信号系统基础知识84页PPT

合集下载

信号与系统ppt课件

信号与系统ppt课件
2.对于(at+b)形式的冲激信号,要先利用冲激信 号的展缩特性将其化为(t+b/a) /|a|形式后,
方可利用冲激信号的抽样特性与筛选特性。
完整版ppt课件
25
二、奇异信号
3. 斜坡信号
定义:
r(t)
t 0
t 0 t 0
或 r(t)tu(t)
r (t )
1
0
1
t
完整版ppt课件
26
二、奇异信号
x(t)(t t0)x(t0)(t t0)
完整版ppt课件
x(t ) (1)
t t0 x(t) (t t0 )
( x(t0 ) ) t
t0
19
二、奇异信号
2. 冲激信号
(6) 冲激信号的性质
② 抽样特性
x(t)(tt0)dtx(t0)
证明:
x(t)(t t0)dt
利用筛
选特性
x(t0)(t t0)dt x(t0) (t t0)dt x(t0)
(7)e4t (22t) (8)e2tu(t)(t1)
完整版ppt课件
23
解:
(1 ) sit)n ((tπ 4)d t siπ 4 n )(2/2
(2 ) 2 3 e 5 t (t 1 )d t e 5 1 1 /e 5
(3) 4 6e2t (t8)dt0
(4 ) e t(2 2 t)d t e t1 2( t 1 )d t 2 1 e
(2) x ( t) u ( t 1 ) 2 r ( t) 2 r ( t 1 )
完整版ppt课件
28
二、奇异信号
4. 冲激偶信号 定义: '(t) d(t)
dt

信号与系统全套课件

信号与系统全套课件

滤波器设计和应用
滤波器的概念和分类
根据滤波器的频率响应特性,可分为低通、高通、带通和带阻滤 波器等。
滤波器设计方法
包括巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等设计方法, 以及数字滤波器的设计等。
滤波器的应用
在通信、音频处理、图像处理等领域广泛应用,如信号去噪、平 滑处理、频率选择性传输等。
04 信号与系统复频域分析
状态变量分析法概述
1
状态变量分析法是一种基于系统内部状态变量描 述系统动态行为的方法。
2
它适用于线性时不变系统,可以方便地分析系统 的稳定性、能控性、能观性等重要特性。
3
状态变量分析法通过引入状态变量的概念,将高 阶微分方程转化为一阶微分方程组,从而简化系 统分析和设计的复杂性。
状态方程和输出方程建立
系统函数的性质
系统函数具有因果性、稳定性、频率 响应等性质,这些性质决定了系统的 基本特性和性能指标。
稳定性判据和稳态误差分析
稳定性判据
通过系统函数的极点分布来判断系统的 稳定性,常用的稳定性判据有劳斯判据 、奈奎斯特判据等。
VS
稳态误差分析
稳态误差是指系统对输入信号响应的稳态 分量与期望输出之间的差值,通过分析系 统函数和输入信号的特性,可以对系统的 稳态误差进行定量评估。
信号与系统全套课件
目 录
• 信号与系统基本概念 • 信号与系统时域分析 • 信号与系统频域分析 • 信号与系统复频域分析 • 离散时间信号与系统分析 • 状态变量分析法在信号与系统中的应用
01 信号与系统基本概念
信号定义与分类
信号定义
信号是传递信息的函数,它可以是时间的函数,也可以是其 他独立变量的函数。在信号处理中,通常将信号表示为时间 的函数,即s(t)。

信号与系统 第一章-PPT课件

信号与系统 第一章-PPT课件

W | f ( t)| dt
2

功率信号:功率有限,能量无限
信号f(t)的平均功率
1 T 2 2 P | f ( t ) | dt 为f(t)在区间[ T1 , T2 ]上的平均功率 T 1 T T 2 1
1 T 2 P lim 2 | f ( t ) | dt为f(t)的平均功率 T T T 2
f (t)
f (t0 at ) 的波形
f(t)
一种有六种方法
f[ a ( t t )] 0/a
t -1 0 1 2 3
f (at )
f (t t0)
f ( t t0)
f ( at t0)
徐州师范大学物电学院
( t t ), f ( t t ) 例:已知f(t)波形,求 f 0 0
徐州师范大学物电学院Fra bibliotek周期信号:经一定周期后,波形严格重复
f(t)=f(t+nT) n=0,1,-1,2,-2……
例:f(t)=sinwt 例:f(t)=sinw1t+sinw2t
T
周期
T=
2 /
T 2 / 1 1
T 2 / 2 2
则f(t)为周期信号周期T为T1,T2的最小共倍数 则f(t)为非周期信号
f (t t 0 )
1
t 2t t 1 t 0 0 0
f ( t t0 )
1
t 1 t t 2t 0 0 0
徐州师范大学物电学院
徐州师范大学物电学院
1.2信号的概念conception of signal
定义:信号--随时间变化的物理量
一、信号的描述 description of signal (1)文字 例如:正弦波 (2)数学表达形式(时间的函数) f(t)=Asinπt (3)波形图 (4)表格法

信号与系统基础知识完整版

信号与系统基础知识完整版

信号与系统基础知识 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第1章 信号与系统的基本概念引言系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。

我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。

我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。

更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。

我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。

例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。

系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。

很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。

隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。

信号用函数表示,可以是数学表达式,或是波形,或是数据列表。

在本课程中,信号和函数的表述经常不加区分。

信号和系统分析的最基本的任务是获得信号的特点和系统的特性。

系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。

系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。

这些区别导致分析方法的重要差别。

本课程的内容限于线性时不变系统。

我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。

例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。

信号与系统PPT全套课件

信号与系统PPT全套课件

T T

T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T

T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。

信号与系统的基本概念、基本理论、基本方法及其应用ppt课件

信号与系统的基本概念、基本理论、基本方法及其应用ppt课件
5. 信号与系统主要研究确知信号,所以主要关注 信号的频谱分析,而随机信号主要关注功率谱 分析。
精选课件
3
6. 冲击信号或者冲击函数是信号分析中的一个非常重要的 信号。
它的强度(能量)为1,它在除t=0点以外的其他点都 为0,在t=0点为无穷大。
它的傅里叶变换为1。也就是说它包含所有频率分量, 且每个分量的密度或者能量都相同,所以他可以作为检 验系统频率响应的重要检验信号。
信号与系统理论所体现的基本方法或者 基本思想就是变换的思想,从傅里叶级数展 开、傅里叶变换到拉斯变换、Z变换,无不体 现出变换的思想。通过变换,可以认识事物 的多个层面;通过变换,可以得到分析问题 解决问题的新方法。这种思想应该应用到我 们对所有问题的探索和研究工作中去。
精选课件
15
四、应用
(一)传感器系统
精选课件
11
(四)复频域分析(S域分析或拉斯变换)
1. 通过复频域的系统函数H(s)描述系统,建立系统 的S域模型,将微分方程转化为代数方程,从而 极大地简化系统分析的计算过程,降低复杂度。
2. 通过系统函数H(s)的零极点分布,判断系统的稳 定性,系统的时域特性等,简单方便。
3. 没有物理背景。
y t v ( f (t ), X i)
w X i 1 g 1 ( X i ,
)
i
y i g 2 X ei , i
其中wi为高斯噪声,ei为观测噪声。离散化
后,如果按照随机信号来处理,滤波过程实际上变
化为在噪声中检测和估值最接近值的问题。
精选课件
17
(二)传感器网络(物理层,MAC层)
MAC层主要研究以CSMA/CA协议为基础的 相关媒质接入协议,克服隐藏终端和暴露终端的 问题,提高网络吞吐量。

信号与系统概论课件

信号与系统概论课件
系统的数学模型
03
描述信号通过系统的响应,通常使用差分方程或微分方程来建立系统的数学模型。通过求解这些方程,可以得到系统对不同类型信号的响应。
信号的时域和频域表示
在信号处理中,信号可以在时域或频域进行表示和分析。系统对信号的变换可以在时域或频域进行,从而改变信号的特性。
傅里叶变换和拉普拉斯变换
傅里叶变换和拉普拉斯变换是两种常用的信号变换方法。通过傅里叶变换,可以将信号从时域转换到频域,分析信号的频率成分;通过拉普拉斯变换,可以将信号从时域转换到复平面,用于分析信号的稳定性和收敛性。
通过傅里叶变换将信号转换为频域表示,可以对信号进行压缩编码,减小存储和传输的数据量。
01
频谱分析
通过傅里叶变换将信号分解成不同频率分量的组合,可以分析信号的频率成分和特征。
02
信号去噪
利用傅里叶变换将信号转换到频域,对噪声进行滤除,从而实现信号的去噪处理。
在进行傅里叶变换之前,需要对信号进行采样,采样频率应满足一定条件,否则会产生频谱混叠。
稳定性定义
1
2
3
通过计算系统的极点和零点,可以确定系统的稳定性。如果所有极点都位于复平面的左半部分,则系统是稳定的。
劳斯-赫尔维茨判据
通过分析系统的频率响应,可以确定系统的稳定性。如果系统的频率响应在负频率范围内没有穿越虚轴,则系统是稳定的。
奈奎斯特判据
通过绘制系统的伯德图,可以观察系统的稳定性。如果系统的相角在无穷远处趋于-π,则系统是稳定的。
对于某些非稳定信号,傅里叶变换可能无法得到正确的结果,需要进行适当的预处理或采用其他变换方法。
稳定性
采样定理
05
系统的稳定性分析
பைடு நூலகம்
VS

信号与系统_第一章(重点PPT)

信号与系统_第一章(重点PPT)
5
5
解 (1) costδ(t)=δ(t), 因为cos0=1。 (2) (t-1)δ(t)=-δ(t), 因为(t-1)|t=0=-1。
(3) ∫ (t 2 + 2t + 1)δ (t )dt = 1因为(t 2 + 2t + 1) |t =0 = 1
5 5
5
(4) ∫ (t 2 + 2t + 1)δ (t 6)dt = 0因为δ (t 6) 不在积分区间内。
序列x(n)
第1章 信号与系统 章
信号分类
1. 确定性信号与随机信号
信号可以用确定的时间函数来表示的, 是确定性信号, 也称规则信 号。 如正弦信号、 单脉冲信号、 直流信号等。
信号不能用确定的时间函数来表示, 只知其统计特性, 如在某时刻 取某值的概率的,则是随机信号。
第1章 信号与系统 章
2. 周期信号与非周期信号
ke at sin ωt f (t ) = 0
t>0 t<0
k f (t)
0
t
-k
第1章 信号与系统 章
3. 复指数信号
f(t)=kest
s=σ+jω为复数, σ为实部系数, ω为虚部系数。 借用欧拉公式: kest=ke(σ+jω)t=keσt e jωt=keσt cosωt+jkeσt sinωt
1 -2
τ
- 2
τ2
0
τ2
τ
2
τ1
2
t
第1章 信号与系统 章
单位冲激函数一般定义为
∞ t = 0 δ (t ) = 0 t ≠ 0 ∞ ∫∞ δ (t )dt = 1
0
δ (t)

信号与系统 第一章精品PPT课件

信号与系统 第一章精品PPT课件
[4] 郑君里,应启珩等. 信号与系统. 第2版. 高等教育出版社,2000.
主要参考书
[5] 吴湘淇等. 信号、系统与信号处理(上). 第2版. 电子工业出版社,2001
[6] 吴湘淇等. 信号、系统与信号处理——软硬件实现. 电子工业出版社,2002
[7] 陈后金等. 信号与系统. 清华大学出版社, 2003 [8] 陈后金等. 信号与系统学习指导与习题精解.
Examples: Biomedical Signal Processing (生物信号处理)
The traces shown in (a), (b), and (c) are three examples of EEG signals recorded from the hippocampus of a rat. Neurobiological studies suggest that the hippocampus plays a key role in certain aspects of learning and memory.
2. 作业: 书面作业(理论)+ MATLAB上机作业(实践)。
3. 期中和期末考试:闭卷形式。主要考察学生对本门课的基本 理论基本原理及重点内容的掌握程度。
4.课程成绩的组成: 由书面作业、MATLAB作业、期中考试和期末考试4部分组成。
主要参考书
[1] Simon H.,Barry V.V. Signals and Systems. John Wiley & Sons,Inc.1999
Contents
第一章 信号与系统简介 (Introduction)
介绍信号与系统的基本概念; 信号分类及基本信号;系统分类和特性。

《信号与系统》课件讲义

《信号与系统》课件讲义

《信号与系统》课件讲义一、内容描述首先我们将从信号的基本概念开始,大家都知道,无论是听音乐、看电视还是打电话,背后都离不开信号的存在。

那么什么是信号呢?信号有哪些种类?我们又如何描述它们呢?这一部分我们会带领大家走进信号的世界,一起探索信号的奥秘。

接下来我们将探讨信号与系统之间的关系,信号在系统中是如何传输、处理和变换的?不同的系统对信号有何影响?我们将通过具体的例子和模型,帮助大家理解这个复杂的过程。

此外我们还会深入学习信号的数学描述方法,虽然这部分内容可能会有些难度,但我们会尽量使用通俗易懂的语言,帮助大家更好地理解。

通过这部分的学习,我们将学会如何对信号进行量化分析,从而更好地理解和应用信号。

我们将探讨信号处理的一些基本方法和技术,如何对信号进行滤波、调制、解调等处理?这些处理技术在实际中有哪些应用?我们将通过实例和实践,帮助大家掌握这些基本方法和技术。

1. 介绍信号与系统的基本概念及其重要性首先什么是信号?简单来说信号就像是我们生活中的各种信息传达方式,想象一下当你用手机给朋友发一条短信,这条信息就是一个信号,它传递了你的意图和情感。

在更广泛的层面上,信号可以是任何形式的波动或变化,比如声音、光线、电流等。

它们都有一个共同特点,那就是携带了某种信息。

这些信息可能是我们想要传达的话语,也可能是自然界中的物理变化。

而系统则是接收和处理这些信号的装置或过程,它像是一个加工厂,将接收到的信号进行加工处理,然后输出我们想要的结果。

比如收音机就是一个系统,它接收无线电信号并转换成声音让我们听到。

这样描述下来,你会发现信号和系统真的是无处不在。

无论是在学习还是在日常生活中都能见到他们的影子,他们对现代通信、计算机技术的发展都有着不可替代的作用。

因此我们也需要对这一概念进行透彻的了解与学习才能更好地服务于相关领域为社会贡献力量!2. 简述本课程的学习目标和主要内容《信号与系统》这门课程无论是对于通信工程、电子工程还是计算机领域的学生来说,都是一门极其重要的基础课程。

信号与系统分析PPT全套课件可修改全文

信号与系统分析PPT全套课件可修改全文

1.系统的初始状态
根据各电容及电感的状态值能够确定在 t 0
时刻系统的响应及其响应的各阶导数
( y(0 ) k 1, 2 , , n 1)
称这一组数据为该系统的初始状态。
2.系统的初始值
一般情况下,由于外加激励的作用或系统内 部结构和参数发生变化,使得系统的初始值与 初始状态不等,即:
y(0 ) y(0 )
自由响应又称固有响应,它反映了系统本身 的特性,取决于系统的特征根; 强迫响应又称强制响应,是与激励相关的响 应。 利用经典法可以直接求得自由响应与强迫响 应,强迫响应即特解
先求得系统的零输入响应和零状态响应,并 获得系统的全响应;
然后利用系统特性与自由响应、激励与强迫 响应的关系可以间接得到自由响应和强迫响应。
t
f (t) (t)dt f (0) (t)dt
f (0) (t)dt f (0)
(1)
0
t
ห้องสมุดไป่ตู้(3)偶函数
(4)
(at)
1 a
(t)
f (t) (t) ( f (0))
(5) (t)与U (t)的关系
0
t
1.2 基本信号及其时域特性
单位冲激偶信号 '(t)
f (t) 1/
f ' (t) (1/ )
第2章 连续系统的时域分析
2.1 LTI连续系统的模型 2.2 LTI连续系统的响应 2.3 冲激响应与阶跃响应 2.4 卷积与零状态响应
2.1 LTI连续系统的模型
2.1.1 LTI连续系统的数学模型 2.1.2 LTI连续系统的框图
返回首页
2.1.1 LTI连续系统的数学模型
对于任意一个线性时不变电路,当电路结构 和组成电路的元件参数确定以后, 根据元件的伏安关系和基尔霍夫定律,可以 建立起与该电路对应的动态方程。

信号与系统 全套课件完整版ppt教学教程最新最全

信号与系统 全套课件完整版ppt教学教程最新最全
2.积分 信号的积分是指信号在区间(-∞,t)上的积分。可表示为
t
y(t)
f()df( 1)(t)
1.2.3 信号的相加、相乘及综合变换 1.相加
信号相加任一瞬间值,等于同一瞬间相加信号瞬时值的和。即
y (t)f1 (t)f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 2.相乘
信号相乘任一瞬间值,等于同一瞬间相乘信号瞬时值的积。即
离散时间系统是指输入系统的信号是离散时间信号,输出也是离散 时间信号的系统,简称离散系统。如图连续时间系统与离散时间系统(b) 所示。
1.3.1 系统的定义及系统分类 2. 线性系统与非线性系统
线性系统是指具有线性特性的系统,线性特性包括齐次性与叠加性。线 性系统的数学模型是线性微分方程和线性差分方程。
2.1.2 MATLAB语言的特点
1、友好的工作平台和编程环境 2、简单易用的程序语言 3、强大的科学计算机数据处理能力 4、出色的图形处理功能
1、友好的工作平台和编程环境
MATLAB由一系列工具组成。这些工具方 便用户使用MATLAB的函数和文件,其中 许多工具采用的是图形用户界面。
新版本的MATLAB提供了完整的联机查询、 帮助系统,极大的方便了用户的使用。简 单的编程环境提供了比较完备的调试系统, 程序不必经过编译就可以直接运行,而且 能够及时地报告出现的错误及进行出错原 因分析。
y (t)f1 (t) f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 3.综合变换 在信号分析的处理过程中,通常的情况不是以上某种单一信号的运算,往
往都是一些信号的复合变换,我们称之为综合变换。
1.3 系统
1.3.1 系统的定义及系统分类

《信号基础知识》课件

《信号基础知识》课件
不同的编码方式具有不同的优缺点,如编码 效率和误差容忍度。
信号的调制
什么是调制?
调制是将低频信号转换为高频信号的过程。
常见的调制方式
常见的调制方式包括调幅、调频和调相。
调制的过程
通过改变高频载波的某些性质(振幅、频率、 相位等),将低频信号传输到远距离。
调制的优缺点
不同的调制方式具有不同的优缺点,如频谱 效率和抗干扰性。
信号基础知识
本PPT课件将介绍信号的基础知识,包括信号的定义和类型,模拟信号和数 字信号的特点与处理方式,信号的采样和量化过程,信号的编码和调制方式, 以及信号的传输和传输介质的选择。
什么是信号?
信号是用于传递信息的物理量或波形。可以根据传递方式和载体等属性进行 分类。
模拟信号
什么是模拟信号?
模拟信号是连续变化的信号,可以表示无限个值。
传输介质的分类
常见的传输介质包括导线传输、光纤传输和 无线传输。
传输介质的选择
选择传输介质需要考虑信号特性、距离、带 宽和成本等因素。
传输介质的特点
不同的传输介质具有不同的特点,如传输速 度和抗干扰性。
总结
信号基础知识的重要性
了解信号基础知识对理解通信技术和工程应 用至关重要。
对未来的展望
信号基础知识的发展将继续推动通信技术的 创新与进步。
信号的解调
什么是解调?
解调是将调制信号恢复为原始信号的过程。
常见的解调方式
常见的解调方式包括相干解调、非相干解调 和同步解调。
解调的过程
通过还原调制信号的某些性质,提取出原始 信号的信息。
解调的优缺点
不同的解调方式具有不同的优缺点,如复杂 度和性能。
信号的传输和传输介质

第1章信号与系统的基本概念ppt课件

第1章信号与系统的基本概念ppt课件
1. 任一由确定时间函数描述的信号,称为确定信号或规则 信号。对于这种信号,给定某一时刻后,就能确定一个相应 的信号值。如果信号是时间的随机函数,事先将无法预知它 的变化规律,这种信号称为不确定信号或随机信号。
第1-8页

©
信号与系统
第1-9页
图 1.1-1 噪声和干扰信号

©
信号与系统
2. 连续信号与离散信号
k
2
-1

f1 (k )+ f2 (k )

2


1

- 3- 2- 1

0 12345
k

-1


f1 (k )· f2 (k )

1
- 3- 2- 1
0 12345
k

©
信号与系统
1.3 信号的运算
二、时间变换 包括翻转,平移和展缩运算。
1.翻转
将 f (t) → f (– t) , f (k) → f (– k) 称为对信号f (·)的 翻转或反折。从图形上看是将f (·)以纵坐标为轴翻 转180o。如:
解 我们知道,如果两个周期信号x(t)和y(t)的周期具有公 倍数,则它们的和信号
f(t)=x(t)+y(t) 仍然是一个周期信号, 其周期是x(t)和y(t)周期的最小公倍数。
第1-21页

©
信号与系统
(1) 因为sin 2t是一个周期信号,其角频率ω1和周期T1为
12ra/ds,T121 s
23ra/sd ,T 2 222 3 2 3 s
f (t- 1)
1
f (t)
右移t → t – 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档