污水处理厂平面及高程布置例题t

合集下载

污水处理厂平面及高程布置(毕业设计参考)_secret

污水处理厂平面及高程布置(毕业设计参考)_secret

污水处理厂平面布置及高程布置*****编***学院环境工程与监测专业教研室2012年6月29日一污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。

作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。

在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。

布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。

构筑物之间如需布置管道时,其间距一般可取5—8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。

厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。

管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。

厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。

所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。

这些管线都要易于检查和维修。

污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。

辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。

它们是污水处理厂设计不可缺少的组成部分。

其建筑面积大小应按具体情况与条件而定。

有可能时,可设立试验车间,以不断研究与改进污水处理方法。

辅助建筑物的位置应根据方便、安全等原则确定。

污水处理厂高程设计参考

污水处理厂高程设计参考

精心整理1处理流程高程设计为使污水能在各处理构筑物之间通畅流动,以保证处理厂的正常运行,需进行高程布置,以确定各构筑物及连接管高程。

为降低运行费用和便于维护管理,污水在处理构筑物之间的流动已按重力流考虑为宜;污泥也最好利用重力流动,若需提升时,应尽量减少抽升次数。

为保证污泥的顺利自流,应精确计算处理构筑物之间的水头损失,并考虑扩建时预留的储备水头,高程图的比例与水平方向的比例尺一般不相同,一般垂直比例大,水平的比例小些[12]。

1.1主要任务(1)(2)(3)1.2(1)(2)(3)(4) 1.3沿程水头损失按下式计算:iL L RC v h f ==22(7.1)式中f h ——为沿程水头损失,m ;L ——为管段长度,m ;R ——为水力半径,m ;v ——为管内流速,m s ;C ——为谢才系数。

局部水头损失为:gv h m 22ξ=(7.2)式中ξ——局部阻力系数,查阅《给排水设计手册第一册》获得。

1.3.1构筑物初步设计时,构筑物水头损失可按经验数值计算。

污水流经处理构筑物的水头损失,主要产生在进7.1。

1.3.2沉砂池至厌氧池取一个进出口损失及一个90︒弯头损失,取局部阻力系数为:0.1+1.0+1.1=2.2。

管渠水力计算见表7.2。

表7.2污水管渠水力计算表1.3.3。

以0.751.3.4污泥处理构筑物高程布置 (1)污泥管道的水头损失管道沿程损失按下式计算:85.117.149.2⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=H f C v D L h (7.3) 管道局部损失计算:式中H C D v (2)污泥处理构筑物水头损失当污泥以重力流排出池体时,污泥处理构筑物的水头损失以各构筑物的出流水头计算,浓缩池一般取1.5m ,二沉池一般取1.2m 。

(3)污泥高程布置设计中污泥在二沉池到污泥浓缩池以及贮泥池到脱水车间得到提升,取脱水机房标高为53m ,贮泥池泥面相对地标为0.000m ,超高0.3m 。

第五章-污水处理厂平面及高程布置演示课件

第五章-污水处理厂平面及高程布置演示课件

15 巴式计量槽
座1
16 污泥提升泵房 10X6 座 1
17 浓 缩 池 8.5X8.5 座 3
18 贮 泥 池 D=3 座 1
19 集 泥 井
座2
说明:
1.图中和表中单位均以米计 2.本图比例尺为1:200 3.厂区内的空地部分应充分进行绿化
x:0.0 y:0.0
管线图例:
1 4 7
污水工艺管道 超越管道 污水管道

6
9 2
浓缩池
9
2
17
17
2
x:6.0 y:69.1
6
x:18.5
配电室 y:56.3

x:8.5 y:50.3
5
2
9 2
9 2
贮泥池x:31.5 y:77.6
x:54.0 y:79.6
车库 x:70.0 y:79.6
18 17
x:38.0 y:73.3
7
7
x:39.5
2
y:54.1
x:29.5 y:48.1
5 配 电 室 10X6 座 1
6 鼓风机房 15X5 座 1
7 污泥脱水间 12.5X6 座 1
8格

座1
9 污水提升泵房 D=8 座 1
10 调节沉淀池 25X8 座 1
11 UASB反应器 D=8 座 4
12 竖流式沉淀池 D=5 座 4
13 SBR 池 13X6.5 座 4
14 配 水 井
座2
x:34.5 y:30.6
1
1 2
1
19 12 1
14
x:34.5
1
2 y:20.6
1
12
1

污水处理厂平面布置及高程布置

污水处理厂平面布置及高程布置

污水处理厂平面布置及高程布置一、污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。

作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。

在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。

布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。

构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。

厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。

管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。

厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。

所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。

这些管线都要易于检查和维修。

污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。

辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。

它们是污水处理厂设计不可缺少的组成部分。

其建筑面积大小应按具体情况与条件而定。

有可能时,可设立试验车间,以不断研究与改进污水处理方法。

辅助建筑物的位置应根据方便、安全等原则确定。

如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。

污水处理厂平面布置及高程布置

污水处理厂平面布置及高程布置

污水处理厂平面布置及高程布置污水处理厂平面布置及高程布置是指在建设污水处理厂时,为保证厂区内的设施和设备能够合理布置,从而提高污水处理效率和处理质量,需要进行的平面和高程方面的规划和布置工作。

下面从平面和高程两个方面来详细介绍。

平面布置方案污水处理厂的平面布置方案需要围绕着设施和设备的建设展开,以保证各项工作的有序进行。

具体来讲,平面布置方案需考虑以下几个方面:1. 厂区规划:厂区规划是平面布置方案的基础,它包括厂区的总体布局、厂房建设、管道网建设等。

在设计过程中,应以尽可能利用厂区内部面积,方便实施维护和管理为原则,可采用“L”字型、直线形、T字形、环状布置等不同形式。

2. 处理工艺设备的布置:处理工艺设备布置要考虑到污水处理的各个阶段,通常包括初次处理、生物处理、二次处理等。

各处理阶段的设备应按照处理工艺流程来布置,保证各个环节处理得当,使处理效率更高、质量更优。

3. 管线布置:管线系统是污水处理厂的重要组成部分,它主要用于输送、收集和排放污水。

系统中应包括进水管线、出水管线、通风管道、排泥管道等,其布置应保证科学合理。

通常情况下,应沿着最短距离布置管道,同时考虑到管道的通风、防腐、维修等。

4. 办公区:除了处理污水的工作区域需要布置外,污水处理厂的办公区也是至关重要的。

它要包括管理办公、技术质量检测、设备维修等区域,为了方便员工工作和管理,该区域应布置在离设备和设施比较近的地方。

污水处理厂的高程布置是指在建设中对厂区内的各个设施和设备安排高度的布置方案,其目的是为了保证各个设施设备的高度关系协调,避免因高度差异造成零散操作的麻烦,影响污水处理效率。

具体来讲,高程布置方案需考虑以下几个方面:1. 处理池的高度:处理池是污水处理厂的重要组成部分,一般包括沉淀池、生化池、沼气池等。

其高度应考虑到接口高度和出水口的高度以及泥层等因素。

2. 管道高度:管道的高度安排要考虑到管道是否易于维修和清洗、与相邻设施的高度位置关系等问题,可通过包红线来确认各个管道的高度。

污水处理厂高程设计计算

污水处理厂高程设计计算

污水处理厂平面及高程设计平面布置及高程布置一、污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。

作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。

在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。

布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。

构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。

厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。

管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。

厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。

所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。

这些管线都要易于检查和维修。

污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。

辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。

它们是污水处理厂设计不可缺少的组成部分。

其建筑面积大小应按具体情况与条件而定。

有可能时,可设立试验车间,以不断研究与改进污水处理方法。

辅助建筑物的位置应根据方便、安全等原则确定。

如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。

污水处理厂高程计算

污水处理厂高程计算

〔1〕接纳水体广澳湾近岸海域−−→巴式计量槽 0WL 水位设计为3.50m出水管:DN1000,钢筋混凝土管道管底坡度:0.03i =管长:约50m流量:33max 2736m /h=0.76m /s Q =1L =排出管出口管底标高:3.00m2L =排出管进口管底标高:3.15m正常水深=0.65m,而临界水深=0.58,管中水为非满流,自由出流至广澳湾近岸海域。

管道进口水力损失为0.031WL =巴式计量出口槽标高2L +正常水深+管道进口水力损失3.150.650.03 3.83m =++=1WL ——巴式计量槽下游水面标高〔2〕巴式计量槽−−→接触消毒池 巴式喉管是由不锈钢制成,浇铸于巴式计量槽中;巴式计量槽水力高程2 3.15m L =,3 3.56m L =,4 3.41m L =,5 3.61m L =,6 3.20m L =计量设备的水头损失计算巴式计量槽在自由流的条件下,计量槽的流量按下式计算:10.0261.5690.372(3.28)b Q b H =式中 Q ——过堰流量,0.763m /s ;b ——喉宽,m ;1H ——上游水深,m 。

设计中取 1.00m b =,那么11.5702.402Q H =,得10.73m H =对于巴式计量槽只考虑跌落水头。

淹没度151()/(3.83 3.61)/0.730.3WL L H =-=-=可以满足自由出流。

521 3.610.73 4.34m WL L H =+=+=2WL 为巴式计量槽上游水面标高[]3=(4.34 3.20) 1.680.39m/s v -⨯=0.75/3v 为巴式槽上游渠中流速320.05WL WL H =++∆(渠道等约为0.1m)4.340.050.1 4.49m =++=式中 3WL ——接触池出水堰下游水面标高73L WL =+自由跌落到3=4.49+0.05=4.54m WL堰长为3m堰上水头约为h =0.3m74 4.540.3 4.84m h WL L +=+==4WL 为接触池水面标高〔3〕接触池−−→配水池 DN800,L=10m管底坡度:0.003i =堰上水头约为h =0.3m254/290g WL WL ⨯+⨯+=出水(10)(0.98-0.50)弯头(0.40.98/2g )2⨯⨯⨯+40.0007+500.00095+配水井配进水管道和弯头(0.50.98/2g )+h4.840.0140.00280.0060.00350.0470.0250.3=+++++++5.24m =配水井溢流堰顶标高58L WL =+自由出流至5WL 标高5.240.1 5.34m =+=68 5.340.3 5.64m h WL L +=+==h ——堰上水头约为0.3m〔4〕配水井−−→SBR 反响池 760.010.01 5.66m WL WL +=+=7WL ——接触池进口处最大水位标高DN800,L=10m管底坡度:0.003i =,滗水器水力损失为0.05mSBR 反响池水位0.030.05 5.78m 87WL WL =++= (4)SBR 反响池−−→配水井 DN800,L=10m管底坡度:0.003i =堰上水头约为h =0.3m298/290g WL WL ⨯+⨯+=出水(10)(0.98-0.50)弯头(0.40.98/2g )2⨯⨯⨯+40.0007+500.00095+配水井配进水管道和弯头(0.50.98/2g )+h5.780.0140.00280.0060.00350.0470.0250.3=+++++++6.18m =配水井溢流堰顶标高99L WL =+自由出流至9WL 标高6.180.1 6.28m =+=109=6.280.3 6.58m h WL L ++==h ——堰上水头约为0.3m〔5〕配水井−−→初沉池 11100.1 6.580.1 6.68m WL WL =+=+=1011L WL =+自由出流至10WL 标高=6.68+0.1=6.78m式中 10L ——平流沉淀池出水槽渠底标高1210 6.780.2 6.98m WL L h =+=+=式中 12WL ——平流沉淀池出水槽水面标高h ——平流沉淀池出水自由跌落〔6〕平流沉淀池−−→钟式沉砂池 1312WL WL =+自由跌落到10 6.980.097.07m WL =+=堰宽为3m式中 13WL ——平流沉淀池出水处水面标高14130.17.070.17.17m WL WL =+=+=14WL ——平流沉淀池进水处水面标高1114L WL =+自由出流至12WL 标高=7.17+0.09=7.26m式中 11L ——平流沉淀池第二格集水槽末端标高15117.260.17.36m WL L h =+=+=式中 15WL ——平流沉淀池第二格集水槽水面标高1615WL WL +=平流沉淀池底部隔墙孔损失1h7.360.027.38m =+=取1h 为0.02m式中 16WL ——平流沉淀池第一格集水槽水面标高平流沉淀池与钟式沉砂池之间的管道连接DN800砼管,L=50m20.5m A =0.2m R =0.76/0.20.38m/s v ==20.6670.38/()0.00078400.2I ⎡⎤==⎣⎦⨯ 1716WL WL +=出水至平流沉淀池20.38500.00078⨯+⨯(1.1/2g)+转弯和从渠道进入管道2(0.50.38/2)g ⨯7.44=17WL ——钟式沉砂池出水渠堰末端水面标高1217L WL =+自由落水至13WL 标高7.440.1=+7.54m =式中 12L ——钟式沉砂池出溢流堰堰顶标高堰长2 2.55m =⨯=1.50.76 1.825Q h ==⨯⨯那么0.1910.2m h =≈12187.540.27.74m WL L h =+=+=式中 18WL ——钟式沉砂池最高水位〔7〕钟式沉砂池−−→细格栅 1918WL WL =+2个钟式沉砂池闸板孔损失2个闸板孔面积22 1.0 1.0 2.0m =⨯⨯= 0.76/2.00.38m/s v ==过闸板孔损失22.230.38/2g =⨯+水流减速转弯和格栅后涡流等大约0.02m 0.036m =那么19180.0367.740.0367.78m WL WL +=+==细格栅处渠道底标高12L =6.34m(1) 格栅水头损失计算0f h kh =20sin 2v h g ξα=,43=S b ξβ⎛⎫ ⎪⎝⎭ 式中 f h ——过栅水头损失,m ;0h ——计算水头损失,m ;k ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般3k =;ξ——阻力系数,与栅条断面形状有关,,k 为系数,格栅受污物堵塞时水头损失增大倍数,与栅条断面形状有关,可按"给排水设计书册〔第5册〕"提供的计算公式和相关系数计算。

《污水处理厂构筑物尺寸计算及高程布置1600字》

《污水处理厂构筑物尺寸计算及高程布置1600字》

污水处理厂构筑物尺寸计算及高程布置目录污水处理厂构筑物尺寸计算及高程布置 (1)4.1平面布置 (1)4.1.1平面布置原则 (1)4.1.2构筑物平面尺寸 (1)4.2管网布置 (2)4.2.1管网布置原则 (2)4.2.2管道统计 (2)4.3高程布置 (3)4.3.1构筑物水力损失 (3)4.3.2管道水力损失 (3)4.3.3 高程计算 (4)4.1平面布置4.1.1平面布置原则(1)处理污水构筑物与生活、管理设施应分别集中布置,彼此保持适当距离,功能分区明确,布置得当。

办公区和生活区应分开布置,防止污水处理排放气体对人产生危害。

(2)污水管道采取适当坡度,依靠重力流向,按处理流程依次布置,避免管路交叉和迂回,保证水流通畅。

(3)处理构筑物之间的距离应满足管线敷设施工要求,对于特殊构筑物(如消化池)和其他构筑物之间的距离应符合国家《建筑设计防火规范》(GB50016-2006)及国家和地方相关防火规范规定。

(4)在设计处理厂过程时留出空地以便于未来改建或者加建,使污水处理厂长久运行。

(5)保证污水处理厂有足够的绿化面积,保障卫生条件,一般绿化面积不小于污水处理厂总面积的30%。

4.1.2构筑物平面尺寸根据以上设计书的计算,可总结出该污水处理厂主要构筑物的平面尺寸,便于污水处理厂平面图的绘制,具体数值参考下表4-1。

表4-1 主要构筑物平面尺寸构筑物名称尺寸数量粗格栅间L×B×H=10m×8m×4m 1间提升泵房L×B×H=15m×10m×4m 1间细格栅间L×B×H=10m×6m×4m 1间曝气沉砂池L×B×H=3.2m×3.2m×3.4m 2座A2/O生化池L×B×H=43m×10m×4.5m 1座辐流式沉淀池D×H=36m×7.7m 2座反硝化深床滤池L×B×H=6m×10m×4.85m 6组污泥浓缩池D×H=14m×4.9m 2座污泥脱水间L×B×H=10m×3m×4m 1间消毒池L×B×H=21m×20m×3m 2座加药间L×B×H=20m×10m×5m 1间传达室L×B×H=4m×4m×3m 1间办公室L×B×H=30m×15m×6m 1间宿舍L×B×H=50m×15m×6m 1间食堂浴池及开水房L×B×H=20m×15m×4m 1间锅炉房L×B×H=10m×5m×4m 1间仓库L×B×H=30m×15m×4m 1间4.2管网布置4.2.1管网布置原则(1)满足功能要求,实现经济实用。

第五章污水处理厂平面及高程布置

第五章污水处理厂平面及高程布置

18 贮 泥 池 D=3 座 1
19 集 泥 井
座2
说明:
1.图中和表中单位均以米计 2.本图比例尺为1:200 3.厂区内的空地部分应充分进行绿化
x:0.0 y:0.0
管线图例:
1 4 7
污水工艺管道 超越管道 污水管道
2
污泥管道
5
空气管道
8
雨水管道
3
回流污泥管道
6
给水管道
9
回流液管道
平面布置图 兰州交通大学给水排水00级毕
第一节 污水处理厂平面布置
污水处理厂厂区内有各处理单元 构筑物、连通各处理构筑物之间的管、 渠及其它管线、辅助性建筑物、道路 以及绿地等。
1.各处理单元构筑物的平面布置
处理构筑物是污水处理厂的主体建筑 物,在作平面布置时,应根据各构筑物的 功能要求和水力要求,结合地形和地质条 件.确定它们在厂区内平面的布置,应考 虑: A.贯通连接各处理构筑物之间的管、渠, 应便捷,直通,避免迂回曲折。 B.土方量作到基本平衡,避开劣质土壤地 段。
② 考虑远期发展,水量增加的预留水头。
③ 避免处理构筑物之间跌水等浪费水头的现象, 充分利用地形高差,实现自流。
④ 在计算并留有余量的前提下,力求缩小全程 水头损失及提升泵站的扬程,以降低运行费用。
⑤ 需要排故的处理水,常年大多数时间里能够 自流排放水体。注意排放水位一定不选取每年 最高水位,因为其出现时间较短,易造成常年 水头浪费,而应选取经常出现的高水位作为排 放水位。
5
2
9 2
9 2
贮泥池x:31.5 y:77.6
x:54.0 y:79.6
车库 x:70.0 y:79.6
18
7

城市14×104m3d污水处理厂设计——平面和高程布置设计课程设计

城市14×104m3d污水处理厂设计——平面和高程布置设计课程设计

课程设计题目某城市14×104m3/d污水处理厂设计——平面和高程布置设计学院资源与环境学院专业环境工程姓名孙路学号 220122122140指导教师国伟林卫静二O一五年六月二十四日课程设计任务书学院资源与环境学院专业环境工程姓名孙路学号220122122140题目某城市14×104m3/d污水处理厂设计——平面和高程布置设计一、课程设计的内容班级分组每组人数处理水量(X104m3/d)COD Cr(mg/L)BOD5(mg/L)SS(mg/L)2 4 6 14 480 250 300(1)污水处理厂的工艺流程比选,并对工艺构筑物选型做说明;(2)主要处理设施的工艺计算数据;(3)确定污水处理厂平面和高程布置;(4)绘制污水处理厂平面和高程布置图纸。

二、课程设计应完成的工作(1)确定合理的污水处理厂的工艺流程,并对所选择工艺构筑物选型做适当说明;(2)确定主要处理构筑物的尺寸,完成设计计算说明书;(3)绘制污水处理厂的平面及高程的设计图纸。

课程设计评语学院资源与环境学院专业环境工程姓名孙路学号220122122140题目某城市11×104m3/d污水处理厂设计——平面和高程布置设计指导小组或指导教师评语:评定成绩2012年6月20日指导教师目录1 总论 (2)1.1 设计规模 (2)1.2 设计原则 (2)1.3 设计依据 (2)1.4设计要求 (2)2 污水工艺流程确定 (3)2.1 处理污水量及水质 (3)2.2 处理工艺流程 (3)2.3气象与水文资料 (3)2.4厂区地形 (3)3污水厂平面布置 (4)3.1污水厂平面总图布置原则: (4)3.2污水厂各构筑物尺寸 (4)3.3污水厂平面布置图 (5)4污水厂高程布置 (6)4.1污水厂高程布置原则 (6)4.2污水厂高程布置计算公式及相关计算 (6)4.3高程布置图的绘制 (10)结论 (11)参考文献 (12)1总论1.1设计规模设计的污水处理厂的处理规模 14×104m3/d。

设计题目:某城市污水处理厂设计

设计题目:某城市污水处理厂设计

设计题目:某城市污水处理厂设计第一章设计资料一、自然条件1、气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。

2、水文:最高潮水位 6.48m(罗零高程,下同)高潮常水位 5.28m低潮常水位 2.72m二、城市污水排放现状1、污水水量(1)生活污水按人均生活污水排放量300L/人.d;(2)生产废水量按近期1.5万m3/d,远期2.4万m3/d;(3)公用建筑废水量排放系数按近期0.15,远期0.20考虑;(4)处理厂处理系数按近期0.80,远期0.90考虑。

2、污水水质(1)生活污水水质指标为CODcr 60g/人.dBOD5 30g/人.d(2)工业污染源参照沿海开发区指标,拟定为:CODcr 300mg/L;BOD5 170mg/L(3)氨氮根据经验确定为30md/L。

三、污水处理厂建设规模与处理目标1、建设规模该污水处理厂服务面积为10.09km2,近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。

处理水量近期3.0万m3/d,远期6.0万m3/d。

2、处理目标根据该城镇环保规划,污水处理厂出水进入的水体水质按国家3类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为CODcr≤100mg/L;BOD5≤30mg/L;SS≤30mg/L ;NH3-N≤10mg/L 四、建设原则污水处理工程建设过程中应遵从下列原则:污水处理工艺技术方案,在达到治理要求的前提下应优先选择基建投资和运行费用少、运行管理简便的先进的工艺;所用污水、污泥处理技术和其他技术不仅要求先进,更要求成熟可靠;和污水处理厂配套的厂外工程应同时建设,以使污水处理厂尽快完全发挥效益;污水处理厂出水应尽可能回用,以缓解城市严重缺水问题;污泥及浮渣处理应尽量完善,消除二次污染;尽量减少工程占地。

第二章污水处理工艺方案选择一、工艺方案分析本项目污水以有机污染为主,BOD/COD=0.54 可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标,针对这些特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。

污水处理厂高程

污水处理厂高程

目录1.粗格栅 (1)2.提升泵房 (1)3.曝气沉砂池 (1)4.初沉池 (2)5.A2o工艺 (3)6.二沉池 (5)7.浓缩池 (6)8.脱水设备 (7)9.费用计算 (8)8. 水处理厂的平面布置 (8)9. 污水处理厂的高程布置2.1各构筑物的水头损失 (9)2.2水头损失的计算 (10)2.3各处理构筑物高程表 (12)10. 参考文献 (12)粗格栅1.取674 取10个格栅,每个n=67.4≈682.B=3.393.Ζ=0.38,h0=0.0316,h1=0.0414.H=0.7415.由B1²V/2=Qmax得,B1=1.52 L1=2.57,L2=L1/2=1.2856.H1=0.77.L=5.768.W=30m³/d 因为W>0.2m³/d,所以采用机械格栅清渣提升泵房1、泵的选择根据高程图选FS型泵:80FS-24,转速2900r/min,扬程24m,流量54m³/h,效率70%,进口管直径80mm,出口管直径65mm,允许吸上高度6m曝气沉砂池1.池子总有效容积V=1250.04m³2.水池断面面积A=104.173.池子总宽度B=34.72m取n=8,每个池子宽度b=34.72/8=4.34,宽深比b/h2=1.45,满足要求4.池长L=12m5.每小时所需空气量q=7500.246.沉砂斗容积V=36m³设每一分格有2个沉砂斗,共有16个沉砂斗,每个沉砂斗容积v0=36/16=2.37.沉砂斗上口宽a=2h3/tan55°+a1,a=1,h3=0.9 ,a=2.268.沉砂斗容积核算v 0=2.51(略大于2.3,符合要求)9.沉砂室高度本设计采用重力排砂,设池底坡度为0.05,坡向砂斗L2=3.64m10.沉砂池总高度H=h1+h2+h3,h1=0.3m H=0.3+3+1.12=4.42除沉池1. 沉淀池表面积A=5.72. 每天污泥量V=16.7m³3. 污泥斗容积h5=1.73mv1=9.64m³h4=0.8025m4. 池底可贮存污泥体积V2=297.5m³共可贮存体积为v1+v2=9.64+297.5=307.14>16.7(可见池内有足够容积)5. 沉淀池总高度H=6.33m6. 沉淀池周边高度h1+h2+h3=3.8m7. 径深比校核D/h2=35.7/3=11.9(合格)A2O工艺1.设计参数(公式参数均参照杜茂安主编,周彤主审《水处理工程设计计算》)水质COD BOD5TSS TP TN NH3-N 含量(mg/L)进水水质300 150 200 3 35 25≤60 ≤20 ≤20 ≤1 ≤20 ≤15 出水水质(国标)2.污泥负荷Ns=0.13kgBOD5(kg/MLSS*d),回流比R=1X r=106/SVI,SVI∈(100,150),取SVI=150,则X r=100000/150=6666.7mg/L混合液悬浮固体浓度X=R/(1+R)×X r=1/(1+1)×6666.7=3333.3mg/LTN去除率ηTN=(T No-T Ne)/T No=(35-15)/35=57.11%混合液回流比R内=ηTN/(1-ηTN)=0.5711/(1-0.5711)=133.15%∈(100,300)3.反应池容积取变化系数1.5,则Qmax=600000×1.5=900000t/d反应池容积V=(Q×So)/(N×X)=(900000×150)/(0.13×3333.3)=311541.6m3停留时间t=V/Q=311541.6/900000=0.346d=0.346×24=8.304h∈(8,11)取厌氧池:缺氧池:好氧池=1:1:4(1)则各段水力停留时间t R厌=t R缺=1/6×8.304=1.384ht R好=4/6×8.304=5.536h(2)各段面积V厌=V缺=1/6×311541.6=51923.6m3V好=4/6×311541.6m3=207694.4m3(3)校核N-P①好氧段=(Q×T No)/(X×V好)=(900000×35)/(3333.3×207694.4)=0.0455<0.05,符合要求。

污水处理厂高程设计参考

污水处理厂高程设计参考

精心整理1处理流程高程设计为使污水能在各处理构筑物之间通畅流动,以保证处理厂的正常运行,需进行高程布置,以确定各构筑物及连接管高程。

为降低运行费用和便于维护管理,污水在处理构筑物之间的流动已按重力流考虑为宜;污泥也最好利用重力流动,若需提升时,应尽量减少抽升次数。

为保证污泥的顺利自流,应精确计算处理构筑物之间的水头损失,并考虑扩建时预留的储备水头,高程图的比例与水平方向的比例尺一般不相同,一般垂直比例大,水平的比例小些[12]。

1.1主要任务(1)(2)(3)1.2(1)(2)(3)(4) 1.3沿程水头损失按下式计算:iL L RC v h f ==22(7.1)式中f h ——为沿程水头损失,m ;L ——为管段长度,m ;R ——为水力半径,m ;v ——为管内流速,m s ;C ——为谢才系数。

局部水头损失为:gv h m 22ξ=(7.2)式中ξ——局部阻力系数,查阅《给排水设计手册第一册》获得。

1.3.1构筑物初步设计时,构筑物水头损失可按经验数值计算。

污水流经处理构筑物的水头损失,主要产生在进7.1。

1.3.2沉砂池至厌氧池取一个进出口损失及一个90︒弯头损失,取局部阻力系数为:0.1+1.0+1.1=2.2。

管渠水力计算见表7.2。

表7.2污水管渠水力计算表1.3.3。

以0.751.3.4污泥处理构筑物高程布置 (1)污泥管道的水头损失管道沿程损失按下式计算:85.117.149.2⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=H f C v D L h (7.3) 管道局部损失计算:式中H C D v (2)污泥处理构筑物水头损失当污泥以重力流排出池体时,污泥处理构筑物的水头损失以各构筑物的出流水头计算,浓缩池一般取1.5m ,二沉池一般取1.2m 。

(3)污泥高程布置设计中污泥在二沉池到污泥浓缩池以及贮泥池到脱水车间得到提升,取脱水机房标高为53m ,贮泥池泥面相对地标为0.000m ,超高0.3m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。

作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。

在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。

布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。

构筑物之间如需布置管道时,其间距一般可取5—8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。

厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。

管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。

厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。

所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。

这些管线都要易于检查和维修。

污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。

辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。

它们是污水处理厂设计不可缺少的组成部分。

其建筑面积大小应按具体情况与条件而定。

有可能时,可设立试验车间,以不断研究与改进污水处理方法。

辅助建筑物的位置应根据方便、安全等原则确定。

如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。

化验室应远离机器间和污泥干化场,以保证良好的工作条件。

办公室、化验室等均应与处理构筑物保持适当距离,并应位于处理构筑物的夏季主风向的上风向处。

操作工人的值班室应尽量布置在使工人能够便于观察各处理构筑物运行情况的位置。

此外,处理厂内的道路应合理布置以方便运输;并应大力植树绿化以改善卫生条件。

应当指出:在工艺设计计算时,就应考虑它和平面布置的关系,而在进行平面布置时,也可根据情况调整构筑物的数目,修改工艺设计。

总平面布置图可根据污水厂的规模采用1∶200~1∶1000比例尺的地形图绘制,常用的比例尺为l:500。

图1为某甲市污水处理厂总平面布置图、主要处理构筑物有:机械除污物格栅井、曝气沉砂池、初次沉淀池与二次沉淀池(均设斜板)、鼓风式深水中层曝气池、消化池等及若干辅助建筑物。

该厂平面布置特点为:流线清楚,布置紧凑。

鼓风机房和回流污泥泵房位于暖气池和二次沉淀池一侧,节约了管道与动力费用,便于操作管理。

污泥消化系统构筑物靠近四氯化碳制造厂(即在处理厂西侧),使消化气、蒸气输送管较短。

节约了基建投资。

办公室。

生活住房与处理构筑物、鼓风机房、泵房、消化池等保持一定距离,卫生条件与工作条件均较好。

在管线布置上,尽量一管多用,如超越管、处理水出厂管都借道雨水管泄入附近水体,而剩余污泥、污泥水、各构筑物放空管等,又都与厂内污水管合并流人泵房集水井。

但因受用地限制(厂东西两恻均为河浜),远期发展余地尚感不足。

图2为乙市污水厂的平面布置图,泵站设于厂外。

主要构筑物有:格栅、曝气沉砂池、初次沉淀池、曝气池、二次沉淀池及回流污泥泵房等一些辅助建筑物。

湿污泥池设于厂外便于农民运输之处。

该厂平面布置的特点是:布置整齐、紧凑。

两期工程各自成系统,对设计与运行相互干扰较少。

办公室等建筑物均位于常年主风向的上风向,且与处理构筑物有一定距离,卫生、工作条件较好。

在污水流人初次沉淀池、曝气池与二次沉淀池时,先后经三次计量,为分析构筑物的运行情况创造了条件。

利用构筑物本身的管渠设立超越管线,既节省了管道,运行又较灵活。

第二期工程预留地设在一期工程与厂前区之间,若二期工程改用别的工艺流程或另选池型时,在平面布置上将受一定限制。

泵站与湿污泥池均设于厂外,管理不甚方便。

此外,三次计量增加了水头损失。

二污水处理厂的高程布置污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。

计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。

污水处理厂的水流常依靠重力流动,以减少运行费用。

为此,必须精确计算其水头损失(初步设计或扩初设计时,精度要求可较低)。

水头损失包括:(1)水流流过各处理构筑物的水头损失,包括从进池到出池的所有水头损失在内;在作初步设计时可按表1估算。

表1 处理构筑物的水头水损失构筑物名称水头损失(cm)构筑物名称水头损失(cm)格栅10~25生物滤池(工作高度为2m时):沉砂池10~25沉淀池:平流竖流辐流20~40 1)装有旋转式布水器270~280 40~50 2)装有固定喷洒布水器450~475 50~60 混合池或接触池10~30双层沉淀池10~20 污泥干化场200~350 曝气池:污水潜流入池25~50污水跌水入池50~150(2)水流流过连接前后两构筑物的管道(包括配水设备)的水头损失,包括沿程与局部水头损失。

(3)水流流过量水设备的水头损失。

水力计算时,应选择一条距离最长、水头损失最大的流程进行计算,并应适当留有余地;以使实际运行时能有一定的灵活性。

计算水头损失时,一般应以近期最大流量(或泵的最大出水量)作为构筑物和管渠的设计流量,计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。

设置终点泵站的污水处理厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以使处理后污水在洪水季节也能自流排出,而水泵需要的扬程则较小,运行费用也较低。

但同时应考虑到构筑物的挖土深度不宜过大,以免土建投资过大和增加施工上的困难。

还应考虑到因维修等原因需将池水放空而在高程上提出的要求。

在作高程布置时还应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。

污泥干化场、污泥浓缩池(湿污泥池),消化池等构筑物高程的决定,应注意它们的污泥水能自动排人污水人流干管或其他构筑物的可能性。

在绘制总平面图的同时,应绘制污水与污泥的纵断面图或工艺流程图。

绘制纵断面图时采用的比例尺:横向与总平面图同,纵向为1∶50—1∶100。

现以图2所示的乙市污水处理厂为例说明高程计算过程。

该厂初次沉淀池和二次沉淀池均为方形,周边均匀出水,曝气池为四座方形池,表面机械曝气器充氧,完全混合型,也可按推流式吸附再生法运行。

污水在入初沉池、曝气池和二沉池之前;分别设立了薄壁计量堰(2F 、3F 为矩形堰,堰宽0.7m ,1F 为梯形堰,底宽0.5m )。

该厂设计流量如下:近期avg Q =174L/s 远期avg Q =348L/sm ax Q =300L/s m a xQ =600L/s 回流污泥量以污水量的100%计算。

各构筑物间连接管渠的水力计算见表2。

处理后的污水排人农田灌溉渠道以供农田灌溉,农田不需水时排人某江。

由于某江水位远低于渠道水位,故构筑物高程受灌溉渠水位控制,计算时,以灌溉渠水位作为起点,逆流程向上推算各水面标高。

考虑到二次沉淀池挖土太深时不利于施工,故排水总管的管底标高与灌溉渠中的设计水位平接(跌水0.8m )。

污水处理厂的设计地面高程为50.00m 。

高程计算中,沟管的沿程水头损失按表2所定的坡度计算,局部水头损失按流速水头的倍数计算。

堰上水头按有关堰流公式计算,沉淀池、曝气池集水槽系底,且为均匀集水,自由跌水出流,故按下列公式计算:表2 连接管、渠的水力计算表B =4.09.0Q (1) 0h =1.25B (2)式中Q ——集水槽设计流量,为确保安全,常对设计流量再乘以1.2~1.5的安全系数(s m /3);B ——集水槽宽(m );0h ——集水槽起端水深(m )。

高程计算:高程(m)灌溉渠道(点8)水位 49.25 排水总管(点7)水位跌水0.8m 50.05 窨井6后水位沿程损失=0.001×390 50.44 窨井6前水位管顶平接,两端水位差0.05m 50.49 二次沉淀池出水井水位沿程损失=0.0035×100=0.35m 50.84 二次沉淀池出水总渠起端水位沿程损失=0.35-0.25=0.10 m 50.94 二次沉淀池中水位集水槽起端水深 =0.38m自由跌落 =0.10m堰上水头(计算或查表) =0.02m合计 0.50m 51.44 堰F 3后水位沿程损失=0.002810=0.03m局部损失=g294.00.62=0.28m 合计 0.31m 51.75 堰F 3前水位堰上水头=0.26m自由跌落=0.15m合计0.41m 52.16 曝气池出水总渠起端水位沿程损失=0.64-0.42=0.22m 52.38 曝气池中水位集水槽中水位=0.26m 52.64 堰F 2前水位堰上水头=0.38m自由跌落=0.20m合计 0.58m 53.22点3水位沿程损失=0.62-0.54=0.08m局都损失=5.85×g269.02=0.14m 合计 0.22m 53.44 初次沉淀池出水井(点2)水位沿程损失=0.0024×27=0.07m局部损失=2.46×g207.12=0.15m 合计 0.22m 53.66初次沉淀池中水位出水总渠沿程损失=0.35-0.25=0.10m集水槽起端水深 =0.44m自由跌落 =0.10m堰上水头=0.03m合计 0.67m 54.33 堰F 1后水位沿程损失=0.0028×11=0.04m局部损失=g294.00.62=0.28m 合计 0.32m 54.65 堰F 1前水位堰上水头=0.30m自由跌落=0.15m合计 0.45m 55.10 沉砂池起端水位沿程损失=0.48-0.46=0.02m沉砂池出口局部损失=0.05m沉砂池中水头损失=0.20m合计 0.27m 55.37格栅前(A 点)水位过栅水头损失0.15m 55.52m 总水头损失6.27m上述计算中,沉淀池集水槽中的水头损失由堰上水头、自由跌落和槽起端水深三部分组成,见图3。

计算结果表明:终点泵站应将污水提升至标高55.52m 处才能满足流程的水力要求。

根据计算结果绘制了流程图,见图4。

图3 集水槽水头损失计算示意 h 1堰上水头;h 2—自由跌落;h 0—集水槽起端水深;h 3—总渠起端水深 污泥流程的高程计算以图1所示的甲市污水处理厂为例。

相关文档
最新文档