第二章平面解析几何初步章末总结附解析苏教版必修
2019-2020学年高中数学 第2章平面解析几何初步复习与小结教案 苏教版必修2.doc
2019-2020学年高中数学第2章平面解析几何初步复习与小结教案
苏教版必修2
教学目标:
1.复习《平面解析几何初步》的相关知识及基本应用;
2.掌握典型题型及其处理方法.
教材分析及教材内容的定位:
本章研究平面直角坐标系中直线与圆的有关知识以及空间直角坐标系,是高中知识的重点内容,也是高考的高频考点;充分体现了高中数学的坐标法方程法的解题思想.
教学重点:
《平面解析几何初步》的知识梳理和题型归类.
教学难点:
《平面解析几何初步》的重点题型的处理方法.
教学方法:
导学点拨法.
教学过程:
一、问题情境
1.情境;
2.问题:本章我们学了哪些内容?
二、学生活动
1.回顾本章所学内容;
2.在教师引导下归纳本章知识结构;
3.在教师引导下做例题和习题.
三、建构数学
1.知识分析;
五、要点归纳与方法小结
本节课学习了以下内容:
1.全章知识总结;
2.题型与方法总结;
3.数形结合、函数与方程、转化与化归、分类讨论等思想总结.。
高中数学 第二章 平面解析几何初步章末综合测评 苏教版必修2(2021年最新整理)
2018版高中数学第二章平面解析几何初步章末综合测评苏教版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章平面解析几何初步章末综合测评苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章平面解析几何初步章末综合测评苏教版必修2的全部内容。
(二) 平面解析几何初步(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.直线l:x-错误!y+1=0的倾斜角为________.【解析】l:y=错误!x+错误!,k=错误!,∴α=30°。
【答案】30°2.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为________.【解析】直线方程为y=错误!x, 圆的方程化为x2+(y-2)2=22,∴r=2,圆心(0,2)到直线y=3x的距离为d=1,∴半弦长为错误!=错误!,∴弦长为2错误!。
【答案】2错误!3.直线l:mx-y+1-m=0与圆C:x2+(y-1)2=1的位置关系是__________.【解析】圆心(0,1)到直线l的距离d=错误!=错误!<1=r。
故直线l与圆C相交.【答案】相交4.关于x的方程错误!=错误!(x-2)+3解的个数为________个.【解析】作出y=错误!和y=错误!(x-2)+3=错误!x+2的图象(略).可看出直线与半圆有两个公共点.【答案】25.若直线l与直线3x+y-1=0垂直,且它在x轴上的截距为-2,则直线l的方程为________.【解析】因为直线3x+y-1=0的斜率为-3,所以直线l的斜率为错误!.又直线在x轴上的截距为-2,即直线l与x轴的交点为(-2,0),所以直线l的方程为y-0=错误!(x+2),即x-3y+2=0.【答案】x-3y+2=06.若曲线(x-1)2+(y-2)2=4上相异两点P,Q关于直线kx-y-2=0对称,则k 的值为__________.【解析】依题意得,圆心(1,2)在直线kx-y-2=0上,于是有k-4=0,解得k=4。
高中数学第2章平面解析几何初步2.3-2.3.1空间直角坐标系课件苏教版必修2
这是强者的精神宣言.然而,你是否思考过:当船航 行在茫茫无际的大海上时,四周只见水,不见物,那么, 怎样知道船所在的位置呢?怎样知道船离目的地还有多 远呢?
1.空间直角坐标系:从空间某一个定点 O 引三条互 相垂直且有相同单位长度的数轴,这样就建立了空间直 角坐标系 O-xyz,点 O 叫作坐标原点,x 轴、y 轴、z 轴叫 作坐标轴,这三条坐标轴中每两条确定一个坐标平面分 别称为坐标平面 xOy 平面、yOz 平面、zOx 平面.
点 E 在 xDy 面上射影为 B, B(1,1,0),竖坐标为12, 所以 E1,1,12,
[变式训练] 3.在空间直角坐标系 O-xyz 中,作出点 P(5,4,6). 解:第一步,从原点出发沿 x 轴正方 向移动 5 个单位;第二步,沿与 y 轴平行 的方向向右移动 4 个单位;第三步,沿与 z 轴平行的方向向上移动 6 个单位(如图所示).
(-x,y,-z)
(-x,y)
(-x,-y,z)
题型 1 求空间内点的坐标
[典例 1] 已知棱长为 2 的正方体 ABCD-A1B1C1D1, 建立如图①和图②所示的不同的空间直角坐标系,试分 别写出正方体各顶点的坐标.
图①
图②
[变式训练] 1.在正方体 ABCD-A′B′C′D′中,E,F 分别 是 BB′,D′B′的中点,棱长为 1,求 E,F 点的坐标. 解:建立如图所示空间直角坐标系,则
一、空间直角坐标系 (1)空间直角坐标系中的坐标:对于空间任一点 M, 作出点 M 在三条坐标轴 Ox 轴、Oy 轴、Oz 轴上的射影, 其相应数轴上的坐标依次为 x,y,z,则把有序实数组(x, y,z)叫作点 M 在此空间直角坐标系中的坐标,记作 M(x, y,z),其中 x 叫作点 M 的横坐标,y 叫作点 M 的纵坐标, z 叫作点 M 的竖坐标.
高中数学 第2章 平面解析几何初步章末总结 苏教版必修2
第2章平面解析几何初步章末总结苏教版必修2一、待定系数法的应用待定系数法,就是所研究的式子(方程)的结构是确定的,但它的全部或部分系数是待定的,然后根据题中条件来确定这些系数的方法.直线、圆的方程常用待定系数法求解.例1求在两坐标轴上截距相等,且到点A(3,1)的距离为2的直线的方程.变式训练1 求圆心在圆(x -32)2+y 2=2上,且与x 轴和直线x =-12都相切的圆的方程.二、分类讨论思想的应用分类讨论的思想是中学数学的基本方法之一,是历年高考的重点,其实质就是整体问题化为部分问题来解决,化成部分问题后,从而增加了题设的条件.(在用二元二次方程x 2+y 2+Dx +Ey +F =0表示圆时要分类讨论);直线方程除了一般式之外,都有一定的局限性,故在应用直线的截距式方程时,要注意到截距等于零的情形;在用到与斜率有关的直线方程时,要注意到斜率不存在的情形.例2 求与圆x 2+(y -2)2=1相切,且在两坐标轴上截距互为相反数的直线方程.变式训练2 求过点A (3,1)和圆(x -2)2+y 2=1相切的直线方程.三、数形结合思想的应用数形结合思想是解答数学问题的常用思想方法,在做填空题时,有时常能收到奇效.数形结合思想在解决圆的问题时有时非常简便,把条件中的数量关系问题转化为图形的性质问题去讨论,或者把图形的性质问题用数量关系表示出来,数形结合既是一种重要的数学思想,又是一种常用的数学方法.例3 曲线y =1+4-x 2与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是________.变式训练3 直线y =x +b 与曲线x =1-y 2有且仅有一个公共点,则b 的取值范围是________.第二章 章末总结 答案重点解读例1 解 当直线过原点时,设直线的方程为y =kx ,即kx -y =0.由题意知|3k -1|k 2+1=2,解得k =1或k =-17.所以所求直线的方程为x -y =0或x +7y =0.当直线不经过原点时,设所求直线的方程为x a +y a=1,即x +y -a =0.由题意知|3+1-a |2=2,解得a =2或a =6.所以所求直线的方程为x +y -2=0或x +y -6=0.综上可知,所求直线的方程为x -y =0或x +7y =0或x +y -2=0或x +y -6=0. 变式训练1 解 设圆心坐标为(a ,b ),半径为r ,圆的方程为(x -a )2+(y -b )2=r 2.因为圆(x -32)2+y 2=2在直线x =-12的右侧,且所求的圆与x 轴和直线x =-12都相切,所以a >-12.所以r =a +12,r =|b |.又圆心(a ,b )在圆(x -32)2+y 2=2上,所以(a -32)2+b 2=2,故有⎩⎪⎨⎪⎧r =a +12,r =|b |,a -322+b 2=2.解得⎩⎪⎨⎪⎧a =12,r =1,b =±1.所以所求圆的方程是(x -12)2+(y -1)2=1或(x -12)2+(y +1)2=1.例2 解 (1)截距为0时,设切线方程为y =kx ,则d =|0-2|1+k 2=1,解得k =±3, 所求直线方程为y =±3x .(2)截距不为0时,设切线方程为x -y =a ,则d =|0-2-a |12+12=1, 解得a =-2±2,所求的直线方程为 x -y +2±2=0.综上所述,所求的直线方程为 y ±3x =0和x -y +2±2=0.变式训练2 解 当所求直线斜率存在时, 设其为k ,则直线方程为y -1=k (x -3), 即kx -y +1-3k =0. ∵直线与圆相切,∴d =|2k -0+1-3k |1+k2=1, 解得k =0.当所求直线斜率不存在时,x =3也符合条件. 综上所述,所求直线的方程是y =1和x =3.例3 ⎝ ⎛⎦⎥⎤512,34 解析 首先明确曲线y =1+4-x 2表示半圆,由数形结合可得512<k ≤34.变式训练3 -1<b ≤1或b =- 2解析 作出曲线x =1-y 2和直线y =x +b ,利用图形直观考查它们的关系, 寻找解决问题的办法.将曲线x =1-y 2变为x 2+y 2=1(x ≥0).当直线y =x +b 与曲线x 2+y 2=1相切时,则满足|0-0+b |2=1,|b |=2,b =±2.观察图象,可得当b =-2或-1<b ≤1时,直线与曲线x =1-y 2有且仅有一个公共点.。
高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2
2.1.3 两直线的平行与垂直1.两条直线平行(1)若直线l1:y=k1x+b1,直线l2:y=k2x+b2,则l1∥l2⇔k1=k2且b1≠b2(k1,k2均存在).(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0)思考:两平行直线的斜率是否一定相等.提示:只要斜率存在,则斜率一定相等.2.两条直线垂直(1)如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即l1⊥l2⇔k1k2=-1(k1,k2均存在).(2)如图②,若l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是垂直.①②思考:两直线垂直,则两直线斜率乘积是否一定为-1?提示:两直线斜率存在的前提下,斜率乘积为-1.1.思考辨析(1)若直线l1与l2斜率相等,则l1∥l2. ( )(2)若直线l1∥l2(两条直线的斜率存在,分别为k1,k2),则k1=k2.( )(3)若两条直线的斜率不相等,则两直线不平行.( )[答案](1)×(2)√(3)√2.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k=________.3 [k AB =3-03-2=3,k l =k AB =3.]3.与直线x +2y +7=0垂直的一条直线的斜率k =______.2 [直线x +2y +7=0的斜率k =-12,故与其垂直的一条直线的斜率k =2.]4.过点(0,1)且与直线2x -y =0垂直的直线的一般式方程是________.x +2y -2=0 [直线2x -y =0的斜率是k =2,故所求直线的方程是y =-12x +1,即x+2y -2=0.]12(1)l 1的斜率为1,l 2经过点P (1,1),Q (3,3);(2)l 1经过点A (-3,2),B (-3,10),l 2经过点C (5,-2),D (5,5); (3)l 1经过点A (0,1),B (1,0),l 2经过点C (-1,3),D (2,0); (4)l 1:x -3y +2=0,l 2:4x -12y +1=0.思路探究:依据斜率公式,求出斜率,利用l 1∥l 2或l 1,l 2重合⇔k 1=k 2或k 1,k 2不存在判断.[解] (1)k 1=1,k 2=3-13-1=1,k 1=k 2,∴l 1与l 2重合或l 1∥l 2.(2)l 1与l 2都与x 轴垂直,通过数形结合知l 1∥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,k 1=k 2,数形结合知l 1∥l 2.(4)l 1的方程可变形为y =13x +23;l 2的方程可变形为y =13x +112.∵k =13,b 1=23,k 2=13,b 2=112,∵k 1=k 2且b 1≠b 2,∴l 1∥l 2.判断两条直线平行的方法1.根据下列给定的条件,判断直线l 1与直线l 2的位置关系. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1的倾斜角为60°,l 2经过点M (3,23),N (-2,-33). [解] (1)由题意知k 1=5-1-3-2=-45,k 2=-7-(-3)8-3=-45.因为k 1=k 2,且A ,B ,C ,D 四点不共线,所以l 1∥l 2. (2)由题意知k 1=tan 60°=3,k 2=-33-23-2-3= 3.因为k 1=k 2,所以l 1∥l 2或l 1与l 2重合.12(1)直线l 1:2x -4y +7=0,直线l 2:2x +y -5=0; (2)直线l 1:y -2=0,直线l 2:x -ay +1=0;(3)直线l 1经过点⎝ ⎛⎭⎪⎫0,54,⎝ ⎛⎭⎪⎫53,0,l 2经过点⎝ ⎛⎭⎪⎫0,-78,⎝ ⎛⎭⎪⎫76,0. 思路探究:利用两直线垂直的斜率关系判定. [解] (1)k 1=12,k 2=-2,∵k 1·k 2=12×(-2)=-1,∴l 1与l 2垂直.(2)当a =0时,直线l 2方程为x =-1,即l 2斜率不存在,又直线l 1的斜率为0,故两直线垂直.当a ≠0时,直线l 2的斜率为1a,又直线l 1的斜率为0,故两直线相交但不垂直.(3)k 1=0-5453-0=-34,k 2=0-⎝ ⎛⎭⎪⎫-7876-0=34.∵k 1·k 2≠-1,∴两条直线不垂直.1.判断两直线是否垂直的依据是:当这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两直线也垂直.2.直接使用A 1A 2+B 1B 2=0判断两条直线是否垂直更有优势.2.判断下列各组中的直线l 1与l 2是否垂直:(1)l 1经过点A (-1,-2),B (1,2),l 2经过点M (-2,-1),N (2,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40).[解] (1)直线l 1的斜率k 1=2-(-2)1-(-1)=2,直线l 2的斜率k 2=1-(-1)2-(-2)=12,k 1k 2=1,故l 1与l 2不垂直.(2)直线l 1的斜率k 1=-10,直线l 2的斜率k 2=3-220-10=110,k 1k 2=-1,故l 1⊥l 2.(3)l 1的倾斜角为90°,则l 1⊥x 轴. 直线l 2的斜率k 2=40-4010-(-10)=0,则l 2∥x 轴.故l 1⊥l 2.1.如图,设直线l 1与l 2的倾斜角分别为α1与α2,且α1<α2,斜率分别为k 1,k 2,若l 1⊥l 2,α1与α2之间有什么关系?为什么?[提示] α2=90°+α1.因为三角形任意一外角等于不相邻两内角之和.2.已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定四边形ABCD 的形状.[提示] 四边形ABCD 为直角梯形,理由如下: 如图,由斜率公式得k AB =5-32-(-4)=13,k CD =0-3-3-6=13, k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12, ∵k AB =k CD ,AB 与CD 不重合.∴AB ∥CD ,又k AD ≠k BC ,∴AD 与BC 不平行. 又∵k AB ·k AD =13×(-3)=-1,∴AB ⊥AD ,故四边形ABCD 为直角梯形.【例3】 已知点A (2,2)和直线l :3x +4y -20=0,求: (1)过点A 和直线l 平行的直线方程; (2)过点A 和直线l 垂直的直线方程.思路探究:利用两直线平行和垂直的条件求解或利用与已知直线平行与垂直的直线系方程求解.[解] 法一:∵3x +4y -20=0,∴k l =-34.(1)设过点A 与l 平行的直线为l 1.∵kl 1=k l =-34,∴l 1的方程为y -2=-34(x -2),即3x +4y -14=0.(2)设过点A 与l 垂直的直线为l 2.∵k l kl 2=-1,∴⎝ ⎛⎭⎪⎫-34×kl 2=-1,∴kl 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0.法二:(1)设与直线l 平行的直线方程为3x +4y +m =0, 则6+8+m =0,∴m =-14,∴3x +4y -14=0为所求.(2)设与直线l 垂直的直线方程为4x -3y +n =0, 则8-6+n =0,∴n =-2, ∴4x -3y -2=0为所求.两直线平行或垂直的应用(1)求与已知直线平行或垂直的直线.此类问题有两种处理方法:一是利用平行与垂直的条件求斜率,进而求方程;二是利用直线系方程求解,与已知直线Ax +By +C =0平行的直线系方程为Ax +By +D =0(C ≠D ),垂直的直线系方程为Bx -Ay +D =0.(2)由直线平行或垂直求参数的值,此类问题直接利用平行和垂直的条件,列关于参数的方程求解即可.3.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD ; (2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,求实数a 的值.[解] (1)证明:由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1, 解得a =1或a =3.1.本节课的重点是理解两条直线平行或垂直的判定条件,会利用斜率判断两条直线平行或垂直,难点是利用斜率判断两条直线平行或垂直.2.本节课要重点掌握的规律方法 (1)判断两条直线平行的步骤.(2)利用斜率公式判断两条直线垂直的方法. (3)判断图形形状的方法步骤.3.本节课的易错点是利用斜率判断含字母参数的两直线平行或垂直时,对字母分类讨论.1.下列说法正确的有( ) A .若两直线斜率相等,则两直线平行 B .若l 1∥l 2,则k 1=k 2C .若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交D .若两直线斜率都不存在,则两直线平行C [A 中,当k 1=k 2时,l 1与l 2平行或重合,错误;B 中,若l 1∥l 2,则k 1=k 2或两直线的斜率都不存在,错误;D 中两直线可能重合.]2.过点(3,6),(0,3)的直线与过点(6,2),(2,0)的直线的位置关系为________. 垂直 [过点(3,6),(0,3)的直线的斜率k 1=6-33-0=2-3;过点(6,2),(2,0)的直线的斜率k2=2-06-2=3+ 2.因为k1·k2=-1,所以两条直线垂直.]3.已知直线(a-1)x+y-1=0与直线2x+ay+1=0平行,则实数a=________.2[由已知,得(a-1)a-2=0,解得a=-1或a=2,当a=-1时,两直线重合,故a =2.]4.已知直线l1:ax+3y=3,l2:x+2ay=5,若l1⊥l2,求a的值.[解]直线l1:ax+3y-3=0,直线l2:x+2ay-5=0.∵l1⊥l2,∴a×1+3×2a=0,即a=0.。
2020学年高中数学第2章平面解析几何初步章末复习课讲义苏教版必修2(2021-2022学年)
第2章平面解析几何初步值为1,求这两条直线的方程.思路探究:考虑直线斜率是否存在,不存在时可直接求出,存在时设方程利用截距关系求k.[解](1)当两条直线的斜率不存在时,两条直线的方程分别为x=-1,x=0,它们在x轴上截距之差的绝对值为1,满足题意;(2)当直线的斜率存在时,设其斜率为k,则两条直线的方程分别为y=k(x+1),y=kx+2.令y=0,分别得x=-1,x=-\f(2,k).由题意得错误!=1,即k=1.则直线的方程为y=x+1,y=x+2,即x-y+1=0,x-y+2=0。
ﻬ综上可知,所求的直线方程为x=-1,x=0,或x-y+1=0,x-y+2=0。
1.直线方程的五种形式及其选取直线方程的五种形式各有优劣,在使用时要根据题目条件灵活选择,尤其在选用四种特殊形式的方程时,注意其适用条件,必要时要对特殊情况进行讨论.2.两条直线的平行与垂直两条直线的平行与垂直是解析几何中两条直线最基本的位置关系,其判定如下:1.求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x-y-1=0平行的直线l的方程.[解]法一:由方程组错误!得错误!未定义书签。
∵直线l和直线3x-y-1=0平行,∴直线l的斜率k=3,∴根据点斜式有y-错误!=3错误!未定义书签。
.即所求直线方程为15x-5y+2=0。
法二:∵直线l过两直线2x-3y-3=0和x+y+2=0的交点,∴可设直线l的方程为:2x-3y-3+λ(x+y+2)=0,即(λ+2)x+(λ-3)y+2λ-3=0.∵直线l与直线3x-y-1=0平行,∴错误!未定义书签。
=错误!≠错误!未定义书签。
,解得λ=错误!.从而所求直线方程为15x-5y+2=0.ﻬ122+(y-5)2=4。
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2错误!未定义书签。
,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P 的坐标.思路探究:(1)设出方程,求出弦心距,由点到直线的距离公式求k。
高中数学第2章平面解析几何初步2.1-2.1.2直线的方程课件苏教版必修2
因此,直线 l 的斜率为12,在 x 轴上的截距为-6,在 y 轴上的截距为 3.
直线 l 与 x 轴,y 轴的交点分别为 A(-6,0),B(0, 3),如图所示,过点 A,B 作直线,就得直线 l.
f(-3)≥0, 故需满足
f(3)≥0, -3k+2k+1≥0, 所以 3k+2k+1≥0, 解得-15≤k≤1. 所以实数 k 的取值范围是-15≤k≤1.
同学们在学习中要注意以下三点:①点斜式方程 y- y0=k(x-x0)是由 k=xy--yx00变形而得到的,但二者是有区 别的,其区别是前者包括点(x0,y0),而后者不包括点(x0, y0),即前者的轨迹上比后者的轨迹上多了一个点;
பைடு நூலகம்
题型 1 直线的点斜式、斜截式方程 [典例 1] (1)直线 y=x+1 绕着其上一点 P(3,4)逆 时针旋转 90°后得直线 l,求直线 l 的点斜式方程; (2)已知两点 A(-1,2),B(m,3),求直线 AB 的点 斜式方程. 分析:(1)由一点和斜率可直接代入点斜式方程求解;
第2章 平面解析几何初步
1.如果直线 l 经过点 P0(x0,y0),且斜率为 k.设点 P(x,y)是直线 l 上的任意一点,则 y-y0=k(x-x0)(*), 我们称(*)式叫作直线的点斜式方程,简称点斜式.
一、直线的点斜式方程 若直线 l 经过点 P0(x0,y0),且斜率为 k,则直线的点 斜式方程为 y-y0=k(x-x0).
又点 A15,35在第一象限(如图所示). 故不论 a 为何值,l 恒过第一象限. (2)解:要使 l 不经过第二象限,需它在 y 轴上的截距 不大于零,
a-3 令 x=0,则 y=- 5 ≤0,所以 a≥3.
第2章 平面解析几何初步章末归纳提升课件 苏教版必修2课件
求直线方程时一般有以下几类:①知过定点,设点斜式 (注意斜率不存在的情况);②知斜率,设斜截式;③与截距有 关设截距式;④知与已知直线平行或垂直,设一般式(或斜截 式、点斜式).
(2013·临沂检测)已知圆 C 和 y 轴相切,圆心在 直线 x-3y=0 上,且被直线 y=x 截得的弦长为 2 7.求圆 C 的方程.
(1)求圆 C 的方程; (2)设点 Q 在圆 C 上,若到直线 l:y=x+m 的距离等于 1 的点 Q 恰有 4 个,求 m 的取值范围?
【解】 (1)依题意所求圆的圆心 C 为 AB 的垂直平分线 和直线 2x+y-3=0 的交点,
AB 中点 M(2,2),其垂直平分线为 y=x,
联立y2=x+x,y-3=0, 解得xy= =11, . 即圆心 C(1,1),半径 r=2. ∴所求圆方程为(x-1)2+(y-1)2=4.
所以 S△MON=12|-2b||b|=b2=3,所以 b=± 3, 所以直线 l 的方程为 y=12x± 3, 即 x-2y+2 3=0 或 x-2y-2 3=0.
(2)设直线 l 的方程为 y-4=k(x+3),直线 l 与 x 轴、y 轴交于点 M、N,则 M(-4+k3k,0),N(0,3k+4),
【思路点拨】 本题为几何法求最值的问题,对于 m= yx+ +31,可以看成半圆上任一点与(-1,-3)连线的斜率,通过 数形结合思想可求解其取值范围.
【规范解答】 m 表示的是半圆 x2+y2=9(y≥0)上的点 P(x,y)与定点 A(-1,-3)连线的斜率,
如图所示,kAM=34,kAN=-32, 所以 m 的取值范围是{m|m≤-32或 m≥34.}
(2013·泰州检测)已知直线 l 与两坐标轴所围成的三角形 的面积为 3,分别求满足下列条件的直线 l 的方程:(1)斜率为 12;(2)过定点 P(-3,4).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章平面解析几何初步章末总结(附解析苏教版必修2)【金版学案】2015-2016高中数学第二章平面解析几何初步章末知识整合苏教版必修2一、数形结合思想的应用若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为原点),则k的值为________.解析:本小题考查直线与圆的位置关系和数形结合的方法.y=kx+1恒过点(0,1),结合图知,直线倾斜角为120°或60°.∴k=3或-3.答案:3或-3规律总结:根据数学问题的条件和结论之间的内在联系,将抽象的数学语言和直观的图形相结合,使抽象思维和形象思维相结合.1.以形助数,借助图形的性质,使有关“数”的问题直接形象化,从而探索“数”的规律.比如,研究两曲线的位置关系,借助图形使方程间关系具体化;过定点的直线系与某确定的直线或圆相交时,求直线系斜率的范围,图形可帮助找到斜率的边界取值,从而简化运算;对于一些求最值的问题,可构造出适合题意的图形,解题中把代数问题几何化.2.以数助形,借助数式的推理,使有关“形”的问题数量化,从而准确揭示“形”的性质.►变式训练1.若过定点M(-1,0)且斜率为k的直线与圆x2+4x+y2-5=0在第一象限内的部分有交点,则k的取值范围是________.解析:∵x2+4x+y2-5=0,∴(x+2)2+y2=9是以(-2,0)为圆心,以3为半径的圆.如图所示:令x=0得y=±5.∴点C的坐标为(0,5).又点M的坐标为(-1,0),∴kMC=5-00-(-1)=5.结合图形得0k5.答案:(0,5)2.当P(m,n)为圆x2+(y-1)2=1上任意一点时,若不等式m+n+c≥0恒成立,则c的取值范围是________.解析:方法一∵P(m,n)在已知圆x2+(y-1)2=1上,且使m+n+c≥0恒成立,即说明圆在不等式x+y+c≥0表示的区域中,如图,-c为直线x+y+c=0在y轴上的截距,可求出切线l的截距为-(2-1),∴-c≤-(2-1).∴c≥2-1.方法二P(m,n)为圆x2+(y-1)2=1上的点,∴m=cosα,n=1+sinα.∴m+n=1+cosα+sinα.∴-2+1≤m+n≤2+1.∴-(2+1)≤-(m+n)≤2-1.若不等式m+n+c≥0恒成立,∴c≥-(m+n).∴c≥2-1.答案:[2-1,+∞)二、函数与方程思想的应用已知F(0,1),直线l:y=-2,圆C:x2+(y-3)2=1.(1)若动点M到点F的距离比它到直线l的距离小1,求动点M的轨迹E的方程;(2)过轨迹E上一点P作圆C 的切线,切点为A、B,要使四边形PACB的面积S最小,求S的最小值.分析:考虑四边形PACB的面积最小,首先应建立目标函数,通过函数解决问题.解析:(1)设动点M(x,y),据题意有(x-0)2+(y-1)2+1=y-(-2),化简得x2=4y.(2)设动点P(x0,y0),考虑到切线长相等,所以四边形PACB的面积S=2S△PAC=PAAC,又由于圆C的半径为1,所以S=PA=PC2-1=(x0-0)2+(y0-3)2-1.因为x02=4y0,所以S=y02-2y0+8=(y0-1)2+7≥7,当且仅当y0=1,x0=±2时成立.即S的最小值为7.规律总结:1.函数思想的实质是用联系和变化的观点提出问题的数学特征,建立各变量之间固有的函数关系,通过函数形式,利用有关函数的性质(定义域、值域、奇偶性、单调性、周期性、图象等),使问题得到解决.2.方程的思想多用于曲线方程的求解(如求直线的方程、圆的方程,通常构造含确定曲线方程形态的特征常数的方程或方程组);两直线位置关系的判定;圆的切线方程的求解等.3.方程和函数这两种思想在本章有机地结合,帮助我们更好地解决了两曲线的位置关系及求函数的值域问题.►变式训练3.已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0.(1)当t为何值时,方程表示圆?(2)当t为何值时,方程表示的圆的半径最大?并求出半径最大时圆的方程.解析:(1)方程表示圆的条件是[-2(t+3)]2+[2(1-4t2)]2-4(16t4+9)0,即(t-1)(7t+1)0,解得-17t1,故当-17t1,方程表示圆.(2)由(1)知,当-17t1时,方程表示圆,且其半径r=12[-2(t+3)]2+[2(1-4t2)]2-4(16t4+9)=12-4(7t2-6t-1)=-7t2+6t+1=-7t-372+167.所以当t=37时,半径r有最大值,且rmax=167=477,此时圆心坐标为247,-1349,故圆的方程为x-2472+y+13492=167.三、转化与化归思想的应用圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是________.解析:设圆心与直线的距离为d,d=|2+2-14|2=52,R=32,∴圆上点到直线的距离最大值为d+R=82,最小值d-R=22.∴(d+R)-(d-R)=82-22=62.答案:62规律总结:通过各种变换,把复杂或未知转化为简单或已知,达到化归的目的.1.运用恒等变换与同解变换,可以把角的关系变换为斜率的关系,把两直线的位置关系变换成斜率与截距间的关系,把点和圆、直线和圆、圆和圆的位置关系变换为两点间距离与半径的关系等.2.运用“实际问题—数学问题”的变换,构建数学模型,通过数学知识寻求实际问题的答案,体现数学的作用,同时发展学生解决问题的能力.3.通过化抽象为具体,化数为形,化形为数,化一般为特殊的数学思想综合处理直线和圆方程中的各类问题.►变式训练4.若线段OQ在xOy平面及yOz平面上的投影长分别为22和17,试问线段OQ最长可为多少?最短可为多少?解析:设Q(u,v,w),据题意则有u2+v2=22,v2+w2=17,所以u2=8-v2,w2=17-v2.而OQ=u2+v2+w2,从而有u2+v2+w2=25-v2.因为0≤v2≤8,故17≤OQ≤5.∴线段OQ最长可为5,最短可为17.5.若直线y=kx+2与圆(x-2)2+(y-3)2=4相交于M,N两点,若MN≥23,则k的取值范围为________.解析:圆心(2,3)到直线y=kx+2的距离为:|2k-1|k2+1,∵MN≥23,∴4-(2k-1)2k2+1≥3.即(2k-1)2k2+1≤1.解得0≤k≤43.答案:0,43四、分类讨论思想的应用设A(1,-2,x)、B(x,3,0)、C(7,x,6),且A、B、C三点构成直角三角形,求x的值.解析:由已知条件知AB2=(x-1)2+(3+2)2+(0-x)2=2x2-2x+26,BC2=(7-x)2+(x-3)2+(6-0)2=2x2-20x+94,CA2=(1-7)2+(2+x)2+(x-6)2=2x2-8x+76,若AB2+BC2=CA2,则4x2-22x+120=2x2-8x+76,即x2-7x+22=0,无实数解.若AB2+CA2=BC2,则4x2-10x+102=2x2-20x+94,即x2+5x+4=0,解之得x1=-4,x2=-1.若BC2+CA2=AB2,则4x2-28x+170=2x2-2x+26,即x2-13x+72=0,无实数解.综上可知,实数x的值为-4或-1.规律总结:根据对象的属性,选择适当的标准,把研究对象不重复、不遗漏地划分为若干类,对于培养学生综合运用基础知识能力,严谨、周密的分析能力,良好的思维素质都有重要作用.1.涉及的数学概念是分类定义的,应用的定理、公式,运算性质是分类给出的,解题中必然引起讨论.如求直线的斜率问题,用斜率表示的直线方程,用二元二次方程x2+y2+Dx+Ey+F=0表示圆等都要分类讨论.2.数学问题中含有参变量,这些参变量的不同取值会导致不同结果,解题中需讨论,如判定两曲线的位置关系等.►变式训练6.设A(-c,0),B(c,0)(c0)为两定点,动点P到点A 的距离与到点B的距离的比为定值a(a0),求点P的轨迹.解析:设动点P的坐标为(x,y),由PAPB=a(a0),得(x+c)2+y2(x-c)2+y2=a,化简得(1-a2)x2+2c(1+a2)x+c2(1-a2)+(1-a2)y2=0.当a≠1时,得x2+2c(a2+1)1-a2x+c2+y2=0,整理得x-c(a2+1)a2-12+y2=2aca2-12.当a=1时,化简得x=0.所以当a≠1时,点P的轨迹是以a2+1a2-1c,0为圆心,2aca2-1为半径的圆.当a=1时,点P的轨迹为y轴.7.已知圆C1:x2+y2-2mx+4y+m2-5=0与圆C2:x2+y2+2x-2my+m2-3=0无公共点,求实数m的取值范围.解析:把圆C1和圆C2的方程化为标准方程,得:C1:(x-m)2+(y+2)2=9,C2:(x+1)2+(y-m)2=4.(1)若圆C1与圆C2内含,则有:(m+1)2+(m+2)23-2.即m2+3m+20.解得-2m-1.(2)若圆C1与圆C2外离,则有:(m+1)2+(m+2)23+2.即m2+3m-100.解得m-5或m2.综合(1)、(2)可知m的取值范围是(-∞,-5)∪(-2,-1)∪(2,+∞).。