.答:(C )5. 设12,,,n X X X L 为来自总体2(0,)N σ的简单样本,X 为样本均值,则下列选项不正确的是 (A )22211()nii Xn χσ=∑:; (B )22211()(1)nii XX n χσ=--∑:;(C)(0,1)N σ:; (D )2122(1,1)nii X F n X=-∑:.答:(D )二、填空题(本大题共5小题,每小题3分,共15分).6. 某人有10把外形相同的钥匙, 其中只有一把能打开门. 他随意地试用这些钥匙开门(用后不放回), 则此人试了3次就把门打开的概率为110.7. 已知随机变量X 的概率密度函数为22,0()0,0x ae x f x x -⎧>=⎨≤⎩,则常系数a =1.8. 某餐厅每天接待300名顾客,据以往经验每位顾客的消费额(单位:元)服从区间[20,80]上的均匀分布, 若顾客的消费额是相互独立的,则该餐厅每天营业额的期望值为15000元.9. 设,X Y 为两个独立随机变量,若25,4DX DY ==,则(21)D X Y ++=41.10. 用机器包装牛肉罐头, 已知罐头重量(单位:kg )服从正态分布2(,0.05)N μ,随机抽取25个罐头测其重量, 算得样本均值 1.01x =, 则μ的置信度为95%的置信区间为(0.9904,1.0296) (备用数据:0.025 1.96z =,0.05 1.65z =). 三、解答题(本大题共6小题,每小题10分,共60分).11.某仪器上装有大、小2个不同功率的灯泡.已知当2个灯泡都完好时,仪器发生故障的概率为1%;当只有1个灯泡烧坏时,仪器发生故障的概率为20%;当2个灯泡都烧坏时,仪器发生故障的概率为85%.设这两个灯泡被烧坏与否互不影响,并且它们被烧坏的概率分别为0.1,0.2,若仪器发生了故障,求此时两个灯泡都烧坏的概率. 解:设A 表示仪器发生故障;i B 表示烧坏了i 个灯泡,0,1,2i =,则所求概率为222220()(|)()(|).........................................(6')()(|)()85%(0.10.2)....(9')1%(0.90.8)20%(0.10.80.20.9)85%(0.10.2)85. (381)i i i P AB P A B P B P B A P A P A B P B ===⨯⨯=⨯⨯+⨯⨯+⨯+⨯⨯=∑.................................................................(10')12.已知随机变量X 的概率密度函数为 0,0()2(1),012,1x x x f x e x x e x --≤⎧⎪=+-<<⎨⎪≥⎩,求:(1){02}P X <<;(2)()X E e -. 解:(1)由密度函数的性质21212{02}().............................................(2')2(1)2.....................................(4')12...........................................................x x P X f x dx e x dx e dx e ---<<==+-+=-⎰⎰⎰............(5')(2)由题意111()()....................................................(7')2(1)2.................(9')12.. (X)x x xx x E ee f x dx e e x dx e e dx e +∞---∞+∞-----==+-+=-⎰⎰⎰.(10')13.设二维随机变量(,)X Y 的联合概率密度函数为6(1),01,0(,)0,x x y xf x y -<<<<⎧=⎨⎩其它, (1)求概率{12}P X Y +≤;(2)求出(,)X Y 关于X 的边缘概率密度函数()X f x ,进一步求出在14X =的条件 下,Y 关于X 的条件概率密度函数|1(|)4Y X f y .解:(1)由题意{(,):12}14120{12}(,)..................(2')6(1)..............................................(4')9 (32)x y x y y yP X Y f x y dxdy dy x dx +≤-+≤==-=⎰⎰⎰⎰.......(5')(2)由边缘密度函数的定义0()(,)................................................................(6')6(1),016(1),01.........(8')0,0,X x f x f x y dy x x x x dy x +∞-∞=⎧-<<-<<⎧⎪==⎨⎨⎩⎪⎩⎰⎰其它其它 故|4,0141(14,)(|)..............................(10')0,4(14)Y X X y f y f y f <<⎧==⎨⎩其它14.已知连续型随机变量X 的分布函数为(1),0(),011,1x x Ae x F x B x Ae x --⎧<⎪=≤<⎨⎪-≥⎩, (1)确定常系数,A B ;(2)求{122}P X <<;(3)求X 的概率密度函数()f x . 解:(1)由分布函数的性质(0)(0).......................................................(1')F F A B -+=⇒= (1)(1)1...................................................(2')F F B A -+=⇒=-因此可得12,12............................................................(3')A B == (2)由分布函数的性质(21)1{122}(2)(12).................................................(5')1111(1)......................................................(7')222P X F F e e ---<<=-=--=- (3)由密度函数定义可得(1)1,021(), 1......................................(10')20,xx e x f x e x --⎧<⎪⎪⎪=>⎨⎪⎪⎪⎩其它15. 设二维离散型随机变量(,)X Y 的联合分布律为已知0.2EX =-,且,X Y 的协方差(,)0.18Cov X Y =, 求,,a b c 的值.解:由题意,可得(,)X Y 关于X 的边缘分布律为1010.10.2a b c -⎛⎫ ⎪++⎝⎭,故0.10.2EX c a =-+=-,即0.3....................................................(2')a c -=又(,)X Y 关于Y 的边缘分布律为100.3a c b -⎛⎫ ⎪++⎝⎭,XY 的分布律为1010.3c b a -⎛⎫ ⎪+⎝⎭,故有(,)()()0.2()0.18Cov X Y E XY EXEY a c a c =-=--+=即0.6..................................................................................................(6')a c += 又111{,}1i j P X i Y j =-=-===∑∑,可得0.7.......................................(8')a b c ++=故0.45,0.1,0.15..........................................................................(10')a b c ===16.设总体X的概率密度函数为21(ln )2,0()0,0x x f x x μ--⎧>=≤⎩,其中μ是未知参数. 若12,,,n X X X L 是来自该总体的一个容量为n 的简单样本,求μ的最大似然估计量µμ.解:21(ln )21()......................................(3')i nx i L μμ--==似然函数为对数似然函数2111ln[()])(ln ).......................(5')2nni i i i L x μμ===---∑∑1ln[()]0(ln )0.......................................................(8')ni i d L x d μμμ==⇒-=∑令故^1ln ..................................................(10')ni i X n μμ==∑的最大似然估计量四、证明题(本大题共1个小题,5分).17.设,X Y 为两个随机变量,若22(),()E X E Y 存在且至少有一个不为0,证明:222[()]()()E XY E X E Y ≤.证明:不防假定2()0E X ≠,对于任意实数t ,有2222[()]()2()()0.............(2')E tX Y t E X tE XY E Y +=++≥因此判别式222222[2()]4()()4[()]4()()0...............................(4')E XY E X E Y E XY E X E Y ∆=-=-≤此即 222[()]()()........................................(5')E XY E X E Y ≤ 五、应用题(本大题共1个小题,5分).18. 某幼儿园准备举行一次六一文艺汇演,为了做好准备工作,学校现要统计来参加此次汇演的家长人数. 设各学生来参加汇演的家长数相互独立,且每个学生无家长,有1名家长或2名家长来参加此次汇演的概率约为0.05,0.8,0.15.已知此幼儿园共有400名学生,用中心极限定理估计来参加此次汇演的家长数超过450的概率(备用数据:4.36=,(1.15)0.8749Φ=).解:设i X 表示第i 个学生来参加文艺汇演的家长数,1,2,,400i =L .由题意,{,1,2,,400}i X i =L 独立同分布,且分布律为0120.050.80.15⎛⎫ ⎪⎝⎭. 由中心极限定理,4001ii X=∑近似服从正态分布(440,76).......................................................(3')N因此所求概率为4004001440450...........................(4')i i i X P X P =⎧⎫-⎪⎪⎧⎫>=>⎨⎬⎩⎭⎪⎪⎩⎭∑∑(()11 1.1510.87490.1251...........................(5')≈-Φ≈-Φ≈-=。
2013~2014年全国自考概率论与数理统计试题及答案要点
全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
概率论与数理统计3-5 随机变量的数字特征切比雪夫不等式
例8 设R.V. U ( , ),又 sin, cos.
试求与的相关系数.
【解】
cov( ,) 0. D D
注4 如果( ,) :
N
(a1,
a2
,
12
,
2 2
,
),
那么可求出
.于是 0, ,不相关;由前面推知: 0,
cov(,) 0.
按协方差的性质:当、独立,则cov( ,) 0, 从而、不相关.直观上, ,独立意味着、之间
没有任何关系,自然也没有线性关系.换言之:两个
变量、独立,则它们必定不相关;反之, 0,两 R.V .、不相关,但与未必独立.事实上,、
30 40合并为:ki ¡ 有 E(k11 k22 L knn ) k1E1 k2E2 L knEn.
50 当1,2 ,L ,n相互独立时,E(12 L n ) E1 E2 L En. 60 0,则E 0,由此,如果1 2,那么E1 E2.
引进下面的定义:
定义 设( ,)是一个二维R.V .,且
E ( E ) ( E) . D D
则称 cov( ,) E( E )( E )
E[( E ) ( E)] cov( ,) .
D D
D D
§3.5 随机变量的数字特征切比雪夫 不等式
一、连续型R.V .的数学期望 我们已经讨论了离散型R.V .的数学期望:
E @ xiP( xi ). i 1
试问:连续型R.V .的数学期望是什么?
当然要把连续型R.V . 进行离散化.
设连续型R.V.的P.d. f 为P(x),取分点
2012年考研数学概率论真题与答案--WORD版
2012年概率论考研真题与答案1. (2012年数学一)设随机变量X 与Y 相互独立,且分别服从参数为1与4的指数分布,则{}P X Y <=_________. 【A 】A .15 B. 13 C. 25 D. 45解:X 与Y 的概率密度函数分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩, 44,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 因为X 与Y 相互独立,所以X 与Y 的联合密度函数为44,0,0(,)()()0,x y X Y e x y f x y f x f y --⎧>>=⋅=⎨⎩其他 {}40(,)4x y xx yP X Y f x y dxdy dx e dy +∞+∞--<∴<==⎰⎰⎰⎰450145xyx xe dx edy e dx +∞+∞+∞---===⎰⎰⎰2. (2012年数学一)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为______.A .1 B.12 C. 12- D. 1- 答案:D.解:设两段长度分别为X 和Y ,显然满足1X Y +=,即1Y X =-+,故两者是线性关系,且是负相关,所以相关系数为1-.3. (2012年数学三)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,{}221P X Y +≤=_________. 【D 】A .14 B. 12 C. 8π D. 4π解:X 与Y 的概率密度函数分别为:1,01()0,X x f x <<⎧=⎨⎩其他, 1,01()0,Y y f y <<⎧=⎨⎩其他又X 与Y 相互独立,所以X 与Y 的联合密度函数为1,0,1(,)()()0,X Y x y f x y f x f y <<⎧=⋅=⎨⎩其他, 从而 {}222211(,)4D x y P X Y f x y dxdy S π+≤+≤===⎰⎰.4. (2012年数学三)设1234,,,X X X X 为来自总体2(1,)(0)N σσ>的简单随机样本,则统计量12342X X X X -+- 的分布为_________. 【B 】A. (0,1)NB. (1)tC.2(1)χ D. (1,1)F解:因为2(1,)i X N σ ,所以212(0,2)X X N σ-(0,1)N 234(2,2)X X N σ+(0,1)N ,22342(2)(1)2X X χσ+- . 因为1234,,,X X X X2342(2)2X X σ+-也相互独立, 从而1234(1)2X X t X X -=+-5. (2012年数学一、三)设,,A B C 是随机事件,A 与C 互不相容,11(),()23P AB P C ==,则()____P AB C =. 【34】解:由于A 与C 互不相容,所以AC φ=,则ABC φ=,从而()0P ABC =;10()()()32()14()()13P ABC P AB P ABC P AB C P C P C --====-6. (2012年数学一、三)设二维离散型随机变量(,)X Y 的概率分布为(1)求{}2P X Y =;(2)求(,)Cov X Y Y -.解:(1){}{}{}120,02,14P X Y P X Y P X Y ====+===.(2) 由(,)X Y 的概率分布可得,,X Y XY 的概率分布分别为,,所以 23EX =,1EY =,2522,,()333EY DY E XY ===(,)()0Cov X Y E XY EX EY =-⋅=故: 2(,)(,)3Cov X Y Y Cov X Y DY -=-=-7. (2012年数学一)设随机变量X 和Y 相互独立且分别服从正态分布2(,)N μσ和2(,2)N μσ,其中σ是未知参数且0σ>. 设Z X Y =-. (1)求Z 的概率密度2(,)f z σ;(2)设12,,,n Z Z Z 是来自总体Z 的简单随机样本,求2σ的最大似然估计量2σ;(3)证明 2σ是2σ的无偏估计量. 解:(1) 因为2(,)X N μσ ,2(,2)Y N μσ ,且X 和Y 相互独立,故2(0,3)Z X Y N σ=-2226(;),z f z z R σσ-∴=∈(2)似然函数为 2116221()(;)ni i nz i i L f z σσσ=-=∑==∏两边取对数,得222211l n ()l n 26nii nL n zσσσ==--∑关于2σ求导,得2222221ln ()1+26()nii d L n z d σσσσ=-=∑ 令22ln ()0,d L d σσ= 解得λ的最大似然估计值 22113n i i z n σ==∑ 因此,λ的最大似然估计量 22113n i i Z n σ==∑(3) 2221111()()()33n n i i i i E E Z E Z n n σ====∑∑2221111[()()]333n n i i i i E Z D Z n n σσ===+==∑∑ 故 2σ是2σ的无偏估计量. 8. (2012年数学三)设随机变量X 与Y 相互独立,且都服从参数为1的指数分布. 记{}max ,U X Y =,{}min ,V X Y =,则(1)求V 的概率密度()V f v ;(2)求()E U V +. 解:(1) X 与Y 的分布函数均为1,0()0,0x e x F x x -⎧-≥=⎨<⎩{}min ,V X Y =的分布函数为{}{}{}{}()min ,1min ,V F v P X Y v P X Y v =≤=-> {}21,1(1())P X v Y v F v =->>=--21,00,0v e v v -⎧-≥=⎨<⎩故V 的概率密度为22,0()()0,0v V V e v f v F v v -⎧>'==⎨≤⎩(2) min(,)max(,)U V X Y X Y X Y +=+=+()()()()2E U V E X Y E X E Y ∴+=+=+=.。
12-13II 概率论与数理统计试卷(A)64学时参考答案
| | | | | | | |装| | | | |订| | | | | |线| | | | | | | |防灾科技学院2012~2013年第二学期期末考试概率论与数理统计试卷(A)参考答案与评分标准使用班级本科64学时班答题时间120分钟一、填空题(本大题共7小题,每题3分,共21分)1、已知(),(),P B b P AB c==且b c>,则()P B A-=b-c ;2、一部4卷的文集随机地排放在书架上,卷号恰好是自左向右或自右向左的呈1、2、3、4排列的概率是1/12 ;3、若6.0)(,4.0)(,5.0)(===BAPBPAP ,则=)(ABP0.6 ;4、根据历史地震资料分析,某地连续两次强震之间时间间隔的年数X是一随机变量,其分布函数为0.11,0,()0,0.xe xF xx-⎧-≥=⎨<⎩现在该地刚发生了一次强震,则今后三年内再次发生强震的概率为0.31e--;5、本次考试共有7个选择题,每题有四个选项,其中只有一个为正确选项。
同学甲一题都不会,遂决定采取随便“蒙”的方法选答案。
若以X表示该同学“蒙”对答案的题数,则()E X= 7/4 ;6、设随机变量X的方差为2,则根据切比雪夫不等式有估计≤≥-})(E{2XXP____1/2____;7、设总体X服从参数10=λ的泊松(Poisson)分布,现从该总体中随机地选出容量为20的一个样本,则该样本的样本均值X的方差()D X= 1/2 ;二、单项选择题(本大题共7小题,每题3分,共21分)8、设A B C、、为三个事件,则事件“A B C、、都不发生”可表示为( C )(A) ABC;(B) 1ABC-;(C) A B C;(D) A B C⋃⋃.9、设()0.8,()0.7,(|)0.8,P A P B P A B===则下列结论正确的是(A )(A) A与B相互独立;(B) A与B互斥;(C) B A⊃;(D) ()()()P A B P A P B⋃=+.10、若X服从标准正态分布)1,0(N,则)1|(|>XP=(B )(A) 1)1(2-Φ;(B) )]1(1[2Φ-;(C) )1(2Φ-;(D) )1(21Φ-.11、设二维离散型随机变量(,)X Y的联合概率分布为则c= ( A )(A) 0;(B)16;(C)112;(D)124.12、将一枚硬币重复掷n次,以X和Y分别表示正面朝上和反面朝上的次数,则X和Y的相关系数为( A )(A) -1 ;(B) 0;(C) 1/2;(D) 1 .13、设样本4321,,,XXXX为来自总体)1,0(N的样本,243221)(XXXCXY+++=,若Y服从自由度为2的2χ分布,则=C( B )(A) 3;(B) 1/3;(C) 0;(D) -3 .14、设21θθ,是参数θ的无偏估计、)()(21θθDD=且相互独立,以下估计量中最有效的是( D ))(A21θθ-;)(B21θθ+;)(C213231θθ+;)(D212121θθ+.三、解答题(本大题共6小题,每题7分,共42分)15、据美国的一份资料报导,在美国总的来说患肺癌的概率约为0.1%,在人群中约有20%是吸烟者,他们患肺癌的概率约为0.4%,试求: (1)不吸烟者患肺癌的概率是多少?(2)如果某人查出患有肺癌,那么他是吸烟者的可能性有多大? 解:设A “吸烟”,C=“患肺癌”,则 P()0.001,()0.2,(|)0.004C P A P C A === ……………………(2分) 于是(1) 由全概率公式得P C P C A P A P C A P A ()()()(|)()即 0.0010.0040.2(|)0.8P C A =⨯+⨯ ……………………(2分) 得(|)0.00025P C A = ……………………(1分) (2) 由贝叶斯公式得020004080001P C A P A P A C P C ()(..().(). ……………………(2分)16、设随机变量X 的分布函数为011x F x x x e A xe ,,()ln ,,,.试求:(1)常数A ;(2)X 的概率密度f x ();(3)522032P X P XP X(),(),().解:(1)()1F +∞= 得1A = ……………………(2分) (2)11xx e f x ,,(),.其他 ……………………(2分)(3)(2)(2)(2)ln 2P X P X F <=≤==; (03)(3)(0)1P X F F <≤=-=555224(2)()(2)ln P X F F <<=-= ……………………(3分)17、设随机变量X 具有概率密度⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=.,,,,,)(其他020410121x x x f X 令2Y X =,求随机变量Y 的概率密度()Y f y .解: 2()()()Y F y P Y y P X y =≤=≤…………………(1分)当0y <时,()0Y F y =………………(1分) 当01y ≤<时,014()(Y Fy P Xdy =≤≤=+=⎰1分)当14y ≤<时,12()(Y F y P X =≤≤=;…………………(1分) 当4y ≤时,()1Y F y =; ………………………(1分)所以,0,0,,01,()1,14,214.Y y y Fy y y <⎧⎪⎪≤<⎪=≤<⎪≤⎩,01,()(),14,0,.Y Y y f y F y y <<⎪'==<<⎪⎩其他……(2分) 注:能写出()Y F y 即可给分,分布函数求解过程中步骤不全可酌情给分。
2012-2013第二学期概率论与数理统计试卷 参考答案
重庆大学概率论与数理统计课程试卷2012 ~2013 学年 第 二 学期开课学院: 数统学院 课程号:10029830 考试日期:考试方式:考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =一、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ⋃= 0.25 。
2.从一副扑克牌(52张)中任取3张(不重复),则取出的3张牌中至少有2张花色相同的概率为 0.602 。
3.从1到9的9个整数中有放回地随机取3次,每次取一个数,则取出的3个数之积能被10整除的概率为 0.214 。
4.一个有5个选项的考题,其中只有一个选择是正确的。
假定应 考人知道正确答案的概率为p 。
如果他最后选对了,则他确实知道答案的概率为541pp +。
5.重复抛一颗骰子5次得到点数为6 的次数记为X ,则(3)P X >= 13/3888 。
6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。
7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的面积Y 的密度函数为1//4()0 ,Y y f y elseπ⎧<<⎪=⎨⎪⎩。
8.已知(,)(1,9;0,16;0.5) ,32X Y X Y N Z -=+ 且,则Z 的密度函数21()36z Z f --(z )。
9.设总体2(,)X N μσ ,其中2σ已知,从该总体中抽取容量为40n = 的样本1,240,,X X X ,则()222110.5 1.453nii P X X n σσ=⎧⎫≤-≤⎨⎬⎩⎭∑= 0.97。
10.设1,210,,X X X 是来自总体2(0,)X N σ 的样本,则Y =服从 t(8) 。
2012-2013第二学期概率论与数理统计(B)期中考试
( 2)
公式(2.1)得 Y 的概率密度为
⎧ f [h( y )] ⋅ h′( y ) , 0 < y < ∞, fY = ⎨ X y ≤ 0. ⎩0,
⎧ ⎛1⎞ 1 ⎪ fX ⎜ ⎟ ⎟ 2 , 0 < y < ∞, -------------------------------------2 分 =⎨ ⎜ ⎝ y⎠ y ⎪0, y ≤ 0. ⎩
⎛5⎞ P ( Ai ) = ⎜ ⎟ ⎝6⎠
i −1
1 . ------------------------2 分 6
因甲为首掷,故甲掷奇数轮次,从而甲胜的概率为
P{甲胜} = P{ A1 ∪ A3 ∪ A5 ∪ } = P( A1 ) + P( A3 ) + P( A5 ) + 1 ⎡ ⎛5⎞ ⎛5⎞ = ⎢1 + ⎜ ⎟ + ⎜ ⎟ + 6⎣ ⎢ ⎝6⎠ ⎝6⎠
z≤0 0 < x <1 z ≥1
--------------2 分
因此,随机变量 Z 的概率密度函数为 f Z ( x ) = ⎨
⎧2 z 0 < z < 1 其它 ⎩0
7
九(满分 10 分) 设二维随机变量 ( X, Y ) 的联合密度函数为
⎧C(x + y) 0 ≤ y ≤ x ≤ 1 f ( x, y ) = ⎨ 其它 ⎩ 0
当 z ≤ 0 时, FZ ( z ) = 0 -------------------------------------------------------------1 分
{
其它
X 2 +Y2 ≤ z
}
FZ ( z ) = P =
12-13-2概率论与数理统计试题A及答案
4、设随机变量 X 服从参数为 ( 0 )的指数分布,且 P{X 1} 1 , 2
则参数 =
5、设随机变量 X 和Y 相互独立,且 X 和Y 的概率分布分别为
0 1 2 3
X
~
1 2
1 4
1 8
1 8
;
1 0 1
Y
~
1 3
1 3
1 3
考场 装订线
班级
姓名 装订线
学号
装订线
山东建筑大学试卷
2012 至 2013 学年第 2 学期
考试时间: 120 分钟
课程名称: 概率论与数理统计 (A)卷 考试形式:(闭卷)
年级:
专业: 全校各专业 ;层次:(本科)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线0生高不产中仅工资22艺料22高试可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料22荷试,下卷而高总且中体可资配保料置障试时23卷,23调需各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看2工且55作尽22下可2都能护1可地关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写卷技、重保术电要护交气设装底设备置。备4高动管调、中作线试电资,敷高气料并设中课3试且技资件、卷拒术料中管试绝中试调路验动包卷试敷方作含技设案,线术技以来槽术及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中、(10 分)设箱中有 5 件产品,其中三件是优质品,从该箱中任取 2 件,以
概率论与数理统计(第3-5章)
2y1
y 2
y 1时 ,
F(x,y) 4dxdy 4S三角形1
三角形
整理课件
所以,所求的分布函数为
0,
(x 1 或y 0) 2
2
y
2
x
y 2
1
,
( 1 x 0, 0 y 2 x 1) 2
F
(x,
y)
4
x
1 2
2
,
( 1 x 0,2x 1 y) 2
2
y
f(x,y) 1 8(6xy), 0x2,2y4
0,
其 他
求概率 PXY4X1
解答 PXY4X1
4
PXY4,X1
2
PX1
2
dx
4x 1 (6 x y)dy
1 2 8
7 48 7
2
dx
1
4 1 (6 x 28
y)整d理y课件
38
18
12
二维均匀分布
设二维随机变量 ( X , Y ) 的概率密度为
D
1
dx
31(6xy)dy
0 28
0 11 8(6yxy1 2y2)3 2dx8 3
2 12
整理课件
续解 ……….
PXY3f(x,y)dxdy
D
1
dx
3x1(6xy)dy
0 28
011 8(6yxy1 2y2)3 2xdx
5 24
整理课件
x+y=3
思考 已知二维随机变量(X,Y)的分布密度为
x2
+F(x1,y1)
P(x1 X x2,y1 Y y2) = F(x2,y2)- F(x2,y1)- F(x1,y2) + F(x1,y1)
12-13II 期末考试答案
A1 A2 A3 ;
(D) A1 A2 A3 .
题号 得分 阅卷教师 得 分
一
二
三
四
五
总分
阅卷教师
9、同时抛掷 3 枚匀称的硬币,则恰好有两枚正面朝上的概率为( D ) (A) 0.5; (B) 0.25 ; (C) 0.125 ; (D) 0.375 . 10、若 X ~ N (0,1) ,则 P(| X | 2 )=( A ) (A) 2[1 (2)] ; (B) 2(2) 1 ; (C) 2 (2) ; (D) 1 2(2) .
B Y ~ N (2 , 22 ) ; D
X , Y 互不相容.
4、尽管一再强调考试不要作弊,但每次考试往往总有一些人作弊。假设某校以 往每学期期末考试中作弊同学人数 X 服从参数为 5 的泊松分布,则本次期末考 试中没有同学作弊的概率为 e 5 ; 5、设 X ~ b(n1 , p) , Y ~ b(n2 , p) 且 X 、Y 相互独立,则 X Y ~ b(n1 n2 , p) ;
(2)由 Bayes 公式
„„„„„„„„„„„ (2 分)
ex , 0 x f ( x, y )dy „„„„„(2 分) 0 , 其他 .
A Be 16、设连续型随机变量 X 的分布函数为 F ( x) 0
2 x
, x 0, , x 0.
1、设 P( A) 1 / 4 , P( B A) 1 / 3 , P( A B) 1 / 2 ,则 P( A B)
班级:
| | | | | |
线
2、袋中有 10 个球(3 个红球,7 个白球) ,每次取 1 个,无放回地抽取两次, 则第二次取到红球的概率为 0.3 ; 3 、设 A 、 B 、 C 是随机事件, A 与 C 互不相容, P( AB) 1/ 2, P(C) 1/ 3, 则
北京工业大学概率论与数理统计2012-2013考题(原题加答案)
北京⼯业⼤学概率论与数理统计2012-2013考题(原题加答案)北京⼯业⼤学2012-2013学年第⼀学期期末数理统计与随机过程(研) 课程试卷学号姓名成绩注意:试卷共七道⼤题,请写明详细解题过程。
数据结果保留3位⼩数。
考试⽅式:半开卷,考试时只允许看教材《概率论与数理统计》浙江⼤学盛骤等编第三版(或第四版)⾼等教育出版社,不能携带和查阅任何其他书籍、纸张、资料等。
考试时允许使⽤计算器。
考试时间120分钟。
考试⽇期:2013年1⽉⽇⼀、(10分)欲对某班《数理统计与随机过程》的期末考试成绩作分析。
假设这门课成绩X (单位:分)服从正态分布2(,)Nµσ。
若班级平均成绩在75分以上则认为该班成绩良好。
现从该班中随机抽取9名同学,得到他们成绩的平均分为78.44,标准差为11.40。
请根据以上结果回答如下问题:(1)取显著性⽔平α=0.05,分别给出下述两个问题的检验结果:检验问题I “H 0: 75µ≤,H 1: 75µ>” 检验问题II “H 0: 75µ≥,H 1: 75µ<” (2)对以上结论你如何解释?⼆、(15分)将酵母细胞的稀释液置于某种计量仪器上,数出每⼀⼩格内的酵母细胞数X ,共观察了413个⼩⽅格,结果见下表。
试问根据该资料,X 是否服从Poisson 分布?(显著性⽔平取0.05α=)三、(15分)某公司在为期8个⽉内的利润表如下:(1)求该公司⽉利润对⽉份的线性回归⽅程;(2)对回归⽅程进⾏显著性检验:(取05.0=α);(3)解释回归系数的意义;(4)求第11⽉利润的预测区间(取050.=α)。
(本题计算结果保留两位⼩数)。
四、(15分)某消防队要考察4种不同型号冒烟报警器的反应时间(单位:秒)。
今将每种型号的报警器随机抽取5个安装在同⼀条烟道中,当烟量均匀时观测报警器的反应时间,得数据如下:)(2)如果各种型号的报警器的反应时间有显著性差异,求均值差B A µµ-的置信⽔平为95%的置信区间。
【概率论】3-5:边缘分布(MarginalDistribution)
【概率论】3-5:边缘分布(MarginalDistribution)title: 【概率论】3-5:边缘分布(Marginal Distribution)categories:MathematicProbabilitykeywords:Marginal p.f.边缘概率函数Marginal p.d.f.边缘密度函数Independent独⽴性toc: truedate: 2018-02-09 11:33:45Abstract: 本⽂承接上⽂,对于⼆维联合分布,如何求出⼆维变量中⼀个变量的⼀个分布,也就是标题所说的边缘分布;以及对独⽴随机变量的讨论。
Keywords: Marginal p.f.,Marginal p.d.f.,Independent开篇废话今天这篇可能是农历新年前最后⼀篇关于数学的博客了,过年期间争取把CUDA系列的写出来,⼤家有兴趣的可以关注⼀下,过年本来是个休息的时间,但是说实话,现在真的很讨厌过年,尤其是那些关⼼你⽣活的所谓亲戚们,可能是变向找平衡,或者是炫耀,具体案例我不说,已经烂⼤街了,只是觉得有点恶⼼,⼈们在内⼼是相互攀⽐相互较量,表⾯还要装作⼀团和⽓,然后各种映射暗⽰你不如他的地⽅。
过年就应该是⼀家团聚,相互祝福,相互⿎励的。
真的想找个没⼈的地⽅看⼀春节书,改变不了就是试着逃避吧。
想要逃出⽣天,好好学习,可能还有机会。
Marginal Distribution我们继续我们的概率论,我们已经经历了概率论的变化过程是:从试验到样本空间,样本空间到事件,事件到概率(复合事件的概率,包括条件事件,独⽴事件等等扩展情况),样本空间到随机变量,随机变量的离散概率、连续概率,描述随机变量概率的⼯具(p.f.,p.d.f.,c.d.f.),然后随机变量被扩展为⼆维(离散的,连续的,混合的),今天我们在⼆维联合分布的情况下,推出今天的主要讨论⽬标:Marginal Distribution(边缘分布)上⽂我们曾有⼀个⼩伏笔,我们想知道联合的p.f.或者p.d.f.怎么通过每个变量的p.f.或者p.d.f.求出的;或者我们反过来,如何通过联合的p.f.或者p.d.f.来得到每个变量⾃⼰的(⼀维的)p.f.或者p.d.f.。
12-13概率统计A答案
《概率论与数理统计》试卷 第- 2 -页 共7页2(A) 1/2 (B) 3/5 (C) 6/25 (D) 12/257袋中有3只白球, 2只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜色不同的概率为: D ;(A) 1/2 (B) 3/5 (C) 6/25 (D) 12/258.在区间(0,1)上任取两个数,则这两个数之和小于1/2的概率为 C ;(A) 1/2 (B) 1/4 (C) 1/8 (D) 1/169. 三个人独立破译一个密码,他们单独破译的概率分别为111,,345,则此密码能被破译的概率为 B 。
(A) 47/60 (B) 36/60(C) 24/60(D) 13/6010. 三间工厂生产某种元件,假设三间工厂生产元件的份额之比为3:4:3,第一间厂生产的元件的次品率为1%,第二间厂生产的元件的次品率为2%,第一间厂生产的元件的次品率为3%,请问:抽查这三间厂生产的一个元件,该元件为次品的概率为 B .(A) 1% (B) 2%(C) 3%(D) 4%11.某公司业务员平均每见两个客户可以谈成一笔生意,他一天见了5个客户,设他谈成的生意为X 笔,则X 服从的分布为 B ; (A) B (1,0.5) (B) (5,0.5)B (C) (5,0.5)N(D) (5)E12.假设某市公安交警支队每天接到的122报警电话次数X 可以用泊松(Poisson)分布()P λ来描述.已知{19}{20}.P X P X ===则该市公安交警支队每天接到的122报警电话次数的方差为 C . (A) 18 (B) 19(C) 20(D) 2113.指数分布又称为寿命分布,经常用来描述电子器件的寿命。
设某款电器的寿命(单位:小时)的密度函数为则这种电器的平均寿命为 B 小时.(A) 500 (B) 1000 (C) 250000 (D) 100000014.设随机变量X 具有概率密度110001, 0()10000, t e t f t -⎧>⎪=⎨⎪⎩其它《概率论与数理统计》试卷 第- 3 -页 共7页3则常数k = B .(A) 1/2 (B) 1(C) 3/2 (D) 215.在第14小题中, {0.50.5}P X -≤≤= D .(A) 1/4 (B) 3/4 (C) 1/8 (D) 3/816.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的点数之和(Z=X+Y)为 C 的概率最大; (A) 5 (B) 6 (C) 7 (D) 817.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的最大点数(max{,}U X Y =)为6的概率为 C . (A) 7/36 (B) 9/36(C) 11/36(D) 13/3618.设松山湖园区理工学院后门22路汽车的载客人数服从8λ=的泊松分布,今任意观察一辆到理工学院后门的汽车,车中无乘客的概率为 A ;(A) 8e - (B) 1/8 (C) 18!(D) 82!e -19.设随机变量X ~ N (100,64),Y ~ N (100,36),且X 与Y 相互独立,则,X –Y服从 D 分布.(A) (100,64)N (B) (100,36)N (C) (0,28)N (D) (0,100)N20. 在第19小题中,P(X –Y<20) = A .(A) 97.72% (B) 2.28% (C) 84.13% (D) 15.87%21.已知(100,0.01)X B ,则E(X 2) = D .(A) 0.9 (B) 0.99 (C) 1.9 (D) 1.9922.已知D(X) = 1,E(Y) = 3,E( Y 2 )= 10,X 和Y 相互独立,则D(2X+Y+1) = A .(A) 5 (B) 6 (C) 7(D) 822.已知D(X) = 1,D (Y) = 1,X 和Y 的相关系数1/3XY ρ=-.则D(X+2Y) = B .(A) 10/3 (B) 11/3 (C) 19/3(D) 20/323,0,()0,x x k f x ⎧≤≤=⎨⎩其它.《概率论与数理统计》试卷 第- 4 -页 共7页423.设随机向量(X,Y)具有联合密度函数(,)f x y =(23), 0,0,0, x y ke x y -+⎧>>⎨⎩其它.则密度函数中的常数k = D .(A) 2 (B) 3 (C) 5 (D) 624.设随机变量X ,Y 的概率密度分别为:=)(x f X 23, 01,0, 其它x x ⎧≤≤⎨⎩, =)(y f Y 2, 00 ,其它y y ≤≤⎧⎨⎩. 已知随机变量X 和Y 相互独立.则概率{}P Y X <= C . (A) 0.2 (B) 0.4 (C) 0.6 (D) 0.8 25.设X 1,X 2,X 3是来自总体X 的简单随机样本,则下列统计量11221233123111111,,(),222363T X X T X X X T X X X =+=++=++中,属于无偏估计的统计量中最有效的一个为 C .(A) 1T (B) 2T (C) 3T (D) 12,T T 26.设201,...,X X 及140,...,Y Y 分别是总体)10,20(N 的容量为20和40的两个独立样本,这两组样本的样本均值分别记为Y X ,.Y X -服从分布 D .(A) 1(0,)4N (B) 3(20,)4N (C) 1(20,)2N (D)3(0,)4N 27.在第26小题中, {P X Y -≤= B . (A) 57.62% (B) 78.81% (C) 84.13% (D) 15.87%28.在第26小题中,2021()10ii XX =-∑服从分布 A .(A)2(19)χ (B) 2(20)χ (C) (19)t (D) (20)t29. 在第26小题中,202140212(20)(20)i i ii X Y ==--∑∑服从分布 A .《概率论与数理统计》试卷 第- 5 -页 共7页5(A) (20,40)F (B)2(20)χ (C) (19,39)F (D) 2(40)χ30. 在样本量和抽样方式不变的情况下,若提高置信度,则 B ; (A ) 置信区间的宽度会缩小 (B ) 置信区间的宽度会增大 (C ) 置信区间的宽度可能缩小也可能增大 (D ) 不会影响置信区间的宽度 31. 在对同一个总体的参数进行检验时,若在α=0.01显著性水平下拒绝原假设H 0,则在α 等于0.05的显著性不平下 A ; (A )肯定拒绝H 0 ( (B )肯定接受H 0(C )可能拒绝H 0 也可能接受H 0 (D )有时拒绝H 0 有时接受H 0 32.设总体X 的密度函数为,0,()0,.x e x f x λλ-⎧>=⎨⎩其它参数λ未知, 12,,,n X X X 是来自总体X 的样本,则λ的矩估计量为B .(A) ˆX λ= (B) ˆ1/X λ= (C) ˆ2X λ= (D) 2ˆX λ= 33.设总体(0,)X U θ ,θ未知,12,,,n X X X 是来自总体X 的样本,则θ的极大似然估计量为 C .(A) ˆX θ= (B) ˆ2X θ= (C) 12ˆmax{,,,}n X X X θ= (D) 12ˆmin{,,,}nX X X θ= 34.假设检验的第二类错误(取伪)是指: A (A) 0H 为假但接受0H (B) 0H 为假且拒绝0H (C) 0H 为真且接受0H (D) 0H 为真但拒绝0H35. 某工厂在生产过程的产品检验假设H 0:产品是合格的,显著性水平为5%,工厂厂长问什么是显著性水平,正确的说法是 A . (A) 如果产品是合格的,有5%的概率检验为不合格; (B) 如果产品是不合格的,有5%的概率检验为合格; (C) 如果产品是合格的,有95%的概率检验为不合格; (D) 如果产品是不合格的,有95%的概率检验为不合格;《概率论与数理统计》试卷 第- 6 -页 共7页6二、计算题(共30分)1. 设中石化的桶装石油的重量重服从正态分布,规定每桶重量是250公斤,标准差为3公斤,有的消费者由于重量不足250公斤而来投诉,公司解释这是由于随机原因引起的,因为有的桶装石油重量超过250公斤. (1)消费者购买一桶其重量不到247公斤的概率有多大? (2)若一次购买9桶,其平均重量不到247公斤的概率有多大? (本题满分12分,每小题6分)解:(1)设一桶石油的重量为X ,则X ~2(250, 3)N(247)P X <=250247250{}(1)1(1)10.84130.158733X P --<=Φ-=-Φ=-=;(2)设9桶石油的平均重量为X ,则X ~)1 ,250(N ,(247)P X <=247250()(3)1(3)10.99870.00131-Φ=Φ-=-Φ=-=.2. 从一批牛奶中随机抽取25盒检测其三聚氰胺的含量。
12-13-2概率论与数理统计B复习题
12-13-2概率论与数理统计B复习题概率论与数理统计B 复习题一、填空:1、设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生。
2)A 、B 、C 中恰有一个发生。
3)A 、B 、C 中最多有一个发生。
2、已知8.0)(,6.0)(,5.0)(===B A P B P A P ,则=)(B A P 。
3、若事件A 和事件B 相互独立, α=)(A P ,3.0)(=B P ,7.0)(=?BA P ,则α= 。
4、设随机变量X ~),4(~),,2(p b Y p b ,若,1)(=X E 则=)(Y E 。
5、设随机变量).1,3(~),1,2(~N Y N X -且X 与Y 独立,若Y X Z 32-= 则~Z (Z 服从何种分布)。
6、设,5.0,9)(,4)(===XY Y D X D ρ则D (3X -2Y )= 。
7、设随机变量序列 ,2,1,)(,,,21==k X E X X X k n μ布,且相互独立并服从同一分,则=?<∑-=∞→εμn k k n X n P 11lim 。
8、设总体),(~2σμN X ,则样本容量为n 的样本均值X ~ 。
9、设估计量∧θ是未知参数θ的无偏估计量,则=∧)(θE 。
10、设总体),(~2σμN X ,现从总体X 中抽取一个容量为16的样本,算得2,10==s x 。
若,2=σ 则μ的置信水平为0.95的置信区间是;若σ未知,则μ的置信水平为0.95的单侧置信下限是,σ的置信水平为0.95的置信区间是。
二、10把钥匙中有3把能打开门,今任取两把,求:1、不能打开门的概率2、恰有一把能打开门的概率三、仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂,乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计
2012-2013-2过程考试卷(概率论)
专业班级 学号 姓名
一、填空题(满分40分,每空4分)
1. 设),(Y X 是二维随机变量,则0=XY ρ是Y X ,相互独立的 。
2. 设()21~,N X ,()22~,N Y ,且Y X ,相互独立,,则~2Y X Z -= 。
3. 设二维随机向量),(Y X 的联合分布列为
则{1}P Y == ;{11}P X Y === 4.设,X Y 的分布律分别为
X -1 0 1 Y 0 1 P 1/4 1/2 1/4
P 1/2 1/2
且{0}0P X Y +==,则(,)X Y 的联合分布律为:
{1}P X Y +==
5. 设随机变量),(~p n B X ,且6)(=X E ,
6.3)(=X D ,则=n ,=p 6.
设
~(200,0.01),~(4),X B Y P 且
X 与Y 相互独立,则
D(2X-3Y)= ,
COV(2X-3Y , X)=
二.计算题(满分60分)
1、(10分)设连续型随机变量X 的密度函数为:
1
,
02
()2
0,
x x x ϕ⎧≤≤⎪=⎨⎪⎩其它
求:(1){|21|2}P X -<;(2)2
Y X =的密度函数()Y y ϕ;(3)(21)E X -;
2、(10分)设随机变量X 与Y 相互独立,且同分布于)10)(,1(<<p p B 。
令1,0X Y Z X Y +⎧=⎨
+⎩
若为偶数
,若为奇数。
(1)求Z 的分布律;(2)求)(Z X ,的联合分布律;(3)问p 取何值时X 与Z 独立?为什么?
3、(20分)设二维连续型随机变量(,)X Y 的联合密度为
,01,0(,)0,
c x y x
x y ϕ<<<<⎧=⎨
⎩其它
(1)求常数c ; (2)求X Y 与的边缘密度(),()X Y x y ϕϕ; (3)问X Y 与是否独立?为什么?
(4)求Z X Y =+的密度()Z z ϕ; (5)求(23)D X Y -
3、(20分)设二维连续型随机变量(,)X Y 的联合密度为
,01,0(,)0,
c x y x
x y ϕ<<<<⎧=⎨
⎩其它
(1)求常数c ; (2)求X Y 与的边缘密度(),()X Y x y ϕϕ; (3)问X Y 与是否独立?为什么?
(4)求Z X Y =+的密度()Z z ϕ; (5)求(23)D X Y -
4、(10分)一公寓有200户住户,一户住户拥有汽车辆数X 的分布律为
问需要多少车位,才能使每辆汽车都具有一个车位的概率至少为0.95
5、设随机变量()X Y ,服从二维正态分布,且有()03X N ,,()04Y N ,,相关系数
14
ρ=-,试写出X 和Y 的联合概率密度函数
2012—2013过程考试(二)参考答案(概率论)
㈠.
0 X,Y 113,;32
xy ρ=1、必要条件;提示:条件:结论相互独立2、N(0,10);、
4、
3
8
, {}0()X Y +=提示P 515,0.4
643.92,3.96
、、
㈡.
{}3032131921(1) 212()01222161022
P X P X x dx dx xdx ϕ⎧⎫⎨⎬⎩⎭-<=-<<==+=⎰⎰⎰--、解:
{}{}
{
}
{
2(2). F () y 0 F ()=04F ()0
2 0<y<4F ()==F F (( 20 ()0 y P Y y P X y
Y
y y y Y Y
y P X y P X Y X X X X f y Y ϕϕ⎤⎥⎦=≤=≤≤≥=≤≤=-+≥∴=当时,,当时,当
时, 1
0y 4
4
0 (021
(3)E(2X-1)=(2x-1)(x)dx x(2x-1)dx
02
X
ϕϕ⎩⎧⎪⎨⎪⎩
≤≤=∴=+∞=⎰⎰-∞其他其他(提示 )
、2211185
232 =(x -x)dx (x x )102343
30=-=-=
⎰ 222 Z ∴、解:(1) P(Z=0)=P(X=0,Y=1)+P(X=1,Y=0)=2pq=2p(1-p)
P(Z=1)=P(X=0,Y=0)+P(X=1,Y=1)=p +(1-p)的分布律为
(2)(X,Z )的联合分布律为
1
22
1
2
) =01=011
2
i i i i i i X Y ∴(3) 当1-p=2p(1-p)时 p=
把p=代入得
P(X=x ,Z=z )=P(X=x )P(Z=z 其中x 或,z 或当p=,与相互独立
11121(x,y)dxdy=cdydx cxdx=00022
0x c c x ϕ+∞+∞===
⎰⎰⎰⎰⎰-∞-∞3、解:(1)
c=2∴ 2 0<x<1,0<y<(x,y)0 x ϕ⎧⎪⎨
⎪⎩∴=其他
(2) 0<x<1当时 (x)dx =(x,y)dy=2dy=20x x X
ϕϕ+∞⎰⎰-∞ x 0x 1 (x)=0X
ϕ≤≥当或时
2 0<x<1 (x)=0 x X ϕ⎧⎪⎨⎪⎩∴其他
0<y<1当时
1(y)(x,y)dx=2dx=2(1)y y Y ϕϕ+∞=-⎰⎰-∞
y 0y 1 (y)0 Y ϕ≤≥=当或时
2(1) 0<y<1(y)0 y Y ϕ⎧⎪⎨⎪⎩-∴=其他
(3)(x)(y)(x,y) ,X Y X Y ϕϕϕ≠∴、相互不独立
122dx 0<z<12 1z<2
0 (4)Z=X+Y
0<x<1 0<x<1 0 2 (z)=(x,z-x)dx
1
=2z
z dx z x x x z x Z
z ϕϕ⎧⎧⎪⎪⎨⎨⎪⎪⎩⎩⎧⎪⎪⎪⎪≤⎨⎪⎪
⎪⎪⎩
∴<-<<<+∞
⎰-∞⎰⎰其他、当即时 0<z<1 =2(1) 1z<2
20 z z ⎧⎪⎪
-≤⎨⎪⎪⎩其他
21
)18 1
1212232 E(X )=23200
111122 2(1) 2(1)
3600
121112 D(X)=() D(Y)=(23186311 240
0 C (x dx x dx y y dy y y dy x xydydx X ov =
==
⎰⎰-=-=⎰⎰-=-=⎰⎰∴(5)、E(X)=E(Y)=E(Y )=E(XY)=1211
,) 43336
7
D(2X-3Y)=4D(X)+9D(Y)-2C (2,3)18
( C (2,3)=6C (,))Y X Y ov X Y X Y ov ov =-=-⨯=
=
E(XY)E(X)E(Y)提示:
4 X X
k k
、设需要的车位数设表示第户拥有的车位数,则有
200X
1k
k ∑=~((X
),(X ))N nE nD k
k
(X )=00.1+10.6+20.3=1.2
2222 (X )=00.1+10.6+20.3=1.8222 D (X )=(X )(X ) 1.8 1.20.36
E k
E k
E E k k k
⨯⨯⨯⨯⨯⨯∴-=-=又 200
X 1k
k ∴∑=~(1.2200,0.36200)N ⨯⨯
200
X 200 1.2200P X P 1
=0.95
1.65 ((1.65)0.95)
x 253k
k x k φφ⎧⎫⎪⎪
⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭
⎩
⎭
-⨯∑∴≤=∑=≥≥≈≥解得.98
0.95.
∴至少有254个车位才能使每辆汽车都具有一个车位的概率至少为 5 X 、解: ~N(03) Y ,~N(04),
2E(X) ==0 D(X)=3
11
2 E(Y) ==0 D(Y)=4
22 X,Y 8
2222
4515
x μσμσ∴==∴∈的联合概率密度函数为
y ) (x,y)R。