组合数学答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 某甲参加一种会议,会上有6位朋友,某甲和其中每一个人在会上各相遇12次,每两人各相遇6次,每3人各相遇4次,每4人各相遇3次,每5人各相遇2次,每6人各相遇1次,1人也没遇见的有5次,问某甲共参加几次会议?

解:设A 为甲与第i 个朋友相遇的会议集.i=1,2,3,4,5,6.则 │∪A i │=12*C(6,1)-6*C(6,2)+4*C(6,3)-3*(6,4)+2*(6,5)-C(6,6) =28

甲参加的会议数为 28+5=33

3.2:求从1到500的整数中被3和5整除但是不能被7整除的数的个数。 解:

设 A 3:被3整除的数的集合

A 5:被5整除的数的集合 A 7:被7整除的数的集合 所以 ||

=|

|-|

|

=

-=33-4=29 3.3 n 个代表参加会议,试证其中至少有2个人各自的朋友数相等

解:每个人的朋友数只能取0,1,…,n -1.但若有人的朋友数为0,即此人和其 他人都不认识,则其他人的最大取数不超过n -2.故这n 个人的朋友数的实际取数只 有

n -1种可能.,根据鸽巢原理所以至少有2人的朋友数相等.

×3.4试给出下列等式的组合意义

0j j 0

(1)=(1), 1n-m -j+1(2)(1)1 j 1(3)...(1) 1 12m l l n m

l n m m n l n k m n k l k l n m l n m l m l m l m l m l m l m m m m m l =-=--⎛⎫⎛⎫⎛⎫-≥≥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭

---⎛⎫⎛

⎫⎛⎫=

- ⎪ ⎪ ⎪

--⎝⎭

⎝⎭⎝⎭

+-++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫

=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭

⎝⎭

∑∑

证明:

(1)从n 个不同元素中取k ,使得其中必含有m 个特定元素的方案数为)(

)(

k

n m n m

k m n --=--。

设这m 个元素为a 1,a 2,…,a m , Ai 为包含a i 的组合(子集),i=1,…,m.

1212|...|(...)

12 =( (1)

)1 2 =(1) m m m

l n A A A A A A k n m n m n m n m k k k m k m n l l k ⎛⎫

=- ⎪⎝⎭

---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫

--++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭

-⎛

⎫⎛- ⎪⎝⎭ 0m

l =⎫ ⎪

⎝⎭

∑ (2)把l 个无区别的球放到n 个不同的盒子,但有m 个空盒子的方案数为11n l m n m -⎛⎫⎛⎫

⎪ ⎪--⎝⎭⎝⎭

令k=n-m ,设A i 为第i 个盒子有球,i=1,2,…k

12k 121|...|(...)

1k 11211 =(...(1)) 1 2 k k

k l A A A A A A k k l k l k k l k k k l k l l k l +-⎛⎫

=- ⎪⎝⎭+--+--+--+-⎛⎫

⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-

-++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭

⎝⎭⎝⎭⎝⎭⎝⎭

⎝⎭⎝⎭

k

j j 0k k-j+1 =(1)j l l =-⎛

⎫⎛⎫- ⎪ ⎪

⎝⎭⎝⎭

(3)设A i 为m+l 个元素中去m+i 个,含特定元素a 的方案集;N i 为m+l 个元素中取m+i

个的方案数。则:

10000101101211 |A |= |A |=1 m +i 1|A ||A |= m +i |A ||A | i=12|A ||A |= |A |=(|A |)...(1)1 1 i i i i i i i i l

l m l m l m l N m i m i m l N l

N N N N N N N N m l m l m m +++-+-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪

++-⎝⎭⎝⎭⎝⎭+-⎛⎫

= ⎪

⎝⎭=-=----=-+-+-+-+⎛⎫⎛⎫= ⎪ -⎝⎭⎝⎭,,...,...(1)12l m l m l m l m m m l +++⎛⎫⎛⎫⎛⎫-+-+-⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭

⎝⎭

3.5 设有3个7位的二进制数

4

3

2

1

43214321c c c c b b b b a a a a 6

6

5

765765c c c b b b a a a

试证存在整数i 和71,≤<≤j i j ,使得下列之一必然成立:

j i j i j i j i j i j i c c b b c c a a b b a a =========,

解:应用鸽巢原理,在每一个纵列中,含有三个元素,分别都只由两种选择0 或1,应用鸽巢原理所以必有i i i

i i i c b c a b a ===,

中至少一个必然成立;成

立的时候取值的不同可以有这样几种情况:223⨯C =6种,而每一横行共有七个元素, 再次用鸽巢原理,必有两列是相同的 即: j i j i j

i j i j i j i c c b b c c a a b b a a =========,

之一必然成立

3.6 在边长为1的正方形内任取5。

证明:分别连接对边的中点,这样正方形被均匀的分成四个域,在正方形内任取5点,根据鸽巢原理,至少有两点在同一个域中,而一个域内两点的最远距离小

3.7 在边长为1的等边三角形内任取5点,试证至少有两点距离小于21

。 证明:将边长为1的等边三角行分成4

三角形的边长为21

,离小于

2

1。

3.8.任取11个整数,求证其中至少有两个数它们的差是10的倍数。

解:易知任意整数的个位数的可能取值只可能为0,1,2,,9 ,共10种可能,而利用鸽巢原理,任取的11个整数中,其中至少有两个整数的个位数相同,这两个个位数相同的整数的差显然是10的倍数。即证。

×3.9 把从1到326的326个整数任意分为5个部分,试证其中有一部分至少有一个数是某两个数之和,或是另一个数的两倍。

解:用反证法。设存在划分 ]326,1[54321= P P P P P , P i 中没有数是两数之和,

即P i 中没有数是两数之差。设1到326中至少有66151326=+⎥⎦

⎣⎢-个元素属于P 1,

相关文档
最新文档