巧解双曲线的离心率
高中数学破题致胜方法构造齐次方程求双曲线的离心率
今天我们研究构造齐次方程求双曲线的离心率。
双曲线的几何性质中,离心率问题是重点。
根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
先看例题:例:已知1F 、2F 是双曲线12222=-b y a x (0,0>>b a )的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( )A. 324+B. 13-C. 213+D. 13+ 解:如图,设1MF 的中点为P ,则P 的横坐标为2c -,由焦半径公式a ex PF p --=1, 即a c a c c -⎪⎭⎫ ⎝⎛-⨯-=2,得0222=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a c a c ,解得 31+==ac e (31-舍去),故选D整理:用齐次方程的方法求双曲线的离心率:列出关于a ,b ,c 的方程,222b c a -=消去b转化成关于e 的齐次方程求解.再看一个例题,加深印象: 例:设双曲线12222=-by a x (b a <<0)的半焦距为c ,直线L 过()0,a ,()b ,0两点.已知原点到直线的距离为c 43,则双曲线的离心率为( ) A. 2 B. 3 C. 2 D. 332 解:由已知,直线L 的方程为0=-+ab ay bx ,由点到直线的距离公式,得c b a ab4322=+, 又222b a c +=, ∴234c ab =,两边平方,得()4222316c a c a =-,整理得 01616324=+-e e ,得42=e 或342=e ,又b a <<0 ,∴2122222222>+=+==a b a b a a c e ,∴42=e ,∴2=e ,故选A总结:1.根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系.2.在a 、c 的关系式中除以a 的合适次数,得到关于e 的齐次方程,解得离心率e .练习:1.双曲线虚轴的一个端点为M ,两个焦点为1F 、2F ,021120=∠MF F ,则双曲线的离心率为( )A3 B 26 C 36 D 332.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作垂直于x 轴的直线交双曲线于A ,B 两点.若△ABF 2为直角三角形,则双曲线的离心率为( )A .1+ 2B .1±2 C. 2D.2±1答案:1.即()()()22222222421b c c b c b c +-+++=-,∴212222-=+-c b c b ,∵222a c b -=,∴212222-=--a c a ,∴2223c a =,∴232=e ,∴26=e ,故选B2.解析:∵△ABF 2是直角三角形, ∴∠AF 2F 1=45°,|AF 1|=|F 1F 2|,b 2a =2c .∴b 2=2ac ,∴c 2-a 2=2ac ,∴e 2-2e -1=0. 解得e =1±2.又e >1,∴e =1+ 2.所以选A。
离心率的五种求法
7.设 分别是双曲线 的左、右焦点,若双曲线上存在点 , 且 ,则双曲线的离心率为( B )
A. B. C. D.
解
8.如图, 和 分别是双曲线 ( )的两个焦点, 和 是以 为圆心,以 为半径的圆与该双曲线左支的两个交点,且 是等边三角形,则双曲线的离心率为()
A B C D
离心率的五种求法
离心率的五种求法
离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现.
椭圆的离心率 ,双曲线的离心率 ,抛物线的离心率 .
一、直接求出 ,求解
已知标准方程或 易求时,可利用离心率公式 来求解。
例1.过双曲线C: 的左顶点A作斜率为1的直线 ,若 与双曲线M的两条渐近线分别相交于点B、C,且|AB|=|BC|,则双曲线M的离心率是( )
A. B. C. D.
解:由已知,直线 的方程为 ,由点到直线的距离公式,得 ,
又 ,∴ ,两边平方,得 ,整理得 ,
得 或 ,又 ,∴ ,∴ ,∴ ,故选A
11.知 、 是双曲线 ( )的两焦点,以线段 为边作正三角形 ,若边 的中点在双曲线上,则双曲线的离心率是()
A. B. C. D.
解:如图,设 的中点为 ,
A. B. CБайду номын сангаас D.
解析:满足 的点 总在椭圆内部,所以c<b.
4.设 ,则双曲线 的离心率 的取值范围是(B)
,又 ,
在 中,由余弦定理,得 ,
即 ,∴ ,
∵ ,∴ ,∴ ,∴ ,∴ ,故选B
3.设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为( B )
A. B. C. D.
4.设双曲线的一个焦点为 ,虚轴的一个端点为 ,如果直线 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )
妙解离心率问题(解析版)
妙解离心率问题【目录】考点一:顶角为直角的焦点三角形求解离心率的取值范围问题考点二:焦点三角形顶角范围与离心率考点三:共焦点的椭圆与双曲线问题考点四:椭圆与双曲线的4a 通径体考点五:椭圆与双曲线的4a 直角体考点六:椭圆与双曲线的等腰三角形问题考点七:双曲线的4a 底边等腰三角形考点八:焦点到渐近线距离为b考点九:焦点到渐近线垂线构造的直角三角形考点十:以两焦点为直径的圆与渐近线相交问题考点十一:渐近线平行线与面积问题考点十二:数形结合转化长度角度求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.考点要求考题统计考情分析离心率2023年新高考I 卷第5、16题,10分2023年甲卷第9题,5分2022年甲卷第10题,5分2022年浙江卷第16题,4分2021年甲卷第5题,5分2021年天津卷第8题,5分离心率问题一直是高考每年必考,对圆锥曲线概念和几何性质的考查为主,一般不会出太难,二轮复习我们需要掌握一些基本的性质和常规的处理方法,挖掘椭圆双曲线的几何性质下手.求离心率范围的方法一、建立不等式法:1.利用曲线的范围建立不等关系.2.利用线段长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1 ∈a -c ,a +c ;F 1,F 2为双曲线x2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,PF 1 ≥c -a .3.利用角度长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b2=1的左、右焦点,P 为椭圆上的动点,若∠F 1PF 2=θ,则椭圆离心率e 的取值范围为sin θ2≤e <1.4.利用题目不等关系建立不等关系.5.利用判别式建立不等关系.6.利用与双曲线渐近线的斜率比较建立不等关系.7.利用基本不等式,建立不等关系.1(2023•新高考Ⅰ)设椭圆C 1:x 2a2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A.233B.2C.3D.6【答案】A【解析】由椭圆C 2:x 24+y 2=1可得a 2=2,b 2=1,∴c 2=4-1=3,∴椭圆C 2的离心率为e 2=32,∵e 2=3e 1,∴e 1=12,∴c 1a 1=12,∴a 21=4c 21=4(a 21-b 21)=4(a 21-1),∴a =233或a =-233(舍去).故选:A .2(2023•甲卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.455【答案】D【解析】双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,可得c =5a ,所以b =2a ,所以双曲线的渐近线方程为:y =±2x ,一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,圆的圆心(2,3),半径为1,圆的圆心到直线y =2x 的距离为:|4-3|1+4=15,所以|AB |=21-15=455.故选:D .3(2022•甲卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A【解析】已知A (-a ,0),设P (x 0,y 0),则Q (-x 0,y 0),k AP =y 0x 0+a ,k AQ =y 0a -x 0,故k AP ⋅k AQ =y 0x 0+a ⋅y 0a -x 0=y 20a 2-x 20=14①,∵x 20a 2+y 20b 2=1,即y 20=b 2(a 2-x 20)a 2②,②代入①整理得:b 2a2=14,e =c a =1-b 2a 2=32.故选:A .4(2021•甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.7B.13C.72D.132【答案】C【解析】设|PF 1|=m ,|PF 2|=n ,则根据题意及余弦定理可得:m =3n12=m 2+n 2-4c22mn,解得m =67cn =27c ,∴所求离心率为2c 2a =2c m -n =2c 47c=72.故选:C .5(2021•天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与抛物线y 2=2px (p >0)的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C ,D 两点,若|CD |=2|AB |,则双曲线的离心率为()A.2B.3C.2D.3【答案】A【解析】解由题意可得抛物线的准线方程为x =-p2,由题意可得:p 2=c ,渐近线的方程为:y =±ba x ,可得A -c ,b 2a ,B -c ,-b2a ,C -c ,bc a ,D -c ,-bca,所以|AB |=2b 2a ,|CD |=2bca,由|CD |=2|AB |,解得:c =2b ,即a =b ,所以双曲线的离心率e =ca=2.故选:A .6(2022•甲卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1 ⋅BA 2=-1,则C 的方程为()A.x 218+y 216=1B.x 29+y 28=1C.x 23+y 22=1D.x 22+y 2=1【答案】B【解析】由椭圆的离心率可设椭圆方程为x 29m 2+y 28m 2=1(m >0),则A 1(-3m ,0),A 2(3m ,0),B (0,22m ),由平面向量数量积的运算法则可得:BA 1 ⋅BA 2=(-3m ,-22m )⋅(3m ,-22m )=-9m 2+8m 2=-1,∴m 2=1,则椭圆方程为x 29+y 28=1.故选:B .7(2022•全国)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线y =2x +1垂直,则C 的离心率为()A.5 B.5C.54D.52【答案】D【解析】由双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的方程可得渐近线方程为y =±b a x ,由题意可得b a =12,所以双曲线的离心率e =c a =1+b 2a 2=1+14=52,故选:D .8(多选题)(2022•乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为()A.52B.32C.132D.172【答案】AC【解析】当直线与双曲线交于两支时,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),设过F 1的切线与圆D :x 2+y 2=a 2相切于点P ,则|OP |=a ,OP ⊥PF 1,又|OF 1|=c ,所以PF 1=OF 12-OP 2=c 2-a 2=b ,过点F 2作F 2Q ⊥MN 于点Q ,所以OP ⎳F 2Q ,又O 为F 1F 2的中点,所以|F 1Q |=2|PF 1|=2b ,|QF 2|=2|OP |=2a ,因为cos ∠F 1NF 2=35,∠F 1NF 2<π2,所以sin ∠F 1NF 2=45,所以|NF 2|=QF 2sin ∠F 1NF 2=5a 2,则|NQ |=|NF 2|⋅cos ∠F 1NF 2=3a2,所以|NF 1|=|NQ |+|F 1Q |=3a2+2b ,由双曲线的定义可知|NF 1|-|NF 2|=2a ,所以3a 2+2b -5a 2=2a ,可得2b =3a ,即b a =32,所以C 的离心率e =c a =1+b 2a 2=1+94=132.情况二:当直线与双曲线交于一支时,如图,记切点为A ,连接OA ,则|OA |=a ,|F 1A |=b ,过F 2作F 2B ⊥MN 于B ,则|F 2B |=2a ,因为cos ∠F 1NF 2=35,所以|NF 2|=5a 2,|NB |=3a2,|NF 2|-|NF 1|=5a 2-3a2-2b =a +2b =2a ,即a =2b ,所以e =c a =1+b 2a2=1+14=52,A 正确.故选:AC .9(2023•新高考Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ⊥F 1B ,F 2A =-23F 2B,则C 的离心率为.【答案】355【解析】(法一)如图,设F 1(-c ,0),F 2(c ,0),B (0,n ),设A (x ,y ),则F 2A =(x -c ,y ),F 2B=(-c ,n ),又F 2A =-23F 2B ,则x -c =23c y =-23n,可得A 53c ,-23n ,又F 1A ⊥F 1B ,且F 1A =83c ,-23n ,F 1B =(c ,n ),则F 1A ⋅F 1B =83c 2-23n 2=0,化简得n 2=4c 2.又点A 在C 上,则259c 2a 2-49n 2b 2=1,整理可得25c 29a 2-4n 29b2=1,代n 2=4c 2,可得25c 2a 2-16c 2b 2=9,即25e 2-16e 2e 2-1=9,解得e 2=95或15(舍去),故e =355.(法二)由F 2A =-23F 2B ,得|F 2A||F 2B |=23,设|F 2A |=2t ,|F 2B |=3t ,由对称性可得|F 1B |=3t ,则|AF 1 |=2t +2a ,|AB|=5t ,设∠F 1AF 2=θ,则sin θ=3t 5t =35,所以cos θ=45=2t +2a5t,解得t =a ,所以|AF 1 |=2t +2a =4a ,|AF 2|=2a ,在△AF 1F 2中,由余弦定理可得cos θ=16a 2+4a 2-4c 216a2=45,即5c 2=9a 2,则e =355.故答案为:355.10(2022•浙江)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是.【答案】364.【解析】(法一)如图,过点A 作AA ′⊥x 轴于点A ′,过点B 作BB ′⊥x 轴于点B ′,由于B (x 2,y 2)且x 2>0,则点B 在渐近线y =b a x 上,不妨设B m ,bam ,m >0,设直线AB 的倾斜角为θ,则tan θ=b 4a ,则|BB ||FB |=b 4a ,即b am |FB|=b 4a ,则|FB ′|=4m ,∴|OF |=c =4m -m =3m ,又|AA ||BB |=|AF ||BF |=13,则|AA |=13|BB |=bm 3a =bc 9a ,又|FA ||FB|=|AF ||BF |=13,则|FA |=13|FB |=4m 3,则|x 1|=3m -4m 3=5m 3=5c 9,∴点A 的坐标为-5c 9,bc9a ,∴25c 281a 2-b 2c 281a 2b 2=1,即c 2a2=8124=278,∴e =c a =364.(法二)由y =b 4a (x +c )y =b a x,解得B c 3,bc 3a,又|FB |=3|FA |,所以点A 的纵坐标为y 1=bc9a,代入方程y =b 4a (x +c )中,解得x 1=-5c 9,所以A -5c 9,bc 9a ,代入双曲线方程中,可得c 2a 2=278,所以e =c a =364.故答案为:364.考点一:顶角为直角的焦点三角形求解离心率的取值范围问题顶角为直角的焦点三角形求解离心率的取值范围问题,如图所示:椭圆:e =1sin α+cos α=12sin α+π4,根据α范围求解值域.双曲线:e =1cos α−sin α=12cos α+π4,根据α范围求解值域.1(2024·重庆沙坪坝·高三重庆八中校考阶段练习)已知椭圆x 2a 2+y 2b2=1a >b >0 上一点A ,它关于原点的对称点为B ,点F 为椭圆右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π3,则该椭圆的离心率e 的取值范围是()A.22,3-1B.22,63C.3-1,63D.63,62【答案】B【解析】如图所示,设椭圆得左焦点为F ,连接AF ,BF ,则四边形AFBF 为矩形,则AB =FF =2c ,AF =BF ,所以BF +BF =BF +AF =2a ,在Rt △ABF 中,由∠ABF =α,得AF =AB sin α=2c sin α,BF =AB cos α=2c cos α,所以2c sin α+2c cos α=2a ,所以c a =1sin α+cos α=12sin α+π4,因为α∈π12,π3,所以α+π4∈π3,7π12,所以2sin α+π4∈62,2 ,所以e =c a ∈22,63.故选:B .1(2024·高三单元测试)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且AF ⊥BF ,设∠ABF =α,且α∈π12,π6,则该椭圆的离心率e 的取值范围为()A.3-1,63 B.3-1,32C.64,63D.0,63【答案】A【解析】如图所示,设椭圆的左焦点为F ′,连接AF ′,BF ′.则四边形AFBF ′为矩形.因此|AB =|FF ′|=2c .|AF |+|BF |=2a .所以|AF |=2c sin α,|BF |=2c cos α.∴2c sin α+2c cos α=2a .∴e =1sin α+cos α=12sin α+π4,∵α∈π12,π6,∴α+π4∈π3,5π12,∴sin α+π4 ∈32,2+64,其中sin 5π12=sin π6+π4 =sin π6cos π4+cos π6sin π4=12×22+32×22=2+64,∴2sin α+π4 ∈62,1+32.∴e ∈3-1,63.故选:A .2(2024·宁夏银川·高三银川二中校考阶段练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π4,则该椭圆的离心率e 的取值范围为()A.22,63 B.3-12,32C.3-1,63D.22,32【答案】A【解析】设椭圆的左焦点为F ′,连接AF ,BF ,可知四边形AFBF 为矩形,从而可知AB =FF =2c ,且AF +BF =2a ,由∠ABF =α,可得AF =2c sin α,BF =2c cos α,结合2c sin α+2c cos α=2a ,可得ca=1sin α+cos α,根据α∈π12,π4 ,求出范围即可.如图所示,设椭圆的左焦点为F ′,连接AF ,BF,则四边形AFBF 为矩形,所以AB =FF =2c ,AF +BF =AF +AF=2a ,由∠ABF =α,可得AF =AB ⋅sin α=2c sin α,BF =AB ⋅cos α=2c cos α,∴2c sin α+2c cos α=2a ,即c a =1sin α+cos α=12sin α+π4,∵α∈π12,π4,∴α+π4 ∈π3,π2 ,∴sin α+π4 ∈32,1 ,∴2sin α+π4 ∈62,2 ,∴e =c a ∈22,63.故选:A .3(2024·河南驻马店·高三统考期末)已知双曲线C :x 2a 2-y 2b2(a >b >0)右支上非顶点的一点A 关于原点O 的对称点为B ,F 为其右焦点,若AF ⋅BF =0,设∠BAF =θ且θ∈π4,5π12,则双曲线C 离心率的取值范围是()A.(2,2] B.[2,+∞) C.(2,+∞) D.(2,+∞)【答案】C【解析】如图所示,设双曲线的左焦点为F ,连接AF ,BF ,因为AF ⋅BF=0,所以四边形AFBF 为矩形,所以AB =FF =2c ,因为AF =2c cos θ,BF =2c sin θ,AF -AF =2a ,所以2c sin θ-2c cos θ=2a ,所以e =1sin θ-cos θ=12sin θ-π4,∵θ∈π4,5π12 ,∴θ-π4∈0,π6 ,2sin θ-π4 ∈0,22 ,∴e ∈2,+∞ ,故选:C考点二:焦点三角形顶角范围与离心率F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,点P 在椭圆上,∠F 1PF 2=θ,则cos θ≥1−2e 2(当且仅当动点为短轴端点时取等号).1(2024·辽宁葫芦岛·高三统考期末)已知点F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 是椭圆上的一个动点,若使得满足ΔPF 1F 2是直角三角形的动点P 恰好有6个,则该椭圆的离心率为()A.12B.32C.22D.33【答案】C【解析】由题意知,椭圆的最大张角为900,所以b =c ,所以a =2c ,所以e =c a =22=22,故选:C .1(2024·江西抚州·高三统考期末)设F 1,F 2是椭圆的两个焦点,若椭圆上存在点p ,使∠F 1PF 2=120°,则椭圆离心率的取值范围是()A.0,32B.0,32C.32,1D.32,1【答案】D【解析】F 1(-c ,0),F 2(c ,0),c >0,设P x 1,y 1 ,则|PF 1|=a +ex 1,|PF 2|=a -ex 1.在△PF 1F 2中,由余弦定理得cos120°=-12=a +ex 1 2+a -ex 1 2-4c 22a +ex 1 a -ex 1,解得x 21=4c 2-3a 2e 2.∵x 21∈0,a 2,∴0≤4c 2-3a 2e 2<a 2,即4c 2-3a 2≥0.且e 2<1∴e =c a ≥32.故椭圆离心率的取范围是e ∈32,1 2(2024·宁夏·高三校联考阶段练习)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,若椭圆C 上存在点P ,使得PF 1⊥PF 2,则椭圆的离心率的取值范围为()A.12,22B.22,1 C.0,22D.12,22【答案】B【解析】若椭圆C 上存在点P ,使得PF 1⊥PF 2,即以F 1F 2为直径的圆与椭圆C :x 2a 2+y 2b2=1(a >b >0)有交点,设F 1(-c ,0),F 2(c ,0),x 2+y 2=c 2x 2a 2+y 2b 2=1,解得x 2=(2c 2-a 2)⋅a 2c 2≥0,即2c 2-a 2≥0,e ≥22,又0<e <1,故e ∈22,1.故选:B .3(2024·高三课时练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1、F 2,若椭圆上存在点P 使得∠F 1PF 2是钝角,则椭圆离心率的取值范围是()A.0,22B.22,1C.0,12D.12,1【答案】B【解析】当动点P 从椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2渐渐增大,当且仅当P 点位于短轴端点P 0处时,张角∠F 1PF 2达到最大值.∵椭圆上存在点P 使得∠F 1PF 2是钝角,∴△F 1P 0F 2中,∠F 1P 0F 2>90°,∴Rt △OP 0F 2中,∠OP 0F 2>45°,∴b <c ,∴a 2-c 2<c 2,∴a 2<2c 2,∴e >22,∵0<e <1,∴22<e <1.椭圆离心率的取值范围是22,1,故选B .考点三:共焦点的椭圆与双曲线问题sin 2α2e 椭2+cos 2α2e 双2=1,与基本不等式联姻求解离心率的取值范围1(2024·全国·高三专题练习)已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则当1e 1e 2取最大值时,e 1,e 2的值分别是()A.22,62B.12,52C.33,6 D.24,3【答案】A【解析】不妨设椭圆与双曲线的标准方程分别为:x 2a 2+y 2b 2=1a >b >0 ,c =a 2-b 2,x 2a 21-y 2b 21=1,c =a 21+b 21.设PF 1 =m ,PF 2 =n .m >n .则m +n =2a ,m -n =2a 1,∴m =a +a 1,n =a -a 1.因为∠F 1PF 2=π3,所以cos π3=m 2+n 2-2c 22mn =12,即a +a 1 2+a -a 1 2-4c 2=a +a 1 a -a 1 .∴a 2+3a 21-4c 2=0,∴1e 21+3e 22=4,∴4≥21e 21×3e 22,则1e 1e 2≤23,当且仅当e 1=22,e 2=62时取等号.故选:A .1(2024·湖南·高三校联考期末)已知椭圆和双曲线有共同的焦点F 1,F 2,P ,Q 分别是它们在第一象限和第三象限的交点,且QF 2⊥F 2P ,记椭圆和双曲线的离心率分别为e 1,e 2,则4e 21+e 22最小值等于.【答案】92【解析】设椭圆长半轴为a 1,双曲线实半轴为a 2,F 1-c ,0 ,F 2c ,0 ,P 为两曲线在第一象限的交点,Q 为两曲线在第三象限的交点,如图,由椭圆和双曲线定义与对称性知PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,四边形PF 1QF 2为平行四边形,QF 2 =PF 1 =a 1+a 2,PF 2 =a 1-a 2,而QF 2⊥F 2P ,则PF 1⊥F 2P ,因此F 1F 2 2=PF 1 2+PF 2 2,即4c 2=a 1+a 2 2+a 1-a 2 2=2a 21+2a 22,于是有2c 2=a 21+a 22,则2=a 21c 2+a 22c 2,1e 21+1e 22=2,所以4e 21+e 22=12(4e 21+e 22)1e 21+1e 22=125+e 22e 21+4e 21e 22≥125+2e 22e 21⋅4e 21e 22=92,当且仅当e 21=34,e 22=32时取等号.故答案为:922(2024·湖北咸宁·校考模拟预测)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若PF 1 =24,椭圆与双曲线的离心率分别为e 1,e 2,则3e 1e 2的取值范围是()A.19,+∞B.1,+∞C.13,+∞D.12,+∞【答案】B 【解析】设椭圆与双曲线的半焦距为c ,椭圆长半轴为a 1,双曲线实半轴为a 2,PF 1 =r 1,PF 2 =r 2,∵△PF 1F 2是以PF 1为底边的等腰三角形,点P 在第一象限内,∴PF 2 =F 1F 2 ,PF 1 >PF 2 ,PF 2 +F 1F 2 >PF 1 ,即r 1=24,r 2=2c ,且r 1>r 2,2r 2>r 1,2c <24,4c >24,解得:6<c <12.在双曲线中,PF 1 -PF 2 =2a 2,∴e 2=c a 2=2c 2a 2=2c r 1-r 2=2c 24-2c =c12-c ;在椭圆中,PF 1 +PF 2 =2a 1,∴e 1=c a 1=2c 2a 1=2c r 1+r 2=2c 24+2c =c12+c;∴e 1e 2=c 12+c ⋅c 12-c =1144c2-1;∵6<c <12,∴36<c 2<144,则1<144c 2<4,∴0<144c 2-1<3,可得:1144c2-1>13,∴3e 1e 2的取值范围为1,+∞ .故选:B .考点四:椭圆与双曲线的4a 通径体椭圆与双曲线的4a 通径体如图,若AF 2⊥F 1F 2,易知AF 2 =b 2a ,若AF 1 =λF 1B (λ>1),则一定有AF 1 =λ+12⋅b 2a,根据AF 1 +AF 2 =2a 可得λ+32⋅b 2a =2a ,即λ+34⋅(1-e 2)=1⇒e =λ-1λ+31(2024·河南新乡·高三统考期末)设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别是F 1、F 2,过F 1的直线交双曲线C 的左支于M 、N 两点,若MF 2 =F 1F 2 ,且2MF 1 =NF 1 ,则双曲线C 的离心率是()A.43B.53C.52D.32【答案】B【解析】如下图所示:MF 2 =F 1F 2 =2c ,由双曲线的定义可得MF 1 =MF 2 -2a =2c -2a ,所以,NF 1 =2MF 1 =4c -4a ,则NF 2 =NF 1 +2a =4c -2a ,由余弦定理可得cos ∠MF 1F 2=MF 12+F 1F 2 2-MF 2 22MF 1 ⋅F 1F 2=c -a2c ,cos ∠NF 1F 2=NF 12+F 1F 2 2-NF 2 22NF 1 ⋅F 1F 2=c -3a4c ,因为cos ∠NF 1F 2=cos π-∠MF 1F 2 =-cos ∠MF 1F 2,故c -3a 4c =-c -a 2c ,整理可得3c =5a ,故该双曲线的离心率为e =c a =53.故选:B .1(2024·甘肃庆阳·高三校联考阶段练习)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,过点F 1的直线交椭圆C 于M ,N 两点.若MN +NF 2 =2MF 2 ,且MF 2⊥NF 2,则椭圆C 的离心率为()A.33B.55C.22D.66【答案】B【解析】因为MN +NF 2 =2MF 2 ,所以可设NF 2 =m -d ,MF 2 =m ,MN =m +d m >0,d >0 ,因为MF 2⊥NF 2,所以m -d 2+m 2=m +d 2,解得m =4d ,因为NF 2 +MF 2 +MN =4a =3m ,所以NF 2 =a ,MF 2 =43a ,MN =53a ,所以cos ∠F 2MN =MF 2 MN=45,在△MF 1F 2中,F 1F 2 =2c ,MF 1 =2-MF 2 =23a ,由cos ∠F 2MF 1=23a 2+43a 2-(2c )22×23a ×43a =45,可得a 2=5c 2,即椭圆C 的离心率为55.故选:B .2(2024·湖南衡阳·校联考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 1作直线l 与椭圆相交于M 、N 两点,∠MF 2N =90°,且4F 2N =3F 2M ,则椭圆的离心率为()A.13B.12C.33D.55【答案】D【解析】如图所示,设F 1F 2 =2c ,∵4F 2N =3F 2M ,设F 2N =3t ,则F 2M =4t ,在Rt △F 2MN 中,MN =NF 22+MF 2 2=5t ,由椭圆定义可知F 1N =2a -3t ,F 1M =2a -4t ,F 1N +F 1M =MN =4a -7t =5t ,解得a =3t ,所以F 1N =2a -3t =3t =F 2N ,F 1M =2a -4t =2t ,在△F 1NF 2中,可得cos ∠NF 1F 2=c3t,在△F 1MF 2中,由余弦定理可得cos ∠MF 1F 2=c 2-3t 22ct,∵∠NF 1F 2+∠MF 1F 2=π,∴cos ∠NF 1F 2+cos ∠MF 1F 2=0,即c 3t +c 2-3t 22ct=0,解得c =35t 5,所以椭圆离心率e =c a =55.故选:D .考点五:椭圆与双曲线的4a 直角体如左图,若AF 2⊥AB ,AB 过原点,且AF 1=λF 1B ,∠AF 1F 2=α,则e cos α=λ−1 λ+1可得离心率.如右图,若BF 2⊥AC ,AB 过原点,且AF 2=λF 2C(0<λ<1),通过补全矩形,可得AF 1⊥AC ,AF 2 =λ+12⋅b 2a ,借助公式e cos α=λ−1 λ+1可得离心率.1(2024·山东济南·校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于A ,B 两点,且AF 1 ⋅AF 2 =0,AF 2 =2F 2B,则椭圆E 的离心率为()A.23B.34C.53D.74【答案】C【解析】因为AF 2 =2F 2B ,不妨令AF 2 =2F 2B =2m m >0 ,过F 2的直线交椭圆于A ,B 两点,由椭圆的定义可得,AF 1 +AF 2 =2a ,BF 1 +BF 2 =2a ,则BF 1 =2a -m ,AF 1 =2a -2m ,又AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,则△AF 1F 2和△AF 1B 都是直角三角形,则AF 1 2+AB 2=BF 1 2,即2a -2m 2+9m 2=2a -m 2,解得m =a3,所以AF 1 =43a ,AF 2 =23a ,又F 1F 2 =2c ,AF 1 2+AF 2 2=F 1F 2 2,所以169a 2+49a 2=4c 2,因此c 2a2=59,所以椭圆E 的离心率为c a =53.故选:C .1(2024·安徽池州·高三统考期末)设F 1、F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1-c ,0 的直线交椭圆E 于A ,B 两点,若AF 1=3 F 1B ,且AB ⊥AF 2,则椭圆E 的离心率是()A.12B.52C.32D.22【答案】D【解析】设FB 1=k (k 0 ⇒ AF 1=3k ,AB =4k ⇒ AF 2=2a -3k , BF 2|=2a -k ,再由BF 2|2= AF 2|2+|AB |2⇒AF 2 =3k ⇒ΔAF 1F 2是等腰直角三角形⇒c =22a ⇒e =22,故选D ,2(2024·湖北黄冈·高三统考期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于A ,B 两点,AF 2 =λF 2B ,且AF 1 ⋅AF 2 =0,椭圆C 的离心率为22,则实数λ=()A.23B.2C.13D.3【答案】D【解析】因为AF 2 =λF 2B ,设AF 2 =λF 2B =t (t >0),由椭圆的定义可得:AF 1 +AF 2 =2a ,则AF 1 =2a -t ,因为AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,所以AF 1 2+AF 2 2=F 1F 2 2,即(2a -t )2+t 2=4c 2,又因为椭圆C 的离心率为22,所以a =2c ,则有(2a -t )2+t 2=4c 2=2a 2,所以t =a ,则λF 2B =a ,则F 2B =aλ,由BF 1 +BF 2 =2a ,所以BF 1 =2a -aλ,因为AF 1 ⋅AF 2 =0,所以AF 1⊥AF 2,所以AF 1 2+AB 2=BF 1 2,即a 2+a 21+1λ 2=2a -a λ2,解得:λ=3,故选:D .考点六:椭圆与双曲线的等腰三角形问题同角余弦定理使用两次1已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若│AF 2 =2F 2B ,AB │=BF 1 ,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1【答案】B【解析】法一:如图,由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1B 中,由余弦定理推论得cos ∠F 1AB =4n 2+9n 2-9n 22⋅2n ⋅3n =13.在△AF 1F 2中,由余弦定理得4n 2+4n 2-2⋅2n ⋅2n ⋅13=4,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .法二:由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1F 2和△BF 1F 2中,由余弦定理得4n 2+4-2⋅2n ⋅2⋅cos ∠AF 2F 1=4n 2,n 2+4-2⋅n ⋅2⋅cos ∠BF 2F 1=9n 2 ,又∠AF 2F 1,∠BF 2F 1互补,∴cos ∠AF 2F 1+cos ∠BF 2F 1=0,两式消去cos ∠AF 2F 1,cos ∠BF 2F 1,得3n 2+6=11n 2,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .1(2024·江西九江·高三九江一中校考期末)已知双曲线x 2a 2-y 2b2=1a >0,b >0 左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=2F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.7B.2C.213D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=2F 2Q ,所以QF 2 =a ,从而QF 1 =3a ,PF 1 =4a ,PQ =3a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a 2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 3a =23,所以5a 2-c 24a 2=23,7a 2=3c 2,所以e =c a =213,故选:C .2(2024·辽宁沈阳·高三沈阳二中校考阶段练习)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=3F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.3 B.2C.2D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=3F 2Q ,所以QF 2 =23a ,从而QF 1 =83a ,PF 1 =4a ,PQ =83a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 83a =34,所以5a 2-c 24a 2=34,2a 2=c 2,所以e =c a =2,故选:C .考点七:双曲线的4a 底边等腰三角形当F 2A =F 2B 或者AB =4a 时,令∠AF 1F 2=α,则一定存在①F 1M =F 2B ,②e =1cos2α1(2024·河南·高三校联考阶段练习)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -3y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.153B.53C.13D.52【答案】D【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H.因为MN ⋅F 2M +F 2N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以NF 1 -NF 2 +MF 2 -MF 1 =NF 1 -MF 1 =MN =4a ,则MH =NH =2a ,从而HF 1 =m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为13,所以tan ∠HF 1F 2=HF 2 HF 1=2c 2-2a 22a 2+2c2=13,整理得c 2-a 2a 2+c 2=19,即5a 2=4c 2⇒e =52,故选:D .1(2024·贵州·校联考模拟预测)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -2y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN ⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.53B.43C.153D.233【答案】C【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H .因为MN ⋅F 2M +F 2 N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以|NF 1|-|NF 2|+|MF 2|-|MF 1|=NF 1∣-MF 1 = MN |=4a ,则|MH |=|NH |=2a ,从而|HF 1|=m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为12,所以tan ∠HF 1F 2=HF 2 HF 1 =2c 2-2a 22a 2+2c 2=12,整理得c 2-a 2a 2+c 2=14,即3c 2=5a 2,则c 2a 2=53,故e =c 2a 2=153.故选:C2(2024·全国·高三长垣市第一中学校联考开学考试)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作斜率为33的直线l 与双曲线C 的左、右两支分别交于M ,N 两点,且F 2M +F 2N ⋅MN =0,则双曲线C 的离心率为()A.2B.3C.5D.2【答案】A【解析】如图,设D 为MN 的中点,连接F 2D .易知F 2M +F 2N =2F 2D ,所以F 2M +F 2N ⋅MN =2F 2D ⋅MN =0,所以F 2D ⊥MN .因为D 为MN 的中点,所以F 2M =F 2N .设F 2M =F 2N =t ,因为MF 2 -MF 1 =2a ,所以MF 1 =t -2a .因为NF 1 -NF 2 =2a ,所以NF 1 =t +2a .所以MN =NF 1 -MF 1 =4a .因为D 是MN 的中点,F 1D =F 1M +MD ,所以MD =ND =2a ,F 1D =t .在Rt △F 1F 2D 中,F 2D =4c 2-t 2;在Rt △MF 2D 中,F 2D =t 2-4a 2.所以4c 2-t 2=t 2-4a 2,解得t 2=2a 2+2c 2.所以F 2D =2c 2-2a 2,F 1D =t =2a 2+2c 2.因为直线l 的斜率为33,所以tan ∠DF 1F 2=F 2D F 1D =2c 2-2a 22a 2+2c2=33,所以c 2-a 2a 2+c 2=13,c 2=2a 2,c =2a ,所以离心率为ca= 2.故选:A3(2024·全国·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,过F 1的直线与双曲线C 的左支交于A ,B 两点,连接AF 2,BF 2,在△ABF 2中,sin ∠ABF 22=14,AB =BF 2 ,则双曲线C 的离心率为()A.3 B.2C.3D.2【答案】D【解析】设BF 1 =m ,则由双曲线定义可得BF 2 =2a +m ,AF 1 =2a ,AF 2 =4a ,由sin ∠ABF 22=14可得m =6a ,再在△BF 1F 2中根据余弦定理即可列出式子求出离心率.设BF 1 =m ,则由双曲线定义可得BF 2=2a +m ,AF 1 =AB -BF 1 =BF 2 -m =2a ,则AF 2 =4a ,则sin∠ABF 22=2a 2a +m =14,解得m =6a ,从而BF 2 =8a .在△BF 1F 2中,F 1F 2 2=BF 1 2+BF 2 2-2BF 1 ⋅BF 2 cos ∠F 1BF 2,即4c 2=36a 2+64a 2-2×6a ×8a ×1-2sin 2∠ABF 22 ,解得e =ca =2.故选:D .考点八:焦点到渐近线距离为b双曲线的特征三角形,如图所示,设渐近线l1:y=bax,l2:y=-bax,过右焦点作FM⊥l1,FN⊥l2,由于渐近线方程为y=±bax,故MF2OM=NF2ON=ba,且斜边OF2=c,故MF2OF2=NF2OF2=bc,故OM=ON=a,MF2=NF2=b.1(2024·河南新乡·高三校联考阶段练习)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线l,垂足为H,直线l与双曲线C的左支交于E点,且H恰为线段EF2的中点,则双曲线C的离心率为()A.2B.3C.2D.5【答案】D【解析】连结EF1,因为点O,H分别为F1F2和EF2的中点,所以OH⎳EF1,且EF1⊥EF2设点F2c,0到一条渐近线y=bax的距离d=bca2+b2=b,所以EF2=2b,又EF2-EF1=2a,所以EF1=2b-2a,Rt△EF1F2中,满足2b-2a2+4b2=4c2,整理为:b=2a,双曲线的离心率e=ca=a2+b2a2=5.故选:D1(2024·吉林白山·高三校联考阶段练习)已知双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,以OF1为直径的圆与双曲线的一条渐近线交于点M(异于坐标原点O),若线段MF1交双曲线于点P,且MF2⎳OP则该双曲线的离心率为()A.2B.3C.52D.6【答案】A【解析】不妨设渐近线的方程为y=-bax,因为MF2⎳OP,O为F1F2的中点,所以P为MF1的中点,将直线OM,MF1的方程联立y=-baxy=ab(x+c),可得M-a2c,abc,又F 1-c ,0 ,所以P -c +-a 2c 2,ab 2c 即P -a 2+c 22c ,ab 2c,又P 点在双曲线上,所以a 2+c 224a 2c 2-a 24c2=1,解得ca =2,所以该双曲线的离心率为2,故选:A .2(2024·山西运城·高三统考期末)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,以OF 1为直径的圆与双曲线的一条渐近线交于点M ,若线段MF 1交双曲线于点P ,且PF 2 =5PF 1 ,则双曲线的离心率为()A.264B.344C.2D.3【答案】C【解析】根据题意,不妨取点M 在第二象限,题中条件,得到k MF 1=ab,记∠MF 1F 2=∠PF 1F 2=θ,求出cos θ=b c ,根据双曲线定义,得到PF 2 =5a 2,PF 1 =a 2,在△PF 1F 2中,由余弦定理,即可得出结果.因为以OF 1为直径的圆与双曲线的一条渐近线交于点M ,不妨取点M 在第二象限,所以MF 1⊥OM ,则k MF 1⋅k OM =-1,因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±b a x ,则k OM =-b a ,所以k MF 1=a b ;记∠MF 1F 2=∠PF 1F 2=θ,则tan θ=a b ,由tan θ=a b sin 2θ+cos 2θ=1解得cos θ=b c ,因为PF 2 =5PF 1 ,由双曲线的定义可得PF 2 -PF 1 =2a ,所以PF 2 =5a 2,PF 1 =a2,由余弦定理可得:cos θ=bc =PF 1 2+F 1F 2 2-PF 2 22PF 1 ×F 1F 2=a 24+4c 2-25a242×a 2×2c,则2c 2-3a 2=ab ,所以2a 2+b 2 -3a 2=ab ,整理得2b 2-ab -a 2=0,解得b =a ,所以双曲线的离心率为e =c 2a 2=b 2+a 2a 2= 2.故选:C .3(2024·辽宁·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F ,过F 作双曲线C 的一条渐近线的垂线,垂足为A .若△OFA (O 为坐标原点)的面积等于14c 2(c 为双曲线C 的半焦距),则双曲线C 的离心率为()A.2B.3 C.2 D.5【答案】A【解析】设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0),双曲线C 的一条渐近线方程设为bx +ay =0,可得AF =bc a 2+b 2=b ,OA =c 2-b 2=a ,△OAF 的面积为14c 2,即有12ab =14c 2,化为4a 2(c 2-a 2)=c 4,e 4-4e 2+4=0,解得e = 2.故选:A .4(2024·广西南宁·统考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M 、N 两点(点F 1位于点M 与点N 之间),且MF 1 =2F 1N,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e =()A.5B.3C.233D.62【答案】C【解析】不妨设M 在第二象限,N 在第三象限,如下图所示:因为ON =OP ,∠F 1OP =∠F 1ON ,所以△F 1OP ≅△F 1ON ,所以∠F 1PO =∠F 1NO =90°,F 1P =F 1N ,又l OM :y =-bax ,F 1-c ,0 ,所以F 1P =F 1N =-bca1+b 2a 2=b ,所以ON =OP =c 2-b 2=a ,所以MF 1 =2F 1N =2b ,因为tan ∠F 1OP =b a ,tan ∠MON =tan2∠F 1OP =3b a ,所以2ba 1-b 2a 2=3b a ,所以b 2a 2=c 2-a 2a2=e 2-1=13,所以e =233.故选:C .考点九:焦点到渐近线垂线构造的直角三角形利用几何法转化1(2024·江西九江·高三九江一中校考阶段练习)F 是双曲线x 2a 2-y 2b2=1a >0,b >0 的左焦点,过点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若3FA =FB,则此双曲线的离心率为()A.2 B.53C.233D.3【答案】D【解析】由题意得:F -c ,0 ,双曲线渐近线方程为:y =±b ax若A 为直线FA 与y =-b a x 交点,B 为直线FA 与y =bax 交点则k FA =a b ∴直线FA 方程为:y =a bx +c ,与y =-b a x 联立可得:x A =-a 2c 直线FA 方程与y =b a x 联立可得:x B =a 2cb 2-a2由3FA =FB 得:3-a 2c +c =a 2c b 2-a 2+c ,即-3a 2+2c 2=a 2c 2c 2-2a 2∴-3+2e 2=e 2e 2-2,即e 4-4e 2+3=0,解得:e 2=3或1(舍)∴e =3由双曲线对称性可知,当A 为直线FA 与y =b a x 交点,B 为直线FA 与y =-bax 交点时,结论一致故选:D 1(2024·广西玉林·校考模拟预测)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 引一条渐近线的垂线,与另一条渐近线相交于第二象限,则双曲线C 的离心率的取值范围是()A.(2,+∞) B.(3,+∞)C.(2,+∞)D.(3,+∞)【答案】A【解析】由题意双曲线C :x 2a 2-y 2b2=1的渐近线y =±b a x ,右焦点F (c ,0),不妨设过右焦点F (c ,0)与双曲线的一条渐近线垂直的直线方程为y =-ab(x -c )与y =-b a x 联立得-b a x =-a b (x -c ),所以x =a 2c a 2-b 2,y =-abc a 2-b 2,所以交点坐标为a 2c a 2-b 2,-abca 2-b2,因为交点在第二象限,所以-abca 2-b 2>0a 2c a 2-b 2<0,因为a >0,b >0,c >0,所以a 2c >0,abc >0,所以a 2-b 2<0,即a<b ,因为c =a 2+b 2>a 2+a 2=2a ,所以e =ca>2aa=2,即e ∈2,+∞ 故选:A2(2024·江西新余·统考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 ,过右焦点F 作C 的一条渐近线的垂线l ,垂足为点A ,l 与C 的另一条渐近线交于点B ,若AF =25AB,则C 的离心率为()A.305B.2C.233D.52【答案】A【解析】如下图所示:双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,所以,AF =bc b 2+a 2=b ,则OA =OF 2-AF 2=c 2-b 2=a ,因为AF =25AB ,则AB =52b ,设∠AOF =α,则∠BOF =α,所以,∠AOB =2α,tan α=AF OA =b a ,tan2α=AB OA=5b2a ,由二倍角的正切公式可得tan2α=2tan α1-tan 2α,即2ba1-b a 2=5b 2a ,可得b 2a 2=15,因此,e =c a =1+b 2a2=1+15=305.故选:A .考点十:以两焦点为直径的圆与渐近线相交问题以F 1F 2为直径作圆,交一条渐近线y =bax 于点B ,BF 1交另一条渐近线于点A ,则令∠BOF 2=α,则∠BF 1F 2=α2,e =1+tan 2α1(2024·全国·校联考)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作x 轴的垂线,与双曲线C 及其一条渐近线在第一象限分别交于A ,B 两点,且OF =2OA -OB(O 为坐标原点),则该双曲线的离心率是()A.2. B.3 C.322D.233【答案】D【解析】设双曲线的半焦距为c ,由x =cx 2a 2-y 2b2=1得到A c ,b 2a ,由y =b a x x =c 得到B c ,bca ,而F (c ,0),OF =2OA -OB ⇔OA =OF +OB2,即点A 是线段FB 的中点,所以bc a =2b 2a ,c =2b ,所以e =c a =2b c 2-b 2=233.故选:D1(2024·山西晋城·统考)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,以线段F 1F 2为直径的圆与直线bx -ay =0在第一象限交于点A ,若tan ∠AF 2O =2,则双曲线C 的离心率为()A.53B.32C.3D.2【答案】A【解析】由题意可得|AO |=|OF 2|=c ,即有△AOF 2为等腰三角形,设∠OAF 2=∠AF 2O =α,则∠AOF 2=π-2α,所以tan ∠AOF 2=tan π-2α =-tan2α=2tan αtan 2α-1=2×222-1=43即为b a =43,所以e =c a =1+b 2a2=1+169=53,故选:A 2(2024·河北衡水·高三河北衡水中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,若以F 1F 2为直径的圆和曲线C 在第一象限交于点P ,且△POF 2恰好为正三角形,则双。
求解双曲线离心率问题的常见策略
此双曲线离心率的取值范围是 ( )
解 :直线与双曲线右支只有一 个交点 知其斜率小于等于渐近线 的斜率 ,即
t 6。 鱼 即 √ 得 a 0≤ 6 , n
,
d
/f
0 。 D~
b ≥3 一口 a2c ≥3 a
等: 。 :
设双 曲线 方程 为 一 脯 心率 e:
D
~
\ l
‘
B
由点C, !在双曲线上, 将点 C, 坐 E 标和P =! 代入双曲线方 程得
一
:
4 b
l , ①
簿
一 ≤ , 得 一
\ ( I 一 焘
1 7 创新教 育 4
. 答 :
勰6衄 默苣 ∞ 豫 .醇
一
=
~
求 解 双 曲 线 离 心 率 问 题 的 常 见 策 略
l J
6
即
河北 省 邯 郸 市第 一 中学 赵 静
双曲线中离心率是 重要的几何性 决定双曲线的形状是较开阔 质, 还是较狭窄, 因而高考中常考查离 心率问 P=三且口 题. +6 =f
d
,
只 要找到口 6c中 ,, 任两个量闻的倍数关系即可求出离心率的值: 心率的范围. 求离 在于建立关于 b c , , 的不等式. 进而转化为P =三的
口
不等式求解
一
、
通过坐标与几何关系确定a, , b C关系求e
例1 双曲 一 :l > , > ) 右 点 . 线 设 ( 06 o 的 焦 为F, 准 与 条 近 交 , 点, A Q 直角 形, 双 日 右 线, 两 渐 线 于尸 Q两  ̄ P F是 三角 求
椭圆双曲线共焦点离心率结论
椭圆双曲线共焦点离心率结论
椭圆双曲线:
1. 定义:椭圆双曲线是一种数论对象,它可以用$y^2=x^3+ax+b$的形
式表示,又称做Weierstrass椭圆双曲线,其中a、b是常数。
2. 特点:和椭圆类似,椭圆双曲线也具有两个焦点和长短轴,但与传
统的椭圆不同,它由一系列点组成,而不是单一点。
3. 离心率:椭圆双曲线的离心率常用$e=\frac{2c^2}{a^2+b^2}$来表示,其中a、b、c是椭圆双曲线的长短轴、重心距等参数,它的取值范围在
1到无穷大之间,如果离心率e=1,则该椭圆双曲线称为椭圆形椭圆双
曲线,1<e<无穷大时,椭圆双曲线称为双曲线椭圆双曲线。
4. 共焦点:椭圆双曲线有两个焦点,对称轴有两个共焦点,即它们之
间的距离相等,可以用公式$2c^2=a^2+b^2$来表示。
5. 结论:椭圆双曲线的参数a、b、c以及离心率e与共焦点之间存在特定关系,即$2c^2=a^2+b^2$,$e=\frac{2c^2}{a^2+b^2}$,离心率的值可
以用来判断这类椭圆双曲线是否为椭圆形双曲线或双曲线椭圆双曲线。
离心率的五种求法
离心率的五种求法离心率的五种求法离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现.椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出,a c ,求解e 已知标准方程或,a c 易求时,可利用离心率公式c e a=来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( ) A.10B. 5C.310 D. 25分析:这里的21,1a cb ==+2b ,即可利用定义求解。
解:易知A (-1,0),则直线l 的方程为1x y +=。
直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10a ce ==,从而选A 。
二、变用公式221)c b e a a ==+双曲线,221-()c b e a a ==椭圆,整体求出e例2. 已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为43y x =,则双曲线的离心率为( ) A.35 B. 34 C. 45D.23分析:本题已知b a=34,不能直接求出a 、c ,可用整体代入套用公式。
解:因为双曲线的一条渐近线方程为43y x =,所以 43b a =,则2451()33c e a ==+=,从而选A 。
1.设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线21y x=+相切,则该双曲线的离心率等于( C )A.3B.2C.5D.6 解:由题双曲线()222200x y a b a b-=1>,>的一条渐近线方程为a bx y =,代入抛物线方程整理得02=+-a bx ax,因渐近线与抛物线相切,所以0422=-a b,即224b a =221145b e a∴=+=+=2.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =uur uu u r ,则双曲线的离心率是 ( ) A .2 B .3 C .5 D .10 答案:C【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a abB C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭u u u r u u u r ,222,4AB BC a b =∴=uur uu u r因此 ,即224b a =,221145b e a ∴=+=+=3.过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=o,则椭圆的离心率为( ) A .2 B .3 C .12D .13【解析】因为2(,)b Pc a-±,再由1260F PF∠=o有232,b a a=即2223ba =从而可得22231133b e a ∴=-=-=,故选B三、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
离心率问题的7种题型15种方法(教师版)
目录题型一:椭圆离心率的求值 2方法一:定义法求离心率 2方法二:运用通径求离心率 3方法三:运用e=e=1+k2λ-1λ+1求离心率 4方法四:运用e=c a=sin(α+β)sinα+sinβ求离心率 4方法五:运用k OM⋅k AB=-b2a2求离心率 5方法六:运用正弦定理、余弦定理、三角函数求离心率 6方法七:运用相似比求离心率 6方法八:求出点的坐标带入椭圆方程建立等式 7方法九:运用几何关系求离心率 7题型二:双曲线离心率的求解 9方法一:定义法关系求离心率 10方法二:运用渐近线求离心率 10方法三:运用e=1+k2λ-1λ+1求离心率 11方法四:运用e=c a=sin(α+β)sinα-sinβ求离心率 11方法五:运用结论k OM•k AB=b2a2求离心率 12方法六:运用几何关系求离心率 13题型三:椭圆、双曲线离心率综合运用 15题型四:根据已知不等式求离心率的取值范围 17题型五:根据顶角建立不等式求离心率范围 18题型六:根据焦半径范围求离心率范围 19题型七:题型七根据渐近线求离心率的取值范围 21离心率问题的7种题型15种方法1离心率问题的7种题型15种方法求离心率常用公式椭圆公式1:e =ca 公式2:e =1-b 2a2证明:e =c a=c 2a 2=a 2−b 2a 2=1-b 2a 2公式3:已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =sin (α+β)sin α+sin β证明:∠PF 1F 2=α,∠PF 2F 1=β,由正弦定理得:F 1F 2 sin (180o −α−β)=PF 2 sin α=PF 1sin β由等比定理得:F 1F 2 sin (α+β)=PF 1 +PF 2 sin α+sin β,即2c sin (α+β)=2a sin α+sin β∴e =c a =sin (α+β)sin α+sin β。
双曲线的离心率和渐近线-概述说明以及解释
双曲线的离心率和渐近线-概述说明以及解释1.引言1.1 概述双曲线是一个非常重要且有趣的数学概念,它在许多科学领域中都具有广泛的应用。
双曲线的离心率和渐近线是研究双曲线性质时的两个重要方面。
本文将深入探讨双曲线的离心率和渐近线,旨在帮助读者更好地理解和应用这些概念。
在概率统计学、物理学和工程学等领域,双曲线经常用于描述一些特定的曲线形状。
它具有许多独特的性质,如非对称、无中心和无界等,这使得双曲线在一些特定情况下成为研究对象。
首先,我们将介绍双曲线的离心率。
离心率是用来衡量双曲线扁平程度的一个参数,它决定了双曲线的形状。
通过研究离心率,我们可以更好地理解双曲线的特性,并在实际问题中应用它们。
其次,我们将深入探讨双曲线的渐近线。
渐近线是指曲线在无穷远处趋近于某一直线的情况。
对于双曲线而言,它具有两条渐近线,分别与曲线的两个分支在无穷远处平行。
渐近线的性质可以帮助我们更好地理解双曲线的走向和特征。
本文将通过详细的推导和实例分析,阐明双曲线的离心率和渐近线的定义、性质和应用。
我们将探讨它们在物理学、工程学和数学模型中的应用案例,以及如何利用这些概念来解决实际问题。
在结论部分,我们将总结双曲线的离心率和渐近线的重要性,并探讨它们在实际问题中的应用和意义。
通过深入理解和应用双曲线的离心率和渐近线,我们可以更好地解决各种问题,并在科学研究和工程实践中取得更好的成果。
在接下来的章节中,我们将逐步展开双曲线的离心率和渐近线的详细内容,希望读者能够跟随我们的步伐,深入了解这些有趣且具有应用价值的数学概念。
1.2文章结构文章结构是指文章的章节安排和组织方式。
对于这篇文章,可以按照以下方式组织文章结构:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 双曲线的离心率2.2 双曲线的渐近线3. 结论3.1 总结双曲线的离心率和渐近线3.2 对双曲线性质的应用和意义在引言部分,可以首先对双曲线的概念进行简要说明,包括其定义和特点。
[公开课优质课课件]研究双曲线离心率的计算方式
[公开课优质课课件]研究双曲线离心率的计算方式公开课优质课课件研究双曲线离心率的计算方式1. 引言本课件旨在介绍研究双曲线离心率的计算方式。
通过研究本课件,您将了解双曲线的基本概念和性质,并学会计算双曲线的离心率。
2. 双曲线的基本概念双曲线是一种在平面几何中常见的曲线类型。
它由离心率大于1的椭圆的各个点所生成。
3. 双曲线的离心率离心率是确定双曲线形状的一个重要参数。
它表示椭圆焦点与椭圆中心之间的距离之比。
4. 研究双曲线离心率的计算方式研究双曲线离心率的计算方式包括以下步骤:4.1 确定双曲线的焦点坐标和中心坐标。
4.2 计算双曲线焦点与中心之间的距离。
4.3 计算双曲线的半轴长度。
4.4 根据半轴长度和焦点与中心距离的比值,计算出双曲线的离心率。
5. 示例以下是一个计算双曲线离心率的示例:假设双曲线的焦点坐标为(F1, F2) = (3, 4),中心坐标为(H1, H2) = (0, 0)。
根据步骤4.2,计算焦点与中心之间的距离,即√((F1 - H1)² + (F2 - H2)²) = √(3² + 4²) = 5。
根据步骤4.3,计算双曲线的半轴长度,即半轴长度 = (焦点与中心之间的距离) / 2 = 5 / 2 = 2.5。
根据步骤 4.4,计算双曲线的离心率,即离心率= (半轴长度)/ (焦点与中心之间的距离)= 2.5 / 5 = 0.5。
6. 结论本课件介绍了研究双曲线离心率的计算方式,并给出了一个计算示例。
通过研究本课件,您将掌握计算双曲线离心率的方法,并在实际问题中应用。
抓住关键__掌握方法_双曲线离心率的求法_王泽龙
,
∴ kAB ·kOP
=-
b2 a2
(值范围
例 7 如图 2,在直角 DEF 中,∠DEF
=
90°,| E→F |
= 2,| E→F + E→D |
=
5 2
,椭圆
C:
x2 a2
+
y2 b2
= 1,以 E、F 为焦点,且过点 D,点 O 为
坐标原点.
( 1) 求椭圆 C 的标准方程;
为 60°,则双曲线的离心率为
.
分析 先 确 定 双 曲 线 的 图 形,结 合
RtB1 OF1 中边角之间几何特征,建立相应的 关系式,进而求解对应的离心率,利用几何法
求解双曲线的离心率关键是应用几何图形的
性质.
解 如图 1,不失一般性,假设双曲线的
焦点在 x 轴上. 由于 c > b,所以
∠B1 F1 B2 = 60°,∠B1 F1 O = 30°. 在 RtB1 OF1 中,
设 MN 的中点为 H,则 KH ⊥ MN,此条件涉及
到弦 MN 的中点及弦 MN 的斜率,故用“点差
法”. 解
( ) ( 1)
x2 + y2 43
= 1,K 0,12
. ( 过程
略)
设 M( x1 ,y1 ) ,N( x2 ,y2 ) ,H( x0 ,y0 ) ,直线 l
的斜率为 k( k ≠ 0) ,则
2a = | PF1 | - | PF2 | = ( 槡3 - 1) m.
而 2c = 2m,
所以根据离心率的定义,有
e=
c a
=
2c 2a
=2 槡3 - 1
=
槡3
+ 1.
双曲线的离心率和1的关系
双曲线的离心率和1的关系
对于一条双曲线,其离心率(eccentricity)通常表示为 e,定义为焦点距离与极点距离的比值。
对于双曲线,离心率 e 大于 1。
具体而言,离心率 e 是与双曲线的半焦距 c 和极点距离 a 之间的关系有关,其中 c 是焦点到双曲线中心的距离,而 a 是极点到双曲线中心的距离。
离心率与 a、c 的关系可以表示为:
e = c / a
从上述公式可以看出,当 e 大于 1 时,c 大于 a,即焦点到中心的距离大于极点到中心的距离。
另外,离心率也可以通过双曲线的方程来确定。
对于标准的双曲线方程,形如:
(x^2 / a^2) - (y^2 / b^2) = 1
其中 a 和 b 分别是双曲线的半长轴和半短轴长度,而离心率 e 可以通过以下关系计算:
e = √(a^2 + b^2) / a
总结起来,对于一条双曲线,离心率 e 大于 1,可以通过焦点距离与极点距离的比值来表示,也可以通过方程中的半长轴和半短轴长度计算得到。
双曲线的基本知识点离心率
双曲线的基本知识点离心率
双曲线的基本知识点包括:
1. 定义:双曲线是与两个固定的点(称为焦点)的距离差是常数的点的轨迹。
这个固定的距离差是a的两倍,其中a是从双曲线的中心到双曲线最近的分支的顶点的距离。
2. 形状:双曲线有两个分支,这两个分支关于x轴、y轴或原点对称。
3. 离心率:双曲线的离心率e是定义为圆锥曲线上的一点到平面内一定点的距离与到不过此定点的一定直线的距离之比,其中此定点称为焦点而此定直线称为准线。
对于双曲线,离心率e大于1。
4. 渐近线:双曲线有两条渐近线,这两条渐近线关于原点对称。
离心率和渐近线都表示双曲线张口的大小。
5. 双曲线与椭圆的关系:在椭圆中,a=b+c;而在双曲线中,c=a+b。
一道双曲线离心率题的四种求法
一道双曲线离心率题的四种求法
作者:陈永利
来源:《成才之路》 2014年第19期
辽宁瓦房店
陈永利双曲线的离心率是综合性较强的知识点,是双曲线定义和几何性质综合应用最佳结
合点,是平面几何中的相似形性质、勾股定理、余弦定理的综合应用,是考察学生观察、比较、分析、综合能力最佳结合点。
现有一道双曲线离心率题,让我们一起研究它的求法。
分析条件可得:设右焦点F2(C,0),连接OE和PF2,因为F1 P是⊙O的切线和,则有OE
垂直平分F1P。
所以OE=a,OF1=c. 由双曲线可知F1P=2b,又因为O是线段F1F2的中点,所以OE是△F1F2P的中位线,则OE∥F2P. 所以,OE=a,OF1=c,EF1=b ,就有PF1=2b,PF2=2a.
解法1:几何法,利用相似三角形求离心率e
由图2可知,作抛物线y2=4cx的准线l∶x=-c,作PM⊥l于M,由抛物线定义可知
PM=PF2=2a. ∵ PM∥F1F2,∴
解法2:利用直角三角形的射影定理求离心率e
解法3:代数法求离心率e
解法4:利用直角三角形边角关系和余弦定理求解求离心率e
由此可以看出,求椭圆和双曲线的离心率,本质上就是求a、b、c的齐次关系式。
这种关
系的确定,利用圆锥曲线的定义、准线、三角形的正余弦定理、平面几何有关相似三角形性质、直角三角形射影定理,既考察代数性质又考察几何性质的应用,是典型数形结合的范例。
(辽宁省瓦房店市第八高级中学)。
双曲线 离心率
双曲线离心率双曲线离心率在几何学中是一个重要概念,它是指方程轴线与曲线的距离与曲线的对称轴的距离固定的比值。
双曲线的离心率确定了双曲线的形状,双曲线的角度的大小与其离心率有关。
可以用标准双曲线来定义双曲线离心率,以及双曲线的几何特征和性质。
标准双曲线是指直线和曲线之间的距离与曲线的对称轴的距离固定的比值,我们用西格玛数来表示双曲线的离心率,即傅立叶符号e。
关于双曲线的离心率,它的定义简单如下:双曲线的离心率是指从双曲线的正中心指向某个点的矢量的模长除以从另一个点指向双曲线的中心的矢量的模长的商。
双曲线的离心率具有以下特征:1、双曲线的离心率是一个等差数列,从小到大,从0开始,最大为1。
2、双曲线的离心率可以用西格玛数e表示。
双曲线的离心率从小到大是从1开始,最大为e。
3、当双曲线的离心率为1时,双曲线会变成椭圆,反之,双曲线的离心率小于1时,双曲线会变成抛物线。
4、双曲线的离心率会影响双曲线的曲率,当双曲线的离心率增大时,双曲线的曲率也会增大。
以上就是双曲线离心率的基本内容:它是指方程轴线与曲线的距离与曲线的对称轴的距离固定的比值,双曲线的离心率可以用西格玛数e表示,双曲线的离心率大小会影响双曲线的曲率,当双曲线的离心率为1时,双曲线会变成椭圆,反之,双曲线的离心率小于1时,双曲线会变成抛物线。
双曲线和椭圆的离心率具有各自的特点,如双曲线的离心率最大可以达到e,而椭圆的离心率最大也就是1,双曲线的两个焦点距离最大可以是2eu,而椭圆的焦点最大距离只有2a,双曲线的离心率越大,它的曲率就越大,而椭圆的离心率越大,它的曲率就越小。
以上就是双曲线离心率在几何学中的基本内容。
双曲线离心率可以用来描述双曲线的形状和曲率,它可以用来研究双曲线的几何性质和特征。
双曲线的离心率是一个等差数列,从小到大,从0开始,最大为1。
此外,双曲线的离心率还与双曲线的曲率有关,当双曲线的离心率增大时,双曲线的曲率也增大。
从几何学的角度来看,双曲线的离心率是一个重要的概念,对于研究双曲线的性质和特征都有重要的意义。
双曲线的焦点与离心率的计算方法
双曲线的焦点与离心率的计算方法双曲线是经典的数学曲线之一,具有特殊的性质和形态。
焦点和离心率是描述双曲线的重要参数,能够帮助我们深入理解和分析双曲线的性质。
本文将介绍双曲线的定义、焦点与离心率的计算方法,并探讨它们在几何和物理中的应用。
一、双曲线的定义双曲线是具有以下几何性质的曲线:1. 定义域:双曲线的定义域为实数集,即曲线上的每一个点都对应一个实数,而且实数可以取任意值。
2. 对称轴:双曲线有两条对称轴,分别为纵轴和横轴。
对称轴是曲线的镜像轴,将曲线分为两个对称的部分。
3. 四个分支:双曲线由四个分支组成,分别位于对称轴及其延长线的两侧。
4. 渐近线:双曲线有两条渐近线,分别靠近其两个对称轴。
渐近线与双曲线在无穷远处趋于平行。
二、焦点的计算方法焦点是双曲线上的一个特殊点,具有重要的几何和物理意义。
双曲线的焦点计算方法如下:1. 横轴双曲线:设双曲线的中心为原点O(0,0),焦点距离原点的距离为c,离中心最近的点为F1,离中心最远的点为F2。
则焦点的坐标为F1(c,0)和F2(-c,0)。
2. 纵轴双曲线:设双曲线的中心为原点O(0,0),焦点距离原点的距离为c,离中心最近的点为F1,离中心最远的点为F2。
则焦点的坐标为F1(0,c)和F2(0,-c)。
三、离心率的计算方法离心率是双曲线的一个重要参数,用来描述双曲线的形态特征。
离心率的计算方法如下:1. 横轴双曲线:设双曲线的焦点为F1(c,0)和F2(-c,0),顶点为V(a,0),则离心率e的计算公式为 e = c / a。
2. 纵轴双曲线:设双曲线的焦点为F1(0,c)和F2(0,-c),顶点为V(0,a),则离心率e的计算公式为 e = c / a。
离心率e是一个大于1的实数,可以反映出双曲线的独特形状。
当离心率e趋近于1时,双曲线的形状趋近于抛物线;当e大于1时,双曲线的形状更加尖锐。
四、焦点和离心率的应用焦点和离心率是双曲线的重要参数,在几何和物理中具有广泛的应用。
如何求双曲线的离心率
%
2 姨 3 -1
%
故选D. = 姨 3 +1,
%
与渐近线y=
b 得出其斜率的乘积为-1, 进而求得b和a, x垂直, c a
点评 : 本题把双曲线的问题放在正六边形中考查 , 情境新 颖 , 综合考查多方面的能力 , 掌握正六边形的性质是解决本题的 基础 . 利用性质得出计算 2a=|EC|-|FE| 的值是解题的关键 . 例 6 (2012 年浙江杭州第二中学高三模拟) 如图 3, F2为双
如何 求 双 曲
离心率 的 线
黄 健
筅湖北省广水市育才高中
也可求出渐近线的方程, 即
b % 2 当双曲线的 = 姨e -1 . 但要注意, a x2 y 2 (a>0, - =1 a2 b2
焦点所在的坐标轴不确定时上述两类问题都有两解.
例 1 (2012 年湖北黄冈高三模拟) 双曲线
%
则它的离心率e=______. ) 的一条渐近线方程为y= 姨 2 x, b>0 2 由于新课标降低了对双曲线的要求, 双曲线中基本知识必然 成为高考考查的热点, 考查中常常涉及到双曲线基本量 (a、 b、 c、 ) 之间的关系以及双曲线的渐近线, 特别是双曲线的离心率, 求 e 双曲线离心率涉及到解析几何 、 平面几何、 代数等多个知识点, 综合性强, 方法灵活, 解题关键是挖掘题中的隐含条件, 能够体 现双曲线解题的技巧与方法. 下面通过具体例子分类解析如何 求解双曲线的离心率.
一 、利用渐近线与离心率的关系求解
双曲线的渐近线也是用来反映双曲线的开口大小的程度 的, 所以双曲线的离心率与渐近线之间有着密切的联系, 二者之 间可以互求. 已知渐近线的方程时,可得 b a +b =1+ a a2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧解双曲线的离心率离心率是双曲线的重要性质,也是高考的热点。
经常考查:求离心率的值,求离心率的取值范围,或由离心率求参数的值等。
下面就介绍一下常见题型和巧解方法。
1、求离心率的值(1)利用离心率公式ac e =,先求出c a ,,再求出e 值。
(2)利用双曲线离心率公式的变形: 2)(1a b a c e +==,先整体求出ab ,再求出e 值。
例1 已知双曲线)0,0(12222>>=-b a b y a x 的一条渐近线方程为x y 34=,则双曲线的离心率为__________.分析:双曲线)0,0(12222>>=-b a b y a x 的渐近线方程为x a b y ±=,由已知可得34=a b 解答:由已知可得34=a b ,再由2)(1a b a c e +==,可得35=e . (3)构造关于c a ,的齐次式,再转化成关于e 的一元二次方程,最后求出e 值,即“齐次化e ”。
例如:010222=-+⇒=-+e e a ac c例2 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为____________.分析:利用两条直线垂直建立等式,然后求解。
解答:因为两条直线垂直,011)(2222=--⇒-=⋅=⇒-=-⋅e e a c c a b cb a b 所以215+=e (负舍) 2、求离心率的取值范围求离心率的取值范围关键是建立不等关系。
(1)直接根据题意建立c b a ,,的不等关系求解e 的取值范围。
例3 若双曲线22221x y a b-=(0>>b a ),则双曲线离心率的取值范围是_________. 分析:注意到0>>b a 的条件 解答:),(21)(10102∈+=⇒>>⇒>>ab e a b b a(2)利用平面几何性质建立c a ,不等关系求解e 的取值范围。
例4 双曲线)0,0(12222>>=-b a by a x 的两个焦点为21,F F ,若P 为其上非顶点的一点,且212PF PF =,则双曲线离心率的取值范围为__________.分析:由双曲线上非顶点的点和两个焦点构成三角形,利用三角形性质构建不等式。
解答:因为⎪⎩⎪⎨⎧=-=aPF PF PF PF 222121a PF a PF 2,421==⇒,而c F F 221=,又因为三角形两边之和大于第三边,两边之差小于第三边,a c a 622<<,所以31<<e 。
(3)利用圆锥曲线相关性质建立c a ,不等关系求解e 的取值范围。
例5 已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线离心率e 的取值范围是__________. 分析:此题和上题类似,但也可以换一种办法找不等关系。
解答:由⎪⎩⎪⎨⎧=-=aPF PF PF PF 242121可得322a PF =,又因为点P 在双曲线的右支上,a c PF -≥2,即3532≤=⇒-≥a c e a c a ,所以351≤<e . (4)运用数形结合思想建立,a c 不等关系求解e 的取值范围。
例6 双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是______ 分析:由直线和双曲线的位置关系得到不等关系 解答:由图象可知渐近线斜率360tan =≥ ab ,再由2)(12≥+==a b ac e 。
(5)运用函数思想求解e 的取值范围。
例7 设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是________. 分析:把离心率e 表示成关于a 的函数,然后求函数的值域解答:把e 或2e 表示成关于a 的函数,212)1(1222222++=++=a a a a a e ,然后用求函数值域的方法求解,)5,2(∈e 。
小结:通过以上例题,同学们应该体会到求离心率e 的值或取值范围有很多种办法,求值不一定非要先求出c a ,的值,能够得到c b a ,,中某两者的关系即可;求取值范围关键就是找到不等关系建立不等式,不等关系可以来自已知条件、可以来自图形特点、也可以来自双曲线本身的性质。
总之,要认真审题、分析条件,巧解离心率。
练习: (1)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ).A. 2B. 3 C .2 D .3解:设双曲线C 的方程为x 2a 2-y 2b 2=1,焦点F (-c,0),将x =-c 代入x 2a 2-y 2b 2=1可得y 2=b 4a 2,所以|AB |=2×b 2a =2×2a ,∴b 2=2a 2,3)(12=+==a b a c e 答案:B(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .y =±14xB .y =±13xC .y =±12xD .y =±x 解:由题意可知,双曲线的渐近线方程为y =±b a x ,又离心率为e =c a =1+⎝ ⎛⎭⎪⎫b a 2=52,所以b a =12,所以双曲线的渐近线方程为y =±12x .答案:C(3)双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,渐近线分别为l 1,l 2,点P 在第一象限内且在l 1上,若l 2⊥PF 1,l 2∥PF 2,则双曲线的离心率是( ).A. 5 B .2 C. 3 D. 2解:如图1,由l 2⊥PF 1,l 2∥PF 2,可得PF 1⊥PF 2,则|OP |=12|F 1F 2|=c ,设点P 的坐标为⎝ ⎛⎭⎪⎫m ,b a m ,则 m 2+⎝ ⎛⎭⎪⎫b a m 2=c a m =c ,图3 形,则该双曲线的离心率e 的取值范围为________.解:由题意知,△ABE 为等腰三角形.若△ABE 是锐角三角形,则只需要∠AEB为锐角.根据对称性,只要∠AEF <π4即可.直线AB 的方程为x =-c ,代入双曲线方程得y 2=b 4a 2,取点A ⎝ ⎛⎭⎪⎫-c ,b 2a ,则|AF |=b 2a ,|EF |=a +c ,只要|AF |<|EF |就能使∠AEF <π4,即b 2a <a +c ,即b 2<a 2+ac ,即c 2-ac -2a 2<0,即e 2-e -2<0, 即-1<e <2. 又e >1, 故1<e <2.答案:(1,2)(8)如图3,F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,求C 的离心率.解:依题意,知直线F 1B 的方程为y =b c x +b ,联立方程⎩⎪⎨⎪⎧ y =b c x +b ,x a -y b =0,得点Q ⎝ ⎛⎭⎪⎫ac c -a ,bc c -a , 联立方程⎩⎪⎨⎪⎧y =b c x +b ,x a +y b =0,得点P ⎝ ⎛⎭⎪⎫-ac c +a ,bc c +a , 所以PQ 的中点坐标为⎝ ⎛⎭⎪⎫a 2c b 2,c 2b . 所以PQ 的垂直平分线方程为y -c 2b =-c b ⎝ ⎛⎭⎪⎫x -a 2c b 2. 令y =0,得x =c ⎝ ⎛⎭⎪⎫1+a 2b 2,所以c ⎝ ⎛⎭⎪⎫1+a 2b 2=3c . 所以a 2=2b 2=2c 2-2a 2,即3a 2=2c 2. 所以e =62. 答案:62图4(9)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.解:设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1, ∴x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程,得3y 20+y 20=c 2,即y 0=12c , ∴x 0=32c ,∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,c 2,代入双曲线方程,得34c 2a 2-14c 2b 2=1, 即34b 2c 2-14a 2c 2=a 2b 2,②又∵a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式,整理得34c 4-2a 2c 2+a 4=0, ∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0,∴(3e 2-2)(e 2-2)=0, ∵e >1,∴e = 2. ∴双曲线的离心率为 2.答案: 2(10)如图4,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .求①双曲线的离心率e ;②菱形F 1B 1F 2B 2的面积S 1与矩形ABCD的面积S 2的比值S 1S 2. 解:①由题意可得a =b 2+c 2=bc ,∴a 4-3a 2c 2+c 4=0,∴e 4-3e 2+1=0,∴e 2=3+52,∴e =1+52.②设sin θ=bb 2+c 2,cos θ=c b 2+c 2,S 1S 2=2bc 4a 2sin θcos θ=2bc 4a 2bc b 2+c 2=b 2+c 22a 2=e 2-12=2+52. 答案:①1+52 ;②2+52。