ASAP and FDTD Solutions

合集下载

(整理)各种光学设计软件介绍-学习光学必备-peter.

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。

版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。

ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。

CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。

除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。

是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。

CODE V是美国著名的Optical Research Associates(ORA®)公司研制的具有国际领先水平的大型光学工程软件。

FDTD Solutions 帮助 _ Quality factor calculations

FDTD Solutions 帮助 _ Quality factor calculations

知识库安装和设置入门教程参考指南用户指南应用实例天线艺术ASAPBSDF谐振腔CMOS增益材料缺陷检测光栅OLEDs材料科学超材料显微镜多层堆叠結構非线性光学镊子光子晶体太阳能电池表面等离子波导A cavity is called a low Q cavity when the electromagnetic fields decay completely from the simulation in a timeFDTD Solutions 在线帮助Quality factor calculations FDTD Solutions product page Training workshop schedule Webinar schedule Download page)SearchResonance 2:frequency = 205.814THz, or 1456.62 nmQ = 77.498 +/- 0.226738The analysis script also creates two plots. The plot shown below to the left contains one of the field components (Hz). You can see that the fields have decayed by the end of the simulation time. The second plot shows the location and relative amplitude of the resonance peaks.Note that the initial transients of the source are neglected by setting the "start time" for the time monitors to 200fs. The "start time" for the time monitors is the time at which the monitors begin recording data. This setting can be changed in the user properties for the analysis group. Also, note that in the analysis group, it is possible to use one time monitor or an array of time monitors for the Q factor calculation. The problem with using one time monitor is that if the one monitor is placed at or near a null of the cavity mode, then due to the fact that the field intensity is very low, the Q factor can have a large uncertainty (if it is even possible to obtain a meaningful result).The low_quality_factor_3D.fsp simulation file contains a 3D version of the low Q analysis object.High Q cavitiesA cavity is considered to be a high Q cavity when the electromagnetic fields cannot completely decay from the simulation in a time that can be simulated reasonably by FDTD. In this case, we cannot determine Q from the frequency spectrum because the FWHM of each resonance in the spectrum is limited by the time of simulation,Tsim , by FWHM ~ 1/Tsim. Instead, the quality factor should be determined by the slope of the envelope of thedecaying signal using the formulawhere fRis the resonant frequency of the mode, and m is the slope of the decay in SI units.Derivation of Q factor formula:The quality factor (Q) is defined aswhere wris the resonant frequency and FWHM is the full width half max of the resonance intensity spectrum. The time domain signal of the resonance is described bywhere α is the decay constant. The fourier transform of E(t) is easy to calculate.The maximum value of |E(w)|^2 is clearly 1/α^2, at w=wr. With a little more work, we can determine that thehalf max frequencies occurs at w=wr + α and w=wr- α. Therefore, FWHM = 2α. Substituting this value intothe original Q formula and solving for α givesNow that we know how to relate α to Q, we must determine how the slope of the time signal decay is related to Q. We must take the log of the time signal to make the envelope a linear function.where m is the slope of the log of the time signal envelope. Solving for Q, we get.Example:Calculation of the Q factor for high Q cavities is complicated because•separating the decay of the envelope from the underlying sinusoidal signal is difficult since the fields are typically real-valued•if there are multiple resonant modes, they will interfere with each other in the time domain, making it hard to estimate the decay rate.By opening the edit dialog box for the Q factor analysis object located in quality_factor_3D.fsp, you can see that the analysis object solves these problems by•accurately calculating the envelope of the time-domain field signal•isolating each resonance peak in the frequency domain using a Gaussian filter, and then taking the inverse Fourier transform to calculate the time decay separately for each peak. The slope of the time decay is then used to calculate the Q factor and obtain an error estimate.In addition, note that:•the Q analysis object has setup variables that allow you to choose how many time monitors to use to calculate the Q factor. It is often a good idea to add a few point monitors at different locations to reduce the chances that a monitor is placed at a node in the mode profile of a cavity mode yielding a weak signal.•in the analysis tab, there is a parameter that can be set to choose how many resonant peaks to look for •all the field components that are available are used to calculate the Q factor•it is possible to change other parameters, such as the Gaussian filter width and resolution in the frequency domain. These parameters are set in the analysis script.•in the script, only the part of the time signal lying in 40-60% of the time signal collected is used for the slope calculation. These percentages can easily be changed. However, setting the upper limit to anything greater than 90% can lead to errors due to the fact that Fourier transforms, and inverse transforms were used when the Gaussian filter was used to isolate the peak. The Fourier transforms introduce errors to the end of the time signal due to the fact that discrete Fourier transforms assume periodicity of the signal.Next, run the simulation. When the simulation is complete, choose to edit the analysis object and press RUN ANALYSIS button. The analysis script output will contain the location of the resonance frequencies and their corresponding Q factors.Resonance 1:frequency = 178.786THz, or 1676.82 nmQ = 306.279 +/- 1.41318Resonance 2:frequency = 227.307THz, or 1318.89 nmQ = 274.874 +/- 4.50921The analysis object also produces the following plots.The time decay of the field components and their envelopes. Note The spectrum and the Gaussian filtersThe spectrum of resonances. Each resonant peak appears in a The time decay of the sum of squared Other versions of this page:Events。

ASAP简介

ASAP简介

ASAP 定义ASAP®(Advanced System Analysis Program)在光学设计软件界,是一个已经经过时间证实且成为工业界标准的光学设计软件。

ASAP提供给光学系统工程设计师无与匹敌的设计能力、广泛的应用性、快速的光追踪速度和准确度。

ASAP 精确地仿真在汽车车灯光学系统、生物光学系统、相干光学系统、屏幕展示系统、光学成像系统、光导管系统、照明系统及医学仪器设计上的真实世界实际表现预测。

设计能力ASAP经过了超过20年的持续发展,和其它光学设计软件相比,是一个可以仿真更多光学系统上更广泛的真实物理现象。

ASAP 是一个联结了几何光学和物理光学的全方位3D 光学及机械系统的模型建立软件。

ASAP 内建的绘图工具功能让所有的几何模型、光线追迹的细节和模拟结果的分析都充分可视化。

ASAP 几乎可以处理所有的光学仿真分析,包括了散射效应、衍射效应、反射效应、折射效应、光吸收效应、偏极光效应和高斯光速传导之模拟分析。

广泛的应用性ASAP 现在可和很多的CAD 软件兼容操作应用。

现在有以API 为基础的插入接口可与SolidWorks® 兼容、有以 CAA V5 的插入接口可与CATIA® 兼容、有一个ASAP 特定的IGES轮廓接口和Rhinoceros® 兼容,也有能够输入其它CAD 软件的 IGES 的档案能力,这些功能对于准确和百分之百完整的几何模型转换进入ASAP系统,提供了大量的选择性。

ASAP 还可以从来自 Lumerical公司的有限差分时域语言FDTD Solutions™,输入 (和输出) 光量场分布。

由ASAP 和有限差分时域语言FDTD Solutions 结合一起,还可以用一种智能型的方式来处理宏光学系统和微量结构光学。

没有其它的软件组合可以跨越此一大光学上的鸿沟。

运算速度运算速度最佳化的ASAP 非续列光线追迹引擎是现有最快速的运算引擎,而且没有像其它的软件为了加快运算速度而用准确度折衷性的对象表面的近似值来作光线追迹运算。

ASAP 高级光学系统分析软件简介

ASAP 高级光学系统分析软件简介

欧美光学行业标准软件ASAP(Advanced Systems Analysis Program)软件是美国 Breault Research Organization(BRO) 公司研发的一款在 3D空间通过非序列光线追迹来模拟光学系统表现度的软件。

多年以来,广泛应用在照明设计,杂散光分析,背光板设计,偏振光分析等领域。

其中尤以出众精准的照明和杂散光分析能力而闻名,这是 LED照明设计和高精度系统中必不可少的功能。

BRO 公司位于美国亚利桑那州图森市(Tuscon),在 1979 年由 Dr. Robert P. Breault 创建。

BRO 公司有三大业务:ASAP 软件销售和技术支持、ASAP 教育培训和承接工程项目。

ASAP 软件以其强大的功能,为美国政府和全球光学行业做出了巨大的服务。

BRO 公司承接众多美国军方对战机、军舰、战车的 LED 照明设计和改造项目。

ASAP功能之强,可见一斑。

ASAP主要特点功能强大、运算速度快鬼影起源:追迹杂散光的进化史,高端镜头系统分析必经之路,各种照明系统高精度分析必备之器!ASAP 成功修复哈勃望远镜,杂散光分析非ASAP莫属!背光源:汽车仪表、手机光源、室内照明、显示屏幕无所不能!让您的客户不再抱怨眼睛疲劳,让每一个细节都一览无遗!选择ASAP,您的光源专家!LED照明:ASAP 提供精准的 LED 光源,结合为 Lens 添加菲涅耳运算、散射模型,保证模拟结果的准确度。

ASAP 在 LED 设计过程中为工程师提供的强大自由度,保记您的每一个想法都不再是纸上谈兵!生物医学:精确模拟光与组织结构交互结果。

特有 RSM 模型一真实皮肤模型,采用 Henyey-Greenstein 近似值,Mante CarLo 光线追迹助您分析器官病变!每一款车灯,每一份设计,每一条光线,尽在您的掌握!SAE ECE和 FMVSS 标准测试,助您顺利通过法规!采用 ASAP 缩短研发时间,节约开模费用!您的财富您驾驭!严谨精确、可靠精准的模拟结果ASAP模拟结果实验室实际结果ASAP 的灯源模型在几何形状和发光度上非常精准,并包括了完整的光谱数据,同时包含了从灯源所得的实际光学和机械的几何模型。

ASAP简介

ASAP简介

ASAP 定义ASAP®(Advanced System Analysis Program)在光学设计软件界,是一个已经经过时间证实且成为工业界标准的光学设计软件。

ASAP提供给光学系统工程设计师无与匹敌的设计能力、广泛的应用性、快速的光追踪速度和准确度。

ASAP 精确地仿真在汽车车灯光学系统、生物光学系统、相干光学系统、屏幕展示系统、光学成像系统、光导管系统、照明系统及医学仪器设计上的真实世界实际表现预测。

设计能力ASAP经过了超过20年的持续发展,和其它光学设计软件相比,是一个可以仿真更多光学系统上更广泛的真实物理现象。

ASAP 是一个联结了几何光学和物理光学的全方位3D 光学及机械系统的模型建立软件。

ASAP 内建的绘图工具功能让所有的几何模型、光线追迹的细节和模拟结果的分析都充分可视化。

ASAP 几乎可以处理所有的光学仿真分析,包括了散射效应、衍射效应、反射效应、折射效应、光吸收效应、偏极光效应和高斯光速传导之模拟分析。

广泛的应用性ASAP 现在可和很多的CAD 软件兼容操作应用。

现在有以API 为基础的插入接口可与SolidWorks® 兼容、有以 CAA V5 的插入接口可与CATIA® 兼容、有一个ASAP 特定的IGES轮廓接口和Rhinoceros® 兼容,也有能够输入其它CAD 软件的 IGES 的档案能力,这些功能对于准确和百分之百完整的几何模型转换进入ASAP系统,提供了大量的选择性。

ASAP 还可以从来自 Lumerical公司的有限差分时域语言FDTD Solutions™,输入 (和输出) 光量场分布。

由ASAP 和有限差分时域语言FDTD Solutions 结合一起,还可以用一种智能型的方式来处理宏光学系统和微量结构光学。

没有其它的软件组合可以跨越此一大光学上的鸿沟。

运算速度运算速度最佳化的ASAP 非续列光线追迹引擎是现有最快速的运算引擎,而且没有像其它的软件为了加快运算速度而用准确度折衷性的对象表面的近似值来作光线追迹运算。

fdtd_application_examples_FDTD软件简介,应用

fdtd_application_examples_FDTD软件简介,应用

© 2012 Lumerical Solutions, Inc.
FDTD Solutions Workflow
We will go through the recommended workflow in some advanced examples
: Moth's eye design for Silicon AR on solar cell : Nanohole array
© 2012 Lumerical Solutions, Inc.
Parameterization of your design
Create your own properties
© 2012 Lumerical Solutions, Inc.
3
Parameterization of your design
: We will then consider where the electromagnetic energy is absorbed and where the photoelectrons are created
© 2012 Lumerical Solutions, Inc.
Silicon AR
© 2012 Lumerical Solutions, Inc.
Silicon AR
Simulation region
: Geometry
• x span = y span = 500nm • z min = -0.2 microns • z max = 0.7 microns
: Boundary conditions
: 500nm period
© 2012 Lumerical Solutions, Inc.

ASAP各模块功能介绍

ASAP各模块功能介绍

ASAP模块列表功能模块描述ASAP/基本模块◊ 非成像(光学)系统◊ DXF输入/输出◊ IGES输出◊ 辐射光源™◊ BRO灯源数据库◊ 阵列尺寸:对象数目 1,000几何实体 3,000像素映射 736 x 736灯源数量 999媒介/模型/镀膜 60ASAP实例 1ASAP/专业模块与ASAP/基本功能模块一同使用:◊阵列尺寸:对象数目 9,999几何实体 30,000像素映射 2896 x 2896灯源数量 999媒介/模型/镀膜 100◊几何总存储量(浮点数) 3,000,000◊每个对象的同步光栅种类99◊每个对象的散射区域输入额20◊在局域网(LAN)的其它计算机上产生及控制最高达到5 套额外的ASAP 软件ASAP/CAD模块计算机辅助设计--与ASAP/基本功能模块一同使用:◊以smartIGES转译器作IGES (基本图形转换规范) 输入。

因为CAD模型趋向于含有大量对象,用户可能需要允许大量对象及图片高分辨率的ASAP/专业模块。

◊ Rhino® 3D表面 / 实心体模型软件◊以API为基础的插入接口,以在SolidWorks中使用◊以XML为基础的CAD档案格式可让百分之百完整的几何模型和光学特性交换ASAP/CATIA模块与ASAP/CAD功能模块一同使用(要使用CATIA模块,必须拥有CAD模块):CATIA 功能模块允许ASAP/CAD 的使用者在ASAP里开启原始的CATIA V5档案。

以CAA V5为基础的插入接口,可以在ASAP中开启原始的CATIA V5档案。

ASAP/光学模块与ASAP/基本功能模块一同使用:◊相干光学(成像) 系统支持◊整合的转译器可做CODE V, OSLO, SYNOPSYS, 和 ZEMAX 的镜片设计应用◊在光学系统中仿真偏极光现象◊有限差分 (FD) 光束传导法 (BPM)◊插入接口可从有限差分、时域 (FDTD) 代码的FDTD Solutions,输入(和输出) 光量场分布◊双精准 (Double-precision) 光线追迹ASAP/ELTM模块外部照明测试功能模块--与ASAP/基本功能模块一同使用:首先用于汽车产业,如SAE、FMVSS或ECE 的测试工作予以自动化。

ASAP简介

ASAP简介

ASAP简介一、光学系统分析软件ASAPASAP™全称为Advanced System Analysis Program,即高级系统分析程序。

ASAP是由美国Breault Research Organization. Inc (BRO)公司开发的高级光学系统分析模拟软件。

经过近三十年的发展,ASAP光学软件在照明系统、汽车车灯光学系统、生物光学系统、相干光学系统、屏幕展示系统、光学成像系统、光导管系统及医学仪器设计等诸多领域都得到了行业的认可和信赖。

ASAP ™在光学设计软件界,是一个已经经过时间证实且成为工业界标准的光学设计软件。

ASAP提供给光学系统工程设计师无与匹敌的设计能力、广泛的应用性、快速的光追踪速度和准确度。

ASAP精确地预测在汽车车灯光学系统、生物光学系统、相干光学系统、屏幕展示系统、光学成像系统、光导管系统、照明系统及医学仪器设计中的全真表现。

ASAP是现有最精巧熟练的光学应用软件程序,有必须的功能可以解决最难办的光学设计和分析问题。

可模型化每一个从简单的反光镜、镜片到复杂的成像和聚光的仪器系统,并考虑了相干光学效应。

可利用灯源影像、点光源、平行光源和扇形光创造高准确的的光源模型,或是模型化完整的光源几何模型和其结合的光学特性来仿真白热灯炮、(LEDs) 、冷阴极荧光灯(CCFLs),和高强度的放电弧形灯炮。

在ASAP 的核心是非续列光线追迹引擎,此非续列光线追迹引擎以它的效率和准确度闻名整个光学软件界。

它可以将光线以任何次序或是次数投射在表面,而且光分裂会自动发生。

ASAP的每一个功能可以在一般桌上型记算机上快速的最佳化运用。

你可以在几分锺内透过简单的系统追踪数百万的光线。

可以向前、向后、连续地或是阶段性地追踪光线。

ASAP 基本上是一种具有弹性及效率之光学系统模型化的工具,它可以利用蒙地卡罗光线追迹的技术做光-机结构间的仿真,它可以不必假设系统之对称性,做单轴、全域、三维坐标的模拟。

FDTD Solutions—专业的微纳光学仿真软件

FDTD Solutions—专业的微纳光学仿真软件
6 软件商城:/ (各类科研与工程软件)赵海军:136 4166 4322
2012 2011 2010
2008
2006 2005 2004 1998
1.上海海基盛元 — 公司文化
共享成功
社会责任
真诚服务
幸福快乐
7 软件商城:/ (各类科研与工程软件)赵海军:136 4166 4322
1.上海海基盛元 — 理念与使命
理 念
国内领先的专业工程软
件、管理软件以及服务 的提供商
使 命
提供行业领先的仿真分 析以及信息化管理的解 决方案,从而帮助客户 提高产品研制水平、缩 短产品研制周期、降低 产品研制费用,使其在 激烈的产品竞争中处于 领先地位
4 软件商城:/ (各类科研与工程软件)赵海军:136 4166 4322
http://scholar.google.ca/scholar?hl=en&q=lumerical%2 C+fdtd&as_sdt=0%2C5&as_ylo=2011&as_vis=0 http://scholar.google.ca/scholar?hl=en&q=lumerical%2 C+nonlinear&btnG=&as_sdt=1%2C5&as_sdtp=
上海海基盛元国内领先的专业工程软件管理软件以及服务的提供商提供行业领先的仿真分析以及信息化管理的解决方案从而帮助客户提高产品研制水平缩短产品研制周期降低产品研制费用使其在激烈的产品竞争中处于领先地位软件商城
FDTD Solutions — 专业的微纳光学仿真软件
技术工程师:赵海军 Tel:136 4166 4322 ;E-mail:zhaohj@

日本东芝光耦

日本东芝光耦

日本东芝光耦深圳市美特光有限公司为日本东芝品牌光耦代理商。

TOSHIBA光耦中文名:东芝光耦。

东芝在日本东京都的总部大楼东芝(TOSHIBA),是日本最大的半导体制造商,亦是第二大综合电机制造商,隶属于三井集团旗下。

我司供应东芝全系列光耦合器,东芝光耦从功能分有逻辑输出,可控硅输出,光电二极管输出,固态继电器,高速输出,MOSFET输出,晶体管输出等。

高速光耦TLP115A描述:东芝光耦合器TLP115A是一个小外形耦合器,适合表面贴装。

TLP115A由一个高输出功率GAAℓAs发光二极管,光耦合到一个集成的高增益,高速光屏蔽检测器的输出是一个集电极开路肖特基钳位晶体管。

其中分capacirively加上常见的噪音到地面,提供1000V/μs的保证瞬变抗扰度规范。

特点:输入电流阈值:IF = 5mA (max.)切换速度:10MBD(典型值)共模瞬变抗扰度:± 1000V / μs (min.)最佳性能温度。

:0~70°C隔离电压:2500Vrms (min.)UL认证:UL1577, file no. E67349运用:高速,长距离隔离线路接收器微处理器系统接口数字隔离的A / D,D / A转换电脑外设接口接地回路消除参数:东芝高速光耦型号有:TLP550(F), TLP116A(E), 6N137F,TLP2166A(F), 6N136F,TLP2630(F),,TLP118(TPL,E),,TLP715(F),,TLP105(F), TLP108(F),,TLP557(F), 6N139(F), TLP719(TP,F), TLP2200F,6N138F,TLP559(IGM,F), TLP2309(E), TLP2631(F),TLP2098(F), TLP118(E), TLP558(F), TLP2601(F), TLP117(F), TLP718(F), TLP559(F), TLP2530(F), TLP2531(F), TLP2368(E), TLP512(F), TLP2105(F), TLP116(F), TLP2366(E), TLP115A(F), TLP716(F), TLP716(TP,F), TLP719(F), TLP714(F), TLP2118E(F), TLP2108(F),TLP2418(F), TLP2160(F), TLP2631TP1F TLP2168(F), TLP2355(E,TLP2362(E),TLP2200(TP1,F), 6N138(TP1,F), TLP2601(TP1,F), TLP2303(E TLP2303(TPR,ETLP109(IGM,E), TLP2468(F), TLP109(E), TLP2408(F), TLP104(E), TLP2409(F),TLP2358(E), TLP2301(TPL,E,TLP2303(TPL,E TLP555(F), TLP754(F), TLP2631(LF5,F), TLP2404(F), TLP2405(F), TLP2301(E,TLP2116(F), TLP2403(F), 6N137(TP1F),TLP116A(E,6N136(TP1F), TLP2630(TP1F), TLP2601(LF1,F), TLP104(TPR,E),TLP2362(TPR,E,TLP2531(TP1F), TLP2358(TPL,E), TLP2530(TP1F), TLP2116(TP,F), TLP2468(TP,F), 6N135(F), TLP559(IGM-TP5F), TLP2368(TPR,E,TLP2355(TPL,E,TLP751(F), TLP109(TPR,E), TLP2098(TPL,F), TLP2166A(TP,F), TLP118(TPR,E),TLP117(TPR,F), TLP2358(TPR,E), TLP2309(TPL,E), 6N139(TP1F), TLP109(IGM-TPR,E), TLP117(TPR,F),。

光学仿真软件

光学仿真软件

光学仿真软件光学设计软件被工程师和科学家用来完成各种各样的工作包括照度计算、激光束传播、杂散光分析和任意的光学设计。

这种软件能够进行精确快速的虚拟原型设计它可以在产品制造之前对其进行光学性能的预测和分析。

它经常被用来设计涉及到很多领域的光学系统如镜片和平面镜组合的各种产品包括摄影器材医学仪器航空航天系统。

“这些对于光学设计者来说是一个令人兴奋地时代” Breault 研究机构的科学软件应用主管Kyle Ferrio说“由于光学性能的发展工业需要精密的光学设计软件设计出虚拟原型和制造业综合。

” Ferrio解释到光学设计者对社会做重要贡献有着悠久的历史但目前他们正将光学设计在各个领域推向革新时代比如安全娱乐和绿色能源。

光学设计软件是通过将一个设计中所用到的所有的光学器件的形状、位置和材料用数学描写工作的。

典型的光学设计软件包括三个过程数值输入评估优化。

数值输入是正式描述质疑设计的过程经常会用到网上的镜片库。

评估阶段是决定光学系统的性能水平在哪个点。

优化—光学设计软件的焦点—重新设计并改进光学系统的结构以达到理想的规格。

光学设计软件的设计方法可以主要分为以下三类连续光线追踪不连续光线追踪和FDTD时域有限差分法模拟。

连续光线追踪用来模拟光学系统的几何的组件定义目标物的光学性能用定向光线近似光源然后通过系统模型预言在真实世界中这些方向传播的光线的行为。

连续光线追踪法中光学系统在某个时间点被分割为一个元件且光是按照之前规定好的顺序从一个面到另外一个面的。

与光线连续追踪法不同不连续光线追踪法允许光线与面之间随意的多接触这可以通过一个自动光线分裂过程实现。

由于不连续光线追踪法允许光线散射和光线与系统组件自然的相互作用这种方法可以让科学家比用连续光线追踪法更精确地预测光学系统在真实世界的行为。

光学设计软件的第三种方法—FDTD模拟—当系统的光学特征因光波长的缩放而收缩时提供精确度增加的需要。

FDTD模拟通过微米和纳米级结构传播电磁场工作的用来预测微光学系统行为。

ASAP物理光学与杂散光分析 - 20140708

ASAP物理光学与杂散光分析 - 20140708

将照片变成光源来进行成像系统评估
Light Source Model from CCD camera (.bmp file imported into ASAP)
ASAP Optical System Model
2015/3/2
Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd
2015/3/2 Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd slide 2
经历
• He received a B.S. in mathematics from Yale University, and M.S. and Ph.D. in optical sciences from the University of Arizona under Dr. Roland Shack. • APART™ 传承下来的。 ASAP 当年不少软件中,唯一
slide 11
赋予导入模型的光学属性(材料和膜层)
散射和菲涅耳公式 光线分裂
2015/3/2
Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd
slide 12
查看3D图形
2015/3/2
Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd
2015/3/2
Copyright © Wuhan Asdoptics Science And Technology Co.,Ltd
slide 7
支持导入CAD文件

(完整版)FDTD_Solutions高级培训

(完整版)FDTD_Solutions高级培训
> y=exp(-x^2/9)*sin(10*x); > plot(x,y,”x”,”y”,”exp(-x^2/9)*sin(10*x)”);
> ?size(x);
© 2009 Lumerical Solutions, Inc.
Scripting: Mathematics
Simple Mathematics (plot a 2D gaussian) > x=linspace(-10,10,500); > y=linspace(-10,10,500); > X = meshgridx(x,y); > Y = meshgridy(x,y); > ?size(x); > ?size(X); > E = exp(-X^2/9 – Y^2/4); > image(x,y,E,”x”,”y”,”test 2D image”);
▪E = exp(-X^2/9 – Y^2/4); ▪E has size n by m
x1 x2 x3 … xn
y
x1 x2 x3 … xn x1 x2 x3 … xn ……………
x1 x2 x3 … xn
y ym ym ym … ym
……………
y3 y3 y3 … y3 y2 y2 y2 … y2 y1 y1 y1 … y1
▪ Understand how to obtain incoherent, unpolarized results with FDTD ▪ Understand the capabilities of parallel FDTD Solutions ▪ Learn how to setup a parallel simulation ▪ Study a CMOS image sensor design

asa芯片测序原理

asa芯片测序原理

asa芯片测序原理
SASA测序是一种新兴的测序技术,它可以通过产生可以用于遗传分析的数据来实现基因组分析。

它利用可编程芯片技术进行介导的聚合酶链式反应(PCR)的测序。

SASA测序的基本原理是将特定的基因序列特异性聚合酶(例如,Taq聚合酶)放到特定的位置(i.e.,位点)上,然后聚合酶根据基因序列特异性催化该序列特定部分上的核苷酸合成活性,形成可以被电流检测器检测到的产物。

SASA测序技术利用可编程芯片技术,使每个位点都有唯一的 DNA 序列,使PCR更加可控,同时,该技术可以同时测序多种DNA多聚体来实现高通量的测序。

在以芯片作为基础的SASA测序中,首先,芯片上的每个位置,即每个点位上有一个特定的基因序列。

然后,将需要进行测序的DNA引物按照芯片上基因序列的特异性进行灌注,并与加入的现代DNA模板和Taq DNA 聚合解聚分子共同结合反应,形成一系列特定位点上的PCR反应成品,通过电流检测器逐个测序,实现基因组分析。

通过芯片技术实现高通量、高精度的基因组分析,SASA测序受到广泛关注。

相比于传统的测序技术,SASA测序拥有更高的灵敏度、更低的错误率、更低的试剂消耗等优点,可以实现更加快速、经济、准确的测序,从而在基因组研究和临床检测等方面产生广泛的应用。

ASAP2020软件使用说明

ASAP2020软件使用说明

ASAP2020使用手册一、准备1. 检查气瓶气瓶压力需保持在0.1-0.15MPa,气瓶出口及仪器接口处均需3天检漏一次。

2. 查看杜瓦瓶中液氮的位置冷阱位置杜瓦瓶在开机状态下始终保持有液氮,若样品测试时间较长,需用小号容器慢慢加入液氮进行补充,使用检测液位的专用工具进行检测,液面要接触到测试杆但不能超过杆上小孔的位置。

二、开机1、开外围设备:泵(包括油泵、干泵,直接插上即可)、电脑、气体。

2、开主机电源(分子泵一般不会关闭无需开启)。

3、听到滴的一声响后可打开应用软件。

三、样品测试文件的建立介孔样品1、建立文件夹(File-Open-Sample Information)File name不可过长,注意文件夹保存的路径。

若没有弹出上述对话框,则打开的是已有的文件。

2、样品文件参数的设置从左至右依次进行即可(1)一般情况下只需更改样品名称即可操作者样品来源样品质量,注意此处的样品质量为样品脱完气后样品的质量,暂时选择默认值即可,待脱气完成后再进行更改。

通过此键可调用已建立好的方法。

(2)主要注意右侧选项等温夹套填充棒样品塞,等温夹套和样品塞为必用,填充棒是在测量比表面积较小的样品时用以减小实体积用的。

(3)升温速率,目标温度,目标温度不宜过高,一般要低于右侧的Hold temp,防止水分蒸发过快,撑坏样品的孔结构,我们一般选用90℃。

此处表示当压力达到7 mmHg时进行快抽,达到500时进行计时,计时40 min后进行加热。

此处温度与时间根据具体样品进行设定,注意不能超过样品所能承受的最高温度,如我们的ZIF-8材料所用条件为120℃,720 min。

(4)插入介孔的测试范围0.05~0.995(吸附过程)之间选取点,0.995~0.05(脱附过程)点数可以由客户需要进行选点。

然后根据需要选择分析选项。

总孔体积选择压力最大0.995处,BET的选点范围为0.05-0.3,BJH的选取分为吸附阶段和脱附阶段均全选,t-plot的选点范围为0.01-06,DFT的选取范围为吸附过程。

倚世科技发出“上海国际实验室通风装备公开赛”第一批邀请函

倚世科技发出“上海国际实验室通风装备公开赛”第一批邀请函

42化工装备技术第40卷第1期全分析制度,该项目开展区域化和阶段化安全分析、策划,即将整个建造过程按照各重要节点划分阶段,每一阶段按照管理侧重点划分区域,交叉分析每一阶段各区域的施工特点,每一区域各阶段的管理侧重,从而做好相应的安全策划工作。

以施工环境最复杂的机舱区域施工为例,以主机的动态为主线,按照主机安装前-主机安装后-主机调试划分为三个阶段,每一阶段安全管理的重点均不同。

主机安装前,机舱内交叉作业及密闭舱室作业较多;主机就位后,安全工作围绕着主机防护展开;而主机加油水调试后,机舱安全风险等级达到最高级别,防火、防水工作是该阶段安全管理的重点。

项目区域化和阶段化安全分析策划为“海洋石油295”船建造过程的安全管理工作带来了前瞻性,让安全管理人员的工作有了针对性,做到有的放矢。

通过分析项目各区域转阶段后的风险点变化情况,提出防范措施,提前做好各项安全策划,针对性地开展安全巡检及专项检查工作,让安全管理由出现隐患、被动解决变为了提前判断、主动防范。

3.4拒绝安全管理“盲区”安全管理“盲区”就是在管理中容易被忽视或忽略的地方.该项目的安全管理人员加大了这方面的管理力度。

一是加大了对全船“隐火”的排查,即排查动火作业结束后残余的火星。

在每天动火作业结束后,安全管理人员重点检查管路内部、结构复杂较易堆积处、机舱区域最底部等位置,发现“隐火”及时消除,杜绝了残余火星堆聚带来火灾的风险。

二是加强了对安全管理人员的培训。

在机舱区域管路加油完毕、通海阀开启后,调试工程师对安全管理人员进行培训,熟悉动车期间相关柴油舱及输送管路、空气瓶、海底阀、液压泵站、应急吸口等相关关断阀门位置及用途,保证出现应急情况时,安全管理人员能第一时间协助调试人员做好应急处置工作。

4结语近年来,船舶建造项目中依然难以避免各类安全事故的发生,安全管理工作依然面临严峻的形势。

人们对船舶建造过程中的安全认知往往存在误区,常认为不岀事故就是安全,满足于现状,把安全隐患、潜在风险抛之脑后,缺少防范意识;认为昨天安全,今天也安全,没有认识到安全问题只有起点,没有终点;“头痛医头,脚痛医脚”,别人怎么做我就怎么做,别人解决不了的问题我也解决不了,致使安全老大难问题得不到解决。

智能代理与防火墙自动化测试

智能代理与防火墙自动化测试

智能代理与防火墙自动化测试
魏蓉;郐吉丰;蒋凡
【期刊名称】《计算机应用与软件》
【年(卷),期】2008(025)010
【摘要】防火墙系统是否有效起到防护作用,最根本的方法是对其进行测试.采用了与平台无关的抽象测试描述语言ITCN-3对防火墙测试部署进行描述,通过在智能代理上动态加载防火墙的测试配置脚本,可以适应各种防火墙的自动化测试.对多种中间系统或端系统测试有很好的普适性.
【总页数】3页(P263-264,267)
【作者】魏蓉;郐吉丰;蒋凡
【作者单位】中国科学技术大学计算机科学与技术系,安徽,合肥,230026;中国科学技术大学计算机科学与技术系,安徽,合肥,230026;中国科学技术大学计算机科学与技术系,安徽,合肥,230026
【正文语种】中文
【中图分类】TP3
【相关文献】
1.国防科技工业自动化测试技术研究应用中心暨国防科技工业自动化测试技术研究应用中心理事会在京成立 [J], 苟永明
2.自动化测试技术及移动终端平台自动化测试方案探究 [J], 家雄;陈伟
3.“超5”新一代防火墙联想网御SUPERV千兆线速防火墙——国内首款自主产权基于NP技术响电信级防火墙 [J],
4.基于人工智能代理的电力负荷态势感知及调控方法研究 [J], 沈一民;何涵;曹培森;余光敏;郑鹏
5.防火墙百花争鸣,方正安全俏丽夺目——方正防火墙荣获“2004年中国市场主流防火墙产品评测”两项殊荣 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ASAP-FDTD Solutions interoperability commands in ASAPIn the initial stage of development, interoperability between ASAP 2005 and FDTD Solutions is restricted to exchange of complex field information. A new import/export command, CVF, was added to the ASAP 2005 kernel for this purpose. This command serves two functions:•Writes information contained in an ASAP *.DAT to FDTD Solutions input field format *.FLD.•Reads *.FLD files of FDTD Solutions and converts the information into a *.DAT file compatible with ASAP. CVF (Complex Vector Field)SyntaxRemarks•EXPORT or IMPORT indicates the direction of data exchange, from or to ASAP, respectively.•format indicates the manner of data exchange. Currently, only LUMERICAL is supported.•dist_filespec optionally specifies a distribution file native to ASAP by either name or unit number; the filename may have a three-letter extension; if a filename is provided without an extension, .dat is assumed; if neither a name nor a unit number is provided, the bro029.dat file is used by default; preexisting files areoverwritten on output.•exch_filespec optionally specifies a file for data exchange by name; the filename may have a three-letter extension; if a filename is provided without an extension, .fld is assumed; if no filename is provided, cvf.fld is assumed.Typically in ASAP, a CVF EXPORT command is used to export a field sampled using the FIELD command. The FIELD command must precede the use of a CVF command. We therefore need to specify both the area over which the field is to be calculated by using a WINDOW command, and set spatial resolution by using a PIXELS command to avoid phase ambiguities. Autoscaling the WINDOW is not recommended.NOTE: WINDOW dimensions may have a profound impact on the run times of FDTD Solutions.The following example script excerpts illustrate a generic application of the CVF command.NOTE: At this point, the ASAP task must be temporarily suspended. The simulation continues after we make a manual transition to FDTD Solutions. When we have completed the FDTD Solutions portion of the task, the simulation resumes in ASAP by first importing the processed field then performing a Fourier decomposition.•Fourier decomposition depends upon WINDOW size, PIXELS resolution and FTSIZE set during the previous FIELD calculation and cannot be altered as part of the DECOMPOSE.•The DECOMPOSE command Fourier transforms only one component of the field at a time; for example, to decompose properly a vector field propagating mostly in the Z-direction.Support NoteBRO provides technical support for issues related only to ASAP at support@.All inquiries related to the functionality of FDTD Solutions should be directed to Lumerical at support@.ASAP-FDTD Solutions interoperability commands in FDTD SolutionsAt this stage of development, interoperability between ASAP 2005 and FDTD Solutions is restricted to exchange of complex field information. A new source type called ASAP Source has been added to FDTD Solutions for this purpose. As well, several scripting commands have been added. The purpose of the ASAP Source and scripting commands is to: •Import field data from ASAP 2005 in the *.fld format to be used as a source in FDTD Solutions•Export field data from FDTD Solutions in the *.fld format for use as a source in ASAPASAP SourceASAP sources are used to import electric field data produced with ASAP ray-tracing design environment. The ASAP source allows the user to input field profile data produced by ASAP as a radiation source within the three-dimensional FDTD Solutions design environment. ASAP sources are only available in 3D simulations. For details on all the parameters of the ASAP sources, please consult the FDTD Solutions Reference Guide.Scripting CommandsThe following scripting commands are available for exporting and importing data to the *.fld file format:Command Descriptionasapexport(“monitorname”); Exports the desired monitor to a file for interfacing withASAP 2005. These files are called fld files. The monitormust be a frequency power or a frequency profilemonitor. By default, the first frequency point is exported. asapexport(“monitorname”,f); Exports the specified frequency point.asapexport(“monitorname”,f,"filename");Exports to the specified "filename" without opening afile browser window.asapimport("sourcename"); Imports a file in the BRO/Lumerical interface format tothe desired source.asapimport("sourcename","filename"); Imports a specified file in the BRO/Lumerical interfaceformat to the desired source without opening a filebrowser window.asapload; Load data from an fld file. After loading, you can getdata using getasapdataasapload(“filename”); Loads data from an fld file called “filename” withoutopening a file browser window.getasapdata(“data”); After loading an asapfile with asapload, you can extractany desired data. Data can be•Ex, Ey, Ez, Hx, Hy, Hz, x, y, z•power, frequency, wavelength, indexFor example the commandsasapload(“testfile”);Ex = getasapdata(“Ex”);x = getasapdata(“x”);y = getasapdata(“y”);image(x,y,pinch(real(Ex)));Can be used to image the real part of the electric field inan fld file containing data over a surface in the x-y plane. For more details on using the scripting environment, please consult the FDTD Solutions Reference Guide and the examples in the FDTD Solutions Getting Started.Support NoteAll inquiries related to the functionality of FDTD Solutions should be directed to Lumerical at support@. BRO provides technical support for issues related only to ASAP at support@.Figure 1. Macroscopic optical system to be modeled with ASAPFigure 2. Microscopic optical system to be modeled with FDTD Solutions.The illumination is from the backside, where the pit appears as a “bump”.This example is separated into three steps:Step Purpose ProductASAP 20051Model the macroscopic optical system that delivers the output of a laserdiode source to the a focused spot at the surface of the DVD diskFDTD Solutions2Model the interaction of the focused beam witha. a sub-wavelength metal DVD pitb. a flat, metal DVD surface andASAP 20053Model each reflected beam through the optical collection system to a detectorsurface. Calculate the signal modulation depth due to the presence of the sub-wavelength DVD pit.Step 1: Macroscopic beam delivery to the DVD surfaceThe macroscopic optical system, shown previously in Figure 1, as modeled in ASAP, is comprised of a beamsplitter and two focusing elements, which deliver the output of a laser diode source to the DVD disk. The return beam is collected and routed by reflection in a cube beamsplitter through a focusing optic to a signal detector.The script that generates this optical system is dvd_lumerical.inr. After setting up the optical system model in ASAP, the source is traced to a dummy plane located in close proximity to the DVD surface as shown in Figure 3. Note that no microscopic DVD surface features are included in the ASAP model. A FIELD calculation stores the complex vector electric field in a cincoming.dat file, which is then exported to FDTD Solutions file format using the CVF command. The file is saved as cincoming.fld. The energy distribution at the dummy plane 140 nm above the landing is shown in Figure 4. Note that WINDOW dimensions, PIXELS setting and location of the dummy plane may require iteration in order to arrive at the conditions suitable for an accurate FDTD simulation. In this case, a 4μm × 4μm WINDOW insures all the focused energy is captured within the window. A choice of PIXELS 101 provides spatial resolution necessary to avoid phase ambiguities. After completed the export operation, the ASAP session is suspended and the user switches to FDTD Solutions to continue the simulation.Dummy SurfaceLand Surface140 nmPMMAFigure 3. Dummy plane 140 nm above the DVD land surface, where the focused beam is recorded with ASAPFigure 4. Energy distribution at the dummy plane as recorded with ASAPWe proceed by constructing the DVD surface and assigning optical properties to the geometry in FDTD Solutions.Step 2: Modeling the sub-wavelength features of the DVD surfaceFor the second step of the problem, open FDTD Solutions. Open the example file dvd_ASAP.fsp. This file can be found in the default examples directory and is used in one of the advanced examples of the FDTD Solutions Getting Started manual.The geometry consists of a landing and a ‘bump’ as shown in Figure 5. The optical properties of the entire structure are defined by a NIR dispersive model for gold immersed in PMMA.Figure 5. Sub-wavelength DVD pit or “bump”, drawn in the CAD Layout Editor of FDTD SolutionsThe source (grey box with purple arrow), the reflection monitor (yellow rectangle), and relevant geometry are enclosed in a simulation volume (orange cubic volume). The choice of source insertion point and simulation volume dimensions serve to minimize calculation time, while preserving the necessary attributes to accurately model the physics. NOTE: FDTD Solutions does not allow the source and monitor planes to be co-located therefore the monitor plane (and thus the plane from which the result is exported back to ASAP) and the source injection plane must be separated by at least 1 grid spacing (20 nm in this case).The following steps show how to setup, run and analyze the simulations of the sub-wavelength DVD pit, as well as export the resulting data back to an fld file to be re-imported into ASAP.2a. Set up the material properties1.If you are in analysis mode (the Analysis window is open), open the SIMULATION menu and select SWITCHTO LAYOUT EDITOR.2.Select the STRUCTURES tab and make sure that the DVD bump has the following dimensions.property valuex position 0 μmx span 0.32 μmy position 0 μmy span 8 μmz min -0.12 μmz max 0 μm3.In this example, the wavelength is 650 nm. We want to make sure that both the DVD bump and the goldsubstrate use the following material properties. Note that you can set them both by selecting both objects and editing their group properties.property valuematerial Au (gold) :: VIS 400-750nm2b. Load the field data into the ASAP Source•If there is not already an ASAP source, create one by clicking the ASAP button on the SOURCES tab. •Open the property edit window of the ASAP source, which is shown in Figure 6.Figure 6. Property edit window of an ASAP source in FDTD Solutions•Click the Read ASAP Source button and choose the file cincoming.fld, which was created from the data in cincoming.dat with the ASAP command CVF.•Try plotting the current field by clicking Plot Current Field, you will see the same plot as Figure 7.Figure 7. The electric field intensity imported from ASAP to FDTD SolutionsNotice that this spot is has an x span of approximately 1 μm and a y span of approximately 2 μm. For this spot configuration, the track length is in the y direction, and the track width is in the x direction.•Set the following properties of the ASAP source:property valuename asapx 0 μmy 0 μmz 0.02 μmdirection Backward•Verify that the ASAP source is defined to operate at a wavelength of 650 nm by selecting the FREQUENCY/WAVELENGTH tab of the ASAP source. This wavelength is the same as the wavelength defined in the file cincoming.fld when it was exported from ASAP. You can change this wavelength if you like, but it is automatically set when you load the data.•On the FREQUENCY/WAVELENGTH tab, you will notice from the SIGNAL VS TIME plot that the simulation is not long enough and truncates the source signal. To correct this, select SET TIME DOMAIN.Change the pulselength property to 3 fs and the offset to 6 fs.•Click OK to accept all the source changes.2c. Modify the simulation regionWe imported a field from ASAP that covers a 4x4 μm2 region. However, the spot is smaller than this. It is sufficient to simulate a region of approximately 3x6 μm2.•Edit the FDTD Simulation region and set the following properties:property valuex span 3 μmy span 6 μmsimulation time 25 fs•On the Advanced Options tab, make sure that the “meshing refinement” property is set to 0. For most materials it is desirable to average their physical properties near interfaces but for metals, such as gold, this is not always desirable. You can disable this feature by setting a value of zero for the “meshing refinement”. Notice that the ASAP source is larger than the simulation region. The simulation will use only the portion of the ASAP source that is within the simulation.2d. Verify the frequency monitorEdit the properties of the field monitor. You wi ll notice that this monitor has changed to record data at a frequency of 461.219 THz because the USE SOURCE LIMITS checkbox is on. In wavelength, this is 650nm. This is the desired frequency of operation with the ASAP source.2e. Run the simulationRun the simulation, which will take from 2 to 15 minutes, depending on the speed of your computer.2f. Analyze the dataPlot the Ey electric field component versus time, you will see the plot shown in Figure 8.Figure 8. Electric field component Ey as a function of timeYou can see that the signal is short and decays quickly. The simulation has been run for long enough to collect all the data.Figure 9. Electric field component Ey at a single frequency/wavelength as a function of position in the near field Use the far field projection to plot the electric field intensity in the far field, it will look like Figure 10.Figure 10. Electric field intensity at a single frequency/wavelength as a function of angle in the far field2g. Export the results back to ASAPTo bring the reflected signal back into ASAP where it can be used to optimize the collection optics, you will need toA file chooser window will appear that will allow you to select a name for your data. Choose coutgoing.fld and save the file. There are a variety of optional arguments for importing and exporting ASAP files using the two scripting commands asapexport and asapimport. Please refer to the FDTD Solutions Reference Guide for details.2h. Rerun the simulation with no bumpTo compare the modulation with and without the bump, you will need to rerun the simulation without the presence of the bump.•From the FILE menu, choose SAVE AS and save the file as dvd_ASAP_blank.fsp•From the SIMULATE menu, choose SWITCH TO LAYOUT EDITOR and click OK when prompted.•Rerun the simulation.•From the script prompt type the following command:asapexport("reflection");When the file chooser appears, select the filename cboutgoing.fld.You can now import the data from coutgoing.fld and cboutgoing.fld into ASAP.Step 3: Modeling the reflected beam to the detectorThe return beam is collected and routed by reflection in a cube beamsplitter through a focusing optic to a signal detector.The resulting *.fld files created in Step 2 can now read into ASAP by invoking a CVF command with the IMPORT option.The imported field is converted to traceable rays by means of a directional decomposition, namely DECOMPOSE DIRECTION. Since the source originates inside the PMMA material, the IMMERSE command must precede DECOMPOSE DIRECTION. Note also that the DECOMPOSE DIRECTION command operates on only one polarization component at a time. Therefore, a POLARIZ command must precede decomposition of the x-, y- and z-components of the field.A brief section of ASAP script, dvd_lumerical.inr, is shown in Figure 11 as an example of the import of the FDTD Solutions file. Here, a limiting cone angle has been specified to match the solid angle subtended by the collection optics. The minus sign on the DIRECTION option indicates the direction of propagation. Also, the sources must be IMMERSEd and shifted to the appropriate location since geometries in ASAP and FDTD Solutions are completely independent of one another.Figure 11. Excerpt from ASAP script showing how to import data from fld file created by FDTD Solutions NOTE: ASAP does not propagate evanescent fields as part of its Gaussian Beam Decomposition method. As a result, it is not necessary in this case to decompose and attempt to trace the z-polarized field component, since this field component would propagate perpendicular to the optical axis.The dvd_lumerical.inr script file calculates the signal at the detector with the bump (coutgoing.fld ) and without the bump (cboutgoing.fld ). The results of the ENERGY at the detector are shown below. Diffraction due to the presence of the bump scatters a significant portion of the incident energy out of the reflected beam that arrives at the detector surface. Results of the ENERGY at the detector are shown in the table below. Diffraction that is due to the presence of the bump has scattered a significant portion of the incident energy out of the reflected beam. As a result, the peak irradiance and the total energy at the signal detector is reduced by approximately 30 times in the presence of the bump. Blank DVD surface (no bump) DVD surface with bump ENERGY MAX 10.35034 0.3779390 ENERGY INTEGRAL 0.4438739E-04 0.1522924E-05Results at the signal detector are plotted in Figures 12 and 13.Figure 12. Cross-section of irradiance at the detector, without and with the bump.a. without the bumpb. with the bumpFigure 13. Irradiance patterns at the detector, without and with the bumpBump No bumpYou can optimize the shape and size of the DVD bump using FDTD Solutions, as well as to optimize the beam delivery and collection optics using ASAP.•For optimization in FDTD Solutions, please see the related DVD Examples in the FDTD Solutions Getting Started manual.。

相关文档
最新文档