基于数字PID算法的温度控制系统设计

合集下载

数字pid控制系统设计方案

数字pid控制系统设计方案

数字PID控制系统设计方案如下:一、引言PID控制器是一种常用的闭环控制算法,用于调节系统的输出以使系统稳定在设定值附近。

数字PID控制系统通过数字信号处理器(DSP)或单片机实现PID控制算法,具有灵活性高、易实现和调试等优点。

本文将介绍数字PID控制系统的设计方案,包括硬件连接、软件算法设计和系统调试等内容。

二、硬件设计1. 控制对象:确定待控制的物理对象或过程,例如电机转速、温度、液位等。

2. 传感器:选择合适的传感器获取待控量的反馈信号,如编码器、温度传感器、压力传感器等。

3. 执行器:选择合适的执行器,如电机、阀门等,用于调节系统输出。

4. 控制器:采用DSP或单片机作为数字PID控制器,负责计算PID 控制算法输出并控制执行器。

三、软件算法设计1. PID算法:根据系统特性和需求设计PID控制算法,包括比例项、积分项和微分项的权重和计算方法。

2. 离散化:将连续时间的PID算法离散化,适应数字控制器的运算方式。

3. 反馈控制:读取传感器反馈信号,计算PID输出,并控制执行器实现闭环控制。

四、系统调试1. 参数整定:通过实验和调试确定PID控制器中的比例系数、积分时间和微分时间等参数。

2. 稳定性测试:观察系统响应和稳定性,调整PID参数以提高系统性能。

3. 实时监测:实时监测系统输入、输出和误差信号,确保PID控制器正常工作。

五、性能优化1. 自适应控制:根据系统动态特性调整PID参数,实现自适应控制。

2. 鲁棒性设计:考虑系统模型不确定性和外部扰动,设计鲁棒性PID 控制算法。

3. 高级控制:结合模糊控制、神经网络等高级控制方法,优化系统性能。

六、总结数字PID控制系统设计是一项重要的控制工程任务,通过合理的硬件设计和软件算法实现,可以实现对各种控制对象的精确控制。

希望通过本文的介绍,读者能够了解数字PID控制系统的设计原理和实现方法,并在实践中不断提升控制系统设计和调试的能力。

(整理)基于PID电加热炉温度控制系统设计

(整理)基于PID电加热炉温度控制系统设计

基于PID 电加热炉温度控制系统设计1概述电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。

对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。

单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。

采用单片机进行炉温控制,可以提高控制质量和自动化水平。

在本控制对象电阻加热炉功率为800W ,由220V 交流电供电,采用双向可控硅进行控制。

本设计针对一个温度区进行温度控制,要求控制温度范围50~350C ,保温阶段温度控制精度为正负1度。

选择合适的传感器,计算机输出信号经转换后通过双向可控硅控制器控制加热电阻两端的电压。

其对象问温控数学模型为:1)(+=-s T e K s G d sd τ 其中:时间常数Td=350秒放大系数Kd=50滞后时间τ=10秒控制算法选用改PID 控制2系统硬件的设计本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、热电偶传感器、温度变送器以及被控对象组成。

系统硬件结构框图如下:图2-1 系统硬件结构框图看门狗 报警提醒通信接口 LED显示 键盘 微型控制机 AT89S52 温度检测PT100 驱动执行机构 8路D/A 转换器DAC0832 测量变送 8路A/D 转换器ADC0809 加热电阻温度图2-2 系统电路图2.1电源部分本系统所需电源有220V交流市电、直流5V电压和低压交流电,故需要变压器、整流装置和稳压芯片等组成电源电路。

电源变压器是将交流电网220V的电压变为所需要的电压值,然后通过整流电路将交流电压变为脉动的直流电压。

由于此脉动的直流电压还含有较大的纹波,必须通过滤波电路加以滤除,从而得到平滑的直流电压。

基于单片机PID算法的电加热炉温度控制系统设计

基于单片机PID算法的电加热炉温度控制系统设计

基于单片机 PID算法的电加热炉温度控制系统设计摘要:电加热炉的温度控制具有升温单向性,大惯性,时变性,纯滞后等特点,其控温过程存在非线性波动等问题。

本文采用AT89C51单片机基于PID算法设计了一种电加热温度控制系统。

仿真实验表明,本系统能够有效提高电加热炉温度控制的鲁棒性,符合新形势下对炉温调控的实际需求。

关键词:电加热炉;温度控制;单片机;PID算法1引言电加热炉在冶金、化工、机械等领域具备广泛的用途,但是它是一个多时变、存在物理耦合、本质非线性的复杂系统,传统的基于滞后反馈的控制律无法平衡炉温检测与炉温调控之间的时间同步关系,容易造成整个加热炉炉温调控系统的温度非线性波动、间歇性振荡,引起炉温调控器的参数变化。

因此提高电加热炉的温度控制水平,是当今工业控制技术的主要研究方向之一。

常规控制方法难以实现较高的控制精度和响应速度。

相比之下,经典的增量PID控制算法,无需针对控制对象建立数学模型,便可实现较发复杂系统的精确控制。

本文基于PID算法,提出设计了一套电加炉控制方法,核心控制芯片采用AT89C51系列单片机,具备数据采集、调控、显示、报警等多项功能,实现了对温控系统的设计和模拟仿真,能有效改善电加热炉温度控制系统的性能。

2总体方案设计本系统采用以AT89C51单片机为核心的温度控制系统,通过温度传感器PT100采样实时温度,并通过变送器将温度最终转换为电压信号通过A/D转换器0808将其转换为数字信号,送入单片机与给定值进行比较,运用PID算法得出控制结果,送显示并进行控制(图1)。

图1 系统总体设计方案图2.1系统硬件选择单片机是指将微处理器、存储器和输入/输出接口电路集成在一块集成电路芯版上的单片微型计算机。

单片机主要应用于工业控制领域,用来实现对信号的检测、数据的采集以及对应用对象的控制。

它具有体积小、重量轻、价格低、可靠性高、耗电少和灵活机动等许多优点。

单片机是微型计算机的一个重要分支,特别适合用于智能控制系统。

基于数字PID的电阻热炉温度控制系统设计

基于数字PID的电阻热炉温度控制系统设计
参考文献
1.于海生计算机控制技术[M]北京:机械工业出版社,2007.6
2、周荷琴等微型计算机原理及接口技术[M]合肥:中国科技大学出版社,2008.6
3、李刚民等单片机原理及应用技术[M]北京:高等教育出版社
4、楼然苗51系列单片机设计实例[M]北京:北京航空航天大学出版社
5、计算机控制技术实验指导书
其中:时间常数 =350秒,放大系数 =50,滞后时间τ=10秒,控制算法选用改进的PID控制算法。
具有的设计条件
1.PC机一台,教学实验箱一台;
计划学生数及任务
3人
(1):明确课题功,确定各模块处理方法,画出流程图。
(3):存储器资源分配
(4):编制程序,根据流程图来编制源程序
(5):对程序进行汇编,调试和修改,直到程序运行结果正确为止。
计划设计进程
一、总体方案设计
二、控制系统的建模和数字控制器设计
三、硬件的设计和实现
1、选择计算机字长(选用51内核的单片机)
2、设计支持计算机工作的外围电路(EPROM、RAM、I/O端口、键盘、显示接口电路等);
3、设计输入信号接口电路;
2011---2012第二学期
4、设计DA转换和电流驱动接口电路;
5、其它相关电路的设计或方案(电源、通信等)。
四、软件设计
1、分配系统资源,编写系统初始化和主程序模块框图;
2、编写AD转换和温度检测子程序框图;
3、编写控制程序和DA转换控制子程序模块框图;
4、其它程序模块(显示与键盘等处理程序)框图。
五、编写课程设计说明书,绘制完整的系统电路图(A3幅面)。
2009级自动化专业《计算机控制技术》课程设计任务书
论文

基于单片机的pid温度控制系统设计

基于单片机的pid温度控制系统设计

一、概述单片机PID温度控制系统是一种利用单片机对温度进行控制的智能系统。

在工业和日常生活中,温度控制是非常重要的,可以用来控制加热、冷却等过程。

PID控制器是一种利用比例、积分、微分三个调节参数来控制系统的控制器,它具有稳定性好、调节快等优点。

本文将介绍基于单片机的PID温度控制系统设计的相关原理、硬件设计、软件设计等内容。

二、基本原理1. PID控制器原理PID控制器是一种以比例、积分、微分三个控制参数为基础的控制系统。

比例项负责根据误差大小来控制输出;积分项用来修正系统长期稳态误差;微分项主要用来抑制系统的瞬时波动。

PID控制器将这三个项进行线性组合,通过调节比例、积分、微分这三个参数来实现对系统的控制。

2. 温度传感器原理温度传感器是将温度变化转化为电信号输出的器件。

常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。

在温度控制系统中,温度传感器负责将环境温度转化为电信号,以便控制系统进行监测和调节。

三、硬件设计1. 单片机选择单片机是整个温度控制系统的核心部件。

在设计单片机PID温度控制系统时,需要选择合适的单片机。

常见的单片机有STC89C52、AT89S52等,选型时需要考虑单片机的性能、价格、外设接口等因素。

2. 温度传感器接口设计温度传感器与单片机之间需要进行接口设计。

常见的温度传感器接口有模拟接口和数字接口两种。

模拟接口需要通过模数转换器将模拟信号转化为数字信号,而数字接口则可以直接将数字信号输入到单片机中。

3. 输出控制接口设计温度控制系统通常需要通过继电器、半导体元件等控制输出。

在硬件设计中,需要考虑输出接口的类型、电流、电压等参数,以及单片机与输出接口的连接方式。

四、软件设计1. PID算法实现在单片机中,需要通过程序实现PID控制算法。

常见的PID算法包括位置式PID和增量式PID。

在设计时需要考虑控制周期、控制精度等因素。

2. 温度采集和显示单片机需要通过程序对温度传感器进行数据采集,然后进行数据处理和显示。

基于PID的温度控制系统设计

基于PID的温度控制系统设计

基于PID的温度控制系统设计PID(比例-积分-微分)控制系统是一种常见的温度控制方法。

它通过测量实际温度和设定温度之间的差异,并相应调整加热器或冷却器的输出来控制温度。

在本文中,将介绍PID控制系统的基本原理、设计步骤和实施细节,以实现一个基于PID的温度控制系统。

一、基本原理PID控制系统是一种反馈控制系统,其核心思想是将实际温度值与设定温度值进行比较,并根据差异进行调整。

PID控制器由三个部分组成:比例控制器(P),积分控制器(I)和微分控制器(D)。

比例控制器(P):根据实际温度与设定温度之间的差异,产生一个与该差异成正比的输出量。

比例控制器的作用是与误差成正比,以减小温度偏差。

积分控制器(I):积分控制器是一个与误差积分成比例的系统。

它通过将误差累加起来来减小持续存在的静态误差。

积分控制器的作用是消除稳态误差,对于不稳定的温度系统非常有效。

微分控制器(D):微分控制器根据温度变化速率对输出进行调整。

它通过计算误差的变化率来预测未来的误差,并相应地调整控制器的输出。

微分控制器的作用是使温度系统更加稳定,减小温度变化速率。

二、设计步骤1.系统建模:根据实际温度控制系统的特点建立数学模型。

这可以通过使用控制理论或系统辨识技术来完成。

将得到的模型表示为一个差分方程,包含输入(控制输入)和输出(测量温度)。

2.参数调整:PID控制器有三个参数:比例增益(Kp)、积分时间(Ti)和微分时间(Td)。

通过试验和调整,找到最佳的参数组合,以使系统能够快速稳定地响应温度变化。

3.控制算法:根据系统模型和参数,计算控制器的输出。

控制器的输出应是一个与实际温度偏差有关的控制信号,通过改变加热器或冷却器的输入来调整温度。

4.硬件实施:将控制算法实施到硬件平台上。

这可以通过使用微控制器或其他可编程控制器来实现。

将传感器(用于测量实际温度)和执行器(用于控制加热器或冷却器)与控制器连接起来。

5.调试和测试:在实际应用中,进行系统调试和测试。

基于数字PID的电加热炉温度控制系统设计

基于数字PID的电加热炉温度控制系统设计

计算机控制技术课程设计报告题目基于数字PID的电加热炉温度控制系统设计授课教师盖宁学生姓名学号专业教学单位完成时间目录摘要 (1)第1章课程设计方案 (1)1.1系统组成中体结构 (1)第2章控制系统的建模和数字控制器设计 (1)2.1 数字PID控制算法 (1)第3章硬件设计 (4)3.1 温度检测及功率放大电路 (4)3.2 AD574A模/数转换电路 (4)3.3执行机构 (5)3.4 报警电路设计 (6)3.5 设计输入输出通道 (7)第4章软件设计 (8)4.1 系统程序流程图 (8)4.1.1 系统主程序框图 (8)4.1.2 A/D转换子程序流程图 (9)4.1.3 LED显示流程图 (10)4.1.4 报警程序流程图 (11)4.1.5数字控制算法子程序流程图 (12)第5章总结以及电路图 (12)5.1系统电路图 (12)参考文献 (14)基于数字PID的电加热炉温度控制系统设计摘要:电加热炉控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。

本设计采用PID算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节相串联来实现温度的较为精确的控制。

电加热炉加热温度的改变是由上、下两组炉丝的供电功率来调节的,它们分别由两套晶闸管调功器供电。

调功器的输出功率由改变过零触发器的给定电压来调节,本设计以AT89C51单片机为控制核心,输入通道使用AD590传感器检测温度,测量变送传给ADC0809进行A/D转换,输出通道驱动执行结构过零触发器,从而加热电炉丝。

本系统PID算法,将温度控制在50~350℃范围内,并能够实时显示当前温度值。

关键词:电加热炉;PID ;功率;温度控制;一.课程设计方案1.1 系统组成中体结构电加热炉温度控制系统原理图如下,主要由温度检测电路、A/D转换电路、驱动执行电路、显示电路及按键电路等组成。

基于PID控制算法的温室温度控制系统设计与优化

基于PID控制算法的温室温度控制系统设计与优化

基于PID控制算法的温室温度控制系统设计与优化温室温度对于植物的生长发育起着至关重要的作用。

然而,在不同季节或气候条件下,温室内的温度往往难以保持在理想范围内,这就需要一个高效可靠的温室温度控制系统来实现温室内的温度调节。

本文将介绍基于PID控制算法的温室温度控制系统的设计与优化。

PID控制算法,即比例-积分-微分控制算法,是一种经典的控制算法,广泛应用于工业过程控制中。

它通过根据系统当前状态和期望状态之间的差异,计算出一个控制信号来调节输出,以保持系统的稳定性和准确性。

温室温度控制系统的设计主要包括传感器、执行器和控制器三个部分。

传感器用于实时采集温室内的温度数据,执行器用于调节温室内的温度,而控制器则根据传感器采集的数据和设定的目标温度,计算出执行器的控制信号。

在PID控制算法中,比例项用于根据当前温度与目标温度的差异来计算控制信号的大小,积分项用于根据温度偏差的累积误差来消除静差,微分项用于根据温度变化的速率来预测未来的温度变化趋势。

通过调节PID控制算法中的三个参数,即比例系数、积分时间和微分时间,可以实现对温室温度的精确控制。

在设计温室温度控制系统时,首先需要选择合适的传感器和执行器。

温度传感器应具有高精度和快速响应的特点,以便能够准确测量温室内的温度变化。

执行器可以选择电热器、风扇或冷却设备等,根据温室的大小和温度变化幅度来确定。

接下来是PID控制器的参数调节。

常见的方法是进行试错调整法,通过不断调整比例系数、积分时间和微分时间,观察温室温度的变化情况,逐步优化控制效果。

比例项的增大会使控制器对温度差异更敏感,但可能会引起震荡;积分项的增大可以消除静差,但可能会导致超调和温度震荡;微分项用于预测未来的温度变化趋势,使控制器更加稳定。

除了PID控制算法的参数调节,还可以考虑采用模糊逻辑控制、遗传算法等优化方法来进一步提高温室温度控制系统的性能。

模糊逻辑控制通过将温度误差与设定的规则进行模糊化,利用专家经验和模糊推理算法来计算控制信号。

基于PID算法的温室内温湿度智能控制系统

基于PID算法的温室内温湿度智能控制系统

技术Special TechnologyI G I T C W 专题74DIGITCW2020.080 引言PID 算法是一种采样控制算法,通过对控制量的计算得出准确可行的计算机控制语言,由于该算法具有计算结果进准度高,计算过程中不需要建立数学模型,应用起来简单快捷,被广泛应用到各个领域中。

温室内温湿度智能控制系统可用于农作物生长环境的实时监测,根据控制算法的设置,为温室制造出最适合农作物生长的温湿度环境。

传统温室内温湿度控制系统由于控制精准度低、控制不稳定等问题,已无法满足植物养殖的需求[1]。

所以运用PID 算法设计温室内温湿度智能控制系统,提高系统对温室温湿度控制的精准度。

1 温室内温湿度智能控制系统设计1.1 系统硬件设计系统的硬件结构设计由微处理器、传感器以及电源电路等设备构成。

微处理器是系统的控制板块,同时也是系统的核心部分,该设备是负责执行系统的控制指令[2]。

为了保证系统对温室温湿度智能高效控制功能,此次选用14位SLZ 系列单片机SLZ2016-558微处理器,该设备采用先进的PPC 结构,绝大多数系统控制指令可以在15秒钟内完成,具有较高的运行速度,该设备具有内外多种中断工作模式,有利于系统中断程序的设计和低电压检测功能的实现[3]。

由于该微处理器具有低功耗特点,增加了系统的工作时间,在设备安装时,设备工作电压要控制在2.6~4.3V 范围内,保证微处理器平稳顺利运行。

硬件设计上选用了温度和湿度两种传感器。

在温室内外各安装一套温湿度传感器,并将传感器的传输方式设置为模拟量传输,其具体性能指标设置为:温度传感器型号为TL-W ,测量范围0~60℃,输出为Rs600,误差为0.01;湿度传感器型号为TL-N ,测量范围0~95%RH ,输出为Rs500,误差为0.01。

为了保证电源电压稳定,系统在运行时一般采用4.5V 电压供电,并且分别在系统输入端口和输出端口安装经线性稳压电源LMIII9GT-3.0V 和LMIII9GT-1.5V ,将系统的供电电压降低到3.0V 和1.5V 。

基于PID算法的恒温控制系统设计

基于PID算法的恒温控制系统设计

基于PID算法的恒温控制系统设计一、引言恒温控制系统是指通过对温度进行实时监测和反馈调节,使得系统内的温度能够稳定在设定的目标温度上。

PID控制是一种常用的控制策略,它将比例控制、积分控制和微分控制三种控制方式相结合,能够快速、精确地调节系统的动态响应和稳定性。

本文将介绍基于PID算法的恒温控制系统的设计流程和关键技术。

二、系统设计1.系统结构PID控制系统由传感器、控制器和执行器三部分组成。

传感器负责实时监测系统内的温度值,并将监测结果反馈给控制器。

控制器根据温度的反馈值与设定的目标温度之间的差异,通过比例、积分和微分三个环节,计算出控制信号,并将控制信号发送给执行器。

执行器根据控制信号的大小,调节加热或制冷设备的功率,以使系统的温度稳定在设定的目标温度上。

2.PID算法PID控制算法使用控制器计算出的控制信号uc,其计算公式如下所示:uc = Kp * e + Ki * ∫e + Kd * △e/dt其中,uc为控制信号,Kp、Ki和Kd分别为比例、积分和微分环节的增益系数,e为设定目标温度与反馈温度的差值,∫e为差值的积分值,△e/dt为差值的微分值。

通过调节这三个环节的增益系数,可以实现对温度控制系统的动态响应和稳定性的调节。

3.系统实现系统实现的关键技术包括传感器的选择与接口设计、控制器的算法实现、执行器的选择和驱动电路设计等。

传感器应具有高精度、快速响应和稳定性好的特性,能够实时监测温度值并将监测结果传递给控制器。

控制器应具有高计算性能和稳定性,能够准确计算出控制信号。

执行器应根据控制信号的大小调节加热或制冷设备的功率,以使系统温度稳定在目标温度上。

三、系统优化为进一步提高恒温控制系统的性能,可以通过以下几个方面进行优化。

1.增益系数的选择根据实际系统的特性,通过试验和调整,优化比例、积分和微分环节的增益系数。

比例增益系数的增加可以提高系统的响应速度,但也容易引起系统的振荡;积分增益系数的增加可以减小系统的稳态误差,但也会增加系统的超调量和调节时间;微分增益系数的增加可以改善系统的过渡过程,但也容易引起系统的噪声干扰。

基于PID的温度控制系统设计

基于PID的温度控制系统设计

基于PID的温度控制系统设计PID(Proportional-Integral-Derivative)是一种常见的控制算法,被广泛应用于各种工业自动化系统中,其中包括温度控制系统。

本文将基于PID算法设计一个温度控制系统。

1.温度控制系统概述温度控制系统是一种典型的反馈控制系统,用于维持系统的温度在预定范围内。

温度传感器将感测到的温度信号反馈给控制器,控制器根据反馈信号与设定的温度进行比较,并根据PID算法计算出控制信号,通过执行器(例如加热器或冷却器)改变环境温度,以使温度保持在设定值附近。

2.PID控制算法原理2.1 比例控制(Proportional Control)比例控制根据设定值与反馈值之间的偏差大小来调整控制信号。

偏差越大,控制信号的改变越大。

比例控制能够快速减小偏差,但无法消除稳态误差。

2.2 积分控制(Integral Control)积分控制通过累积偏差来调整控制信号。

积分控制可以消除稳态误差,但过大的积分参数会引起控制系统的不稳定。

2.3 微分控制(Derivative Control)微分控制根据偏差的变化率来调整控制信号。

微分控制可以快速响应温度的变化,但不适用于快速变化的温度。

3.PID控制器设计PID控制器的输出可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)为控制器的输出,Kp、Ki、Kd为比例、积分和微分增益,e(t)为温度的偏差,即设定值与反馈值之差,de(t)/dt为温度偏差的变化率。

3.1比例增益的选择比例增益决定了系统对偏差的响应速度。

如果比例增益太大,系统会产生超调现象;如果比例增益太小,系统的响应速度会变慢。

因此,在实际应用中需要通过试验来选择合适的比例增益。

3.2积分时间的选择积分时间决定了系统对稳态误差的补偿能力。

如果积分时间太大,系统对稳态误差的补偿能力会增强,但会导致系统的响应速度变慢,甚至产生振荡现象;如果积分时间太小,系统对稳态误差的补偿能力会减弱。

基于PID算法的水温控制系统设计报告

基于PID算法的水温控制系统设计报告

基于PID的水温控制系统设计摘要本次设计采用proteus仿真软件,以AT89C51单片机做为主控单元,运用PID控制算法,仿真实现了一个恒温控制系统。

设计中使用温度传感器DS18B20采集实时温度,不需要复杂的信号调理电路和A/D转换电路,能直接与单片机完成数据的采集和处理,使用PID算法控制加热炉仿真模型进行温度控制,总体实现了一个恒温控制仿真系统。

系统设计中包含硬件设计和软件设计两部分,硬件设计包含显示模块、按键模块、温度采集模块、温度加热模块。

软件设计的部分,采用分层模块化设计,主要有:键盘扫描、按键处理程序、液晶显示程序、继电器控制程序、温度信号处理程序。

另外以AT89C51 单片机为控制核心,利用PID 控制算法提高了水温的控制精度,使用PID 控制算法实施自动控制系统,具有控制参数精度高、反映速度快和稳定性好的特点。

关键词:proteus仿真,PID,AT89C51,DS18B20温度控制目录1 系统总体设计方案论证 (1)1.1 设计要求 (1)1.2 总体设计方案 (2)2 系统的硬件设计 (3)2.1 系统硬件构成概述 (3)2.2 各单元总体说明 (4)2.3 按键单元 (5)2.4 LCD液晶显示单元 (6)2.5 温度测试单元 (7)2.6 温度控制器件单元 (8)3 恒温控制算法研究(PID)............................................................................. 错误!未定义书签。

3.1 PID控制器的设计 (10)3.2 PID算法的流程实现方法与具体程序 (12)4 系统的软件设计 (17)4.1 统软件设计概述 (17)4.2 系统软件程序流程及程序流程图 (18)4.3 温度数据显示模块分析 (19)4.4 测试分析 (22)5 模拟仿真结果 ...................................................................................................... 错误!未定义书签。

基于PID算法的温度控制系统软件设计

基于PID算法的温度控制系统软件设计

基于PID算法的温度控制系统软件设计引言电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。

而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。

且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。

模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。

将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。

基于PID控制算法,以ADuC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。

该控制器控制精度高,具有较高的灵活性和可靠性。

2温度控制系统硬件设计该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。

由图1可见,以内含C52兼容单片机的ADuC845为控制核心.配有640KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。

电阻炉的温度先由热电偶温度传感器检测并转换成微弱的电压信号,温度变送器将此弱信号进行非线性校正及电压放大后,由单片机内部A/D转换器将其转换成数字量。

此数字量经数字滤波、误差校正、标度变换、线性拟合、查表等处理后。

一方面将炉窑温度经人机面板上的LCD显示:另一方面将该温度值与被控制值(由键盘输入的设定温度值)比较,根据其偏差值的大小,提供给控制算法进行运算,最后输出移相控制脉冲,放大后触发可控硅导通(即控制电阻炉平均功率)。

基于自适应PID控制算法的温度控制研究

基于自适应PID控制算法的温度控制研究

基于自适应PID控制算法的温度控制研究随着科技的不断发展,PID(比例-积分-微分)控制算法已经成为自动控制系统设计的主要手段之一。

PID控制算法在温度控制中得到了广泛的应用,它可以根据温度变化自动地调节控制器的输出,使得系统达到期望的温度值。

然而,在应用PID算法时,系统往往会出现超调、越界等问题,因此基于自适应PID控制算法的温度控制研究变得尤为重要。

一、PID控制算法及其应用PID控制算法是一种经典的反馈控制算法,在自动控制系统中得到了广泛的应用。

它适用于各种系统,包括机械、电子、电气系统等。

PID控制算法的基本原理是根据反馈信号进行比例、积分、微分运算,然后将结果输出给执行机构,从而实现对系统输出信号的调节。

PID控制器的优点在于其简单性和可靠性。

在温度控制中,PID控制器能够根据温度传感器的反馈信号实现精确的温度控制。

它比其他控制算法更容易实现,并且具有很高的稳定性和可靠性。

因此,PID控制算法被广泛地应用于温度控制、车速控制等领域。

二、自适应PID控制算法的研究背景随着科技的不断进步,越来越多的系统需要更加精确的控制。

然而,在应用PID控制算法时,系统常常会出现超调、越界等问题,导致系统控制不准确或者失去稳定性。

为了解决这些问题,研究者们提出了许多改进的方法,其中最常见的方法是自适应控制。

自适应控制是一种能够在系统变化的情况下自动调节控制参数的控制算法。

在温度控制中,自适应PID控制算法可以根据温度传感器反馈的数据实现更加精确的温度控制。

三、自适应PID控制算法的特点自适应PID控制算法相比常规PID控制算法,具有以下特点:1.自适应PID控制算法可以实时根据温度反馈信号调整控制参数,从而更好地适应不同的控制环境。

2.自适应PID控制算法可以对系统的动态特性进行实时识别,并根据需要自动调整控制器的参数,从而实现更加精确的控制。

3.自适应PID控制算法可以实现温度控制系统的自动诊断和调整,从而提高温度控制的效率和稳定性。

基于PID控制算法的温度控制系统设计与优化

基于PID控制算法的温度控制系统设计与优化

基于PID控制算法的温度控制系统设计与优化随着科技的发展和人们生活水平的提高,温度控制系统在各个领域得到了广泛应用。

PID控制算法是一种常用的控制算法,具有简单、稳定和可靠的特点。

本文将以基于PID控制算法的温度控制系统设计与优化为主题,详细介绍如何设计和优化一个基于PID控制算法的温度控制系统。

首先,我们需要了解PID控制算法的基本原理和结构。

PID控制算法是根据当前误差、误差的变化率和误差的积分来计算控制器的输出值。

PID控制器由比例(P)、积分(I)和微分(D)三个部分组成。

比例部分根据当前误差来计算输出值,积分部分根据误差累计值来计算输出值,微分部分根据误差变化率来计算输出值。

PID控制算法通过不断调节这三个部分的权重来实现温度的精确控制。

在设计温度控制系统时,首先需要选择合适的传感器来感知环境温度。

常见的温度传感器有热电偶、热电阻和红外线温度传感器等。

选择合适的传感器可以提高温度测量的精度和可靠性。

接下来,需要选择合适的执行机构来控制温度。

常见的执行机构有加热器和制冷器。

加热器可以增加温度,制冷器可以降低温度。

根据实际需求选择合适的执行机构,并采用PID控制算法控制执行机构的输出。

在温度控制系统的设计中,需要根据实际需求设定温度控制的目标值和控制范围。

目标值是系统希望达到的温度值,控制范围是允许的温度波动范围。

设置合适的目标值和控制范围可以使系统运行稳定,并且在控制过程中不会出现过大的温度波动。

在设计温度控制系统时,还需要根据系统的特征进行参数调节。

PID控制算法的参数包括比例增益、积分时间和微分时间。

比例增益决定了控制器对误差的敏感程度,积分时间决定了控制器对误差积累的敏感程度,微分时间决定了控制器对误差变化率的敏感程度。

通过合理调节PID控制算法的参数,可以提高系统的响应速度和稳定性。

在实际应用中,温度控制系统可能受到外部环境的影响。

例如,温度控制系统可能受到气温变化、风速变化和湿度变化等因素的影响。

基于PID控制算法的温度控制系统的设计与仿真

基于PID控制算法的温度控制系统的设计与仿真

摘要本设计是一种温度控制系统,温度控制在工业生产和科学研究中具有重要意义。

其控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。

采用单片机进行炉温控制,具有电路设计简单、精度高、控制效果好等优点,对提高生产效率、促进科技进步等具有重要的现实意义。

PID控制法最为常见,控制输出采用PWM波触发可控硅来控制加热通断。

使系统具有较高的测量精度和控制精度。

单片机控制部分采用AT89S51单片机为核心,采用Keil 软件进行编程,同时采用分块的模式,对整个系统的硬件设计进行分析,分别给出了系统的总体框图、温度检测调理电路、A/D转换接口电路,按键输入电路以及显示电路,并对相应电路进行相关的阐述软件采用PID算法进行了建模和编程,在Proteus环境中进行了仿真。

关键词:PID;单片机;温度控制;Keil;ProteusAbstractThis design is a kind of temperature control system,The temperature control in industrial production and scientific research is of great significance.Belongs to pure first-order lag link, the control system has the characteristics of big inertia, pure lag and nonlinear, the traditional control overshoot and adjustment time is long, low control precision.By single chip microcomputer temperature control, has simple circuit design, high accuracy and good control effect, to improve the production efficiency, promote the progress of science and technology has important practical significance.PID control is the most common, the control output PWM wave triggering thyristor is used to control the heating on and off.Make the system has high accuracy of measurement and control precision.Single-chip microcomputer control part adopts single chip microcomputer A T89S51 as the core,Using Keil software programming,Using block pattern at the same time, analyzes the hardware design of the whole system, respectively, of the overall system block diagram is given, the temperature detection circuit, A/D conversion interface circuit, key input circuit and display circuit, and the corresponding circuit are related in this paper, the software, the PID algorithm is used for modeling and programming in the Proteus simulation environment.Key words:PID;Single chip microcomputer;The temperature control;Keil;Proteus目录1绪论 (1)2设计方案 (2)3系统硬件仿真电路 (3)3.1 温度测量调理电路 (3)3.2 A/D转换电路 (4)3.3 按键输入电路 (5)3.4 数码管显示电路 (6)3.5 温度控制电路 (7)4程序设计 (9)4.1 程序整体设计 (9)4.2 子程序设计 (1111)4.3源程序设计 (119)5软件调试与运行结果 (41)结论 (42)致谢 (43)参考文献 (44)1绪论现代工业生产过程中,用于热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶大惯性环节。

基于PID控制算法的温度控制系统的设计与仿真

基于PID控制算法的温度控制系统的设计与仿真

基于PID控制算法的温度控制系统的设计与仿真一、介绍温度控制是很多工业自动化系统中常见的任务之一、PID控制算法是目前最常用的控制算法之一,具有简单、稳定和高效的特点。

本文将以基于PID控制算法的温度控制系统为例,介绍其设计与仿真。

二、PID控制算法简介PID控制算法是一种经典的反馈控制算法,它根据当前系统的误差,计算出最佳的控制输出,以使系统的输出稳定在期望值附近。

PID控制算法由三个部分组成:比例(P)、积分(I)和微分(D)。

比例部分根据当前误差的大小调整输出控制量,积分部分通过累积误差来调整输出控制量,微分部分根据误差变化率调整输出控制量。

PID控制算法的输出控制量是由三个部分叠加而成。

1.系统模型的建立在设计温度控制系统之前,首先需要建立系统的数学模型。

以一个加热器控制系统为例,假设该系统的输入为加热功率,输出为温度。

2.控制器的设计根据系统模型,设计PID控制器。

首先调试比例参数P,使得系统的温度能够在误差范围内稳定下来;然后调试积分参数I,以减小系统的稳态误差;最后调试微分参数D,以提高系统的响应速度。

3.仿真实验在仿真软件中进行温度控制系统的仿真实验。

首先输入一个初始温度值,观察系统的响应;然后根据设定的期望温度,实时调整控制器的输出,观察系统的稳定状态。

4.结果分析根据仿真实验的结果,分析系统的稳态误差和响应速度。

根据实际需求和性能要求,调整控制器的参数,使得系统能够更好地满足要求。

四、结论本文以基于PID控制算法的温度控制系统为例,介绍了温度控制系统的设计与仿真过程。

通过调试PID控制器的参数,可以使系统的温度稳定在期望值附近,并且具有较好的稳态误差和响应速度。

PID控制算法在温度控制系统中有广泛的应用前景,但是需要根据具体的系统要求和性能要求进行参数调整和优化。

未来可以进一步研究温度控制系统的自适应PID控制算法,以提高控制系统的性能和鲁棒性。

基于数字PID的电阻热炉温度控制系统设计

基于数字PID的电阻热炉温度控制系统设计

3键 盘及 显 示的设 计 .
31 .键盘设计
图 4主 程 序 流 程 图与外部中断 OP .) , N (3 2 相连
33 .. 能实现模块 2功 以用来执行对可控硅及 电炉的控制 。功 能实 现模 块主要
21 年第 0 期 01 5
I T 与外部 中断 1P . ) N1 (33 相连 。采用外部 中断方式实现温度 1系统 设计 方案 的论 证与 比较 。 根据题 目要求.电热锅炉温度控制 系统 由核心处理 模块 、 的设 置 功 能 定 义如 下 : 311 S 拨 到下 面时 , T .. 当 W I 0健实现温度值的十位加 1 N . 温度采集模块 、 键盘显示模块 、 及控制执行模块等组成 。 N 1 方案一 : 采用 85 作为控制核心 , 用最为普遍的器件 I T 健 实 现 温度 值 的十 位 减 1 01 以使 31 .. S 拨 到上 面 时 . T 健 实 现 温 度值 的个 位 加 1 2当 W I 0 N . A C 8 8作模 数转换,控制上 使用对 电阻丝加 电使 其升温和 D 00 I T 健 实 现温 度 值 的个 位 减 1 N 1 开动风扇使其降温。 此方案简易可行, 器件的价格便 宜, 8 5 但 01 内部没有 程序 存储 器 ,需要 扩展 ,增 加 了电路 的复 杂性 , 且 A C 8 8 8位的模数转换, D 00 是 不能满足本题 目的精度要求 方案二 : 采用 比较流行 的 A 8 S2作为 电路 的控制核心 , T 95 使用 8位的模数转换器 A 0 0 进行数据转换 , 电路部分 D 88 控制 采用 P WM通过 A - S C S R实 现锅 炉温度 的连续控 制。 此方案 电 路简单并且可 以满足题 目中的各项要求 的精度 。综上分析, 我 们采用方案二 系统总体框图如下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例—积分—微分( proportional-integral-differential,PID) [3 ~6] 控制的模拟输出微分方程为
收稿日期: 2017—12—08 * 基金项目: 国家自然科学基金资助项目( 61263007)
∫ u( t)
= KP[e( t)
=1 TI
t
e(
0
t)
dt
+
TD
86
传感器与微系统( Transducer and Microsystem Technologies)
2019 年 第 38 卷 第 1 期
DOI: 10. 13873 / J. 1000—9787( 2019) 01—0086—03
基于数字 PID 算法的温度控制系统设计*
王冠龙,崔 靓,朱学军
( 宁夏大学 机械工程学院,宁夏 银川 750021)
87
则可得到离散的 PID 表达式为
∑ u( k)
= KP[e( k)
+ TS TI
k i =0
数字形式的差分方程代替连续系统的微分方程,本文研究
的由继电器作为控制开关的温度控制系统属于位置型 PID
控制算法。公式如下
∫ ∑ t e( t) dt
0
k
+ TS
i =0
e( i) ,ded( tt)
= e( k)
- e( k - 1) TS来自( 3)第1 期
王冠龙,等: 基于数字 PID 算法的温度控制系统设计
0引言 温度是日常生产和生活中的重要参数,在工业和现代
农业等行业,精准的温控技术起着非常重要的作用,由于温 度具有非线性、惯性大、滞后现象比较严重等特点,建立精 确的数学模型比较困难,给控制过程带来很大难题。
本 文 研 究 一 种 简 单 实 用 的 控 制 方 案,设 计 了 以 STC12C5A60S2 单片机为核心的温度控制器,选用数字温 度传感器 DS18B20 组成的闭环控制系统,实现了对温度的 良好控制[1,2]。 1 智能数字化比例—积分—微分控制算法 1. 1 比例—积分—微分控制算法分析及其数字化
WANG Guan-long,CUI Liang,ZHU Xue-jun
( College of Mechanical Engineering,Ningxia University,Yinchuan 750021,China)
Abstract: A temperature control system based on proportional-integral-differential ( PID ) algorithm and using STC12C5A60S2 microcontroller unit ( MCU) as the core controller is designed,in view of current agricultural production gradually shift to the needs of the economy. The system can set appropriate temperature,according to temperature requirements of different crops in greenhouse growth environment,and start the corresponding heating or cooling equipment automatically according to the degree of the measured temperature deviate from the set temperature to adjust the room temperature to the set temperature range,achieve a rapid,stable and accurate control. Through simulation analysis and software and hardware test,it shows that the system achieves ideal effect because of stable running and high control precision,it has certain application value and popularization value. Keywords: proportional-integral-differential( PID) algorithm; parameter tuning; STC12C5A60S2 microcontroller unit( MCU) ; temperature control
de( t) dt

( 1)
式中 u( t) 为输出信号,e( t) 为反馈偏差值,Kp 为比例放
大系数,TI 为积分时间常数,TD 为微分时间常数。PID 控
制的传递函数 G( s) 表达式为
G( s)
=
KP
+
KP TI S
+ KPTDS
( 2)
由于计算机控制是一种采样控制,只能根据采样的偏
差值计算控制量,因此,必须对式( 1) 进行离散化处理,用
摘 要: 针对目前农业生产逐步向节约型转变的需求,设计了一种基于比例—积分—微分( PID) 算法,并以
STC12C5A60S2 单片机为核心控制器的温度控制系统。系统可根据温室内农作物对生长环境温度的要求
而设定合适的温度,同时能够根据实测温度值偏离设定温度值的程度,自动启动相应的加热或降温设备,
调节室温至设定范围,实现了快速、稳定、精确控制。经模拟仿真分析及软硬件测试,可知设计的系统运行
稳定,控制精度较高,达到了理想效果,具有一定的应用价值及推广价值。
关键词: 比例—积分—微分算法; 参数整定; STC12C5A60S2 单片机; 温度控制
中图分类号: TP 273
文献标识码: A
文章编号: 1000—9787( 2019) 01—0086—03
Design of temperature control system based on digital PID algorithm*
相关文档
最新文档