南宁市高三上学期数学10月月考试卷D卷

合集下载

广西壮族自治区南宁市兴宁区南宁市第三中学2024-2025学年高一上学期10月月考(一)数学试题

广西壮族自治区南宁市兴宁区南宁市第三中学2024-2025学年高一上学期10月月考(一)数学试题

南宁三中2024~2025学年度上学期高一月考(一)数学试题一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,集合,则( )A .B .C .D .2.如果,则正确的是( )A .若a >b,则B .若a >b ,则C .若a >b ,c >d ,则a +c >b +dD .若a >b ,c >d ,则ac >bd3.设命题甲:,命题乙:,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .既充分又必要条件D .既不充分也不必要条件4.已知实数x ,y 满足,则的取值范围是( )A .B .C .D .5.若不等式的解集是或x >2},则a ,b 的值为( )A .,B .,C .,D .,6.二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是( )A .B .C .D .7.在R 上定义运算:a ⊕b =(a +1)b .已知1≤x ≤2时,存在x 使不等式(m -x )⊕(m +x )<4成立,则实数m 的取值范围为( ){}22M x x =-<<{1,0,1,2}N =-M N = {1,0,1}-{0,1,2}{}12x x -<≤{}12x x -≤≤,,,R a b c d ∈11a b<22ac bc >{}3|0x x <<{|||}12x x <-14,23x y -<<<<z x y =-{|31}z z -<<{|42}z z -<<{|32}z z -<<{|43}z z -<<-20x ax b ++>{3x x <-1a =6b =1a =-6b =1a =6b =-1a =-6b =-2y ax bxc =++ay x=()y b c x =+A.{m|-2<m<2}B.{m|-1<m<2}C.{m|-3<m<2}D.{m|1<m<2}8.若“”是“”的必要不充分条件,则实数的取值范围是()A.B.C.D.二、选择题:本题共3小题,每小题6分,共18分。

2024学年焦作市博爱县一中高三数学上学期10月考试卷及答案解析

2024学年焦作市博爱县一中高三数学上学期10月考试卷及答案解析

2025学年焦作市博爱一中高三年级(上)10月月考数 学考生注意:1.答题前,考生务必用黑色签字笔将自己的姓名、准考证号、座位号在答题卡上填写清楚;2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,在试卷上作答无效;3.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设函数()3f x x x =-,正实数,a b 满足()()2f a f b b +=-,若221a b λ+≤,则实数λ的最大值为( )A. 2+B. 4C. 2D. 【答案】A【解析】【分析】依题意可得33a b a b +=-,从而得到222211a b b a b a b ba λ+⎛⎫ ⎪⎝⎭+-≤=-,再令()1a t tb =>,最后利用基本不等式计算可得.【详解】因为()3f x x x =-,所以()3f a a a =-,()3f b b b =-,又()()2f a f b b +=-,所以332a a b b b -+-=-,即33a b a b +=-,因为0a >,0b >,所以330a b +>,所以0a b >>,所以331a b a b +=-,又221a b λ+≤,即3322a b a b a b λ++≤-,所以322b b a b a b λ≤+-,所以222211a b b a b a b b a λ+⎛⎫ ⎪⎝⎭+-≤=-,令a t b=,则1t >,所以2221112211111a t t b ba t t t t ++-+===++-⎛⎫ ⎪⎝⎭---()2121t t =-++-22≥+=+,当且仅当211t t -=-,即1t =时取等号,所以)22min 221b a b a b ⎛⎫+=+ ⎪-⎝⎭,所以2λ≤+,则实数λ的最大值为2+.故选:A【点睛】关键点点睛:本题关键是推导出331a b a b +=-,从而参变分离得到222b a a b bλ≤+-,再换元、利用基本不等式求出222b a b b a +-的最小值.2. 若函数1()1lg ([,100])10f x x x =+∈,则函数22[)()](()2f x f x F x -=的值域为( )A. 1[,16]2 B. []1,8 C. []2,16 D. []1,16【答案】D【解析】【分析】根据对数的单调性可得()[0,3]f x ∈,再根据二次函数的性质以及指数函数的性质即可求解.【详解】函数()1lg f x x =+在1[,100]10上单调递增,又111lg =1-1=01010f ⎛⎫=+ ⎪⎝⎭,()1001lg100123f =+=+=,故()[0,3]f x ∈,令22222[()]()[()]12lg [()]2()1[()1][0,4]t f x f x f x x f x f x f x =-=--=-+=-∈,而函数2t y =在[0,4]上单调递增,则1216t ≤≤,所以函数22[)()](()2f x f x F x -=的值域为[]1,16.故选:D.3. 设ABC V 内角A ,B ,C 所对应的边分别为a ,b ,c ,已知2sin sin sin ABC S A B C =△,若ABC V 的周长为1.则sin sin sin A B C ++=( )A 1 B. 12 C. 34 D. 2【答案】B【解析】【分析】根据正弦定理可得2sin ,2sin ,2sin a R A b R B c R C ===,利用面积公式可得1R =,再结合周长公式运算求解.【详解】由正弦定理2sin sin sin a b c R A B C===(R 为ABC V 的外接圆半径),可得2sin ,2sin ,2sin a R A b R B c R C ===,且(),,0,πA B C ∈,则sin ,sin ,sin A B C 均为正数,因为11sin 2sin 2sin sin 2sin sin sin 22ABC S ab C R A R B C A B C ==⨯⨯⨯=△,可得1R =,又因为ABC V 的周长为()2sin 2sin 2sin 2sin sin sin 1a b c R A R B R C A B C ++=++=++=,所以1sin sin sin 2A B C ++=.故选:B.4. 若复数()i ,z x y x y =+∈R且5i z -+=,则满足21x y --=z 的个数为( )A. 0B. 2C. 1D. 4【答案】A【解析】【分析】由5i z -+=z 对应的点在圆心为()5,1-的圆上,又21x y --=z 在复平面内的点到直线210x y --=的距离为,则由圆心()5,1-到直线210x y --=的距离为,即可得到复数z 的个数.【详解】因为i z x y =+,所以()()5i 51i z x y -+=-++,又5i z -+=()()22512x y -++=,即复数z 对应的点在圆心为()5,1-的圆上,.又21x y --=,即其几何意义为复数z 在复平面内的点到直线210x y --=,又圆心()5,1-到直线210x y --=,而>,所以满足条件的z 不存在.故选:A.5. 已知正方形ABCD 的边长为2,点P 在以A 为圆心,1为半径的圆上,则222PBPC PD ++的最小值为( )A. 18-B. 18-C. 19-D. 19-【答案】D【解析】【分析】不妨设()()()()1,1,1,1,1,1,1,1A B C D ----,()[)1cos ,1sin ,0,2πP θθθ++∈,根据两点间距离公式结合正弦函数的最值分析求解.【详解】不妨设()()()()1,1,1,1,1,1,1,1A B C D ----,因为1AP =,设()[)1cos ,1sin ,0,2πP θθθ++∈,则()()()()2222222222cos sin 2cos 2sin cos 2sin PB PC PD θθθθθθ++=+++++++++π8sin 8cos 19194θθθ⎛⎫=++=++ ⎪⎝⎭,因为[)0,2πθ∈,则ππ9π,444θ⎡⎫+∈⎪⎢⎣⎭,可知当π3π42θ+=,即5π4θ=时,πsin 4θ⎛⎫+ ⎪⎝⎭取得最小值1-,所以222PB PC PD ++的最小值为19-故选:D.【点睛】结论点睛:以(),a b 为圆心,半径为r 的圆上的任一点P 可设为()cos ,sin a r b r θθ++6. 在长方体1111ABCD A B C D -中,122AB AD AA ==,点M 是线段11C D 上靠近1D 的四等分点,点N 是线段1CC 的中点,则平面AMN 截该长方体所得的截面图形为( )A. 三角形B. 四边形C. 五边形D. 六边形【答案】C【解析】【分析】延长MN 交DC 的延长线于点F ,连接AF 交BC 于点H ,连接NH ,延长NM 交1DD 的延长线于点E ,连接AE 交11A D 于点G ,连接GM ,即可得到截面图形,再利用相似验证即可.【详解】延长MN 交DC 的延长线于点F ,连接AF 交BC 于点H ,连接NH ,延长NM 交1DD 的延长线于点E ,连接AE 交11A D 于点G ,连接GM ,则五边形AHNMG 为平面AMN 截该长方体所得的截面图形,不妨设1224AB AD AA ===,又点M 是线段11C D 上靠近1D 的四等分点,点N 是线段1CC 的中点,所以13C M =,11D M =,11C N NC ==,所以3CF =,又//CF AB ,所以43AB BH CF CH ==,又2BH CH +=,所以67CH =,又11D M ED DF ED =,即11172ED ED =+,解得113ED =,又11GD ED AD ED =,即1131223GD =+,解得127GD =,符合题意,即五边形AHNMG 为平面AMN 截该长方体所得的截面图形.故选:C7. 已知从1开始连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,的11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为,i j a ,比如3,29a =,4,215a =,5,423a =,若,2017i j a =,则i j +=( )A. 64B. 65C. 71D. 72【答案】D【解析】【分析】先计算出2017是第几个奇数,然后计算出2017在第几行,根据行数是奇数行或者偶数行,确定,i j 的值,从而求得i j +的值.【详解】数列1,3,5, 是首项为1,公差为2的等差数列,记其通项公式为21n b n =-,令212017n b n =-=,解得11009n =.宝塔形数自上而下,每行的项数是1,2,3, ,即首项是1,公差是1的等差数列,记其通项公式为n c n =,其前n 项和()12n n n S +=,4445990,1035S S ==,所以11009n =是第45行的数模糊45i =.第45行是奇数行,是从右边开始向左边递增,也即从991299111981b =⨯-=,即n b 的第991项,递增到第1009项,也即从右往左第19项.故从左往右是第4519127-+=项,所以27j =.所以452772i j +=+=.故选:D.【点睛】本小题主要考查新定义数列找规律,考查等差数列通项公式与前n 项和公式有关计算,考查分析、思考与解决问题的能力,属于中档题.8. 已知A 是函数()e 3xf x x =+图象上的一点,点B 在直线:30l x y --=上,则AB 的最小值是( )A. B. 3 C. D. 【答案】D【解析】【分析】设()e 3x f x x =+上一点()000,e 3x A x x +处的切线与:30l x y --=平行,由导数几何意义得到()001e 1x x +=,构造()()1e 1x t x x =+-,求导得到其单调性,从而得到故()t x 只有1个零点,即0,故00x =,|AB |的最小值为A (0,3)到直线:30l x y --=的距离,从而得到答案.【详解】设()e 3x f x x =+上一点()000,e 3x A x x +处的切线与:30l x y --=平行,则()()1e xf x x ='+,则()001e 1x x +=,令()()1e 1x t x x =+-,显然()00t =,则()()2e x t x x ='+,当2x <-时,()0t x '<,当2x >-时,()0t x '>,故()()1e 1xt x x =+-在(),2∞--上单调递减,在()2,∞-+上单调递增,当2x <-时,()0t x <恒成立,易知()()1e 1xt x x =+-只有1个零点,即0,所以00x =,故A 点坐标为(0,3),|AB |的最小值为A (0,3)到直线:30l x y --=故选:D 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9. 设函数()ln f x x =,则下列说法正确的是( )A. 函数()f x 的图象与函数()ln y x =-的图象关于x 轴对称B. 函数()f x 的图象关于y 轴对称C. 函数()1f x +的图象在()0,∞+上单调递增D. ()143f f ⎛⎫< ⎪⎝⎭【答案】BCD【解析】【分析】由函数图像变换得出新函数图像即可判断ABC ,由对数运算与对数函数单调性判断D.【详解】函数()ln f x x =的图象如下:对于A ,由函数图象变换可知,()ln y x =-图像如下:函数图象与原函数图象关于y 轴对称,故A 错误;对于B ,由函数图象变换可知,()f x 的图象如下:函数图象关于y 轴对称,故B 正确;对于C ,由函数图象变换可知,()1f x +的图象如下:函数图象在(0,+∞)上单调递增,故C 正确;对于D ,即11ln ln 333f ⎛⎫== ⎪⎝⎭,()4ln 4ln 4f ==,ln y x = 在定义域上单调递增,ln 3ln 4∴<,则()143f f ⎛⎫< ⎪⎝⎭,故D 正确;故选:BCD.10. 已知函数()()()2sin 2cos 1sin cos 1x x f x x x ++=++,则( )A. ()f x 的值域为⎡⎣B. ()f x 是周期函数C. ()f x 在π2π,π2π,4k k k ⎛⎫++∈ ⎪⎝⎭Z 单调递减D. ()f x 的图像关于直线π4x =对称,但不关于点π,14⎛⎫- ⎪⎝⎭对称【答案】BCD【解析】【分析】对于A ,利用三角恒等变换化简函数表达式为()()πsin cos 114f x x x x x ⎛⎫=++=++∈ ⎪⎝⎭R ,但是注意到sin cos 10x x ++≠,由此即可判断;对于B ,在定义域内,由诱导公式可得()()2πf x f x +=,由此即可判断;对于C ,在函数有意义的前提下,由正弦函数单调性、复合函数单调性即可判断;对于D ,利用代入检验法,并注意定义域是否相应的关于直线或点对称即可判断.【详解】对于A ,()()()2sin 2cos 12sin cos 2sin 2cos 2sin cos 1sin cos 1x x x x x x f x x x x x +++++===++++2(sin cos 1)sin cos 1sin cos 1x x x x x x ++=++++.因为sin cos 10x x ++≠,且πsin cos 4x x x ⎛⎫⎡+=+∈ ⎪⎣⎝⎭,所以()f x 的值域是)(10,1⎡-+⎣ ,A 错误.对于B ,()f x 的定义域{π|2π2D x x k =≠-+且}π2π,x k k ≠+∈Z ,对任意x D ∈恒有()()ππ2π2π1144x f x f x x ⎛⎫⎛⎫+=+++=++= ⎪ ⎪⎝⎭⎝⎭,B 正确.对于C ,()f x 在π2π,π2π,4k k k ⎛⎫++∈ ⎪⎝⎭Z 有意义,当π2π,π2π,4x k k k ⎛⎫∈++∈ ⎪⎝⎭Z 时,ππ5π2π,22π,44x k k k ⎛⎫+∈++∈ ⎪⎝⎭Z ,所以π4y x ⎛⎫=+ ⎪⎝⎭在π2π,π2π,4k k k ⎛⎫++∈ ⎪⎝⎭Z 单调递减,C 正确.对于D ,()max πππ11444f f x ⎛⎫⎛⎫=++=+=⎪ ⎪⎝⎭⎝⎭,π14y x ⎛⎫=++ ⎪⎝⎭的图象关于直线π4x =对称,且()f x 的定义域关于π4x =对称,所以()f x 的图像关于直线π4x =称.πππ11444f ⎛⎫⎛⎫-=-++= ⎪ ⎪⎝⎭⎝⎭,π14y x ⎛⎫=++ ⎪⎝⎭的图象关于点π,14⎛⎫- ⎪⎝⎭对称,但()f x 的定义域不关于点π,14⎛⎫- ⎪⎝⎭对称,所以()f x 的图象不关于点π,14⎛⎫-⎪⎝⎭对称,D 正确.故选:BCD .11. 已知直线l :()00x c c +=≠,O 为坐标原点,则( )A. 直线l 的倾斜角为120B. 过O 且与直线l 平行的直线方程为0x =C. 过点且与直线l 0y -=D. 若O 到直线l 的距离为1,则2c =【答案】BC【解析】【分析】根据直线l 方程,得直线的倾斜角,可判断A ;根据与已知直线平行或垂直的直线方程求法可判断BC ;根据点到直线的距离公式计算可判断D .【详解】直线l可化为:y =,所以斜率k =,得倾斜角为150 ,故A 错误;设与直线l平行的直线方程为0x n ++=,由直线经过原点,则0n =,即平行直线方程为0x +=,故B 正确;设与直线l0y m -+=,由直线方程经过点,所以m =,0y -=,故C 正确;O 到直线l的距离1d ==,得2c =,所以2c =±,故D 错误;故选:BC.三、填空题:本大题共3个小题,每小题5分,共15分.12. 已知函数()21tan 32f x x x θ=++,2πθ⎛⎫≠ ⎪⎝⎭在区间⎡⎤⎢⎥⎣⎦上的单调函数,其中θ是直线l 的倾斜角,则θ的所有可能取值区间为______.【答案】3ππ,π[46⎡⎫⋃⎪⎢⎣⎭,π)2【解析】【分析】求出函数的导数,根据函数的单调性得到关于x 的不等式,结合x 的范围,求出角的范围即可.详解】求导()tan f x x θ=+'()f x在区间⎡⎤⎢⎥⎣⎦上是单调函数,则有⎡⎤⎢⎥⎣⎦恒大于等于0或恒小于等于0,若()f x在区间⎡⎤⎢⎥⎣⎦上单调减,则()'0f x ≤,【在()11tan 0f θ+'=≤故tan 1θ≤-即3,4πθπ⎡⎫∈⎪⎢⎣⎭若()f x 在区间⎡⎤⎢⎥⎣⎦上单调增,则()'0f x ≥,tan 0f θ⎛=≥ '⎝,所以tan θ≥即,62ππθ⎡⎫∈⎪⎢⎣⎭综上所述,3,[46ππθπ⎡⎫∈⋃⎪⎢⎣⎭,)2π,故答案为3,[46πππ⎡⎫⋃⎪⎢⎣⎭,2π【点睛】本题考查了函数的单调性问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.13. 阅读不仅可以开阔视野,还可以提升语言表达和写作能力.某校全体学生参加的期末过程性评价中大约有20%的学生写作能力被评为优秀等级.经调查知,该校大约有30%的学生每天阅读时间超过1小时,这些学生中写作能力被评为优秀等级的占60%.现从每天阅读时间不超过1小时的学生中随机抽查一名,该生写作能力被评为优秀等级的概率为__________.【答案】135【解析】【分析】利用全概率公式可构造方程求得所求概率.【详解】设写作能力被评为优秀等级为事件A ,每天阅读时间超过1小时为事件B ,则()20%0.2P A ==,()30%0.3P B ==,()60%0.6P A B ==;()()()()()()()P A P AB P AB P A B P B P A B P B =+=+ ,()()()()()0.20.60.30.02110.30.735P A P A B P B P A B P B --⨯∴====-,即从每天阅读时间不超过1小时的学生中随机抽查一名,该生写作能力被评为优秀等级的概率为135.故答案为:13514. 对于数列{}n a ,定义11222n nn a a a H n-++⋅⋅⋅+=为{}n a 的“优值”,现已知某数列{}n a 的“优值”2nn H =,记数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S ,则2022S =__________.【答案】10112024【解析】【分析】根据题意可得112222n n n a a a n -++⋅⋅⋅+=⋅,结合通项与前n 项和之间的关系可得1n a n =+,再利用裂项相消法运算求解.【详解】因为112222n n n n a a a H n-++⋅⋅⋅+==,则112222n nn a a a n -++⋅⋅⋅+=⋅,若1n =,则12a =;若2n ≥,则()211212212n n n a a a n ---++⋅⋅⋅+=-⋅,可得()()111221212n n n n n a n n n ---=⋅--=+,即1n a n =+;可知12a =也满足1n a n =+,所以1n a n =+.可得()()111111212n n a a n n n n +==-⋅++++,所以2022111111111011233420232024220242024S =-+-+⋅⋅⋅+-=-=.故答案为:10112024.【点睛】关键点点睛:对于112222n n n a a a n -++⋅⋅⋅+=⋅,应理解为数列{}12n n a -的前n 项和为2n n ⋅,结合通项与前n 项和之间的关系分析求解.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()333xx a f x ⋅=+,且()()66log 3log 122f f +=.(1)求a 的值;(2)求不等式()22310f x x +->的解集.【答案】(1)2a = (2)()(),30,-∞-⋃+∞【解析】【分析】(1)由()333xx a f x ⋅=+,可得()()2f x f x a +-=,结合663log 122log =-,可得a ;(2)由(1)可得()f x 在R 上单调递增,结合()102f =,可解不等式()22310f x x +->.【小问1详解】因为()333x x a f x ⋅=+,所以()2213932333933x x x xa a af x --+⋅-===+++,则()()3323333x x x a af x f x a ⋅+-=+=++.又666log 3log 12log 362+==,所以663log 122log =-,所以()()66log 3log 12f f a +=,从而2a =.【小问2详解】由(1)可知()23623333x x xf x ⨯==-++,显然()f x 在R 上单调递增.因为()102f =,所以由()22310f x x +->,可得()()230f x x f +>,则230x x +>,解得3x <-或0x >,故不等式()22310f x x +->的解集为()(),30,∞∞--⋃+.16. 2023 年,某地为了帮助中小微企业渡过难关,给予企业一定的专项贷款资金支持.下图是该地 120 家中小 微企业的专项贷款金额(万元)的频率分布直方图 :(1)确定a 的值,并估计这 120 家中小微企业的专项贷款金额的中位数(结果保留整数) ;(2)按专项贷款金额进行分层抽样,从这 120 家中小微企业中随机抽取 20 家,记专项贷款金额在[]200,300 内应抽取的中小微企业数为m .①求m 的值 ;②从这m 家中小微企业中随机抽取 3 家,求这 3 家中小微企业的专项贷款金额都在[)200,250内的概率.【答案】(1)0.004a =,中位数158. (2)①5,②25.【解析】【分析】(1)根据频率分布直方图所有小矩形面积之和为1即可计算a ,设中位数为t ,则t 在[150,200)内,由(150)0.0060.50.45t -⨯=-即可计算;(2)①计算120家专项贷款金额在[200,250)内的中小微企业的企业数,根据抽样比计算m ;②根据频率比,计算专项贷款金额在[200,250)内和在[250,300)内的企业数,然后根据古典概型计算概率即可.【小问1详解】根据频率分布直方图所有小矩形面积之和为1得(0.0020.0030.0060.001)501a a +++++⨯=,解得0.004a =.设中位数为t ,则专项贷款金额在[0,150)内的评率为0.45,在[0,200)内的评率为0.75,所以t 在[150,200)内,则(150)0.0060.50.45t -⨯=-,解得158t ≈,所以估计120家中小微企业的专项贷款金额的中位数为158万元.【小问2详解】①由题意,抽样比为2011206=,专项贷款金额在[200,250)内的中小微企业共有12050(0.0040.001)30⨯⨯+=家,所以应该抽取13056⨯=家,即5m =.②专项贷款金额在[200,250)内和在[250,300)内的频率之比为4:1,故在抽取的5家中小微企业中,专项贷款金额在[200,250)内的有4545⨯=家,分别记为,,,A B C D ,专项贷款金额在[250,300)内的有1515⨯=家,记为E ,从这5家中小微企业中随机抽取3家的可能情况为,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE 共10种,其中这3家中小微企业的专项贷款金额都在[200,250)内的情况有,,,ABC ABD ACD BCD 共4种,所以所求概率为42105P ==.17. 在锐角三角形ABC 中,角,,A B C 的对边分别为,,a b c ,且满足sin cos sin2cos sin 1cos2A A BA A B+=-+.(1)若π3C =,求A 的大小;(2)求222c a b+的取值范围.【答案】(1)5π24A = (2)1,13⎛⎫ ⎪⎝⎭.【解析】【分析】(1)根据题中已知条件利用正切函数化简或逆用余弦函数两角和差公式从而可求解.(2)由(1)及正弦定理把边化成角,再利用辅助角公式及函数求导求出范围从而求解.【小问1详解】方法一:2tan 12sin cos πtan tan 1tan 2cos 4A B B A B A B +⎛⎫=⇒+= ⎪-⎝⎭,由ABC V 为锐角三角形且π3C =,所以π2π5π4324A B A A +==-⇒=.方法二:2sin cos 2sin cos sin cos cos sin sin cos sin 2cos cos A A B B BA B A B A A B B +==⇒+-()()()cos sin sin cos cos sin tan 1A B A B B A B A B A =-⇒-=-⇒-=.由ABC V 为锐角三角形且π3C =,所以π2π5π,4324B A B A A -=+=⇒=.【小问2详解】由(1)知()π3π,π244B AC A B A =+=-+=-,由正弦定理知:()22222222223π1sin 2sin 2cos 2sin 42ππsin sin sin sin 1cos 21cos 24222A A A c C a b AB A A A A ⎛⎫-+ ⎪⎝⎭===++⎛⎫⎛⎫++-+ ⎪ ⎪-⎝⎭⎝⎭+,所以()2222sin 2cos 22sin 2cos 2A A c a b A A+=++-.令sin 2cos 2A A t -=,则212sin 2cos 2A A t -=,所以()()()22222242222422t t c tf a b ttλλλ-+++--⎛⎫===-++= ⎪+++⎝⎭,其中2t λ=+.又由ABC V 为锐角三角形,ππ042B A <=+<,3ππππ024284C A A <=-<⇒<<,πsin2cos224t A A A ⎛⎫=-=- ⎪⎝⎭,因为ππ84A <<,所以ππ20,44A ⎛⎫-∈ ⎪⎝⎭,所以()π20,14t A ⎛⎫=-∈ ⎪⎝⎭,则()22,3t λ=+∈,()2210f λλ=-+<',所以()f λ在()2,3上单调递减,则()1,13f λ⎛⎫∈ ⎪⎝⎭.即222c a b+的取值范围是1,13⎛⎫ ⎪⎝⎭.18. 如图,在四棱锥P ABCD -中,AD BC ∥,AB AD ⊥,2AB AD ==,1BC =,PD ⊥平面PAB .(1)求证:AB ⊥平面PAD ;(2)求PC 的长;(3)若1PD =,求直线PA 与平面PCD 所成角的正弦值.【答案】(1)证明见解析 (2(3【解析】【分析】(1)根据PD ⊥平面PAB ,AB ⊂平面PAB ,通过线面垂直的性质定理得到PD AB ⊥,结合AB AD ⊥,利用线面垂直的判定定理得到AB ⊥平面PAD .(2)取AD 中点O ,连接PO ,CO ,在三角形PCO 中利用勾股定理求解.(3)以O 为坐标原点,OC ,OD为x ,y 轴的正方向,以过O 且与平面ABCD 垂直向上为z 轴的正方向建立空间直角坐标系,求出直线PA 的方向向量PA 和平面PCD 的法向量n,利用空间向量夹角余弦公式求解即可.【小问1详解】由PD ⊥平面PAB ,AB ⊂平面PAB ,得PD AB ⊥,又AB AD ⊥,且PD ⊂平面APD ,AD ⊂平面APD ,=PD AD D ⋂,所以AB ⊥平面APD .【小问2详解】取AD 中点O ,连接PO ,CO ,由∥BC AO ,且BC AO =,所以四边形ABCO 为平行四边形,所以OC AB ∥,由(1)AB ⊥平面APD 得OC ⊥平面APD ,由OP ⊂平面APD ,所以OC PO ⊥,由PD ⊥平面PAB ,AP ⊂平面PAB ,得PD AP ⊥,所以112OP AD ==,又2==OC AB ,所以PC ==.【小问3详解】以O 为坐标原点,OC ,OD为x ,y 轴的正方向,以过O 且与平面ABCD 垂直向上为z 轴的正方向建立空间直角坐标系.由1PD =,得POD为正三角形,所以10,2P ⎛ ⎝,又()0,1,0A -,()2,0,0C ,()0,1,0D ,所以()2,1,0CD =-,10,,2PD ⎛= ⎝,设平面PCD 的法向量(),,n x y z = ,则00n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩,即20102x y y z -+=⎧⎪⎨=⎪⎩,取2z =,得到平面PCD的一个法向量)2n =.又30,,2PA ⎛=- ⎝ ,设直线PA 与平面PCD 所成角的大小为θ,则sin cos ,n PA n PA n PAθ⋅====⋅所以直线PA 与平面PCD.19. 记n S 为数列{}n a 的前n 项和.已知314,22n n S na a a ==+.(1)求12,a a ,并证明{}n a 是等差数列;(2)从下面2个条件中选1个作为本小题的条件,证明:1212n b b b n +++>-.①2191122n n n n b a a +=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ ②2219121n n n n b a +++=. 【答案】(1)12a =,25a =,证明见解析 (2)证明见解析【解析】【分析】(1)由已知直接求12,a a ,由递推公式可得212n n n a a a +++=,根据等差数列的定义即可证明;(2)由(1)得31n a n =-,化简n b ,利用裂项相消法求和即可证明不等式.【小问1详解】解:在22n n S na =+中,令1n =得11122a a =+所以12a =,则3148a a ==,令3n =,得33322S a =+,即2103102a +=,所以25a =,下面证明{}n a 为等差数列.证明:由22n n S n a =+,得22n n S na n =+①,所以()()112121n n S n a n ++=+++②,两式②-①得()11221n n n a na n a ++-+=+,所以()1120n n n a na +-+=-③,当2n ≥时,()()10122n n n a n a --+-=-④,③-④得()()()1112110n n n n a n a n a +----+-=,即112n n n a a a +-+=,所以{}n a 是等差数列.【小问2详解】证明:由(1)得{}n a 是等差数列,且12a =,25a =,所以{}n a 的公差213d a a =-=,则()()1121331n a a n d n n =+-=+-⨯=-.若选:①所以()()222199411332121332222n n n n n n b n n a a n n +===-+⎛⎫⎛⎫⎛⎫⎛⎫---+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()()222244111111114141212122121n n n n n n n n -+⎛⎫===+=+- ⎪---+-+⎝⎭,所以121111111111121335572121242n b b b n n n n n ⎛⎫+++=+-+-+-++-=+- ⎪-++⎝⎭ ,因为*N n ∈,所以1111411024224242n n n n n n +⎛⎫+---=-=> ⎪+++⎝⎭,所以1212n b b b n +++>- 若选:②.所以()()22222222219121912191219124331912491243232n n n n n n n n n n b a n n n n n n +++++++++-=====-++++++()()3111132313132n n n n ⎛⎫>-=-- ⎪+--+⎝⎭所以1211111111111255881131322322n b b b n n n n n n ⎛⎫+++>--+-+-++-=-+>- ⎪-++⎝⎭ .。

广西南宁市第二中学2025届高三上学期10月月考数学试题(含答案)

广西南宁市第二中学2025届高三上学期10月月考数学试题(含答案)

广西南宁市第二中学2025届高三上学期10月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知复数z=1+ii,其中i为虚数单位,则|z|=A. 12B. 22C. 2D. 22.已知向量a=(1,3),b=(t,1),若(a−b)//b,则实数t的值为( )A. 13B. 3C. −1D. −1或23.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是( )A. 98B. 99C. 99.5D. 1004.已知圆柱和圆锥的高相等,底面半径均为2,若圆柱的侧面积是圆锥的侧面积的2倍,则圆柱的表面积为( )A. 8πB. 12πC. 16πD. 24π5.设等差数列{a n}的前n项和为S n,若S10−S3=35,a3+a10=7,则{a n}的公差为( )A. 1B. 2C. 3D. 46.若函数f(x)=x3+e x−ax在区间[0,+∞)上单调递增,则实数a的取值范围是( )A. [0,1)B. (0,1]C. [1,+∞)D. (−∞,1]7.已知f(x)=sin(x+π2),g(x)=cos(x−π2),则下列结论中不正确的是( )A. 函数y=f(x)g(x)的最小正周期为πB. 函数y=f(x)g(x)的最大值为12C. 函数y=f(x)g(x)的图象关于点(π4,0)成中心对称D. 将函数f(x)的图象向右平移π2个单位后得到函数g(x)的图象8.已知函数f(x)的定义域为R,f(x)−1为奇函数,f(x+2)为偶函数,则f(1)+f(2)+⋯+ f(16)=( )A. 0B. 16C. 22D. 32二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.对于直线l:(m−2)x+y−2m+1=0与圆C:x2+y2−6x−4y+4=0,下列说法正确的是( )A. l 过定点(2,3)B. C 的半径为9C. l 与C 可能相切D. l 被C 截得的弦长最小值为2710.已知0<β<α<π4,且sin (α−β)=13,tan α=5tan β,则( )A. sin αcos β=56 B. sin βcos α=112C. sin 2αsin 2β=536D. α+β=π611.已知f(x)=2x 3−3x 2+(1−a)x +b ,则下列结论正确的是( )A. 当a =1时,若f(x)有三个零点,则b 的取值范围是(0,1)B. 当a =1且x ∈(0,π)时,f(sin x)<f(sin 2x)C. 若f(x)满足f(1−x)=2−f(x),则a−2b =2D. 若f(x)存在极值点x 0,且f(x 0)=f(x 1),其中x 0≠x 1,则2x 0+x 1=32三、填空题:本题共3小题,每小题5分,共15分。

广西南宁市2023-2024学年高二上学期10月月考数学试题含解析

广西南宁市2023-2024学年高二上学期10月月考数学试题含解析

南宁市2023-2024(上)学期10月月考试题高二数学(答案在最后)考试时间120分钟,满分150分注意事项;1.答卷前,考生务必将自己的姓名、班级填写在答题卡上,贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,请将答题卡交回.一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若A ,B ,C ,D 为空间任意四个点,则AB D A D C +-=()A.CBB.BCC.BDD.AC【答案】A 【解析】【分析】由已知结合向量的加减运算法则即可直接求解.【详解】解:AB D A D C AB C A C B +-=+=.故选:A.2.已知直线l :x yC A B+=,则以下四个情况中,可以使l 的图象如下图所示的为()A.0A >,0B <,0C >B.0A <,0B <,0C >C.0A <,0B <,0C <D.0A >,0B <,0C <【答案】D 【解析】【分析】由直线方程求出直线在坐标轴上的截距,再根据图象列不等式可求得结果.【详解】由x yC A B+=,当=0x 时,y BC =,当=0y 时,x AC =,由图可知>0<0BC AC ⎧⎨⎩,所以当0C <时,0,0A B ><,当0C >时,0,0A B <>,所以ABC 错误,D 正确,故选:D3.()1,2,3a =-- ,()2,,6b x = ,若a //b,则x =()A.0B.4- C.4D.2【答案】B 【解析】【分析】根据向量共线的条件进行求解【详解】由a //b ,则R λ∃∈,使得b a λ= ,即2263x λλλ=-⎧⎪=⎨⎪=-⎩,解得2,4x λ=-=-.故选:B4.如图所示,平行六面体1111ABCD A B C D -中,11AB AD AA ===,1120BAD BAA∠=∠=︒,若线段1AC =,则1∠=DAA ()A.30°B.45°C.60°D.90°【答案】C 【解析】【分析】根据空间向量模公式,结合空间向量数量积的定义进行求解即可.【详解】∵11AC AB AD AA =++ ,∴22221111222=+++⋅+⋅+⋅ AC AB AD AA AB AD AB AA AD AA 111111*********cos 222⎛⎫⎛⎫=+++⨯⨯⨯-+⨯⨯⨯-+⨯⨯⨯∠= ⎪ ⎪⎝⎭⎝⎭DAA ,∴11cos 2∠=DAA ,160DAA ∠=︒,故选:C.5.直线cos 40x y α++=的倾斜角的取值范围()A.[)0,π B.ππ0,,π42⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭C.π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D.π0,4⎡⎤⎢⎥⎣⎦【答案】C 【解析】【分析】根据直线方程求出该直线的斜率,结合直线倾斜角与斜率的关系、余弦函数的性质进行求解即可.【详解】由cos 40cos 4x y y x αα++=⇒=--,所以该直线的斜率为cos k α=-,因为1cos 1α-≤≤,所以11k -≤≤,设该直线的倾斜角为β,于是有π1tan 104ββ-≤≤⇒≤≤,或3ππ4β≤<,故选:C6.已知向量()2a =,向量1,0,22b ⎛⎫= ⎪ ⎪⎝⎭ ,则向量a 在向量b 上的投影向量为()A.)B.()C.(D.1,0,44⎛⎫⎪ ⎪⎝⎭【答案】A 【解析】【分析】根据投影向量的公式求解即可【详解】a 在b上投影向量)21,0,212a b a b b b⎫⋅=⋅=⋅==⎪⎪⎭r rr r r r 故选:A7.从P 点发出的光线l 经过直线20x y --=反射,若反射光线恰好通过点(5,1)Q ,且点P 的坐标为(3,2)-,则光线l 所在的直线方程是()A.3x =B.1y =C.270x y --= D.210x y ++=【答案】A 【解析】【分析】先利用点(5,1)Q 关于直线20x y --=的对称点M 在入射光线上,再由P 、Q 两点的坐标,结合直线方程的两点式写出入射光线所在的直线方程,即为直线l 的方程.【详解】解:点(5,1)Q 关于直线20x y --=的对称点为(,)M a b 则115512022b a a b -⎧=-⎪⎪-⎨++⎪--=⎪⎩,解得33a b =⎧⎨=⎩,所以M (3,3)可得直线PM 方程为:3x =.故选:A .8.如图,四边形ABCD 和ABEF 都是正方形,G 为CD 的中点,60DAF ∠= ,则直线BG 与平面AGE 所成角的余弦值是()A.25B.5C.5D.5【答案】C 【解析】【分析】以A 为原点,以AD 、AB的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴建立空间直角坐标系,设2AB =,利用空间向量法可求得直线BG 与平面AGE 所成角的正弦值,再利用同角三角函数的基本关系可求得结果.【详解】以A 为原点,以AD 、AB的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴,建立如图所示的空间直角坐标系A xyz -.设2AB =,得()0,0,0A 、()2,1,0G 、()0,2,0B、(1,E ,则()2,1,0AG =,(1,AE = ,()2,1,0BG =-,设平面AGE 的法向量为(),,n x y z =,则2020n AG x y n AE x y ⎧⋅=+=⎪⎨⋅=++=⎪⎩ ,取1x =,则=2y -,z =,所以,平面AGE的一个法向量为(1,n =-,从而cos ,5n BG n BG n BG ⋅<>==⋅,故直线BG 与平面AGE5=.故选:C.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角;(3)建立空间直角坐标系,利用向量法求解,设a为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.二、多项选择题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知直线l 1:3x +y ﹣3=0,直线l 2:6x +my +1=0,则下列表述正确的有()A.直线l 2的斜率为6m-B.若直线l 1垂直于直线l 2,则实数m =﹣18C.直线l 1倾斜角的正切值为3D.若直线l 1平行于直线l 2,则实数m =2【答案】BD 【解析】【分析】利用直线l 1的方程,考虑斜率不存在的情况可判断选项A ,利用两条直线垂直的充要条件可判断选项B ,利用倾斜角与斜率的关系可判断选项C ,利用两条直线平行的充要条件可判断选项D .【详解】解:直线l 1:3x +y ﹣3=0,直线l 2:6x +my +1=0,当m =0时,直线l 2的斜率不存在,故选项A 错误;当直线l 1垂直于直线l 2,则有3×6+1×m =0,解得m =﹣18,故选项B 正确;直线l 1的斜率为﹣3,故倾斜角的正切值为﹣3,故选项C 错误;当直线l 1平行于直线l 2,则3601130m m -=⎧⎨⨯+≠⎩,解得m =2,故选项D 正确.故选:BD .10.已知直线1l :()10mx y m -+=∈R ,2l :230x y -+=,则下列结论正确的是()A.直线1l 过定点()0,1B.当12l l ⊥时,12m =-C.当12l l ∥时,2m =-D.当12l l ∥时,两直线1l ,2l 【答案】AB 【解析】【分析】不管m 为何值,当0x =时,1y =,即可判断A ;根据两直线垂直的判定即可求得m 的值,从而可判断B ;根据两直线平行的判定即可求得m 的值,从而可判断C ;结合C 选项可得两直线的方程,再根据两直线平行的距离公式即可判断D .【详解】不管m 为何值,当0x =时,1y =,所以直线1l 过定点()0,1,故A 正确;当12l l ⊥时,有()()2110m ⨯+-⨯-=,得12m =-,故B 正确;当12l l ∥时,有11213m -=≠-,得2m =,故C 错误;结合C 选项知当12l l ∥时,2m =,所以直线1l :210x y -+=,2l :230x y -+=,所以两平行线间的距离为255d =,故D 错误.故选:AB .11.在棱长为3的正方体1111ABCD A B C D -中,点P 在棱DC 上运动(不与顶点重合),则点B 到平面1AD P 的距离可以是()A.1B.C.2D.3【答案】BC 【解析】【分析】利用坐标法,设()(0,,0)03P t t <<,可得平面1AD P 的法向量(,3,)n t t =,进而即得.【详解】以D 为原点,1,,DA DCDD 分别为x ,y ,z 轴建立空间直角坐标系,则1(0,0,0),(3,0,0),(3,3,0),(0,0,3)D A B D ,设()(0,,0)03P t t <<,所以()()13,,0,3,0,3AP t AD =-=- ,(0,3,0)AB =,设(),,n x y z =为平面1AD P 的法向量,则有:130330n AP x ty n AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令3y =,可得(,3,)n t t = ,则点B 到平面1AD P的距离为AB nd n⋅==,因为03t <<,所以()2299,27t +∈,所以d ∈.故选:BC12.下列结论正确的是()A.若直线10ax y ++=与直线420x ay ++=B.点()5,0关于直线2y x =的对称点的坐标为(3,4)-C.原点到直线(21)310kx k y k ++--=D.直线122x y m m +=+与坐标轴围成的三角形的面积为2m m +【答案】BC 【解析】【分析】由题意利用两条直线平行的性质求得a 的值,再利用两条平行直线间的距离公式,计算求得结果判断A ;利用对称知识求出对称点判断选项B ;求出直线系经过的定点,利用两点间距离公式求解最大值即可判断C ;求解三角形的面积判断D .【详解】对于A , 直线10ax y ++=与直线420x ay ++=平行,显然0a ≠,所以4a a -=-,且21a-≠-,解得2a =-,故两条平行直线即为直线210x y --=与直线210x y -+=,255=,所以A 不正确;对于B ,假设点()5,0关于直线2y x =的对称点的坐标为(),a b ,则015205222b a b a -⎧=-⎪⎪-⎨++⎪=⨯⎪⎩,解得3a =-,4b =,即点()5,0关于直线2y x =的对称点的坐标为(3,4)-,故B 正确;对于C ,由(21)310kx k y k ++--=,得(23)10k x y y +-+-=,由2301x y y +-=⎧⎨=⎩,得1x y ==,故直线(21)310kx k y k ++--=过定点(1,1),所以原点到直线(21)310kx k y k ++--==C 正确;对于D ,令0x =,得22y m =+,令0y =,得x m =,所以直线122x y m m +=+与坐标轴围成的三角形的面积为21|22|||||2m m m m +⋅=+,故D 不正确.故选:BC .三、填空题(本大题共4个小题,每小题5分,共20分).13.直线l 的斜率k =x 2+1(x ∈R ),则直线l 的倾斜角α的范围为___.【答案】,42ππ⎡⎫⎪⎢⎣⎭.【解析】【分析】通过直线的斜率的范围,得到倾斜角的正切函数的范围,然后求解倾斜角的范围.【详解】解:因为直线l 的斜率k =x 2+1(x ∈R ),所以k ≥1,即tan 1α≥,又α∈[0,π),所以直线l 的倾斜角α的范围为,42ππ⎡⎫⎪⎢⎣⎭.故答案为:,42ππ⎡⎫⎪⎢⎣⎭.14.若(1,,2)λ= a ,(2,1,2)b =- ,()1,4,4c =,且,,a b c 共面,则λ=_______.【答案】1【解析】【分析】根据向量共面定理,可得到存在不同时为零的实数,m n ,使得c ma nb =+,列出方程组,解得答案.【详解】由于,,a b c共面,故存在不同时为零的实数,m n ,使得c ma nb =+,即124422m nm n m n λ=+⎧⎪=-⎨⎪=+⎩,解得1λ=,故答案为:115.已知直线3x+4y﹣3=0与6x+my+14=0相互平行,则它们之间的距离是_____.【答案】2【解析】【分析】由两直线平行,可先求出参数m 的值,再由两平行线间距离公式即可求出结果.【详解】因为直线3430x y +-=,6140x my ++=平行,所以3460m -⨯=,解得8m =,所以6140x my ++=即是3470x y ++=,由两条平行线间的距离公式可得d 2==.故答案为2【点睛】本题主要考查两条平行线间的距离,熟记公式即可求解,属于基础题型.16.唐代诗人李颀的《古从军行》中两句诗为:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题一—“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,怎样走才能使总路程最短?在平面角坐标系中,设军营所在位置为()2,3-,若将军从()0,3处出发,河岸线所在直线方程为10x y -+=.则“将军饮马”的最短总路程为________.【答案】【解析】【分析】求出点P 关于直线的对称点的坐标,设直线上任一点N ,当且仅当Q ,N ,P '三点共线时取最小值,可得最短距离.【详解】解:设()0,3P 点关于直线10x y -+=的对称点的坐标为(),P a b '则3102231a b b a+⎧-+=⎪⎪⎨-⎪=-⎪⎩解得:2,1a b ==,所以()2,1P ',设()2,3Q -,设直线10x y -+=上的点N ,则PN PN ='则QN PN QN P N QP ''+=+≥当且仅当Q ,N ,P '三点共线时取等号,而QP '==,所以最短结论为QP '=,故答案为:四、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知直线l 的方程为210x y +-=,点P 的坐标为()1,2-.(1)求过P 点且与直线l 平行的直线方程;(2)求过P 点且与直线l 垂直的直线方程.【答案】(1)230x y ++=(2)240x y --=【解析】【分析】(1)根据直线平行斜率相同设直线方程,再根据直线过P 点则可求出;(2)根据直线垂直斜率相乘为-1的关系设直线方程,再根据直线过P 点则可求出.【小问1详解】与直线l 平行的直线斜率与l 相同,方程设为20x y C ++=,因为过P 点,将P 点坐标代入,则()1220C +⨯-+=,解得C =3.∴过P 点且与直线l 平行的直线方程为230x y ++=.【小问2详解】根据直线与坐标轴不垂直的情况下,两垂直直线斜率相乘为-1,则与直线l 垂直的直线斜率为1212k -==-,设该直线方程为20x y b -+=,因为过P 点,将P 点坐标代入,则21(2)0b ⨯--+=,解得4b =-.∴过P 点且与直线l 垂直的直线方程为240x y --=.18.已知坐标平面内三点A (-1,1),B (1,1),()21C +.(1)求直线BC ,AC 的斜率和倾斜角;(2)若D 为ABC 的边AB 上一动点,求直线CD 的斜率和倾斜角α的取值范围.【答案】(1)直线BC π3;直线AC 的斜率3,倾斜角为π6(2)ππ63⎡⎤⎢⎥⎣⎦,【解析】【分析】(1)根据两点间的斜率公式计算斜率,再根据斜率与倾斜角的关系求解即可;(2)数形结合,根据斜率与倾斜角变化的规律分析即可.【小问1详解】由斜率公式得:1121BC k +-==-31132(1)3BC k +-==--因为斜率等于倾斜角的正切值,且倾斜角的范围是[)0,π,∴直线BC 的倾斜角为π3,直线AC 的倾斜角为π6;【小问2详解】如图,当直线CD 由CA 逆时针旋转到CB 时,直线CD 与线段AB 恒有交点,即D 在线段AB 上,此时k 由AC k 增大到BC k ,∴k 的取值范围为3⎢⎣⎦,倾斜角α的取值范围为ππ63⎡⎤⎢⎥⎣⎦,.19.已知空间三点(1,0,0)A ,(1,1,1)B ,(3,1,)C a -,求:(1)若AB BC ⊥ ,求实数a ;(2)若5a =,△ABC 的面积.【答案】(1)1a =;(2).【解析】【分析】(1)应用空间向量垂直的坐标表示列方程求参数a ;(2)应用空间向量夹角坐标表示求(4,1,5)AC =- 、(0,1,1)AB = 夹角余弦值,进而求正弦值,坐标公式求模长,应用三角形面积公式求面积即可.【小问1详解】由题设(0,1,1)AB = ,(4,0,1)BC a =-- ,又AB BC ⊥ ,所以10AB BC a ⋅=-= ,可得1a =.【小问2详解】由题意(3,1,5)C -,故(4,1,5)AC =- ,而(0,1,1)AB = ,所以|cos ,|||7||||AB AC AB AC AB AC ⋅<>== ,故27sin ,7AB AC <>= ,而||AC =||AB =127ABC S == .20.如图,在棱长为1的正方体1111ABCD A B C D -中,E ,F ,G 分别是11,,DD BD BB 的中点.(1)求EF 与CG 所成角的余弦值;(2)求点G 到平面CEF 的距离.【答案】(1)1515(2)63【解析】【分析】(1)建立空间直角坐标系,分别求得向量,EF CG 的坐标,由cos ,EF CG EF CG EF CG⋅=⋅ 求解;(2)求得平面CEF 的一个法向量(),,n x y z = ,由CG n d n ⋅=求解,【小问1详解】建立如图所示空间直角坐标系:则()11110,0,,,,0,0,1,0,1,1,2222E F C G ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1111,,,1,0,2222EF CG ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭ ,所以14cos ,EF CG EF CG EF CG ⋅==⋅ ,所以EF 与CG所成角的余弦值是15;【小问2详解】1110,1,,222CE CF ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面CEF 的一个法向量为(),,n x y z = ,则00CE n CF n ⎧⋅=⎨⋅=⎩ ,即10211022y z x y ⎧-+=⎪⎪⎨⎪-=⎪⎩,令1x =,则()1,1,2n = ,所以3CG n d n⋅== 21.在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)若2PA =,4=AD ,求直线CE 与平面ABCD 所成的角正切值.【答案】(1)证明见解析;(2)510【解析】【分析】(1)要证明线面平行,需证明线线平行,即转化为证明//EO PB ;(2)首先建立空间直角坐标系,利用线面角的向量公式求出正弦值,再求正切值即可【详解】(1)连结BD ,交AC 于点O ,连结OE ,,E O 分别是,PD BD 的中点,//EO PB ∴,PB ⊄ 平面AEC ,EO ⊂平面AEC ,//PB ∴平面AEC ;(2)如图,以点A 为原点,,,AB AD AP 为,,x y z 轴的正方向建立空间直角坐标系,()002P ,,,()0,4,0D ()4,4,0C ,()0,2,1E ,()0,0,2AP = ,()4,2,1CE =-- ,易知()0,0,2AP = 为平面ABCD 的一个法向量,设直线CE 与平面ABCD 所成的角θ,则()()04022121sin cos ,21221AP CE AP CE AP CEθ⋅⨯-+⨯-+⨯=<>==⨯ ,22105cos 1sin 21θθ=-=,sin 215tan cos 21102105θθθ==所以直线CE 与平面ABCD 所成的角正切值51022.请从①cos 2cos 0C C +=;②222sin sin sin sin sin 0A B C A B +--=;③()cos 2cos 0c B b a C +-=这三个条件中任选一个,补充在下面问题中,并加以解答(如未作出选择,则按照选择①评分.选择的编号请填写到答题卡对应位置上).(1)求角C 的大小;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅= ,求四边形ABCD 面积的最大值.【答案】(1)π3C =(2)326【解析】【分析】(1)选①,通过二倍角公式的化简求解;选②,通过余弦定理求解即可;选③,通过边角互化求解即可;(2)将条件2BA BD BA ⋅= 转化为π2BAD ∠=,然后结合基本不等式求取四边形面积的最大值;【小问1详解】选①:cos 2cos 0C C +=,根据二倍角公式化简得:22cos cos 10C C +-=,即()()2cos 1cos 10C C -+=,因为()0,π,C ∈解得:1cos 2C =或cos 1C =-(舍去),所以π3C =;选②222sin sin sin sin sin 0A B C A B +--=,根据正弦定理得:2220,a b c ab +--=根据余弦定理得:2221cos ,222a b c ab C ab ab +-===又因为()0,πC ∈,所以π3C =;选③()cos 2cos 0c B b a C +-=,根据正弦定理得:()()sin cos sin 2sin cos sin 2sin cos 0,C B B A C B C A C +-=+-=因为()()0,π,0,πC A ∈∈,sin 0A ≠,解得:1cos 2C =,所以π3C =;【小问2详解】2BA BD BA ⋅= ,根据数量积定义可知:cos BA BD BAD BA BA ⋅∠=⋅uu r uu u r uu r uu r ,所以cos BD BAD BA ∠=uu u r uu r ,则有:π2BAD ∠=,如图所示:1122ABCD S AB AD BC CD =⋅+⋅,根据正弦定理得:12πsin 3sin 3c R C ===111112222ABCD S AB AD BC CD BC CD =⋅+⋅=⨯+⋅,因为2224,3BC CD BD +==根据基本不等式解得:22423BC CD BC CD +=≥⋅,当且仅当63BC CD ==时,等号成立,即23BC CD ⋅≤,代入111112222ABCD S AB AD BC CD BC CD =⋅+⋅=+⋅,解得:26 ABCDS≤,。

广西南宁市兴宁区南宁市第三中学2024-2025学年高一上学期10月月考一语文试题(含答案)

广西南宁市兴宁区南宁市第三中学2024-2025学年高一上学期10月月考一语文试题(含答案)

南宁三中2024~2025学年度上学期高一月考(一)语文试题一、现代文阅读(34分)现代文阅读Ⅰ(本题共5小题,18分)阅读下面的文字,完成1~5题。

材料一:作为中华优秀传统文化的根脉和重要载体,汉字既集中体现了中华文明的特性,又参与塑造了这些特性。

汉字是世界上三大自源文字体系之一,也是唯一持续使用至今的文字体系。

汉字体系的悠久性、持续性和稳定性,使博大精深的中华文化得以记录、保存和传承,形成了世界上保存数量最多的古典文献。

汉字贯通古今,通过汉字典籍可以神交古人,理解和掌握中华文明的内核和精髓。

汉字本身也承载和保存了丰富的历史文化信息,通过准确揭示和科学阐释其中蕴藏的内涵,可以直接理解中华文化的核心,展示中华文化传承有序的历史。

汉字是中华文化传承的标志,这种传承是真正的中华基因。

无论历史长河经历多少曲折,汉字体系一直保持基本稳定,犹如定海神针,维系了中华文明的根脉,推进了中华文明的形成、发展和传播。

汉字是中华文化自主孕育的智慧结晶,彰显了中华民族锐意创新的精神。

汉字体系之所以能够绵延数千年而不绝,就在于能够不断适应时代的发展变化,完善文字构造方式,丰富字词表达。

汉字由产生之初的象形文字为主,发展出指事、会意、形声等造字方法,再到形声字为主,突破以形表意,体现出中华民族由形象思维到抽象思维的发展演变。

汉字形体由不规则的块状逐渐演变成正方形的进程,映照着中华文明发展进步的历程。

待到秦汉之际的“隶变”和后来发展出的楷书、行书等,汉字更加线条化、符号化,书写更加便捷。

汉字不是封闭的语言符号系统,而是不断接纳新事物,守正又创新。

近代以来,科技领域出现大量术语,对此,汉字创制了许多新词。

作为中华文明的重要载体,汉字鲜明体现了中华文明的创新性,而且有力推动了中华文明的有机更新。

习近平总书记指出,“中国的汉文字非常了不起,中华民族的形成和发展离不开汉文字的维系”。

在民族众多、疆域广袤的中华大地,汉字在统一思想文化观念方面发挥着不可替代的重要作用。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

2024-2025学年广西南宁市南宁二中高一(上)第一次月考数学试卷(10月份)(含答案)

2024-2025学年广西南宁市南宁二中高一(上)第一次月考数学试卷(10月份)(含答案)

2024-2025学年广西南宁二中高一(上)第一次月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设集合A={1,2,4},B={1,3,4},C={1,4,6},则(A∩B)∪C=( )A. {1,2,3}B. {1,2,6}C. {1,3,6}D. {1,4,6}2.已知命题p:“∀x≥0,x2−x+1≥0”,则它的否定为( )A. ∀x<0,x2−x+1<0B. ∃x<0,x2−x+1<0C. ∀x≥0,x2−x+1<0D. ∃x≥0,x2−x+1<03.如图,三个圆的内部区域分别代表集合A,B,C,全集为I,则图中阴影部分的区域表示( )A. A∩B∩CB. A∩C∩(∁I B)C. A∩B∩(∁I C)D. B∩C∩(∁I A)4.设x∈R,则“1x<1”是“x2>1”成立的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5.设集合A={x∈Z|62+x∈N},则集合A的真子集个数为( )A. 7个B. 8个C. 16个D. 15个6.不等式2x2−5x−3<0的一个必要不充分条件是( )A. −3<x<12B. −1<x<6 C. −12<x<0 D. −12<x<37.已知实数m,n,p满足m2+n+4=4m+p,且m+n2+1=0,则下列说法正确的是( )A. n≥p>mB. p≥n>mC. n>p>mD. p>n>m8.已知正数x,y满足x2+2xy−1=0,则3x2+4y2的最小值为( )A. 1B. 2C. 3D. 4二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.下列选项正确的是( )A. 若a >b >0,则ac 2>bc 2B. 若a <b <0,则a 2>ab >b 2C. 若a >b 且1a >1b ,则ab <0D. 若a >b >c >0,则a b <a +cb +c 10.已知关于x 的不等式ax 2+bx +c >0的解集为{x|x <−2或x >3},则下列说法正确的是( )A. a >0B. 关于x 的不等式bx +c >0的解集是{x|x <−6}C. a +b +c >0D. 关于x 的不等式cx 2−bx +a <0的解集为{x|x <−13或x >12}11.已知正数a ,b 满足4a +b +ab =12,则下列结论正确的是( )A. ab 的最大值为4B. 4a +b 的最小值为8C. a +b 的最小值为3D. 1a +1+1b 的最小值34三、填空题:本题共3小题,每小题5分,共15分。

广西壮族自治区南宁市第三中学2024-2025学年高一上学期10月月考物理试题(含解析)

广西壮族自治区南宁市第三中学2024-2025学年高一上学期10月月考物理试题(含解析)

南宁市第三中学2024-2025学年高一上学期10月月考物理试题一、选择题(共10小题,共46分.第1~7题,每小题4分,只有一项符合题目要求;第8~10题,每小题6分,有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分.)1.下列关于质点与参考系的说法,正确的是( ).A .2024年4月26日,神舟十八号载人飞船成功对接于空间站天和核心舱径向端口,研究空间站的姿态调整问题时,可以将其视为质点B .在巴黎残奥会田径项目混合接力决赛中,由周国华、王浩、文晓燕和胡洋组成的中国队打破该项目世界纪录,研究运动员的接棒动作时,可以将其看成质点C .2024年6月25日,嫦娥六号返回器携带来自月背的月球样品安全着陆在内蒙古四子王旗预定区域,研究嫦娥六号返回器进入大气层的着陆轨迹时,可以把它简化成质点D .2024年3月20日,鹊桥二号在海南文昌发射场成功发射升空,鹊桥二号变轨飞向环月轨道的过程中,以鹊桥二号为参考系,月球是静止不动的2.国庆假期,某同学随家人在民族广场观看完升旗仪式后,自驾到百色起义纪念馆参观,他们出发前用手机搜索驾驶路线,导航界面如图甲所示.其中推荐路线:全长233公里,用时2小时43分钟.在广昆高速上,他们看见了一块告示牌,告示牌如图乙所示,此时汽车仪表盘上显示.关于上述信息,下列说法正确的是( ).A .“233公里”是指位移B .“2小时43分钟”是指时刻C .告示牌上的“120”是指平均速率的上限值D .汽车仪表盘上的“”是指瞬时速率3.杭州第19届亚运会最引人注目的“黑科技”之一,是田径赛场上的“显眼包”——机器狗,如图甲所示.在赛前需要多次对机器狗进行调试,某次调试中,A 、B 、C 三只机器狗运动的位移时间图像如图乙所示.在时间内,对三个物体运动情况的描述正确的是( ).105km h 105km h 00tA .A 机器狗的运动轨迹为曲线B .B 机器狗做匀加速直线运动C .A 机器狗的平均速率大于C 机器狗的平均速率D .B 机器狗的平均速度大于C 机器狗的平均速度4.歼-20是我国自行研制的一款具备高隐身性、高机动性的隐形第五代制空战斗机.在执行某次飞行任务时,歼-20战斗机由静止开始做加速直线运动,当加速度不断减小至零时,战斗机刚好起飞.则此过程中该战斗机的( ).A .速度增大,位移减小B .速度增大,当加速度减小至零时,速度达到最大C .位移逐渐增大,当加速度减小至零时,位移将不再增大D .加速度方向与速度方向相反5.如图所示,一名消防员在演训中,沿着长为的竖立在地面上的钢管向下滑.他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零.将消防员视作质点,已知他下滑的总时间为,下滑过程中加速的时间是减速时间的3倍,下列说法正确的是( ).A .消防员加速过程与减速过程的平均速度相同B .消防员加速过程与减速过程中速度变化量相同C .消防员下滑过程中的最大速度为D .消防员加速过程的加速度大小为6.一列长为的火车在通过一座大桥时做匀减速直线运动,火车通过桥头和桥尾的时间分别是和,火车完全通过大桥的总时间为,其过程简化如图所示,则下列说法正确的是( ).A .火车头经过桥尾时的速度大小为B.火车头经过桥头时的速度大小为16m 4s 9m s 22m 400m 10s 20s 40s 28m 40mC .火车的加速度大小为D .大桥的长度为7.无人机因具有机动性能好、生存能力强、使用方便快捷等优点在生产和生活中广泛应用.某次无人机表演时,无人机以的初速度、的加速度做匀减速直线运动,直至上升到最高点,之后悬停在最高点.取竖直向上为正方向,则下列说法正确的是( ).A .无人机上升的最大高度为B .无人机在第内、第内、第内的位移大小之比为C .无人机在前内、前内、前内的位移大小之比为D .无人机上升第一个、第二个、第三个所用时间之比为8.做匀加速直线运动的物体,先后经过A 、B 两点时,其速度分别为v 和,经历的时间为t ,则( ).A .经A 、B 中点位置时的速度是B .从A 到B 所需时间的中点时刻的速度是C .AB 间的距离为D .在后一半时间所通过的距离比前一半时间通过的距离多9.甲、乙两车在平直公路上同向行驶,其中图像如图所示.已知两车在时并排行驶,则( ).A .在时,甲车在乙车后B .在时,甲车在乙车后C .两车另一次并排行驶的时刻是D .甲、乙车两次并排行驶的位置之间沿公路方向的距离为10.高铁站台上,5位旅客在各自车厢候车线处候车,若动车每节车厢长均为l ,动车进站时做匀减速直线运动.站在2号候车线处的旅客发现1号车厢经过他所用的时间为t ,动车停下时该旅客刚好在2号车厢门口(2号车厢最前端),如图所示,则( ).A .动车从经过5号候车线处的旅客开始到停止运动,经历的时间为B .动车从经过5号候车线处的旅客开始到停止运动,平均速度为C .1号车厢头部经过5号候车线处的旅客时的速度为20.5m s1040m03m s v =20.5m s a =-18m1s 2s 3s 11:9:71s 2s 3s 1:4:93m 3m 3m )1:1:-7v 5v 5v 5vt1.5vtv t -3s t =1s t =0t =7.5m 1st =40m3t 2lt4l tD.动车的加速度大小为二、非选择题(共5小题,共54分)11.(6分)(1)在探究小车速度随时间变化的规律的实验中,实验室提供了以下器材:电火花计时器、长木板轨道、小车、钩码、纸带、细绳、刻度尺、电源、秒表.其中在本实验中不需要的器材是__________.(2)小关进行了以下实验操作步骤,其中有误的步骤为( ).A .将电火花计时器固定在长木板的一端,并接在直流电源上B .将纸带固定在小车尾部,并穿过打点计时器的限位孔C .把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着适当重的钩码D .将小车移到靠近打点计时器的一端后,先释放小车,再接通电源(3)如图所示,小关用电火花计时器得到了表示小车运动过程的一条清晰纸带,将纸带上一点标记为A 点,然后每隔四个点(图上没画出)依次标为B 、C 、D 、E .由所给条件可判断这五个点中最靠近小车尾部的点是__________(选填A 、B 、C 、D 、E ),小关认为小车做的不是匀变速直线运动,小卷经过考虑后,并不同意小关的观点,小卷的依据是:__________.12.(10分)如图甲所示,某实验小组用自制滴水计时器,研究小车在水平桌面上的直线运动,滴水计时器可以等时间间隔滴下水滴.实验时,已知滴水计时器滴下21个小水滴用时(从第1滴落地开始计时,到第21滴落地结束计时);将该滴水计时器固定在小车上,用手轻推一下小车,使其向右运动.图乙中A 、B 、C 、D 、E 、F 、G 是桌面上连续7滴水的位置,、、、、、分别为相邻两点间的距离.(1)相邻两水滴滴下的时间间隔__________.(2)小组成员用毫米刻度尺测出了部分位移,由图丙可知__________cm .(3)下表列出了打点计时器打下B 、C 、E 、F 时小车的瞬时速度.若,请在表中填入打点计时器打下D 点时小车的瞬时速度.位置B C D E F 速度0.0990.093__________0.0800.074(4)以A 点为计时起点,在坐标图中画出小车的速度-时间关系图线.2l t 220V 10s 1x 2x 3x 4x 5x 6x T =4x =3 4.48cm x =()m s(5)根据题目中所给的物理量,写出小车的加速度大小的表达式__________(用、、、、、、T 表示).13.(10分)南宁市是全国文明城市,经常可以看到机动车礼让行人的文明行为.汽车以的速度在水平路面上匀速行驶,在距离斑马线处,驾驶员发现小朋友排着长的队伍从斑马线一端开始通过,立即刹车,最终恰好停在斑马线前.假设汽车在刹车过程中做匀减速运动且加速度不变,且忽略驾驶员反应时间.(1)求开始刹车到汽车停止所用的时间;(2)若路面宽,小朋友行走的速度,求汽车在斑马线前等待小朋友全部通过所需的时间;(3)假设驾驶员以超速行驶,恰好停在斑马线前,求汽车至少距离斑马线多远开始刹车.14.(12分)如图甲是一种可以向高层运送货物的云梯车,其简化结构如图乙所示.某次出厂调试中,载货平台要将货物运送到高为,轨道AB 与水平面的夹角,将货物固定在载货平台上,通过操控电机可使载货平台沿轨道AB 做直线运动.(已知)(1)若载货平台从A 点由静止开始以的加速度运动到B 点,求货物到达B 点的速度大小;(2)若载货平台从A 点由静止开始运动,到达B 点时的速度恰好为0,且载货平台加速和减速的最大加速度大小均为,最大速度为,求货物从A 点到达B 点的最短时间t .15.(16分)在水平长直公路上,A 车前方处有一辆B 车以的速度匀速前进,这时A 车从静止出发以的加速度追赶,则:(1)A 车出发后经多长时间距离B 车最远?追上B车之前两车最远相距是多少?a =1x 2x 3x 4x 5x 6x 136km h v =20m s =6m l =6m L =00.5m v =254km h v =24m h =53θ=︒sin 530.8︒=211m s 60a =B v 220.5m s a =m 1m s v =15m 10m s 210m(2)A 车出发后经多长时间追上B 车?此时A 车的速度大小是多少?(3)当A 车刚追上B 车时,A 车司机立即刹车,使A 以的加速度做匀减速直线运动,两车再经过多长时间第二次相遇?24m s南宁市第三中学2024-2025学年高一上学期10月月考物理试题参考答案1.【答案】C【详解】A .研究空间站的姿态调整问题时,空间站的形状、大小不能忽略不计,不可以将其视为质点,A 错误;B .研究运动员的接棒动作时,运动员的体形不能忽略不计,所以不可以将其看成质点,故B 错误;C .研究嫦娥六号返回器进入大气层的着陆轨迹时,嫦娥六号返回器的形状、大小可以忽略,可以把它简化成质点,故C 正确;D .鹊桥二号变轨飞向环月轨道的过程中,以鹊桥二号为参考系,月球是运动的,故D 错误.故选C .2.【答案】D【详解】A .“233公里”是路径的长度,是指路程,A 错误;B .“2小时43分钟”是运动的总时间,是指时间,B 错误;C .高速路段最高限速,是瞬时速率不能超过,所以“”是指瞬时速率的上限值,C 错误;D .汽车仪表盘上的“”是指瞬时速率,D 正确.故选D .3.【答案】C【详解】A .图象只能表示直线运动,故做直线运动,故A 错误;B .图象的斜率等于速度,则B 机器狗做匀速直线运动,故B 错误;C .由图看出A 机器狗的路程比C 机器狗的大,二者时间相等,所以A 机器狗的平均速率大于C 机器狗的平均速率,C 正确;D .B 机器狗和C 机器狗的位移相同,时间相同,故平均速度一定相同,故D 错误.故选C .4.【答案】B 【详解】B .虽然加速度在不断减小,但战斗机的速度始终在增加,且当加速度减小为0时,速度达到最大值,故B 正确;AC .战斗机始终做加速直线运动,位移逐渐增大,当加速度减小为0时,速度达到最大值,此后只要战斗机的速度方向不反向,则其位移将始终增大,AC 错误;D .根据以上分析可知,由于此过程中该战斗机从静止开始做加速直线运动,加速度方向与速度方向相同,故D 错误.故选B .5.【答案】A【详解】BC .根据题意有,,可得,,设消防员下滑过程中的最大速度为v ,则有,解得,120km h 120km h 120km h 105km h x t -4s t t t +==减总加3t t =减加3s t =加1s t =减16m 22v vt t L +==减加8m v =消防员加速过程的速度变化量为,消防员减速过程的速度变化量为,可知消防员加速过程与减速过程中速度变化量大小相等,方向相反,故BC 错误;D .消防员加速过程的加速度大小为,故D 错误;A .消防员加速过程与减速过程的平均速度均为,故A 正确.故选A .6.【答案】A【详解】设火车头经过桥头时的速度大小为,大桥的长度为x ,火车的加速度大小为a ,则有火车的长度,大桥的长度为,又有,其中,,,,联立解得,,,火车头经过桥尾时的速度大小为,BCD 错误,A 正确.故选A .7.【答案】B【详解】A .无人机做匀减速直线运动的时间,上升的高度,故A 错误;B .利用逆向思维,将无人机竖直向上的匀减速直线运动视为从最高点做初速度为零的匀加速直线运动,无人机做匀减速直线运动的第内、第内、第内的位移大小之比等于做匀加速直线运动的第内、第内、第内的位移大小之比,为,故B 正确;C .由A 选项可知,无人机在内、内、内的位移大小之比为,即,故C 错误;D .由以上分析可知,无人机的位移为,运用逆向思维,将无人机的运动看成初速为零的匀加速直线运动,根据初速度为零的匀加速直线运动规律可知,无人机下降第一个、第二个、第三个所用时间之比为,则可知无人机上升第一个、第二个、第三个所用的时间之比为,故D 错误.故选B .8.【答案】AD【详解】A .设A 、B 中点的位置为C ,设,物体经过A 、B 中点位置C 时的速度为,08m s v v ∆=-=08m s v v '∆=-=-8m s 3v a t ==加加4m s 2vv ==0v 201112L v t at =-()()202212x v t t a t t =---2012x L v t at +=-110s t =220s t =40s t =400m L =044m v =20.8m s a =720m x =()0228m s v v a t t =--=006s v t a-==2009m 2v h a -==1s 2s 3s 6s 5s 4s 11:9:71s 2s 3s ()()11:119:1197+++11:20:279m 3m 3m 3m )1:1:-3m 3m 3m ):1:1-AC BC x ==1v根据速度与位移关系公式有,,联立解得,故A 正确;B .从A 到B 所需时间的中点的速度等于AB 间的平均速度,故B 错误;C .A 、B 的间距,故C 错误;D .前一半时间通过的距离,后一半时间所通过的距离,所以后一半时间所通过的距离比前一半时间通过的距离多,故D 正确.故选AD .9.【答案】CD【详解】B .图像中,图线与坐标轴围成的面积代表物体位移,已知两车在时并排行驶,在内有,,所以时甲车在前,距乙车的距离为,故B 错误;AC .在内有,,此时甲乙两车相距,所以另一次并排行驶的时刻为,故A 错误,C 正确;D .甲、乙车两次并排行驶的位置之间沿公路方向的距离为,故D 正确.故选CD .10.【答案】BC【详解】A .采用逆向思维可知,动车从静止开始反向匀加速,1号车厢车头从1号候车线到2号候车线的位移与它从2号候车线到5号候车线的位移之比为,则两部分运动用时相等,所以动车从经过5号候车线处的旅客开始到停止运动,经历的时间为,故A 错误;B .动车第1节车厢最前端从经过5号旅客到停下总位移为,用时,则平均速度为,故B 正确;C .由,解得,故C 正确;D .由以上逆向思维可知,则加速度,D 错误.故选BC .11.【答案】(1)秒表(1分)(2)AD (2分)2212v v ax -=()22172v v ax -=15v v =2t ⎛⎫⎪⎝⎭2742t v v v v +==742v vx vt t vt +===145224v v t s vt +=⨯=24711224v v t s vt +=⨯=21 1.5s s s vt ∆=-=v t -3s t =03s ~2211203m 45m 222x a t ==⨯⨯=甲甲221120101033m 52.5m 222x v t a t -=+=⨯+⨯⨯=乙乙乙0t =07.5m x x x =-=乙甲01s ~2211201m 5m 222x a t ''==⨯⨯=甲甲221120101011m 12.5m 222x v t a t -'''=+=⨯+⨯⨯=乙乙乙00m x x x x ∆=--=乙甲1s t =40m L x x '=-=乙乙1:32t 4l 2t 422l lv t t==502v v +=54lv t=212l at =22la t=(3)E (1分)纸带上相邻等时位移之差基本为定值(2分)【详解】(1)时间可以由纸带上的点数和打点频率算出,故不需要秒表.(2)A .将电火花计时器固定在长木板的一端,并接在交变电源上,故A 错误;B .将纸带固定在小车尾部,并穿过打点计时器的限位孔,故B 正确;C .把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着适当重的钩码,故C 正确;D .拉住纸带,将小车移到靠近打点计时器的一端后,先接通电源,再放开纸带,故D 错误.选错误的,故选AD .(3)小车在钩码的拉动下从静止开始加速,相等时间内位移将增大,因此可知这五个点中最先打下的点是E 点,即E 点是靠近小车尾部的点.小车在相邻相等时间间隔内距离变化量分别为,,,可知基本相等,因此可以判断出小车在做匀变速直线运动.12.(每空2分)【答案】(1)0.5(2)4.17(4.16~4.19均可)(3)0.087(或0.086)(4)见详解(5)【详解】(1)相邻两水滴滴下的时间间隔.(2)由刻度尺可读出.(3)由匀变速直线运动中间时刻的瞬时速度等于这段时间内的平均速度知.(4)小车的速度-时间关系图线如图所示(5)根据逐差法有,得.13.【答案】(1) (2)(3)【详解】(1)汽车开始刹车的初速度为,(1分)220V 1180144mm 36mm s ∆=-=2144109mm 35mm s ∆=-=310973mm 36mm s ∆=-=()()()12345623x x x x x x T ++-++10s 0.5s 20T ==4 4.17cm x =340.087m 2D x x v T+==()()()21234563x x x x x x a T ++-++=⋅()()()12345623x x x x x x a T ++-++=4s20s45m136km h 10m s v ==根据题意可得,(2分)解得开始刹车到汽车停止所用的时间为.(1分)(2)小朋友全部通过的时间为,(1分)汽车在斑马线前等待小朋友全部通过所需要的时间为.(1分)(3)汽车刹车时的加速度大小为,(1分)假设驾驶员以超速行驶,恰好停在斑马线前,则有,根据速度位移关系可得,(2分)解得.(1分)14.【答案】(1)(2)【详解】(1)AB 间距离为,(1分)由,(2分)可得货物到达B 点的速度大小.(2分)(2)货物先匀加速后匀速最后匀减速用时最短,加速和减速时间相同,(1分),(2分)加速和减速通过的位移,(2分)匀速的时间,(1分)整个过程的总时间.(1分)15.【答案】(1), (2), (3)【详解】(1)当两车速度相等时,距离最远,设时两车速度相等,112v s t =14s t =2024s L l t v +==2120s t t t ∆=-=2112.5m v a t ==254km h v =254km h 15m s v ==22202v ax -=-245m x =1m s 32s 30m sin 53AB h L ==︒212B AB v a L =1m s B v =m 1224s v t a ==2m 1222m 2v x a ==12m28s AB L x t v -==1232s t t t =+=1s 20m 3s 30m 11.25s1t则有,(2分)两车相距最远的距离为.(3分)(2)设A 车经过t 时间追上B 车,则有,(3分)解得或(舍去),(1分)此时A 车的速度为.(1分)(3)A 车停下来需要的时间为,(1分)假设A 车停止前两车再次相遇,设两车相遇后再次相遇经过时间为,则有,(2分)代入数据解得或(舍去),(1分)则两车再次相遇时A 车已经停止,假设不成立;设两车相遇后再次相遇经过时间为,则有,(1分)解得.(1分)【另解】(1)当两车速度相等时,距离最远,设时两车速度相等,则有,(2分)对B 车,(1分)对A 车,(1分)两车相距最远的距离为.(1分)(2)设A 车经过t 时间追上B 车,则对B 车,(1分)111s B v t a ==21011120m 2B x v t x a t ∆=+-=20112B v t x a t +=3s t =1s t =-130m s v a t ==27.5s v t a '==2t 2222212B v t vt a t =-210s t t '=>20t =3t 32B v v t t '=311.25s t =1t 111s B v t a ==110m B B x v t ==21115m 2A x a t ==020mB A x x x x ∆=+-=B B x v t '=对A 车,(1分)追上,则有,(1分)解得或(舍去),(1分)此时A 车的速度为.(1分)(3)A 车停下来需要的时间为,(1分)此时A 车位移,(1分)B 车位移,(1分)因',故A 车已停车,等着B 车来追.(1分)B 车需再行驶,(1分)设两车相遇后再次相遇经过时间为,则有.(1分)2112A x a t '=0B A x x x ''+=3s t =1s t =-130m s v a t ==27.5s v t a '==112.5m 2A v x t '''==75mB B x v t '''==B A x x ''''<203.75s A B x x t v ''''-==3t 3211.25s t t t '=+=。

广西南宁市第二中学2024--2025学年上学期九年级10月月考数学试卷

广西南宁市第二中学2024--2025学年上学期九年级10月月考数学试卷

广西南宁市第二中学2024--2025学年上学期九年级10月月考数学试卷一、单选题1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是()A.B.C.D.2.下面图形中的角,是圆周角的是()A. B.C.D.3.5G是第五代移动通信技术的简称,是最新一代蜂窝移动通信技术,它将带领人类进入新智能时代,5G网络以每秒1048576KB以上的速度传输数据,将数据“1048576”用科学记数法表示为()A.5⨯1.04857610⨯B.510.4857610C.6⨯1.048576101.04857610⨯D.74.如图,小明从A入口进入博物馆参观,参观后可从B,C,D三个出口走出,他恰好从C 出口走出的概率是()A .14B .13C .12D .235.在一元二次方程2230x x --=中,常数项是( ) A .3B .2-C .3-D .06.如图,CD 是O e 的直径,点A 、B 在O e 上.若»»AC BC=,36AOC ∠=o ,则D ∠=( )A .9oB .18oC .36oD .45o7.关于二次函数2(2)6y x =-+的图象,下列结论不正确的是( ) A .开口向上B .对称轴是2x =C .与y 轴交于点()0,6D .当2x <时,y 随x 的增大而减小8.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,20ABD ∠=o ,则BCD ∠的度数是( )A .90°B .100°C .110°D .120°9.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( ) A .()22001242x += B .()22001242x -= C .()20012242x +=D .()20012242x -=10.苯分子的环状结构是由德国化学家凯库勒提出的,随着研究的不断深入,发现苯分子中的6个碳原子与6个氢原子均在同一平面,且所有碳碳键的键长都相等(如图1),组成了一个完美的六边形(正六边形),图2是其平面示意图,则1∠的度数为( )A .130︒B .120︒C .110︒D .60︒11.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGCE的值为( )AB C D 12.如图,抛物线21462y x x =-+与y 轴交于点A ,与x 轴交于点B ,线段CD 在抛物线的对称轴上移动(点C 在点D 下方),且3CD =.当A D B C +的值最小时,点C 的坐标是( )A .()8,6B .()8,3C .()4,2-D .()4,1二、填空题13.在平面直角坐标系中,若点()2,1P -与点()2,Q m -关于原点对称,则m 的值是.14x 的取值范围是 . 15.圆弧的半径为2,弧所对的圆心角为120°,则该弧的长度为.16.如图:一把折扇的骨架长是30厘米,扇面宽为20厘米,完全展开时圆心角为135°,扇面的面积为平方厘米.17.如图,O e 的直径AB =AM ,BN 分别是它的两条切线,DE 与O e 相切于点E ,并与AM ,BN 分别交于D ,C 两点,AD x =,BC y =,则y 关于x 的函数表达式为.18.第二十四届国际数学家大会会微的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形()DAE ABF BCG CDH V V V V ,,,和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .若EBF △的内切圆半径为1,小正方形EFGH 的面积为16,则大正方形ABCD 的面积为.三、解答题19.计算:()()()22934-+÷-⨯-. 20.解方程:x 2+10x +9=0.21.如图,在平面直角坐标系xOy 中,ABC V 的三个顶点分别为()3,4A -,()5,1B -,()1,2C -.(1)画出ABC V 关于原点对称的111A B C △,并写出点1A 的坐标;(2)画出ABC V 绕原点逆时针旋转90°后的222A B C △,并写出点2C 的坐标.22.如图,某校食堂实行统一配餐,为方便学生取餐,食堂开设了4个窗口,分别记为①、②、③、④,学生可以从这4个窗口中任意选取一个窗口取餐.(1)若小明去食堂用餐时4个窗口都没有人,则小明选择在②号窗口取餐的概率是________; (2)若小红和小丽-起去食堂用餐时4个窗口都没有人,求小红和小丽在相邻窗口取餐的概率.(请用画树状图或列表等方法说明理由)23.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元. (1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅? 24.【综合与实践】 主题:制作圆锥形生日帽. 素材:一张圆形纸板、装饰彩带.步骤1:如图1,将一个底面半径为r 的圆锥侧面展开,可得到一个半径为l 、圆心角为n ︒的扇形.制作圆锥形生日帽时,要先确定扇形的圆心角度数,再度量裁剪材料. 步骤2:如图2,把剪好的纸板粘合成圆锥形生日帽,(1)现在需要制作一个10cm r =,30cm l =的生日帽,请帮忙计算出所需扇形纸板的圆心角度数;(2)为了使(1)中所制作的生日帽更美观,要粘贴彩带进行装饰,其中需要粘贴一条从点A 处开始,绕侧面一周又回到点A 的彩带(彩带宽度忽略不计),求彩带长度的最小值. 25.如图,抛物线2y x bx c =-++的图象与x 轴正半轴交于点A (3,0),与y 轴交于点B (0,3)直线l 的函数表达式为6y x =-+, (1)求抛物线的函数表达式;(2)动点P 在抛物线AB 段上运动,经过点P 作y 轴的平行线交直线l 于点Q ,求线段PQ 的取值范围.26.定义:同一个圆中,互相垂直且相等的两条弦叫做等垂弦,等垂弦所在直线的交点叫做等垂点.(1)如图1,AB AC ,是O e 的等垂弦,OD AB OE AC ⊥⊥,,垂足分别为D ,E .求证:四边形ADOE 是正方形;(2)如图2,AB 是O e 的弦,作OD OA OC OB ⊥⊥,,分别交O e 于D ,C 两点,连接CD .求证:AB ,CD 是O e 的等垂弦;(3)已知O e 的半径为10,AB ,CD 是O e 的等垂弦,P 为等垂点.若3=AP BP ,求AB 的长.。

2025届上师大附中高三数学上学期10月考试卷一附答案解析

2025届上师大附中高三数学上学期10月考试卷一附答案解析

2025届上师大附中高三10月月考数学试卷一一、填空题(1-6每题4分,7-12每题5分,共54分)1.函数()f x =的定义域为__.【答案】(0,1].【解析】【分析】由函数有意义需要的条件,求解函数定义域【详解】函数的意义,有0110x x≠⎧⎪⎨-≥⎪⎩,解得01x <≤,即函数()f x =定义域为(0,1].故答案为:(0,1]2. 已知0a >=________.【答案】34a 【解析】【分析】根式形式化为分数指数幂形式再由指数运算化简即可.1113322224a a a a ⎛⎫⎛⎫=⋅== ⎪ ⎪⎝⎭⎝⎭.故答案为:34a .3. 已知幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,求(3)f -=_________.【答案】19【解析】【分析】设幂函数为(),R f x x αα=∈,根据题意求得2α=-,得到2()f x x -=,代入即可求解.【详解】设幂函数为(),R f x x αα=∈,因为幂函数()f x 的图象经过点13,9⎛⎫ ⎪⎝⎭,可得139α=,解得2α=-,即2()f x x -=,所以21(3)(3)9f --=-=.故答案为:19.4. 若1sin 3α=,则cos(2)πα-=____.【答案】79-【解析】【分析】原式利用诱导公式化简后,再利用二倍角的余弦函数公式变形,将sin α的值代入计算即可求出值.【详解】因为1sin 3α=,所以()2227cos(2)cos 212sin12sin 199παααα-=-=--=-+=-+=-.故答案为: 79-5. 已知集合{|3sin ,}M y y x x =∈=R ,{|||}N x x a =<,若M N ⊆,则实数a 的取值范围是___________.【答案】(3,)+∞【解析】【分析】先求出集合M ,N ,再由M N ⊆可求出实数a 的取值范围【详解】解:由题意得{}{|3sin ,}33M y y x x y y ===-≤∈≤R ,{}{|||}N x x a x a x a =<=-<<,因为M N ⊆,所以3a >,故答案为:(3,)+∞6. 设a ,b ∈R .已知关于x 的不等式250ax x b -+>的解集为21,34⎛⎫-⎪⎝⎭,则不等式250ax x b ++<的解集为__________.【答案】12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】先由不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭求出实数a ,b 的值,再求不等式250ax x b ++<的解集.【详解】∵不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭,∴方程250ax x b -+=的两根分别为123x =-,214x =,且0a <∴由韦达定理可知,1212215342134x x a b x x a ⎧+=-+=⎪⎪⎨⎛⎫⎪=-⨯= ⎪⎪⎝⎭⎩解得122a b =-⎧⎨=⎩,∴将a ,b 代入不等式250ax x b ++<得212520x x -++<,即212520x x -->()()32410x x ⇔-+>∴不等式250ax x b ++<的解集为12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.故答案为:12,,43⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.7. 已知锐角α的顶点为原点,始边为x 轴的正半轴,将α的终边绕原点逆时针旋转π6后交单位圆于点1,3P y ⎛⎫- ⎪⎝⎭,则sin α的值为________.【解析】【分析】先求得ππcos ,sin 66αα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,然后利用三角恒等变换的知识求得sin α【详解】由于1,3P y ⎛⎫- ⎪⎝⎭在单位圆上,所以222181,39y y ⎛⎫-+== ⎪⎝⎭,由于α是锐角,所以289y y =⇒=13P ⎛- ⎝,所以π1πcos ,sin 636αα⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以ππππππsin sin sin cos cos sin 666666αααα⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132=⨯=.8. 已知()()()()1f x x x a x b =+++.若()y f x =为奇函数,则()0f '=__________.【答案】1-【解析】【分析】根据题意,求得()3f x x x =-,得到()231f x x ='-,即可求解.【详解】由函数()()()()321(1)()f x x x a x b x a b x a b ab x ab =+++=+++++++,可得()32(1)()f x x a b x a b ab x ab -=-+++-+++因为函数()f x 为R 上的奇函数,可得()()f x f x -=-,即3232(1)()(1)()x a b x a b ab x ab x a b x a b ab x ab -+++-+++=--++-++-,所以100a b ab ++=⎧⎨=⎩,解得01a b =⎧⎨=-⎩或10=-⎧⎨=⎩a b ,所以()3f x x x =-,可得()231f x x ='-,所以()01f '=-.故答案为:1-.9. 如图,某同学为测量鹳雀楼的高度MN ,在鹳雀楼的正东方向找到一座建筑物AB ,高约为37m ,在地面上点C 处(,,B C N 三点共线)测得建筑物顶部A ,鹳雀楼顶部M 的仰角分别为30o 和45 ,在A 处测得楼顶部M 的仰角为15 ,则鹳雀楼的高度约为___________m .【答案】74【解析】【分析】根据题意在Rt △ABC 中求出AC ,在△MCA 中利用正弦定理求出MC ,然后在Rt △MNC 中可求得结果.【详解】在Rt △ABC 中,274AC AB ==,在△MCA 中,105MCA ︒∠=,45MAC ︒∠=,则18030AMC MCA MAC ︒︒∠=-∠-∠=,由正弦定理得sin sin MC AC MAC AMC=∠∠,即74sin 45sin 30MC ︒︒=,解得MC =,在Rt △MNC中,74m MN ==.故答案:7410. 对于函数()f x 和()g x ,设(){}|0x f x α∈=,(){}|0x g x β∈=,若存在α,β,使得1αβ-<,则称()f x 与()g x 互为“零点相邻函数”.若函数()1e 2x f x x -=+-与()21g x x ax =-+互为“零点相邻函数”,则实数a 的取值范围是______.【答案】[2,)+∞【解析】【分析】由题知函数()f x 有唯一零点1,进而得210x ax -+=在(0,2)上有解,再根据二次函数零点分布求解即可.【详解】因为1()e 2-=+-x f x x ,所以()f x 在R 上为增函数,又0(1)e 120f =+-=,所以()f x 有唯一零点为1,令()g x 的零点为0x ,依题意知0||11x -<,即002x <<,即函数()g x 在(0,2)上有零点,令()0g x =,则210x ax -+=(0,2)上有解,即1x a x +=在(0,2)上有解,因为12x x +≥=,当且仅当1x x =,即1x =时,取等号,所以2a ≥,故答案为:[2,)+∞.为为在11. 若函数()y f x =的图像上存在不同的两点M (x 1,y 1)和N (x 2,y 2),满足1212x x y y +≥()y f x =具有性质P ,给出下列函数:①()sin f x x =;②()x f x e =;③1(),(0,)f x x x x=+∈+∞;④()||1f x x =+.其中其有性质p 的函数为________(填上所有正确序号).【答案】①②【解析】【分析】利用数量积性质得出过点O 的直线与函数图像存在至少两个不同的交点,结合函数图象可得.【详解】1212||||cos ,,|||OM ON x x y y OM ON OM ON OM ON ⋅=+=〈〉==所以1212cos ,1x x y y OM ON +≥⇔〈〉≥ ,即cos ,1OM ON 〈〉=± .即O ,M ,N 三点共线,即过点O 的直线与函数图像存在至少两个不同的交点,由图可知,①②符合.故答案为:①②12. 已知函数()ln 1f x b x =--,若关于x 的方程()0f x =在2e,e ⎡⎤⎣⎦上有解,则22a b +的最小值为______.【答案】29e 【解析】【分析】设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则由ln 10b m +--=,则(),P a b 在直线:ln 10l x y m +--=上,则22a b +可看作是O 到直线l 的距离的平方,利用导数求出其最小值即可得到答案【详解】解:设函数()f x 在2e,e ⎡⎤⎣⎦上的零点为m ,则ln 10b m --=,所以点(),P a b 在直线ln 10l x y m +--=上,设O 为坐标原点,则222||a b OP +=,其最小值就是O 到直线l 的距离的平方,,2e,eméùÎêúëû,设t⎤=⎦,设()2ln1tg tt+=,则()()212lntg t tt-⎤'=≤∈⎦,所以()g t在⎤⎦上单调递减,所以()()min3eeg t g==,3e≥即2229ea b+≥,所以22a b+的最小值为29e,故答案为:29e二、选择题(13-14每题4分,15-16每题5分,共18分)13. 已知a b∈R,且0ab≠,则“22a b>”是“11a b<”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】【分析】结合指数函数单调性,根据充分必要条件的定义分别进行判断即可.【详解】22a b a b>⇔>Q,当0a b>>时,11a b<不成立,当11a b<<时,a b>不成立.所以a b>是11a b<的既不充分也不必要条件,即22a b>是11a b<的既不充分也不必要条件.故选:D.14. 设函数()sinf x x=,若对于任意5π2π,63α⎡⎤∈--⎢⎥⎣⎦,在区间[0,]m上总存在唯一确定的β,使得()()0f fαβ+=,则m的值可能是()A.π6B.π3C.2π3D.5π6【答案】B【解析】的【分析】由等量关系找α与β的关系,由α的范围求出sin β的范围,从而得出m 的值.【详解】∵()()0f f αβ+=,∴sin sin 0αβ+=,即()sin sin sin βαα=-=-,∵5π2π,63α⎡⎤∈--⎢⎥⎣⎦,即2π5π,36α⎡⎤-∈⎢⎥⎣⎦,∴()1sin sin 2βα⎡=-∈⎢⎣,又∵[]0,m β∈,∴π3m =故选:B15. 已知在ABC V 中,0P 是边AB 上一定点,满足023P B AB = ,且对于边AB 上任意一点P ,都有00PB PC P B P C ⋅≥⋅ ,则ABC V 是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 无法确定【答案】A【解析】【分析】取BC 的中点D ,DC 的中点E ,连接0P D ,AE ,根据向量的线性运算计算向量00,P B P C 并计算00P B P C ⋅ ,同理计算PB PC ⋅ ,根据不等关系可得出对于边AB 上任意一点P 都有0PD P D ≥ ,从而确定0P D AB ⊥,从而得到结果.【详解】取BC 的中点D ,DC 的中点E ,连接0P D ,AE (如图所示),则()()0000P B P C P D DB P D DC ⋅=+⋅+ ()()22000P D DB P D DB P D DB =+⋅-=- ,同理22PB PC PD DB ⋅=- ,因为00PB PC P B P C ⋅≥⋅ ,所以22220PD DB P D DB -≥- ,即220PD P D ≥ ,所以对于边AB 上任意一点P 都有0PD P D ≥ ,因此0P D AB ⊥,又023P B AB = ,D 为BC 中点,E 为DC 中点,所以023P B BD AB BE ==,所以0//P D AE ,即90BAE ∠=︒,所以90BAC ∠>︒,即ABC V 为钝角三角形.故选:A .16. 设函数,()2,2x x P f x x x M x∈⎧⎪=⎨+∈⎪⎩其中,P M 是实数集R 的两个非空子集,又规定(){(),},(){(),}A P y y f x x P A M y y f x x M ==∈==∈∣∣,有下列命题:①对任意满足P M ⋃=R 的集合P 和M ,都有()()A P A M ⋃=R ;②对任意满足P M ⋃≠R 的集合P 和M ,都有()()A P A M ⋃≠R ,则对于两个命题真假判断正确的是( )A. ①和②都是真命题B. ①和②都是假命题C. ①是真命题,②是假命题D. ①是假命题,②是真命题【答案】B【解析】【分析】根据集合的新定义对两个命题进行分析,从而确定正确答案.【详解】对于①可举反例,(,0],(0,)P M =-∞=+∞此时()()()()(),0,2,,A P A M A P A M ∞∞⎤⎡=-=+⋃≠⎦⎣R ,故①是假命题;对于②,可举反例(,4],(4)P M =-∞=++∞,此时()(,4],()(4,),()()R A P A M A P A M =-∞=+∞= ,故②是假命题;故选:B【点睛】解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.三、解答题(共5题,满分78分)17. 已知向量3sin ,,(cos ,1)4a x b x ⎛⎫==- ⎪⎝⎭ .(1)当a b∥时,求tan 2x 的值;(2)设函数()2()f x a b b =+⋅ ,且π0,2x ⎛⎫∈ ⎪⎝⎭,求()f x 的值域.【答案】(1)247- (2)1322⎛⎤+ ⎥⎝⎦【解析】【分析】(1)根据向量平行列出等式,计算tan x 的值,二倍角公式即可计算tan 2x ;(2)计算()f x ,并用辅助角公式化简,根据角的范围可求出值域.【小问1详解】因为a b∥,所以3sin cos 4x x -=,因为cos 0x ≠,所以3tan 4x =-,所以22tan 24tan 21tan 7x x x ==--.【小问2详解】213π3()2()2sin cos 2cos sin 2cos 222242f x a b b x x x x x x ⎛⎫=+⋅=++=++=++ ⎪⎝⎭ ,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以ππ5π2,444x ⎛⎫+∈ ⎪⎝⎭,所以πsin 24x ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,所以()f x的值域为1322⎛⎤ ⎥⎝⎦.18. 已知函数()22x x a f x =+其中a 为实常数.(1)若()07f =,解关于x 的方程()5f x =;(2)判断函数()f x 的奇偶性,并说明理由.【答案】(1)1x =或2log 3(2)答案见解析【解析】【分析】(1)因为()22x x a f x =+,()07f =,可得6a =,故6()22x x f x =+,因为()5f x =,即6252x x+=,通过换元法,即可求得答案;(2)因为函数定义域为R ,分别讨论()f x 为奇函数和()f x 为偶函数,即可求得答案.【详解】(1) ()22x xa f x =+,∴()07f =,即17a +=解得:6a =可得:6()22x xf x =+ ()5f x =∴6252x x+=令2x t =(0t >)∴65t t+=,即:2560t t -+=解得:12t =或23t =即:122x =,223x =∴11x =或22log 3x =.(2)函数定义域为R ,①当()f x 为奇函数时,根据奇函数性质()()f x f x -=-可得2222x x x x a a --⎛⎫+=-+ ⎪⎝⎭恒成立即1(1)202x x a ⎛⎫+⋅+= ⎪⎝⎭恒成立,∴1a =-.②当()f x 为偶函数时,根据偶函数性质()()f x f x -=可得2222x x x x a a --+=+恒成立即1(1)202x x a ⎛⎫-⋅-= ⎪⎝⎭恒成立,∴1a =.③当1a ≠±时,函数为非奇非偶函数.【点睛】本题主要考查了解指数方程和根据奇偶性求参数,解题关键是掌握指数方程的解法和奇偶函数的定义,考查了分析能力和计算能力,属于中档题.19. 某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数()f x 模型制定奖励方案,试用数学语言表述公司对奖励函数()f x 模型的基本要求;(2)现有两个奖励函数模型:①()2150x f x =+;②()ln 2f x x =-;问这两个函数模型是否符合公司要求,并说明理由?【答案】(1)答案见解析(2)()2150x f x =+不符合公司要求,()ln 2f x x =-符合公司要求,理由见解析【解析】【分析】(1)根据题意,用数学语言依次写出函数()f x 的要求即可;(2)判断两个函数模型的单调性,并判断()9f x ≤,()5x f x ≤是否成立得解.【小问1详解】设奖励函数模型为()y f x =,则公司对奖励函数模型基本要求是:当[]10,1000x ∈时,()f x 是严格增函数,()9f x ≤恒成立,()5x f x ≤恒成立.【小问2详解】①对于函数模型()2150x f x =+,易知当[]10,1000x ∈时,()f x 为增函数,且()()max 26100093f x f ==<,所以()9f x ≤恒成立,但是()101005f ->,不满足()5x f x ≤恒成立,所以()2150x f x =+不符合公司要求;②对于函数模型()ln 2f x x =-,的当[]10,1000x ∈时,()10f x x'=>,所以()f x 为增函数,且()max f x f =()100023ln109=-+<,所以()9f x ≤恒成立,令()()ln 255x x g x f x x =-=--,则()1105g x x '=-<,所以()()10ln1040g x g =-<≤,所以()5x f x ≤恒成立,所以()ln 2f x x =-符合公司要求.20. 已知函数()y f x =的定义域为区间D ,若对于给定的非零实数m ,存在0x ,使得()()00f f x x m =+,则称函数()y f x =在区间D 上具有性质()P m .(1)判断函数()2f x x =在区间[]1,1-上是否具有性质12P ⎛⎫ ⎪⎝⎭,并说明理由;(2)若函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫⎪⎝⎭,求n 的取值范围;(3)已知函数()y f x =的图像是连续不断的曲线,且()()02f f =,求证:函数()y f x =在区间[]0,2上具有性质13P ⎛⎫ ⎪⎝⎭.【答案】(1)具有性质12P ⎛⎫ ⎪⎝⎭,理由见解析 (2)5,8π⎛⎫+∞ ⎪⎝⎭(3)证明见解析【解析】【分析】(1)由题可得220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,结合条件即得;(2)由00sin sin 4x x π⎛⎫=+⎪⎝⎭,解得038x k ππ=+,()()050,N 48x k n k πππ+=+∈∈,可得58n π>,即得;(3)设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦,可得()()()1150200333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,可得111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即证;当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫> ⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,结合条件可知,存在0x ,()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即证.【小问1详解】函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.若220012x x ⎛⎫=+ ⎪⎝⎭,则014x =-,因为[]11,14-∈-,且[]1111,1424-+=∈-,所以函数()2f x x =在[]1,1-上具有性质12P ⎛⎫⎪⎝⎭.【小问2详解】解法1:由题意,存在()00,x n ∈,使得00sin sin 4x x π⎛⎫=+ ⎪⎝⎭,得0024x x k ππ+=+(舍)或0024x k x πππ+=+-()k ∈Z ,则得038x k ππ=+.因为0308x k ππ=+>,所以k ∈N .又因为()030,8x k n ππ=+∈且()()050,48x k n k πππ+=+∈∈N ,所以58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.解法2:当02n π<≤时,函数()sin f x x =,()0,x n ∈是增函数,所以不符合题意;当2n π>时,因为直线2x π=是函数()sin f x x =的一条对称轴,而函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫ ⎪⎝⎭,所以224n ππ⎛⎫-> ⎪⎝⎭,解得58n π>,即所求n 的取值范围是5,8π⎛⎫+∞ ⎪⎝⎭.【小问3详解】设()()13g x f x f x ⎛⎫=-+ ⎪⎝⎭,50,3x ⎡⎤∈⎢⎥⎣⎦.则有()()1003g f f ⎛⎫=- ⎪⎝⎭,112333g f f ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()22133g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,⋅⋅⋅,11333k k k g f f --⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,⋅⋅⋅,()55233g f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭{}()1,2,3,,6k ∈⋅⋅⋅.以上各式相加得()()()115020333k g g g g f f -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即()11500333k g g g g -⎛⎫⎛⎫⎛⎫++⋅⋅⋅++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(ⅰ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13k g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中有一个为0时,不妨设103i g -⎛⎫= ⎪⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,即110333i i i g f f --⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即111333i i f f --⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,{}1,2,3,,6i ∈⋅⋅⋅,所以函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.(ⅱ)当()0g 、13g ⎛⎫ ⎪⎝⎭、⋅⋅⋅、13n g -⎛⎫ ⎪⎝⎭、⋅⋅⋅、53g ⎛⎫ ⎪⎝⎭中均不为0时,由于其和为0,则其中必存在正数和负数,不妨设103i g -⎛⎫>⎪⎝⎭,103j g -⎛⎫< ⎪⎝⎭,其中i j ≠,{}1,2,3,,6i j ∈⋅⋅⋅、.由于函数()y g x =的图像是连续不断的曲线,所以当i j <时,至少存在一个实数011,33i j x --⎛⎫∈ ⎪⎝⎭(当i j >时,至少存在一个实数011,33j i x --⎛⎫∈ ⎪⎝⎭),其中{}1,2,3,,6i j ∈⋅⋅⋅、,使得()00g x =,即()()000103g x f x f x ⎛⎫=-+= ⎪⎝⎭,即存在0x ,使得()0013f x f x ⎛⎫=+ ⎪⎝⎭,所以函数()y f x =在区间[]0,2上也具有性质13P ⎛⎫⎪⎝⎭.综上,函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.21. 已知函数()e (,1),()(,)k x f x x k k g x cx m c m =∈≥=+∈N R ,其中e 是自然对数的底数.(1)当1k =时,若曲线()y f x =在1x =处的切线恰好是直线()y g x =,求c 和m 的值;(2)当1k =,e m =-时,关于x 的方程()()f x g x =有正实数根,求c 的取值范围:(3)当2,1k m ==-时,关于x 的不等式2()e ()f x ax bx g x -≥+≥对于任意[1,)x ∈+∞恒成立(其中,a b ∈R ),当c 取得最大值时,求a 的最小值.【答案】(1)2e,e c m ==-(2)[2e,)+∞(3)1【解析】【分析】(1)利用导数求得()f x 在1x =处的切线方程,通过对比系数求得,c m .(2)由()()f x g x =分离c ,利用构造函数法,结合导数来求得c 的取值范围.(3)由恒成立的不等式得到e 1e xc x x-≤-恒成立,利用构造函数法,结合导数来求得c 的最大值,进而求得a 的最小值,并利用构造函数法,结合导数来判断a 的最小值符合题意.【小问1详解】当1k =时,()e x f x x =,所以()(1)e x f x x '=+,由(1)e,(1)2e f f '==,得曲线()y f x =在1x =处的切线方程为e 2e(1)y x -=-,即2e e y x =-,由题意,2e,e c m ==-.【小问2详解】当1k =,e m =-时,()e ,()e x f x x g x cx ==-,由题意,方程e e x x cx =-在(0,)+∞上有解,即e e x c x =+在(0,)+∞上有解,令e ()e (0)x h x x x =+>,则2e e ()x h x x'=-,由()0h x '=得1x =,()h x '在()0,∞+上严格递增,所以:当(0,1)x ∈时,()0h x '<,所以()h x 严格递减,当(1,)x ∈+∞时,()0h x '>,所以()h x 严格递增,所以min ()(1)2e h x h ==,又x →+∞时,()h x →+∞,所以()h x 的值域为[2e,)+∞,所以c 的取值范围为[2e,)+∞.【小问3详解】当2,1k m ==-时,2()e ,()1x f x x g x cx ==-,由题意,对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,即:22e e 1x x ax bx cx -≥+≥-(*)恒成立,那么,2e 1x x cx ≥-恒成立,所以e 1e xc x x-≤-恒成立,令e 1()e (1)x x x x x ϕ-=-≥,则2e 1()(1)e 0x x x x ϕ-'=++>在[1,)+∞上恒成立,所以()ϕx 在[1,)+∞上严格递增,所以min ()(1)1x ϕϕ==,从而1c ≤,即c 的最大值为1,1c =时,取1x =代入(*)式,得00a b ≥+≥,所以=-b a ,所以21ax ax x -≥-在[1,)+∞上恒成立,得1a ≥,即a 的最小值为1,当1a =时,记()222()()e e e (1)x F x f x x x x x x x =---=--+≥,则()2()2e 21x F x x x x '=+-+,设()()()()222e 21,42e 2x x x x x u u x x x x '+-+=++-=,因为()u x '在[1,)+∞上严格递增,所以()()17e 20u x u ''≥=->,所以()F x '在[1,)+∞上严格递增,所以()(1)3e 10F x F ''≥=->,所以()F x 在[1,)+∞上严格递增,所以()(1)0F x F ≥=,从而对于任意2[1,),()e ()x f x ax bx g x ∈+∞-≥+≥恒成立,综上,a 的最小值为1.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,。

广西南宁市数学高三上学期理数10月月考试卷

广西南宁市数学高三上学期理数10月月考试卷

广西南宁市数学高三上学期理数10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)不等式的解集为R,那么()A .B .C .D .2. (2分) (2016高一下·大同期末) 在等差数列{an}中,若a1+a5+a9= ,则tan(a4+a6)=()A .B .C . 1D . ﹣13. (2分) (2020高二上·东莞开学考) 若函数的大致图像是()A .B .C .D .4. (2分) (2018高二下·河北期末) 已知实数,,函数在上是减函数,又,则下列选项正确的是()A .B .C .D .5. (2分) (2019高二上·林芝期中) 在△ABC中,A=45°,b=4,c=,那么=()A .B . -C .D . -6. (2分),且,则、的夹角为()A . 60B . 90C . 120D . 1507. (2分)(2019·江南模拟) 已知函数的最小正周期为,则下列叙述中正确的是()A . 函数的图象关于直线对称B . 函数在区间上单调递增C . 函数的图象向右平移个单位长度后关于原点对称D . 函数在区间上的最大值为8. (2分)已知向量 =(1,0), =(2,1),且(﹣λ )⊥ ,则实数λ的值为()A . ﹣1B . 0C . 1D . 29. (2分) (2018高一下·珠海月考) 函数是()A . 最小正周期为的奇函数B . 最小正周期为的偶函数C . 最小正周期为的奇函数D . 最小正周期为的偶函数10. (2分)已知函数y=f(x)是定义在实数集R上的奇函数,且当时成立(其中是f(x)的导函数),若, b=f(1),则a,b,c的大小关系是()A . c>a>bB . c>b>aC . a>b>cD . a>c>b11. (2分)若,且则向量的夹角为()A . 45°B . 60°C . 120°D . 135°12. (2分) (2017高一上·黑龙江月考) 已知函数是R上的单调函数,则实数的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2020高二下·阳春月考) 已知函数,且f(a)=-3,则f(6-a)=________.14. (1分) (2016高一上·徐州期末) cos240°的值等于________.15. (1分) (2015高一下·南通开学考) 设函数,方程f(x)=x+a有且只有两不相等实数根,则实数a的取值范围为________.16. (1分)已知向量=(k,12),=(4,5),=(﹣k,10),且A、B、C三点共线,则k=________三、解答题 (共6题;共60分)17. (10分) (2017高二下·晋中期末) 在△ABC中,角A,B,C的对边分别为a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.(1)求角C的大小;(2)若c= ≤a,求2a﹣b的取值范围.18. (10分) (2017高二上·汕头月考) 已知向量 .记 .(1)求的最小正周期及单调增区间;(2)在中,角的对边分别为若,求的值.19. (10分)已知函数f(x)= + ,x∈(0,+∞).(1)求曲线y=f(x)在点(2,f(2))处的切线方程;(2)设函数g(x)=f(x)﹣﹣alnx(a>0),证明:函数g(x)有唯一一个极值点.20. (10分) (2019高一上·张家港月考) 已知函数(1)用五点法作出函数一个周期的简图;(2)写出函数的值域与单调区间.21. (10分) (2020高一下·太原期中) 已知在锐角三角形中,, .(1)求;(2)设,求边上的高.22. (10分) (2019高二下·哈尔滨月考) 已知函数 . (Ⅰ) 当时,求函数的单调区间;(Ⅱ)求函数在区间上的最大值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、。

广西南宁市数学高三上学期文数10月月考试卷

广西南宁市数学高三上学期文数10月月考试卷

广西南宁市数学高三上学期文数10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高一上·唐山期中) 设全集U={1,2,3,4},集合S={1,3},T={4},则(∁US)∪T等于()A . {2,4}B . {4}C . ∅D . {1,3,4}2. (2分) (2017高二上·安平期末) 命题“∀n∈N* , f(n)≤n”的否定形式是()A . ∀n∈N* , f(n)>nB . ∀n∉N* , f(n)>nC . ∃n∈N* , f(n)>nD . ∀n∉N* , f(n)>n3. (2分)若,则f[f(﹣2)]=()A . 2B . 3C . 4D . 54. (2分) (2017高一上·平遥期中) 已知f(x)是定义在R上的偶函数,当x∈[0,+∞)时,f(x)=2x ﹣2,则不等式f(log2x)>0的解集为()A . (0,)B . (,1)∪(2,+∞)C . (2,+∞)D . (0,)∪(2,+∞)5. (2分)以A(4,3,1),B(7,1,2),C(5,2,3)三点为顶点的三角形的形状是()A . 等边三角形B . 等腰三角形C . 直角三角形D . 等腰直角三角形6. (2分)若,则等于()A . -2B .C .D . 27. (2分)(2020·上饶模拟) 已知对任意实数都有,,若不等式(其中)的解集中恰有两个整数,则的取值范围是()A .B .C .D .8. (2分) (2019高二下·鹤岗月考) 已知函数在上可导且,其导函数满足,对于函数,下列结论错误的是()A . 函数在上为单调递增函数B . 是函数的极小值点C . 函数至多有两个零点D . 时,不等式恒成立9. (2分) (2015高二上·金台期末) 在下列结论中,正确的结论是()①“p∧q”为真是“p∨q”为真的充分不必要条件;②“p∧q”为假是“p∨q”为真的充分不必要条件;③“p∨q”为真是“¬p”为假的必要不充分条件;④“¬p”为真是“p∧q”为假的必要不充分条件.A . ①②B . ①③C . ②④D . ③④10. (2分)如图,四边形是边长为1的正方形,,点为内(含边界)的动点,设,则的最大值等于()A .B . 1C .D .11. (2分)将函数的图象向左平移个单位后得到的函数图象关于点成中心对称,那么的最小值为()A .B .C .D .12. (2分)(2020·达县模拟) 已知函数在上为增函数,则实数的取值范围是A .B .C .D .二、填空题 (共4题;共4分)13. (1分)若,则的取值范围是________.14. (1分) (2017高三上·武进期中) 设x∈R,则“3﹣x≥0”是“|x﹣1|≤2”的________条件.(用“充要”、“充分不必要”、“必要不充分”或“既不充分也不必要条件”填空)15. (1分) (2016高一上·东海期中) 已知,则f[f(2)]=________.16. (1分) (2017高二下·成都期中) 已知函数,若存在唯一的正整数x0 ,使得f(x0)≥0,则实数m的取值范围为________.三、解答题 (共6题;共55分)17. (5分)已知命题p:﹣ =1表示的曲线为双曲线:命题q:方程mx2+(m+3)x+4=0无正实根.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.18. (10分) (2018高二上·黑龙江期末) 已知过抛物线的焦点,斜率为的直线交抛物线于两点.(1)求线段的长度;(2)为坐标原点, 为抛物线上一点,若,求的值.19. (10分) (2016高一下·海南期中) 在△ABC中,角A、B,C所对的边为a,b,c,若(1)求角B的值;(2)求△ABC的面积.20. (10分) (2018高一上·台州期末) 已知函数.(Ⅰ)求函数的最小正周期和单调递增区间;(Ⅱ)函数的图象向左平移个单位后,得到偶函数的图象,求实数的最小值.21. (10分) (2016高一上·泗阳期中) 已知函数f(x)=2x+m21﹣x .(1)若函数f(x)为奇函数,求实数m的值;(2)若函数f(x)在区间(1,+∞)上是单调递增函数,求实数m的取值范围;(3)是否存在实数a,使得函数f(x)的图象关于点A(a,0)对称,若存在,求实数a的值,若不存在,请说明理由.注:点M(x1,y1),N(x2,y2)的中点坐标为(,).22. (10分)(2017·泰州模拟) 已知函数f(x)=2lnx+x2﹣ax,a∈R.(1)若函数y=f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)若a=e,解不等式:f(x)<2;(3)求证:当a>4时,函数y=f(x)只有一个零点.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、第11 页共11 页。

2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题(含解析)

2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题(含解析)

2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则(){}(){}3510,ln 1A x x B x y x =∈-<<==+Z A B = A. B. {}0,1,2{}0,1C .D.{}1,2{}1,0,1,2-2. 已知,且,其中是虚数单位,则( ),a b ∈R 3i12ii a b -=++i a b +=A. B. C. D. 22-4-6-3. 已知定义域为的函数不是偶函数,则()R ()f x A. B. ()(),0x f x f x ∀∈-+≠R ()(),0x f x f x ∀∈--≠R C.D.()()000,0x f x f x ∃∈-+≠R ()()000,0x f x f x ∃∈--≠R 4. 已知一组数据的平均数是3,方差为4,则数据123421,21,21,21x x x x ++++的平均数和方差分别是( )1234,,,x x x x A. B. C. D.1,11,233,243,225. 已知递增的等差数列的前项和为,则(){}n a n 1625,19,70n S a a a a +==8S =A. 70B. 80C. 90D. 1006. 在中,,若ABC V 212BA BC BC⋅= ,则( )123125,,334477a AB AC b AB AC c AB AC=+=+=+A.B.C.D.b a c>>b c a>>a c b>>c a b>>7. 已知函数在区间内既有最大值,又有最小值,则π()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭π0,2⎡⎫⎪⎢⎣⎭的取值范围是( )ωA.B. C.D.2,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎤⎛⎫⋃+ ⎪⎥⎝⎦⎝⎭8,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎫⎛⎫⋃+ ⎪⎪⎝⎭⎝⎭8. 不等式对所有的正实数,恒成立,则的最大值为()t+≤x y t A. 2D. 1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,已知为圆锥的底面的直径,,C 为底面圆周上一点,弧的长度AB SO 2SA =BC 是弧的长度的2倍,异面直线与所成角的余弦值为,则().AC SB AC 14A. 圆锥SO B. 圆锥的侧面积为SO 2πC. 直线与平面所成的角大于SO SAC 30︒D. 圆锥的外接球的表面积为SO 16π310. 已知抛物线的焦点分别为,若分别为上的点,2212:4,:8C y x C y x ==12,F F ,A B 12,C C 且直线平行于轴,则下列说法正确的是()AB x A. 若,则B. 若,是等腰三角形1AF AB ⊥12AB =43AB =2F AB C. 若,则四边形是矩形 D. 四边形可能是菱形1BF BA ⊥12F F AB 12F F AB 11.设,定义在上的函数满足,且0a >R ()f x ()1f a =,则()()()()()(),,x y f x y f x f a y f y f a x ∀∈+=-+-R A. B. ()00f =()()2f a x f x -=C.为偶函数D.()f x ()20251f a =三、填空题:本题共3小题,每小题5分,共15分.12. 的展开式中,含的项的系数为________.(用数字作答)6(12)(13)x x -+2x 13. 在平面直角坐标系中,若角的终边过点,角的终边与角的终边关于xOy α(3,4)--βα轴对称,则______.x sin()αβ-=14.已知椭圆的左焦点为,若关于直线的对称点()2222:10x y C a b a b +=>>1F 1F 2y x =恰好在上,且直线与的另一个交点为,则______.A C 1AF CB 11||||BF AF =四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知的内角所对的边分别为.ABC V ,,A B C ,,,sin cos )a b c b A a B c =-(1)求角A 的大小;(2)求的最大值.222sin sin sin A B C +16. 如图,在四棱锥中,平面ABCD ,,,P ABCD -PD ⊥2PD CD ==1AD AB ==,,点M 是棱PC 的中点.AB DA ⊥//AB CD (1)求证:平面PAD ;//BM (2)求平面PAB 与平面BMD 所成锐二面角的余弦值.17. 中国体育代表团在2024年巴黎奥运会上取得了优异的成绩.为了解学生对奥运会的了解情况,某校组织了全校学生参加的奥运会知识竞赛,从一、二、三年级各随机抽取100名学生的成绩(,各年级总人数相等),统计如下:年级[0,60)[60,100]一年级4060二年级2575三年级1090学校将测试成绩分为及格(成绩不低于60分)和不及格(成绩低于60分)两类,用频率估计概率,所有学生的测试成绩结果互不影响.(1)从一、二年级各随机抽一名学生,记表示这两名学生中测试成绩及格的人数,求X 的分布列和数学期望;X (2)从这三个年级中随机抽取两个年级,并从抽取的两个年级中各随机抽取一名学生,求这两名学生测试成绩均及格的概率.18. 已知双曲线的两条渐近线方程为为2222:1(0,0)x y C a b a b -=>>20,x y A ±=上一点.C(1)求双曲线的方程;C (2)若过点的直线与仅有1个公共点,求的方程;A l C l (3)过双曲线的右焦点作两条互相垂直的直线,,且与交于两点,记C F 1l 2l 1lC ,M N的中点与交于两点,记的中点为.若,求点到直线MN 2,B l C ,P Q PQ D (0,G G 的距离的最大值.BD 19. 已知函数(其中).312()(1)21xx f x ax b x -=++-+,a b ∈R (1)当时,证明:是增函数;0,0a b >=()f x (2)证明:曲线是中心对称图形;()y f x =(3)已知,设函数,若对任0a ≠312()e ()(1)(1)21xx x g x f x b x b -=+-+-+-+()0g x ≥意的恒成立,求的最小值.x ∈R b aa -2024-2025学年广西南宁市高三上学期10月月考数学质量检测试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:高考范围.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则(){}(){}3510,ln 1A x x B x y x =∈-<<==+Z A B = A. B. {}0,1,2{}0,1C.D.{}1,2{}1,0,1,2-【正确答案】A【分析】解不等式化简集合,求出函数的定义域化简集合,再利用交集的定义求出求解A B 即得.【详解】依题意,,{{}{}1,0,1,2,1A x x B x x =∈<<=-=>-所以.{}0,1,2A B = 故选:A2. 已知,且,其中是虚数单位,则( ),a b ∈R 3i12ii a b -=++i a b +=A. B. C. D. 22-4-6-【正确答案】D【分析】根据题意,由复数的运算代入计算,结合复数相等列出方程,即可得到结果.【详解】由可得,即,3i12i i a b -=++()()3i i 12i a b -=++()()3i 221ia b b -=-++所以,解得,则.2213a b b =-⎧⎨+=-⎩42a b =-⎧⎨=-⎩6a b +=-故选:D3. 已知定义域为的函数不是偶函数,则( )R ()f x A. B. ()(),0x f x f x ∀∈-+≠R ()(),0x f x f x ∀∈--≠R C.D.()()000,0x f x f x ∃∈-+≠R ()()000,0x f x f x ∃∈--≠R 【正确答案】D【分析】根据偶函数的概念得是假命题,再写其否定形式即可得()(),0x f x f x ∀∈--=R 答案.【详解】定义域为的函数是偶函数,R ()f x ()(),0x f x f x ⇔∀∈--=R 所以不是偶函数.()f x ()()000,0x f x f x ⇔∃∈--≠R 故选:D .4. 已知一组数据的平均数是3,方差为4,则数据123421,21,21,21x x x x ++++的平均数和方差分别是( )1234,,,x x x x A. B. C. D.1,11,233,243,22【正确答案】A【分析】根据题意,由平均数与方差的性质列出方程,代入计算,即可求解.【详解】设数据的平均数和方差分别是,,1234,,,x x x x x 2s 则数据的平均数是,方差是,123421,21,21,21x x x x ++++()21x +24s 所以,解得,,解得,()213x +=1x =244s=21s =即数据的平均数和方差分别是.1234,,,x x x x 1,1故选:A5. 已知递增的等差数列的前项和为,则(){}n a n 1625,19,70n S a a a a +==8S =A. 70B. 80C. 90D. 100【正确答案】D【分析】设等差数列的公差为d ,由题意结合等差数列的通项公式求出即可结合等{}n a 1,a d 差数列前n 项和公式计算得解.()112n n n S na d -=+【详解】设等差数列的公差为d ,{}n a 则由题得,解得,()()1111519,4700a a d a d a d d ++=⎧⎪++=⎨⎪>⎩132d a =⎧⎨=⎩所以.8878231002S ⨯=⨯+⨯=故选:D.6. 在中,,若ABC V 212BA BC BC⋅= ,则( )123125,,334477a AB AC b AB AC c AB AC=+=+=+ A.B.C.D.b a c>>b c a>>a c b>>c a b>>【正确答案】B【分析】先由求出即,接着由余弦定理结合数量积的运算212BA BC BC⋅= |AB |=|AC |b c =律计算得,再由平面向量模的求法即可计算比较得解.2222b a AB AC -⋅=【详解】设的角A 、B 、C 的对边为a 、b 、c ,ABC V 因为,所以,212BA BC BC ⋅= ()()212AB AC AB AC AB-⋅-=-所以,故,2221122AB AC AB AC AB AC AB-⋅=⋅+-+ 22AB AC = 所以,即,|AB |=|AC |b c =所以,222222cos 22b c a b a AB AC bc A bc bc +--⋅==⨯=所以22221214433999a AB AC AB AB AC AC⎛⎫=+=+⋅+ ⎪⎝⎭,2222221424299299b a c b b a -=+⋅+=-22222222223193193213441681616821616b a b AB AC AB AB AC AC c b b a -⎛⎫=+=+⋅+=+⋅+=- ⎪⎝⎭ ,222222222225420254202251077494949494924949b a c AB AC AB AB AC AC c b b a -⎛⎫=+=+⋅+=+⋅+=- ⎪⎝⎭,因为,所以,即.210394916>>222b c a >> b c a >>故选:B.7. 已知函数在区间内既有最大值,又有最小值,则π()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭π0,2⎡⎫⎪⎢⎣⎭的取值范围是( )ωA.B. C.D.2,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎤⎛⎫⋃+ ⎪⎥⎝⎦⎝⎭8,3∞⎛⎫+ ⎪⎝⎭248,,333∞⎛⎫⎛⎫⋃+ ⎪ ⎪⎝⎭⎝⎭【正确答案】C【分析】由条件求出的范围,结合正弦函数的性质列不等式可求结论.π6x ω+【详解】因为,,π02x ≤<0ω>所以, ()πππ31666x ωω≤+<+由已知,,()π331π62ω+>所以,83ω>所以的取值范围是.ω8,3∞⎛⎫+ ⎪⎝⎭故选:C.8. 不等式对所有的正实数,恒成立,则的最大值为()t+≤x y t A. 2D. 1【正确答案】D【分析】由题意可得,令,则有mint ≤0m =>1m =,结合基本不等式求得,于是有,从而得答案.2112m =21m ≥1m ≥【详解】解:因为,,xy 0>所以,则有,t ≤mint ≤令,则m =>1m =所以,2111122m ==+≤+=当且仅当时,等号成立,x y =所以,,211m≤21m ≥又,所以,0m >1m ≥,1≥1,所以,1t ≤即的最大值为1.t 故选:D.方法点睛:对于恒成立问题,常采用参变分离法,只需求出分离后的函数(代数式)的最值即可得解.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,已知为圆锥的底面的直径,,C 为底面圆周上一点,弧的长度AB SO 2SA =BC 是弧的长度的2倍,异面直线与所成角的余弦值为,则().AC SB AC 14A. 圆锥SOB. 圆锥的侧面积为SO 2πC. 直线与平面所成的角大于SO SAC 30︒D. 圆锥的外接球的表面积为SO 16π3【正确答案】ABD【分析】A 选项,作出辅助线,设底面圆的半径为,根据异面直线的夹角余弦值和余弦定r 理得到,从而得到圆锥的体积;B 选项,根据侧面积公式求出答案;C 选项,作出辅助1r =线,得到直线与平面所成角的平面角为,并求出其正切值,得到SO SAC OST ∠;D 选项,找到外接球球心,并根据半径相等得到方程,求出外接球半径,得30OST ∠<︒到外接球表面积.【详解】A 选项,连接并延长交圆于点,连接,CO P ,AP BP 因为为圆锥的底面的直径,弧的长度是弧的长度的2倍,AB SO BC AC 故四边形为矩形,,则,ACBP ππ,36CAB ABP CBA BAP ∠=∠=∠=∠=//BP AC 异面直线与所成角等于异面直线与所成角,SB BP SB AC 因为,所以,2SA =2SB SP ==设底面圆的半径为,则,r BP r =故,解得,2222441cos 244SB BP SP r SBP SB BP r +-+-∠===⋅1r =则由勾股定理得,SO ===故圆锥的体积为A 正确;SO 21π3r SO ⋅⋅=B 选项,圆锥的侧面积为,B 正确;SO π2πrl =C 选项,取的中点,连接,则⊥,⊥,AC T ,ST OT OT AC ST AC 又,平面,故⊥平面,OT ST T = ,OT ST ⊂SOT AC SOT 过点作⊥于点,由于平面,则⊥,O OE ST E OE ⊂SOT OE AC 又,平面,故⊥平面,ST AC T = ,ST AC ⊂SAC OE SAC 故即为直线与平面所成的角,OST ∠SO SAC 其中,则,πsin 3OT CO ==1tan 2OT OST OS ∠===由于,且在上单调递增,故,C 错误;1tan 302︒=>tan y x =π0,2⎛⎫ ⎪⎝⎭30OST ∠<︒D 选项,由对称性可知,外接球球心在上,连接,Q OSQC 设圆锥的外接球半径为,则,SO R OQ SO R R =-=由勾股定理得,即,解得,222OC OQ QC +=)221R R +=R =故圆锥的外接球的表面积为,D 正确.SO 2216π4π4π3R =⨯=故选:ABD方法点睛:解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径10. 已知抛物线的焦点分别为,若分别为上的点,2212:4,:8C y x C y x ==12,F F ,A B 12,C C 且直线平行于轴,则下列说法正确的是()AB x A. 若,则B. 若,是等腰三角形1AF AB ⊥12AB =43AB =2F AB C. 若,则四边形是矩形 D. 四边形可能是菱形1BF BA ⊥12F F AB 12F F AB 【正确答案】ABC【分析】不妨设,则,,对于A ,由题意A (x 1,y ), B (x 2,y )(y >0)21248y x x ==120x x >>求出和即可求解;对于B ,由题意得,进而可求出两点11x =212x =|AB |1243-=x x ,A B 坐标,从而求出和即可判断;对于C ,由题意先得,接着求出,进而求2F A 2F B21x =1x 出,轴即可得解;对于D ,先假设四边形是菱形,再推出矛盾12AB F F =2AF x ⊥12F F AB 即可得解.【详解】由题意得,不妨设,()()121,0,2,0F F A (x 1,y ), B (x 2,y )(y >0)则,,21248y x x ==120x x >>对于A ,因为,又直线平行于轴,所以轴,1AF AB ⊥AB x 1AF x ⊥所以,故, 11x =2212,82y y x ====如图,故,故A 正确;1212AB x x =-=对于B ,若,则,所以,解得,43AB =1243-=xx 224483y y -=y =所以,84,33A B ⎛⎛ ⎝⎝所以 ,,2103F A ==2103F B ==所以,,所以是等腰三角形,故B 正确;22F A F B=|F 2A |+|AB |>|F 2B |2F AB 对于C ,若,又直线平行于轴,所以轴,1BF BA⊥AB x 1BFx ⊥所以,故,21x =2124y y x ====故,轴,所以四边形是矩形,故C 正确;12121AB x x F F =-==2AF x ⊥12F F AB 对于D ,若四边形是菱形,则,即即,12F F AB 121AB F F==121x x -=22148y y -=所以,所以,y =((2,,1,A B 所以可得,则四边形不是菱形,矛盾,21F A F B AB==≠12F F AB 所以四边形不是菱形,故D 错误.12F F AB 故选:ABC.11.设,定义在上的函数满足,且0a >R ()f x ()1f a =,则()()()()()(),,x y f x y f x f a y f y f a x ∀∈+=-+-R A.B.()00f =()()2f a x f x -=C.为偶函数 D.()f x ()20251f a =【正确答案】ABD【分析】对于A ,令,又,即可求得;对于B ,令,,0x a y ==()1f a =()00f =y a =再由,即可推得;对于C ,令,可得()()1,00f a f ==()()2f a x f x -=y x =-,从而为奇函数;对于D ,可推得,即()()0f x f x +-=()f x ()()4f x a f x +=的周期为,则.()f x 4a ()()()202550641f a f a a f a =⨯+==【详解】对于A ,令,得,,0x a y ==()()()()()00f a f a f a f f =+因为,所以,故A 正确;()1f a =()00f =对于B ,令,代入可得,y a =()()()()()0f x a f x f f a f a x +=+-因为,所以,()()1,00f a f ==()()f x a f a x +=-从而,故B 正确;()()2f a x f x -=对于C ,令,代入得,y x =-()()()()()0f f x f a x f x f a x =++--又因为对,恒成立且不恒为0,x ∀∈R ()()f a x f a x +=-所以,从而为奇函数,()()0f x f x +-=()f x 又不恒等于0,故C 错误;()f x 对于D ,因为,()()()2f x a f x f x +=-=-所以,()()()42f x a f x a f x +=-+=所以为的周期,4a ()f x 所以,故D 正确.()()()202550641f a f a a f a =⨯+==故选:ABD .三、填空题:本题共3小题,每小题5分,共15分.12. 的展开式中,含的项的系数为________.(用数字作答)6(12)(13)x x -+2x【正确答案】99【分析】先求二项式的展开式的通项,再由乘法法则求出的展开式6(13)x +6(12)(13)x x -+中含的项即可得解.2x 【详解】由题意得的展开式的通项为,6(13)x +()166C 33C rr r r rr T x x +==所以的展开式中,含的项为,6(12)(13)x x -+2x 2221112663C 23C 99x x x x -⋅=所以展开式中含的项的系数为.2x 99故答案为.9913. 在平面直角坐标系中,若角的终边过点,角的终边与角的终边关于xOy α(3,4)--βα轴对称,则______.x sin()αβ-=【正确答案】##24250.96【分析】由条件,根据三角函数定义可求,,根据对称性可求,,sin αcos αsin βcos β结合两角差正弦公式求结论.【详解】因为角的终边过点,α(3,4)--所以,,4sin 5α==-3cos 5α==-又角的终边与角的终边关于轴对称,βαx 所以,,4sin 5β=3cos 5β=-所以.24sin()sin cos cos sin 25αβαβαβ-=-=故答案为.242514.已知椭圆的左焦点为,若关于直线的对称点()2222:10x y C a b a b +=>>1F 1F 2y x =恰好在上,且直线与的另一个交点为,则______.A C 1AF CB 11||||BF AF =【正确答案】##0.215【分析】求出点关于直线对称点的坐标,进而求出,再结1(,0)F c -2y x =A 12||,||AF AF 合椭圆定义及勾股定理求出即可.1||BF 【详解】设关于直线的对称点,由,解得1(,0)F c -2y x =11(,)A x y 111112222y x cy x c⎧=-⎪+⎪⎨-⎪=⋅⎪⎩,113545c x c y ⎧=⎪⎪⎨⎪=-⎪⎩即,令椭圆右焦点,则,34(,55c c A -2(,0)Fc 1||AF ==,而点在椭圆上,由,得2||AF ==AC 122AF AF a +=,a =设,则,显然的中点都在直线上,1||BF m =2||2BF a m m =-=-112,AF F F 2y x =则平行于直线,从而,在中,2AF 2y x =21AF AF ⊥2Rt ABF,222()))m m +=-解得,所以.m =11|1|5||BF AF =故15思路点睛:椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用勾股定理、正弦定理、余弦定理、,得到a ,c 的关12|||2PF PF a =+|系.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知的内角所对的边分别为.ABC V ,,A B C ,,,sin cos )a b c b A a B c =-(1)求角A 的大小;(2)求的最大值.222sin sin sin A B C +【正确答案】(1);2π3A =(2).32【分析】(1)由题意结合正弦定理和即可求解.sin sin cos cos sin C A B A B =+(2)先由(1)结合余弦定理得,接着由正弦定理角化边得222a b c bc =++,再结合基本不等式即可求解.22222sin 1sin sin A bcB C bc =+++【小问1详解】因为,,sin cos )b A a B c =-()sin sin sin cos cos sin CA B A B A B =+=+所以由正弦定理得)sin sin sin cos sin cos cos sin sin B A A B C A B A B A B A B=-=,又,故,所以即,B ∈(0,π)sin 0B≠sin A A =tan A =又,所以.()0,πA ∈2π3A =【小问2详解】由(1),所以由余弦定理得,2π3A =222222cos a b c bc A b c bc =+-=++所以由正弦定理得,222222222222sin 311sin sin 2A a b c bc bc B C b c b c b c ++===+≤=++++当且仅当时等号成立.b c =所以的最大值为.222sin sin sin A B C +3216. 如图,在四棱锥中,平面ABCD ,,,P ABCD -PD ⊥2PD CD ==1AD AB ==,,点M 是棱PC 的中点.AB DA ⊥//AB CD (1)求证:平面PAD ;//BM (2)求平面PAB 与平面BMD所成锐二面角的余弦值.【正确答案】(1)证明见解析(2【分析】(1)取PD 的中点E ,连接ME ,AE ,根据E 是PD 的中点,得到,//EM AB ,从而四边形ABME 是平行四边形,得到,再利用线面平行的判定定理EM AB =//AE BM 证明;(2)以D 为坐标原点,DA ,DC ,DP 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,求得平面BDM 的一个法向量,平面PAB 的一个法向量,设n =(x,y,z )(),,m a b c= 平面PAB 与平面BMD 所成锐二面角的大小为θ,由求解.()cos ,n m cos n m n mθ⋅==【小问1详解】证明:取PD 的中点E ,连接ME ,AE ,因为E 是PD 的中点,M 是PC 的中点,所以,,又,,//EM DC 112EM DC ==//AB CD 1AB =所以,,//EM AB EM AB =所以四边形ABME 是平行四边形,所以,//AE BM 又平面PAD ,平面PAD ,所以平面PAD .AE ⊂BM ⊄//BM 【小问2详解】解:因为平面ABCD ,DA ,平面ABCD ,PD ⊥DC ⊂所以,,又,,所以.PD AD ⊥PD DC ⊥AB DA ⊥//AB CD AD DC ⊥以D 为坐标原点,DA ,DC ,DP 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示.则,所以.()()()()()0,0,0,0,0,2,1,0,0,1,1,0,0,2,0D P A B C ()0,1,1M 设平面BDM 的一个法向量,又,,n =(x,y,z )()1,1,0DB =()0,1,1DM =所以0,0,n DB x y n DM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩令,解得,,1x =1y =-1z =所以平面BMD 的一个法向量.n =(1,−1,1)设平面PAB 的一个法向量,又,,(),,m a b c= ()1,0,2AP =-()0,1,0AB =所以20,0.m AP a c m AB b ⎧⋅=-+=⎪⎨⋅==⎪⎩令,解得,,2a =0b =1c =所以平面PAB 的一个法向量,()2,0,1m =设平面PAB 与平面BMD 所成锐二面角的大小为θ,所以.()cos ,n m cos n m n m θ⋅====即平面PAB 与平面BMD17. 中国体育代表团在2024年巴黎奥运会上取得了优异的成绩.为了解学生对奥运会的了解情况,某校组织了全校学生参加的奥运会知识竞赛,从一、二、三年级各随机抽取100名学生的成绩(,各年级总人数相等),统计如下:年级[0,60)[60,100]一年级4060二年级2575三年级1090学校将测试成绩分为及格(成绩不低于60分)和不及格(成绩低于60分)两类,用频率估计概率,所有学生的测试成绩结果互不影响.(1)从一、二年级各随机抽一名学生,记表示这两名学生中测试成绩及格的人数,求X 的分布列和数学期望;X (2)从这三个年级中随机抽取两个年级,并从抽取的两个年级中各随机抽取一名学生,求这两名学生测试成绩均及格的概率.【正确答案】(1)答案见解析(2)111200【分析】(1)写出所有可能得取值,然后分别求出其对应概率,列出表格,即可得到分布X 列,再由期望的公式代入计算,即可得到结果;(2)根据题意,由互斥事件概率公式代入计算,即可得到结果.【小问1详解】一年级学生及格的频率为,不及格的频率为,6031005=4021005=二年级学生及格的频率为,不及格的频率为,7531004=2511004=三年级学生及格的频率为,不及格的频率为,90910010=10110010=的所有可能取值为,X 0,1,2,3则,,()21105410P X ==⨯=()312391545420P X ==⨯+⨯=,()33925420P X ==⨯=所以的分布列为:X X12P110920920所以的期望为X ()1992701210202020E X =⨯+⨯+⨯=【小问2详解】由题意可知,抽到一、二年级,一、三年级,二、三年级的概率都是,13所以抽到的两名学生测试成绩均及格的概率为.13313913911135435103410200P =⨯⨯+⨯⨯+⨯⨯=18. 已知双曲线的两条渐近线方程为为2222:1(0,0)x y C a b a b -=>>20,x y A ±=上一点.C (1)求双曲线的方程;C (2)若过点的直线与仅有1个公共点,求的方程;A l C l (3)过双曲线的右焦点作两条互相垂直的直线,,且与交于两点,记C F 1l 2l 1lC ,M N 的中点与交于两点,记的中点为.若,求点到直线MN 2,B l C ,P Q PQD (0,G G 的距离的最大值.BD 【正确答案】(1)2214x y -=(2),.220x y -+-=220x y ++-=220y --=(3【分析】(1)列出关于的方程,代入计算,即可求解;,a b (2)分直线斜率存在于不存在讨论,然后联立直线与双曲线方程,代入计算,即可得到结果;(3)分直线斜率存在于不存在讨论,分别联立直线与双曲线方程以及直线与双曲线方程,1l 2l结合韦达定理代入计算,即可得到直线过定点,从而得到结果.BD 【小问1详解】由题意可得,,解得,所以双曲线的方程为.2212811b a a b ⎧=⎪⎪⎨⎪-=⎪⎩21a b =⎧⎨=⎩C 2214x y -=【小问2详解】当直线斜率存在时,设直线的方程为,ll (1y k x -=-代入可得,2214x y -=()(()22214814110k x k k ⎡⎤-----+=⎢⎥⎣⎦当时,即时,直线与双曲线的渐近线平行,只有一个公共点,2140k -=12k =±l即直线的方程为,;l 220x y -+-=220x y ++-=当时,,2140k -≠()()()2222Δ6411614110k k ⎡⎤=-+--+=⎢⎥⎣⎦即,可得与双曲线相切,)210-=k =l 直线;l 220y --=显然,当直线斜率不存在时,直线与双曲线有两个公共点,不满足;l l 综上所述,与双曲线仅有1个公共点的直线有3条:C ,.220x y -+-=220x y ++-=220y --=【小问3详解】当直线的斜率不存在时,则与重合,又,即,1l B F 2415c =+=c =所以,,此时直线的方程为,)F()0,0D BD 0y =则到的距离为0;G BD 当直线的斜率为0时,则与重合,,,1l DF )D ()0,0B 此时直线的方程为,则到的距离为0;BD 0y =G BD 当直线的斜率存在且不为0时,设的方程为,1l 1l(y k x =-设,()()()()11223344,,,,,,,M xy N x y P x y Q x y 直线的方程为,2l (1y x k =-联立可得,(2214x y y k x ⎧-=⎪⎨⎪=⎩()2222142040k x x k -+--=,()()()()22222Δ4142041610k kk=----=+>由韦达定理可得,则12x x +=122x x +=所以,121222y y x x k k ++⎛=== ⎝所以,B 联立可得,(22141x y y x k ⎧-=⎪⎪⎨⎪=-⎪⎩222420140x x k k ⎛⎫---= ⎪⎝⎭,22224201Δ4141610k k k -⎛⎫⎛⎫⎛⎫=---=+> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由韦达定理可得,则,34x x+==342x x +=所以,所以,1212y y k +=-=D则()()2422334414BDk k k k k k --===--+,,()()()2423134141k k kk k -+-==--()2221,140,40kk k ≠-≠-≠所以直线的方程为,BD ()2341k y x k ⎛-=-⎝即,()2413k y kx-=--所以,即,()2413k y kx -=-+()2413k y k x ⎛-=-- ⎝故直线过定点,BD ⎫⎪⎪⎭当时,直线与双曲线的渐近线平行,故与双曲线只有一个交点,舍去;2410k -=1l当时,直线与双曲线的渐近线平行,故与双曲线只有一个交点,舍去;240k -=2l 当时,的方程为,21k =,BDBD x =过点;⎫⎪⎪⎭综上所述,直线过定点.BD ⎫⎪⎪⎭所以点到直线.GBD=关键点点睛:本题主要考查了直线与双曲线的位置关系,难度较大,解答本题的关键在于分类讨论直线的斜率存在以及不存在,然后得到直线恒过定点,从而解答.BD 19. 已知函数(其中).312()(1)21xx f x ax b x -=++-+,a b ∈R (1)当时,证明:是增函数;0,0a b >=()f x (2)证明:曲线是中心对称图形;()y f x =(3)已知,设函数,若对任0a ≠312()e ()(1)(1)21xx x g x f x b x b -=+-+-+-+()0g x ≥意的恒成立,求的最小值.x ∈R b aa -【正确答案】(1)证明见解析; (2)证明见解析;(3).1-【分析】(1)根据给定条件,求出函数的导数,再判断导数值为正即可.(2)利用中心对称的定义,计算推理即得.(3)求出函数及其导数,再按分类讨论并求出的最小值,建立不等()g x 0,0a a <>()g x 式,构造函数,利用导数求出最小值即得.【小问1详解】函数的定义域为R ,当时,,()f x 0,0a b >=1122()22121x x x f x ax ax--=+=-+++求导得,所以是增函数.122ln2()0(21)x x f x a -'=+>+()f x 【小问2详解】依题意,(2)()f x f x -+2331122(2)(1)(1)2121x x x x a x b x ax b x ---=+-+-+++-++,()11222211221xx x a a --=++=+++所以曲线关于点对称,曲线是中心对称图形.()y f x =(1,1)a +()y f x =【小问3详解】依题意,,其定义域为,求导得,()e 1xg x ax b =-+-R ()x g x e a '=-当时,在上单调递增,0a <()0,()g x g x >'R 当时,,的取值集合为,0x <0e 1x<<1ax b -+-(,1)b -∞-因此当时,函数的取值集合为,不符合题意;0x <()g x (,)b -∞当时,由,得在上单调递增;0a >()0g x '>ln ,()x a g x >(ln ,)a +∞由,得在上单调递减,()0g x '<ln ,()x a g x <(,ln )a -∞函数在处取得最小值,且,()g x ln x a =min ()(ln )ln 1g x g a a a a b ==-+-由对任意的恒成立,得,即成立,()0g x ≥x ∈R ln 10a a a b -+-≥ln 1b a a a ≥-++因此,设,2ln 11ln 2b a a a a a a a a --++≥=+-221111()ln 2,()a a a a a a a a ϕϕ-=+-=='-当时,,当时,,01a <<()0a ϕ'<1a >()0a ϕ'>函数在上递减,在上递增,()a ϕ(0,1)(1,)+∞则,即,当且仅当时取等号,min()(1)1a ϕϕ==-1b aa -≥-1,0ab ==所以的最小值为.b aa -1-结论点睛:函数的定义域为D ,,()y f x =x D ∀∈①存在常数a ,b 使得,则函数()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=图象关于点对称.()y f x =(,)a b ②存在常数a 使得,则函数图象关于直()(2)()()f x f a x f a x f a x =-⇔+=-()y f x =线对称.x a =。

广西壮族自治区高三上学期数学10月月考试卷(I)卷

广西壮族自治区高三上学期数学10月月考试卷(I)卷

广西壮族自治区高三上学期数学10月月考试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2015高三上·邢台期末) 若集合A={x|x2﹣6x+8<0},集合B={x∈N|y= },则A∩B=()A . {3}B . {1,3}C . {1,2}D . {1,2,3}2. (2分)函数的定义域是()A .B .C .D .3. (2分)已知函数,数列是等差数列,的值()A . 恒为正数B . 恒为负数C . 恒为OD . 可正可负4. (2分)若“”是“”的充分而不必要条件,则实数的取值范围是()A .B .C .D .5. (2分) (2018高二上·陆川期末) 命题“ R,”的否定是()A . R,B . R,C . R,D . R,6. (2分)函数f(x)是实数集R上的奇函数,若f(2)=2,则f(﹣2)=()A . 2B . ﹣2C . 0D . 2或﹣27. (2分) (2019高一上·儋州期中) 已知函数在定义域上是奇函数又是减函数,若,则的取值范围是()A .B .C .D .8. (2分)函数f(x)= 的图象()A . 关于原点对称B . 关于y轴对称C . 关于x轴对称D . 关于直线y=x对称9. (2分)已知函数f(x)=x2+bx+c的导函数y=f'(x)的图象如图所示,且f(x)满足b2-4c>0,那么f(x)的顶点所在的象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)函数f(x)=2x+2-x的图象关于对称. ()A . 坐标原点B . 直线y=xC . x轴D . y轴11. (2分)(2018·鞍山模拟) 已知函数,则函数的大致图象是()A .B .C .D .12. (2分)若复数(,为虚数单位)是纯虚数,则实数的值为()A .B . 4C .D . 6二、填空题 (共4题;共4分)13. (1分) (2018高二下·绵阳期中) 设,若复数 (是虚数单位)的实部为,则________.14. (1分)(2020·海南模拟) 已知函数,若,则 ________.15. (1分) (2016高一上·常州期中) 函数y= +lg(4﹣x)的定义域为________.16. (1分) (2016高一上·密云期中) 函数的零点个数是________个.三、解答题 (共6题;共65分)17. (5分) (2017高二上·太原月考) 已知:,:,若是的充分不必要条件,求正实数的取值范围.18. (10分) (2019高一上·安达期中) 若奇函数在定义域上是减函数.(1)求满足的集合;(2)对(1)中的,求函数的定义域.19. (10分)设f(x)= .(1)探究f(a)与f(1﹣a)的关系;(2)求的值.20. (10分) (2018高一下·深圳期中) 已知函数为奇函数.(1)求的值;(2)当时,关于的方程有零点,求实数的取值范围.21. (15分) (2018高一上·泰安月考) 已知函数 .(1)做出函数图象;(2)说明函数的单调区间(不需要证明);(3)若函数的图象与函数的图象有四个交点,求实数的取值范围.22. (15分) (2016高一上·杭州期中) 计算下列各式(1)求值:﹣()0+0.25 ×()﹣4;(2)求值:(lg2)2+lg5•lg20+lg100+lg +lg0.006.参考答案一、单选题 (共12题;共24分)1-1、答案:略2-1、答案:略3-1、答案:略4-1、答案:略5-1、答案:略6-1、答案:略7-1、8-1、答案:略9-1、答案:略10-1、答案:略11-1、12-1、答案:略二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分)17-1、18-1、答案:略18-2、答案:略19-1、答案:略19-2、答案:略20-1、答案:略20-2、答案:略21-1、答案:略21-2、答案:略21-3、答案:略22-1、答案:略22-2、答案:略。

广西壮族自治区南宁市第三中学2024-2025学年八年级上学期10月月考数学试题

广西壮族自治区南宁市第三中学2024-2025学年八年级上学期10月月考数学试题

广西壮族自治区南宁市第三中学2024-2025学年八年级上学期10月月考数学试题一、单选题1.下列选项中,比-2C o 低的温度是( )A .3C -oB .1C -o C .0C oD .1C o2.小篆,是在秦始皇统一六国后创制的汉字书写形式.下列四个小篆字中为轴对称图形的是( )A .B .C .D .3.2024年两会这份数据,振奋人心!中国2023年GDP 超126万亿元,同比GDP 增量相当于一个中等国家经济总量,连续多年保持世界第二大商品消费市场,世界第一制造业大国,世界第一货物贸易大国地位.把数据126万亿元用科学记数法表示为( ) A .131.2610⨯元 B .140.12610⨯元 C .1312610⨯元 D .141.2610⨯元 4.下列调查适合抽样调查的是( )A .对搭乘高铁的乘客进行安全检查B .审核书稿中的错别字C .调查一批LED 节能灯管的使用寿命 D .对七(1)班同学的视力情况进行调查 5.如图,在△ABC 中,以点C 为圆心,以AC 长为半径画弧交边BC 于点D ,连接AD .若∠B =36°,∠C =40°,则∠BAD 的度数是( )A .70°B .44°C .34°D .24°6.等腰三角形的两边长为4cm 和3cm ,那么它的周长为( )A .10cmB .11cmC .10cm 或11cmD .12cm7.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A 、C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是( )A .SSSB .SASC .ASAD .AAS8.一个多边形的每个外角都是30°,则这个多边形的边数是( ).A .6B .8C .10D .129.如图,将一个长方形纸条折成如图所示的形状,若1110∠=︒,则2∠的度数为( )A .20︒B .35︒C .55︒D .60︒10.《九章算术》是人类科学史上应用数学的“算经之首”,书中有这样一个问题:若2人坐一辆车,则9人需要步行,若“……”.问:人与车各多少?小明同学设有x 辆车,人数为y ,根据题意可列方程组为()2932y x y x =+⎧⎨=-⎩,根据已有信息,题中用“……”表示的缺失条件应补为( )A .三人坐一辆车,有一车少坐2人B .三人坐一辆车,则2人需要步行C .三人坐一辆车,则有两辆空车D .三人坐一辆车,则还缺两辆车11.若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( )A .1m >B .1m <C .1m ≠D .1m =12.如图,在Rt ABC △中,90ABC ∠=︒,以AC 为边,作ACD V ,满足AD AC =,E 为BC 上一点,连接AE ,2CAD BAE ∠=∠,连接DE ,下列结论中:①ADE ACB ∠=∠;②AC DE ⊥;③AEB AED ∠=∠;④2DE CE BE =+.其中正确的有( )个A .1B .2C .3D .4二、填空题13.若80A ∠=︒,则A ∠的补角是.14.点()23P -,关于y 轴对称点的坐标在第象限. 15.六边形一共有条对角线.16.如图,在Rt ABC △中,90BAC ∠=o ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为.17.某种商品进价为400元,标价为500元出售,商场规定可以打折销售,但其利润率不能少于6.25%,这种商品最多可以按折销售.18.如图,已知平面直角坐标系中点A 坐标是()2,5,点B 在x 轴上, A 是OB 的垂直平分线上一点,P 是y 轴上一点,若OPB OAB ∠=∠时,则PO PB +=.三、解答题19.计算:()()2024322351-⨯-+÷-.20.解不等式组21341x x +≥⎧⎨->-⎩;并把不等式组的解集在数轴上表示出来.21.已知:如图,在ABC V 中,AB AC =,2B A ∠=∠.(1)求作ABC ∠的平分线,交AC 于点P .(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求ABP ∠的角度?22.国家航天局消息:北京时间2021年10月14日,神舟十三号成功发射,某中学科技兴趣小组为了解本校学生对航天科技的关注程度,在该校内进行了随机调查统计,将调查结果分为不关注、关注、比较关注、非常关注四类,回收、整理好全部调查问卷后,得到下列不完整的统计图:(1)此次调查中接受调查的人数为______人;(2)补全条形统计图,在扇形统计图中,“关注”对应扇形的圆心角为______;(3)该校共有1200人,根据调查结果估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共多少人?23.如图,在△ABC 中,∠B =40°,∠C =80°.(1)求∠BAC 的度数;(2)AE 平分∠BAC 交BC 于E ,AD ⊥BC 于D ,求∠EAD 的度数.24.如图,AB AC =,CE AB ∥,D 是AC 上的一点,且=AD CE .(1)求证:ABD CAE △△≌(2)若25ABD ∠=︒,40CBD ∠=︒,求BAE ∠的度数.25.综合与实践小许是个爱动脑筋的学生,她在学习了二元一次方程组后遇到了这样一道题目:如图1,长方形ABCD 中放置8个形状和大小都相同的小长方形(尺寸如图1),求图中阴影部分的面积.(1)小许设小长方形的长为cm x ,宽为cm y ,观察图形得出关于x ,y 的二元一次方程组,解出x ,y 的值,再用大长方形的面积减去8个小长方形的面积得到阴影部分的面积. 解决问题:请按照小许的思路完成上述问题:(2)动手实践:解决完上面的问题后,小许在家里找了8张形状大小都相同的卡片,恰好拼成了一个大的长方形如图2所示,打乱后又拼成如图3那样的大正方形,中间还留了一个洞,恰好是边长为1cm的小正方形,求每个小长方形的面积.请给出解答过程.26.【问题初探】ABCV和DBEV是两个都含有45︒角的大小不同的直角三角板(1)当两个三角板如图(1)所示的位置摆放时,D、B,C在同一直线上,连接AD CE、,请证明:=AD CE【类比探究】(2)当三角板ABC保持不动时,将三角板DBE绕点B顺时针旋转到如图(2)所示的位置,判断AD与CE的数量关系和位置关系,并说明理由.【拓展延伸】如图(3),在四边形ABCD中,390,,4 BAD AB AD BC CD∠=︒==,连接AC,BD,45ACD∠=︒,A到直线CD的距离为7,请求出BCD△的面积.。

广西壮族自治区南宁市第三中学2023-2024学年八年级上学期10月月考数学试题

广西壮族自治区南宁市第三中学2023-2024学年八年级上学期10月月考数学试题

广西壮族自治区南宁市第三中学2023-2024学年八年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题..C...某省有7万名学生参加初中毕业会考,要想了解7万名学生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是().这1000名考生是总体的一个样本.本调查是全面调查7万名考生是总体.每位考生的数学成绩是个体.在平面直角坐标系中,点A关于x轴的对称点为A1(3,-2),则点(-3,-2)B.(3,2)(3,-2).不等式组33020xx+≥⎧⎨-≤⎩的解集在数轴上表示正确的是().B.C .D .6.如图,AB CD ∥,直线EF 分别交AB ,CD 于点M ,N ,将一个含有45°角的直角三角尺按如图所示的方式摆放,若80EMB ∠=︒,则PNM ∠等于()A .15°B .25°C .35°D .45°7.正多边形的内角和是1440°,则这个正多边形是()A .正七边形B .正八边形C .正九边形D .正十边形8.下列不等式变形不正确的是()A .若a b >,则a c b c +>+B .若a b <,则11a b -<-C .若a b >,则33a b>D .若a b <,则a b-<-9.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于BC 的一半长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接C D .若CD =AC ,∠A =50°,则∠ACB =()A .80°B .25°C .105°D .95°10.等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为()A .3cmB .5cmC .7cm 或3cmD .8cm11.中国古代数学著作《算法统宗》中记载了这样一个题目:九百九十九文钱,甜果苦果买一千,四文钱买苦果七,十一文钱九个甜,甜苦两果各几个?其大意是:用九百九十九文钱共买了一千个苦果和甜果,其中四文钱可以买苦果七个,十一文钱可以买甜果A.1B.2二、填空题16.如图,已知(写出一个即可18.如图,ABC是等腰三角形,垂足为E,另一腰AC上的高为.三、解答题19.解方程组:7 317 x yx y+=⎧⎨+=⎩22.近年来,太原市各中小学对劳动教育日益重视,许多学校因地制宜,创造条件,精心设计花样劳动作业,让学生们多参与劳动,形成家校共育,为培养学生的自主意识,提高学生的劳动本领,某校组织全校学生开展了劳动技能大赛,通过以赛促学、以赛促育的方式,感受劳动之趣,体验劳动之美,赛后从中随机抽取了部分学生进行了问卷调查,所有问卷全部收回,并将结果绘制成如图所示的统计图和统计表:组别成绩x(分)频率x≤≤0.4A90100x≤<0.2B8090C7080≤<0.24xD6070≤<0.16x根据以上信息,解答下列问题:(1)小明说频数分布直方图中有一组的数据画错了,应该是多少?(2)参与本次问卷调查的总人数为______24.某企业有20个车间,计划为每个车间各配工会人员经过市场走访,发现甲、乙两个文体用品商店销售同一款乒乓球拍和乒乓球,且售价均相同.经过询问,工会人员发现购买元;购买3副乒乓球拍和20个乒乓球需支付(1)求乒乓球拍和乒乓球的单价,(2)为了促销,甲、乙两个商店均提出优惠方案:优惠方案甲商店:买一副乒乓球拍送10个乒乓球;26.在平面直角坐标系中有一等腰三角形ABC ,点A 在y 轴正半轴上,点B 在半轴上.(1)如图1,点C 在第一象限,若90BAC ∠=︒,A 、B 两点的坐标分别是(0,4)A ,B 求C 点的坐标;(2)如图2,点C 在x 正半轴上,点E 、F 分别是边BC 、AB 上的点,若2AEF ACB OAE ∠=∠=∠.求证:BF CE =;(3)如图3,点C 与点O 重合时点E 在第三象限,BE AE ⊥,连接OE ,求BEO ∠的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南宁市高三上学期数学10月月考试卷D卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分) (2017高一上·定远期中) 设全集为R,函数f(x)= 的定义域为M,则∁RM为()
A . {x|x<1}
B . {x|x>1}
C . {x|x≤1}
D . {x|x≥1}
2. (2分)设x,y∈R,向量 =(1,x), =(3,2﹣x),若⊥ ,则实数x的取值为()
A . 1
B . 3
C . 1或﹣3
D . 3或﹣1
3. (2分) (2017高一下·安平期末) 在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()
A . 60°
B . 120°
C . 30°
D . 150°
4. (2分)令a=60.7 , b=0.76 , c=log0.76,则三个数a、b、c的大小顺序是()
A . b<c<a
B . b<a<c
C . c<a<b
D . c<b<a
5. (2分) (2016高一上·金台期中) 下列选项正确的是()
A . loga(x+y)=logax+logay
B . loga =
C . (logax)2=2logax
D . =loga
6. (2分)已知f(x)=,在区间[0,2]上任取三个数,均存在以为边长的三角形,则的取值范围是()
A .
B .
C .
D .
7. (2分)(2019·浙江模拟) 已知,则的取值范围是()
A . [0,1]
B .
C . [1,2]
D . [0,2]
8. (2分)已知函数的图像在点A(1,f(1))处的切线l与直线平行,若数列
的前项和为,则的值为()
A .
B .
C .
D .
9. (2分) (2017高二下·中原期末) 若函数f(x)= x3﹣(1+ )x2+2bx在区间[3,5]上不是单调函数,则函数f(x)在R上的极大值为()
A . b2﹣ b3
B . b﹣
C . 0
D . 2b﹣
10. (2分) (2019高二下·哈尔滨月考) 已知函数,其中,为自然对数底数,若,是的导函数,函数在内有两个零点,则的取值范围是()
A .
B .
C .
D .
二、填空题 (共6题;共6分)
11. (1分) (2018高二下·石嘴山期末) 设函数,若,则b=________.
12. (1分) (2015高一下·城中开学考) 求值cos690°=________.
13. (1分) (2017高一上·西城期中) ________.
14. (1分)已知等比数列{an}的前n项和Sn=54,前2n项和S2n=60,则前3n项和S3n=________.
15. (1分)(2018·徐州模拟) 如图,在中,已知为边的中点.若,垂足为,则的值为________
16. (1分)对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任
给的正数m,存在相应的x0∈D,使得当x∈D且x>x0时,总有,则称直线l:y=kx+b为曲线y=f (x)和y=g(x)的“分渐近线”.给出定义域均为D={x|x>1}的四组函数如下:
①f(x)=x2 , g(x)= ;
②f(x)10﹣x+2,g(x)= ;
③f(x)= ,g(x)= ;
④f(x)= ,g(x)=2(x﹣1﹣e﹣x)
其中,曲线y=f(x)和y=g(x)存在“分渐近线”的是________.
三、解答题 (共6题;共65分)
17. (10分) (2018高一下·吉林期中) 已知函数 .
(1)求满足的实数的取值集合;
(2)当时,若函数在的最大值为2,求实数的值.
18. (10分) (2018高一下·宜宾期末) 在公差不为零的等差数列中,若首项,是与
的等比中项.
(1)求数列的通项公式;
(2)求数列的前项和 .
19. (10分)(2017·孝义模拟) 已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B ﹣cos2C﹣sin2A=﹣sinAsinB,sin(A﹣B)=cos(A+B).
(1)求角A、B、C;
(2)若a= ,求三角形ABC的边长b的值及三角形ABC的面积.
20. (10分)已知函数地f(x)=a(x-1)-(x+1)ln x,a=R.
(1)当a=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当x>1时,f(x)<0,求实数a的取值范围.
21. (10分) (2019高二上·四川期中) 已知圆C的圆心在轴的正半轴上,且轴和直线
均与圆C相切.
(1)求圆C的标准方程;
(2)设点,若直线与圆C相交于M,N两点,且为锐角,求实数m的取值范围.
22. (15分) (2019高三上·平遥月考) 已知函数.
(1)当时,讨论函数的单调性;
(2)若函数有两个极值点,,证明:.
参考答案一、单选题 (共10题;共20分)
1-1、答案:略
2-1、答案:略
3-1、答案:略
4-1、答案:略
5-1、答案:略
6-1、答案:略
7-1、
8-1、答案:略
9-1、答案:略
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、答案:略
14-1、
15-1、
16-1、
三、解答题 (共6题;共65分) 17-1、答案:略
17-2、答案:略
18-1、答案:略
18-2、答案:略
19-1、答案:略
19-2、答案:略
20-1、答案:略
20-2、答案:略
21-1、答案:略
21-2、答案:略
22-1、答案:略
22-2、答案:略。

相关文档
最新文档