边值问题和唯一性定理(静电场)

合集下载

电动力学二二(唯一性定理)

电动力学二二(唯一性定理)
i
对所有分 区Vi求和 在均匀 区界面

i
Si
2 i dS i dV
Vi
S S S 0
dSi dS j
6
内部边界积分相互抵亦为零
而右边被积函数i()2 0。上式成立的条件 是在V内各点上都有=0 ,即在V内,
一、静电问题的唯一性定理
区域V可以分为若干个均匀区域Vi,每 一均匀区域的电容率为i 。设V内有给 定的电荷分布(x) 。电势φ在均匀区域 Vi内满足泊松方程
i
2
1
在两区域Vi和Vj的分界面上满足边值关系
i j ,
i j . n i n j
此解满足唯 一性定理的 所有条件, 因此是唯一 正确的解。
注意导体两半球上的面电荷分布是 不同的,但E却保持球对称性。
20
虽然E仍保持球对称性,但是D和导体面 上的电荷面密度σ不具有球对称性。
设内导体半径为a,则球面上的电 荷面密度为
1Q 1 D1r 1 E1r , (Le ft) 2 2 ( 1 2 )a 2Q 2 D2 r 2 E 2 r , (Right) 2 2 ( 1 2 )a
第二类型:设区域V内有一些导体,给定导体 之外的电荷分布 ,给定各导体上的总电荷Qi 以及V的边界S上的 或/n 值,则V内的电 场唯一地确定。
10
也就是说,存在唯一的解,
它在导体以外满 足泊松方程 在第i个导体上满 足总电荷条件 和等势面条件
i
2

Si
Qi dS n
除此之外,要完全确定V内的电 场,还必须给出V的外边界S上的 一些条件。

2.6 静电场边值问题 唯一性定理

2.6 静电场边值问题  唯一性定理

V/m
CQU
2.6.3 唯一性定理
1、唯一性定理 在静电场中满足给定边界条件的电位微分方程 满足给定边界条件的电位微分方程( 在静电场中满足给定边界条件的电位微分方程(泊松方 程或拉普拉斯方程)的解是唯一的, 程或拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定 理。 2. 唯一性定理的重要意义 可判断静电场问题的解的正确性 解的正确性: • 可判断静电场问题的解的正确性: 唯一性定理为静电场问题的多种解法(试探解、数值解、 • 唯一性定理为静电场问题的多种解法(试探解、数值解、 解析解等)提供了思路及理论根据。 解析解等)提供了思路及理论根据。
S
第三类 边界条件
(ϕ + β ∂ϕ ) = f3 ( s) ∂n S
第四类 边界条件
ϕ S = f1 ( s)
求解边值问题注意事项: 求解边值问题注意事项:
CQU
点电荷的场
1.根据求解场域内是否有 ρ 存在,决定电位满足泊松方程还是拉氏 .根据求解场域 求解场域内是否有 存在,决定电位满足泊松方程还是拉氏 泊松方程还是 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 2.正确表达边界条件,并利用它们确定通解的待定常数。 正确表达边界条件,并利用它们确定通解的待定常数。 3.若所求解的场域内有两个(或以上)的均匀介质区域,应分区求 若所求解的场域内有两个(或以上)的均匀介质区域, 分区求 场域内有两个 不能用一个电位函数表达两个区域的情况。这时会出现4 解。不能用一个电位函数表达两个区域的情况。这时会出现4个积分 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 分界面上的衔接条件来确定积分常数 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 4.对于开域问题,还需给出无限远处的自然边界条件。 4.对于开域问题,还需给出无限远处的自然边界条件。当场域有 对于开域问题 限分布时,应有: 限分布时,应有:

静电场边值问题的唯一性定理

静电场边值问题的唯一性定理

静电场边值问题的唯一性定理摘要:静电场边值问题及其唯一性定理是一重要知识点,定理的表述和证明都涉及较多的数学知识。

由于唯一性定理的概念对于许多问题(如静电屏蔽)的确切理解有很大帮助,所以我们将给此定理一个物理上的论证,期待大家能从中有所受益. 关键词:静电场;边值;唯一性;静电屏蔽1、问题的提出实际中提出的静电学问题,大多不是已知电荷分布求电场分布,而是通过一定的电极来控制或实现某种电场分布。

这里问题的出发点(已知的前提),除给定各带电体的几何形状、相互位置外,往往是在给定下列条件之一;(1) 每个导体的电势U K ; (2) 每个导体上的总能量Q K ;其中K=1,2,……为导体的编号。

寻求的答案则是在上述条件(称为边界条件)下电场的恒定分布。

这类问题称为静电场的边值问题。

这里不谈静电场边值问题如何解决,而我们要问:给定一组边界条件,空间能否存在不同的恒定电场分布?唯一性定理对此的回答是否定的,换句话说,定理宣称:边界条件可将空间里电场的恒定分布唯一地确定下来。

2、几个引理在证明唯一性定理之前,先作些准备工作——证明几个引理。

为简单起见,我们暂把研究的问题限定为一组导体,除此之外的空间里没有电荷。

(1)引理一 在无电荷的空间里电势不可能有极大值和极小值。

用反证法。

设电势U 在空间某点P 极大,则在P 点周围的所有邻近点上梯度U ∇ρ必都指向P 点,即场强U E ∇-=ρρ的方向都是背离P 点的(见图1-1a 。

)这时若我们作一个很小的闭合面S 把P 点包围起来,穿过S 的电通量为0)(>⋅=⎰S d E S E ρρϕ (1)根据高斯定理,S 面内必然包含正电荷。

然而这违背了我们的前提。

因此,U 不可能有极大值。

用同样的方法可以证明,U 不可能有极小值(参见图1-1b )。

(2)引理二 若所有导体的电势为0,则导体以外空间的电势处处为0。

因为电势在无电荷空间里的分布是连续变化的,若空间有电势大于0(或小于0)的点,而边界上又处处等于0,在空间必然出现电势的极大(或极小)值,这违背引理一。

《电磁场理论》3.1 唯一性定理

《电磁场理论》3.1 唯一性定理

第一类边值问题:已知电位函数在全部边界面上的分 布值。 S f 第二类边值问题:已知电位函数在全部边界面上的法 向导数。 f n S 第三类边值问题(混合边值问题):已知一部分边界 面上的电位函数值,和另一部分边界面上电位函数的法 向导数。 S f1 S S1 S2 f 2 1 01:52 2 n S2
+
-
z
+ +++
(r , )
+
+
-
1 (r, ) E0r cos
-
aO
- - -
-
当引入一个不带电的导体小球后, E0 球表面出现感应电荷。 静电平衡下的导体球为等电位体,球内电场为零, r>a空间内的电位由两个部分组成 01:52 12 1 2
1 2
唯一性定理:满足泊松方程或拉普拉斯方程及所给
的全部边界条件的解是唯一的。
利用反证法来证明。假设在一个由表面边界S包围的 体积V内,泊松方程有两个解 1 2 ,则有
2 1 2 * 1 2 2 * 21 22 0 令
01:52 11
例2:一不带电的孤立导体球(半径为a)位于均匀电 场中, E E0 e z ,如图所示,求电位函数。 解:在没有引入导体球时,均匀电场 E 的电位函数为
1 ( z ) E0 e z e z dz C E0 z C
若取z=0为电位参考点,则C=0, 1 ( z) E0 z 在球坐标内,z r cos
常数
n
n
(1)
根据式(1)仍然有
同理,有 C

V
2 ( ) dV 0

静电场微分方程及唯一性定理

静电场微分方程及唯一性定理

2 0
泊松方程和拉普拉斯方程统称为微分方程。 二、泊松方程与拉普拉斯方程适用条件 只适用于各向同性、线性的均匀媒质。(?)
§2.8.2
唯一性定理(Uniquness Theorem)
一、定理内容
在静电场中,满足给定边界条件的微分方程(泊松方程或
拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定理。
2 2 2 式中: ( ex ey ez ) ( ex ey ez ) 2 2 2 2 x y z x y z x y z
2
泊松方程(针对场源点)
拉普拉斯方程(针对场点,ρ=0)
《电磁场理论》
主讲教师:李志刚 辽宁科技大学电信学院通信系 2012年05月
§2.8 静电场边值问题 唯一性定理
§2.8.1 泊松方程与拉普拉斯方程 一、静电场微分方程
D
E E E
E
E 0
常数
二、物理角度理解
场源相同、场分布相同,则场一定相同。
三、数学角度理解
方程相同、边界条件相同,则解一定相同。
四、唯一性定理的作用
1、确定何为相同场的判定条件;
2、可以采用等效方法进行问题的求解,只要保证满足唯一
性定理的条件,则解法不同,但解却一

第3章静态场的边值问题及解的唯一性定理

第3章静态场的边值问题及解的唯一性定理

l 2π
ln
r0 r
l 2π
ln
1 r
C
1)长直线电荷与接地的长直圆柱导体平行,求圆柱外电位分布
在圆柱与线电荷之间,在圆柱内离轴线的距离b 处,平行放置一
根镜像线电荷 , 代替圆柱导体上的感应电荷. l
第3 章
若令镜像线电荷 产 生的电位也取相同的 l
作r0为参考点,则
及l
在 圆柱面上 P 点共同产生的电位为
R
l
h
R′
x
-h
l ln x2 (z h)2 , z 0
l′
2 x2 (z h)2
均匀带电直线的电位分布
z 0,R R z0 0
l ln R C l ln R0
2
2 R
显然,满足边界条件。所以,原问题不变,所得的解是正确的。
第3 章
例3. 点电荷对相交半无限大接地导体平面的镜像 如图所示,两个相互垂直相连的半无限大接地导体平板,点
3、对于均匀分布在球面上的-q'电荷,可用另一个镜像电荷q"= q' 代替,但必须位于球心。
第3 章
结论:点电荷q对非接地导体球面的镜像电荷有两个:
镜像电荷1: 电量:q ' a q
位置: d ' a2
d
镜像电荷2: d
电量: q '' q ' a q
d
r r'
q O
'' d'
q' d
q
4 0 r
0
q q
即像电荷q'与原点电荷q电量相等,电性相反;用q'代替了
导体上的感应电荷。
在z>0区域内,P点的电位为

静电场的边值问题

静电场的边值问题
那么,线性各向同性的均匀介质中,电位满足的微分方程式为
2
该方程称为泊松方程。 对于无源区,上式变为

2 0
上式称为拉普拉斯方程。 2.边值问题 静电场的场量与时间无关,因此电位所满足的泊松方程及 拉普拉斯方程的解仅决定于边界条件。根据给定的边界条件求 解空间任一点的电位就是静电场的边值问题。
边界条件不变,从而保证原来区域中静电场没有改变,这是确定
等效电荷的大小及其位置的依据。这些等效电荷通常处于镜像位 置,因此称为镜像电荷,而这种方法称为镜像法。 关键:确定镜像电荷的大小及其位置。 局限性:边界必须是封闭的,才有可能确定其镜像电荷。
4
1. 点电荷与无限大的导体平面。
r q P r q h h q P(x,y,z)
P a r q O d
r
q
f

q aq 4π r 4π r f
在球坐标系下考虑,球心为原点,z 轴与oq重
合,则可求得球外任一点的电场强度

同样的,总的感应电荷等于镜像电荷。
10
若导体球不接地,则位于点电荷一侧的导体球表面上的感应电 荷为负值,而另一侧表面上的感应电荷为正值。导体球表面上总的 感应电荷应为零值。因此,对于不接地的导体球,若引入上述的镜 像电荷 q' 后,为了满足电荷守恒原理,必须再引入一个镜像电荷q", 且必须令
q q
5
电场线与等位面的分布特性与第二章所述的电偶极子的上半
部分完全相同。
z

电场线
等位线
由此可见,电场线处处垂直于导体平面,而零电位面与导体
表面吻合。
6
电荷守恒:当点电荷 q 位于无限大的导体平面附近时,导体表 面将产生异性的感应电荷,因此,上半空间的电场取决于原先的点 电荷及导体表面上的感应电荷。可见,上述镜像法的实质是以一个 异性的镜像点电荷代替导体表面上异性的感应电荷的作用。根据电 荷守恒原理,镜像点电荷的电量应该等于这些感应电荷的总电量。 半空间等效:上述等效性仅对于导体平面的上半空间成立,因 为在上半空间中,源及边界条件未变。

唯一性定理

唯一性定理
唯一性定理
静电场的基本问题:
求出在每个均匀区域内满足泊松方程,在所有分界面 上满足边值关系,在所研究的整个区域边界上满足边 界条件的电势的解
2 i
i
Sij
j
Sij
i
i
n
Sij
j
j
n
Sij
V
j S
i
Sij evn
除此之外,要完全确定V内静电场的解,还必须给出 整个区域边界S上的一些条件。
1
到底需要给定哪些条件,才能求得静电场的解,并且 解是唯一的?
Ra
(2) 介质内无自由电荷分布; (3) R=a处导体球带总电量Qf 该定解问题有唯一解。
9
1. 给出边值关系和边界条件 设左、右介质的电势分别为 1 和 2
Ñ dS Qi
Si n
根据唯一性定理,只要能找到一个满足上面定解条件 的特解,那该解就一定是该问题的唯一解。
10
2. 提出尝试解
C与 0为待定系数,且 0与外球壳半径a’有关 3. 由边值关系和边界条件确定待定系数
2 0 Qf 2 1 2 a2
相同
v
2
0Q f
1 2 a2
(, 右半球)
P1
v P2
15
所以,由于有束缚电荷的存在,在内导体球壳两半球 面上束缚电荷与自由电荷之和是球对称的,所以电场 强度E是球对称的。
首先判断该问题是否满足唯一性定理。 1. 给出边值关系和边界条件 2. 提出尝试解 3. 由边值关系和边界条件确定待定系数 4. 求电场和球壳上的电荷分布
Ñ i
Vi
i
2dV
v
Si i dS i
2 0
Vi i 2 dV
积分区域包括沿区域V的边界S上的面积分和沿各分区的分界面Sij的面积4分

静电场电位边值问题唯一性定理的补充与完整证明

静电场电位边值问题唯一性定理的补充与完整证明

静电场电位边值问题唯一性定理的补充与完整证明陈文卿;闫述【摘要】The electrostatic boundary value problem and the uniqueness of solutions are sup-plemented and proved in this paper.At first,the region condition and the convergence bound-ary are distinguished from the usual mixed singularity.The form of Robin Problem in electro-static field boundary value problem is confirmed.The convergence condition and the infinite boundary condition are added to the uniqueness theorem of solutions.These boundary condi-tions are re-classified according to the form of mathematical expressions.Then in the proof of the uniqueness of the potential solutions under boundary conditions,infinite boundary condi-tions and convergence conditions,the problem of the coefficient of the third kind of boundary condition and the applicative boundary value problem with infinite space are solved.We also demonstrate the uniqueness of potential solutions for Dirichlet and Robin Problem and con-stant differences in the potential of Neumann Problem.Finally,the application of region,in-finity and convergence boundary conditions in problems solving is illustrated by an example.The supplemented theorem can be better used as the basis for solving problems and follow-up learning.%本文对静电场电位边值问题与解的唯一性定理作了补充与完整的证明.首先将区域边界与衔接边界从通常的混称中区分开来,确认了静电场边值问题中第三类边界条件应有的形式,在解的唯一性定理中增加了衔接条件和无限远边界条件,并根据数学表达式的形式重新归类.然后在区域边界条件、无限远边界条件和衔接条件下电位解的唯一性的证明中,讨论了第一、第三类边值问题电位解的唯一性与全二类边界条件下电位存在常数差的问题,解除了第三类边界条件系数为正的限制,说明了整个求解空间为无限大时适用的边值问题.最后通过例题说明了区域、无限远和衔接3种边界条件在解题中的应用.补充后的定理可以更好地作为解题和后续学习的依据和基础.【期刊名称】《物理与工程》【年(卷),期】2017(027)006【总页数】6页(P54-59)【关键词】电位的边值问题;区域边界条件;衔接条件;唯一性定理;证明【作者】陈文卿;闫述【作者单位】江苏大学计算机科学与通信工程学院,江苏镇江 212013;江苏大学计算机科学与通信工程学院,江苏镇江 212013【正文语种】中文电位的边值问题与解的唯一性是通信和电子信息类相关专业本科阶段电磁场与电磁波和电动力学课程中静电场部分的重要内容,也是求解其他边值问题的基础。

26静电场边值问题唯一性定理

26静电场边值问题唯一性定理

场域边界条件
1)第一类边界条件(狄里赫利条件Dirichlet)
已知边界上的电位分布 |s f1(s)
2)第二类边界条件(诺依曼条件 Neumann)
已知边界上电位的法向导数(对于导体,即电荷面密度
,或电力线)
n
S
f2 (s)
3)第三类边界条件(若宾条件 Robin)
已知边界上电位及电位法向导数的线性组合
(2)利用边界条件求得积分常数,得到电位的解
(3)再由 E 得到电场强度 E 的分布。
2.6.2 唯一性定理 1、唯一性定理
在静电场中满足给定边界条件的电位微分方程(泊松方程或 拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定理。
2. 唯一性定理的重要意义 • 可判断静电场问题的解的正确性: • 唯一性定理为静电场问题的多种解法(试探解、数值解、 解析解等)提供了思路及理论根据。
例2.6.3 图示平板电容器的电位,哪一个解答正确?
图 2.6.7 平板电容器外加电源U0
思路:将边界条件代 入,看是否满足
A、
1
U0 d
x2
B、
2
U0 d
x U0
C、
3
U0 d
x U0
答案:( C )
作业: 2.12,2.15,2.17,2.19
导体之间接有电源 U0,试写出该电缆中静电场的边值问题。
解:根据场分布对称性,确定场域。
场的边值问题
2
2
x 2
2
y 2
0
(阴影区域, 1/4原区域)
( xb,0 yb及yb,0xb) U0
图 2.6.4 缆心为正方形的同轴电缆横截面
0 x2 y2 a2 ,x0, y0

静电场的唯一性定理

静电场的唯一性定理
1:给定每个导体的电势UⅠk(或总电量QⅠk) 2:给定每个导体的电势UⅡk(或总电量QⅡk) 设UⅠ、 UⅡ满足上述两条件,则它们的线性组合
U=a UⅠ+b UⅡ必满足条件3: 3:给定每个导体的电势Uk=a UⅠk+b UⅡ k
(或总电量Qk= QⅠk a k+b QⅡ k) 特例 : 取UⅠk= UⅡ k,则U=UⅠ-UⅡ (a=1, b=-1) 对应
图中是根据导体内场强处处为零判断存在两种实 在的电荷分布的迭加就是唯一的分布
该定理对包括静电屏蔽在内的许多静电问题 的正确解释至关重要
论证分三步:引理——叠加原理——证明
极大
几个引理
极小
引理一:在无电荷的空间里电势不可能 有极大值和极小值
证明(反证)若有极大,则
若有极小,同样证明
引理二:若所有导体的电势 即意味着空间
为0,则导体以外空间的电
电势有极大值, 违背引理一
若不相等,必有一个最高, 如图设U1>U2、U3,——导 体1是电场线的起点——其 表面只有正电荷——导体1 上的总电量不为0——与前 提矛盾
引理二 ( +)引理三可推论:所有导体都不带电的 情况下空间各处的电势也和导体一样,等于同一常 量
叠加原理
在给定各带电导体的几何形状、相对位置后,赋予 两组边界条件:
静电场边值问题的 唯一性定理
典型的静电问题
给定导体系中各导体的电量或电势以及各导体 的形状、相对位置(统称边界条件),求空间 电场分布,即在一定边界条件下求解。该类问 题称为称为静电场的边值问题。
唯一性定理
对于静电场,给定一组边界条件,空间能否 存在不同的恒定电场分布?——回答:否!
边界条件可将空间里电场的分布唯一地确定 下来

第3章静电场及其边值问题的解法

第3章静电场及其边值问题的解法

2
y 2
2
z2
0
二维问题 0:
z
2 2
x2 y 2 0
设 因此 即
于是有
(x, y, z) X (x)Y ( y)
YZ d 2 X XZ d 2Y 0
dx2
dy 2
s
n
z0
z
z0
2
qh x2 y2 h2
3 2
导体表面的总感应电荷
Qi
S sds
2
d
0
0
qh 2
(
2
d h2
)3
2
qh
q
2 h2 0
ห้องสมุดไป่ตู้
可见, 镜像电荷 q 代q 替了导体表面所有感应电荷对上半空间的作用。
9
§ 3.6 镜像法
二、导体劈间的点电荷
设有两块接地半无限大导体平板相交成角,且 =n为n,正整数,交角内置一点电荷
11
§3.7 分离变量法The Method of Separation of Variables
* 分离变量法是一种最经典的微分方程解法。
* 采用正交坐标系可用分离变量法得出拉普拉斯方程或波动方程的通解; * 只有当场域边界与正交坐标面重合(或平行)时,才可确定积分常数,
从而得到边值问题的特解。
x2 y2 (z h)2
可见,引入镜像电荷 q q 后保证了边界条件不变;镜像点电荷位于z<0的空间,未改变所
求空间的电荷分布,因而在z>0的空间,电位仍然满足原有的方程。由惟一性定理知结果正确。
注意:仅对上半空间等效。
8
§ 3.6 镜像法
(2)根据静电场的边界条件,求导体表面的感应电荷密度:

静电场的唯一性定理

静电场的唯一性定理

静电场若干关系
电场的若干关系
U 2 0
当 0
U 2 0
E U
(1)
Laplace equation
静电场若干关系
对静电场E
Ò
Eds
2Udv
如果
E F
则有
E F E • gradΒιβλιοθήκη 静电场若干关系 Green函数
当E为一数函数之梯度
E grad
由Gauss定理有
grad 2 •
静电场边界条件的唯一性定理
魏国华
0710261
南开大学物理学院
2008年6月
静电场边界条件的唯一性定理
所谓唯一性定理,就是在一个空间内,导体的 带电量或者电势给定以后,空间电场分布恒定、 唯一。边界条件可以是各导体电势,各导体电 量或部分导体电量与部分导体电势之混合,这 样根据高斯公式,泊松方程、拉普拉斯方程可 证明空间电场分布。
Ò grad • ds (2 • )dv
s
v
Ò grad • ds (2 • )dv
s
v
静电场边界条件定理1
因此
(2 2)dv
v
( grad grad) • ds s
静电场边界条件定理1
定理一: 有函数U满足(1)且满足空间边界面S上
所确定的U值,则该函数唯一。 证:若有U1,U2都 满足,则在S面上,
y
A
r a 1•
r
OO c
b
B•
x
一球接地,半径a,球外距球心b 处有电荷e,求球外电势之分布
唯一性定理之应用2
易知电势分布关于OB对称,如图,
只需求X-Y面,再将y 2变y 2 z 2即可
设C c,0 是(b, 0)的像点,其关系

静电场边值问题唯一性定理

静电场边值问题唯一性定理

场分布。
02
指导数值计算
在数值计算中,唯一性定理为我们提供了判断计算结果正确性的依据。
如果计算结果不满足唯一性定理,则说明计算过程中存在错误或近似方
法不够精确。
03
简化问题求解
在某些情况下,唯一性定理可以帮助我们简化问题的求解过程。例如,
在某些对称性问题中,我们可以利用唯一性定理直接得出部分解或特殊
01 02 03
深入研究复杂边界条件下的静电场边值问题
目前的研究主要集中在简单边界条件下的问题,对于复杂 边界条件的研究相对较少。未来可以进一步探讨复杂边界 条件下的静电场边值问题,为实际应用提供更广泛的理论 支持。
发展高效稳定的数值计算方法
尽管现有的数值计算方法已经取得了显著的进展,但在处 理大规模、高维度问题时仍面临挑战。未来可以致力于发 展更高效稳定的数值计算方法,以应对日益复杂的实际问 题。
导体表面的电荷分布
导体表面电荷分布的特点
在静电平衡状态下,导体表面电荷分布是不 均匀的,电荷密度与导体表面的曲率有关, 曲率越大电荷密度越大。
导体表面电荷与电场的关系
导体表面电荷产生的电场与导体内部电荷产生的电 场相互抵消,使得导体内部电场为零。
导体表面电荷分布的求解 方法
可以通过求解泊松方程或拉普拉斯方程得到 导体表面的电荷分布。
数值计算方法的改进
针对静电场边值问题的求解,提出了一系列高效的数值计算方法,如有限元法、有限差分法等,这些方法在保持计算 精度的同时,显著提高了计算效率。
实际应用领域的拓展
将静电场边值问题唯一性定理应用于多个实际领域,如电子工程、生物医学等,成功解决了一系列具有 挑战性的实际问题。
对未来研究的展望
解,从而简化计算过程。

静电场边值问题的唯一性定理共21页文档

静电场边值问题的唯一性定理共21页文档
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
静电场边值问题的唯一性定 理
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬

1.8 静电场的唯一性定理

1.8 静电场的唯一性定理

ρ ∇ U = − →泊 方 , 松 程 ε0
2
静电场 +边界条件 的边值 2 问题 or ∇ U 0 →拉 拉 方 = 普 斯 程
物理系:杨友昌 编
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
唯一性定理
• 对于静电场,给定一组边界条件,空间能否存在不同的恒 对于静电场,给定一组边界条件, 定电场分布?——回答:否! 电场分布? 回答: 回答 • 边界条件可将空间里电场的分布唯一地确定下来 边界条件可将空间里电场的分布唯一地确定下来 电场的分布唯一 • 该定理对包括静电屏蔽在内的许多静电问题的正确解释至 关重要 • 理论证明在电动力学中给出,p67 给出普物方式的论证 理论证明在电动力学中给出, • 论证分三步:引理 论证分三步:引理——叠加原理 叠加原理——证明 叠加原理 证明
§8 静电场边值问题的唯一性定理
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。
物理系:杨友昌

一. 典型的静电问题
–给定导体系中各导体的电量或电势 给定导体系中各导体的电量或电势 给定导体系中各导体的 以及各导体的形状、相对位置( 以及各导体的形状、相对位置(统 称边界条件),求空间电场分布, ),求空间电场分布 称边界条件),求空间电场分布, 即在一定边界条件下求解 泛 定 方 程
Q Q ' r' Q ' + = 0⇒ = ⇒r'Q= −rQ' r r' r Q
2
R b R ' - 有b = ⇒Q = ± Q= ± Q 取 ? a a a cos θ的系数 三角形
相似
在这个竟争激烈的社会中,若想永不落伍,就必须懂得终身学习的道理。

静电场的唯一性定理_工程电磁场_[共5页]

静电场的唯一性定理_工程电磁场_[共5页]

(2-8-12) (2-8-13)
讨论的是同一个体系,必有: ∇ ⋅ D ' = ∇ ⋅ D '' = ρ
则式(2-8-13)第一项为零,得 ∇ ⋅ Z (r) = −(E '− E '') ⋅ (D '− D '')
对上式两边积分
∫∫∫ ∇ ⋅ Z(r)dV = −∫∫∫ (E '− E '') ⋅ (D '− D '')dV
分布在有限区域的无界电场问题,在无限远处( r → ∞ )应有
lim[rϕ] = 有限值
r→∞
(2-8-9)
这表明 rϕ 在无限远处是有界的,即电位 ϕ 在无限远处取值为零 ϕ r→∞ = 0 。 当场域中存在多种介质时,还必须引入不同介质分界面上的边界条件,常称为辅助的边
界条件。
2.8.3 静电场的唯一性定理
(2-8-10)
构造如下的函数:
Z (r) = (ϕ '− ϕ '')(D '− D '')
(2-8-11)
在给定边界所包围的体积内对上式进行体积分,并利用散度定理得
∫∫∫ ∇ ⋅ Z(r)dV= ∫∫∫ ∇ ⋅[(ϕ '− ϕ '')(D '− D '')]dV
V
V
利用矢量恒等式 ∇ ⋅ (ϕ A) = ∇ϕ ⋅ A + ϕ∇ ⋅ A ,则 ∇ ⋅ Z (r=) (ϕ '− ϕ '')(∇ ⋅ D '− ∇ ⋅ D '') +(∇ϕ '− ∇ϕ '') ⋅ (D '− D '')
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电场边值问题 唯一性定理

静电场的边值问题

静电场的唯一性定律
目前可解决的静电场问题



电荷在有限区域内,电荷的分布情况已知,并 且介质为线性各向同性均匀介质中的静电场问 题。对于此类问题,一般可以先求出电位,再 计算场中各点的电场强度和电位移矢量。 电荷、介质分布具有某种对称性的问题。由于 电荷和介质的分布具有对称性,因此电位移矢 量的分布必然也具有对称性。在这种情况下, 可以先用高斯通量定理求解电位移矢量,然后 再求电场强度。 已知电场的分布求电荷分布的问题。在这种情 况下,可直接由公式计算电荷的体密度,导体 上的面电荷密度根据分界面条件确定。
2
静电场边值问题的提出

实际中对于很多电磁场的问题通常并不 知道电荷分布,如静电场中导体表面的 感应电荷分布,介质极化后极化电荷的 分布等。对于此类的问题,必须通过求 解满足给定边界条件的电位微分方程 (泊松方程或拉普拉斯方程)的电位函 数,进而再求场域中的电场强度。我们 把这种在给定边界条件下,求解泊松方 程或拉普拉斯方程的问题称为边值问题。

对于各向同性、线性的非均匀媒质,电位 满足的微分方程又是什么形式呢?
D
D E
E
( )
7
边值问题举例-直接积分法
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷 体密度为 ,试用解微分方程的方法求球体内、外的电位 及电场。(同例2-4) 解:采用球坐标系,分区域建立方程
自学)
10
反设满足场的解答有两个相异的解答1和 2,则差
场u= 1 2 满足拉普拉斯方程
2 2
u 1 2 0 根据矢量恒等式
2
(uu) u u (u) (u)
2 2
2
在整个场域求积分,并利用高 斯散度定律
3
边值问题 微分方程 边界条件
2 2 0
场域 边界条件
分界面 衔接条件
1 2 1 1 2 2 0
n n
自然 边界条件
r
lim r 0
第一类 边界条件
第二类 边界条件
第三类 边界条件
S f1 (s)
已知场域边界 上各点电位值
n
f 2 ( s) (
S
) f 3 ( s) n S
一、二类边界条 件的线性组合
已知场域边界上各 点电位的法向导数
静电场边值 问题框图
泊松方程与拉普拉斯方程
D
D E
E E E
E
0
5

1 d 2 d1 1 2 (r ) dr 0 r dr
2
(0 r a )
(a r )
8
22
1 d 2 d2 (r )0 2 dr r dr
积分之,得通解
r 2 1 1 (r ) C1 C2 6 0 r
边界条件
2 (r )
电场强度(球坐标梯度公式): Nhomakorabea1 r E1 (r ) 1 er er r 3 0
2 a3 E2 (r ) 2 er e 2 r r 3 0 r
0r a
ar
唯一性定理
在静电场中,满足给定边界条件 的电位微分方程(泊松方程或者拉普 拉斯方程)的解是唯一的。(反证法
1
r 0
C3 C4 r
1 r a 2 r a
0
1 r
r a
有限值 0 电位参考点
0
2 r
r a
2
r
确定积分常数
a 2 a3 C1 0 C4 0 C2 , C3 2 0 3 0
ar
电位:
3 a 1 (r ) (3a 2 r 2 ) 0 r a 2 (r ) 6 0 3 0 r
(# )
若导体边界为第一类边界条件,则
u S 0
i
代入(#)中,则

V
(u ) 2 dV 0 u 0 (1 2 ) 0 1 2 Const
对于差场u,其边界为齐次第一类边界条件,即
Const 0 1 2
若导体边界为第二类边界条件,则
14
唯一性定理的意义

下面将要介绍的镜像法、电轴法等便是 巧妙地利用唯一性定理,用等效电荷替 代原来的分布电荷,求得满足唯一性定 理的解答,从而使问题的求解大为简化。
15
唯一性定理的意义



在求解时,首先判断问题的边界条件是否满足。 当满足边界条件时,就可以断定解是唯一的。 可以用来判断静电场问题解答的正确性。用不 同的方法得到的解答(试探解、数值解、解析 解)往往具有不同的数学形式,在这种情况下 可以用唯一性定理判断它们的正确性。 为我们用其它间接方法求解静电场问题提供了 理论依据,或者说无论用什么方法获得静电场 的解答,只要解答满足唯一性定理,该解答就 是唯一正确的解答。
泊松方程与拉普拉斯方程
泊松方程

2
拉普拉斯方程
0 0
2
注意:泊松方程与拉普拉斯方程只适用于各向同性、 线性的均匀媒质 分区域 列写方程
21 0 2 2 0 2 3 3 3
三个不同媒质区域的静电场
6
泊松方程与拉普拉斯方程

V
(uu )dV uu dS (u ) 2dV
s V
式中:S S0
S
i
S0是体积的无限远边界
由于无穷远S0处电位为零,因此
uu dS uu dS
S S


u uu dS u dS S S n


V
(u) 2 dV
u n 0
Si
代入(#)中,则

V
(u) 2 dV 0 u 0 (1 2 ) 0 1 2 Const
即1和 2 相差一个常数,但这不影响电场强度值 (电场强度是电位函数的负梯度)。 综上,电位函数相等或者相差一个常数,此 时电位函数可确定同一电场强度解答,静电 场的唯一性定理得证。
相关文档
最新文档