高考数学总复习8-2
2023版高考数学一轮总复习8-2空间点线面的位置关系习题
8.2 空间点、线、面的位置关系基础篇固本夯基考点一点、线、面的位置关系1.(2022届湘豫名校联盟11月联考,7)已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若α∥β,m⊥α,则m⊥β;②若m∥n,m⊥α,则n⊥α;③若α⊥β,m⊥α,则m∥β;④若m⊥n,m⊥α,则n∥α.其中真命题有( )A.1个B.2个C.3个D.4个答案 B2.(2022届山东青岛期中,7)已知a,b,c,d是四条直线,如果a⊥c,a⊥d,b⊥c,b⊥d.则结论“a∥b”与“c∥d”中成立的情况是( )A.一定同时成立B.至多一个成立C.至少一个成立D.可能同时不成立答案 C3.(2022届南宁摸底,8)如图是长方体的展开图,AD=2AB,四边形ABFE为正方形,P、Q分别为AD、HI的中点,给出下列判断:①AM∥CG,②AF∥DK,③BP∥JQ,④BP⊥QJ.其中正确的个数为( )A.0B.1C.2D.3答案 C4.(20215·3原创题)中国文化源远流长,折纸文化传承已久,如图1所示,六个等边三角形沿虚线折起得到的几何体如图2所示,则异面直线的对数为( )A.6对B.9对C.12对D.15对答案 C5.(2021安徽江南十校一模,7)设a、b为两条直线,则a∥b的充要条件是( )A.a、b与同一个平面所成角相等B.a、b垂直于同一条直线C.a、b平行于同一个平面D.a、b垂直于同一个平面答案 D6.(2020四川九市二诊,5)已知m,n是两条不重合的直线,α是一个平面,则下列命题正确的是( )A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m⊥n,m⊥α,则n∥αD.若m⊥α,n∥α,则m⊥n答案 D7.(2021河南洛阳二模,12)在正四棱柱(侧面为矩形,底面为正方形的棱柱)ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点,则以下结论中不成立的是( )A.EF⊥BB1B.EF⊥BDC.EF与CD为异面直线D.EF与A1C1为异面直线答案 D8.(2021东北三省四市联考,16)已知长方体ABCD-A1B1C1D1中,AB=2BC=4,E是C1D1的中点,且异面直线AD1与CE所成的角是60°.则在此长方体的表面上从A1到C的路径中,最短路径的长度为.答案4√29.(2020新高考Ⅰ,16,5分)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为.答案√2π2考点二异面直线所成的角1.(2022届新疆克拉玛依检测三,4)我们打印用的A4纸的长与宽的比约为√2,之所以是这个比值,是因为把纸张对折,得到的纸的长与宽之比仍约为√2,纸张的形状不变.已知圆柱的母线长小于底面圆的直径长(如图所示),它的轴截面ABCD为一张A4纸大小,若点E为上底面圆上弧AB的中点,则异面直线DE与AB所成的角约为( )A.π6B.π4C.π3D.2π3答案 C2.(2022届河南洛阳期中,9)在直三棱柱ABC-A1B1C1中,∠ACB=90°,D1、E1分别是A1B1、A1C1的中点,CA=CB=CC1,则AE1与BD1所成角的余弦值为( )A.√1515B.√3015C.√1510D.√3010答案 D3.(2018课标Ⅱ,9,5分)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为( )A.√22B.√32C.√52D.√72答案 C4.(2021东北三省四市联考,8)长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4√3.过BC的平面分别交线段AA1,DD1于M、N两点,四边形BCNM为正方形,则异面直线D1M与BD所成角的余弦值为( )A.√1414B.√2114C.√144D.4√3535答案 D5.(2021山西晋中二模,6)如图,圆锥的轴截面ABC为正三角形,其面积为4√3,D为AA⏜的中点,E为母线BC的中点,则异面直线AC,DE所成角的余弦值为( )A.√24B.√22C.√63D.√33答案 B综合篇知能转换考法一点、线、面位置关系的判定及应用1.(2021河南九师联盟1月联考,11)如图,在正方体ABCD-A1B1C1D1中,P为底面ABCD的中心,E 为线段A1D1上的动点(不包括两个端点),Q为线段AE的中点.现有以下结论:①PE与QC是异面直线;②过A、P、E三点的正方体的截面与正方体表面的交线围成的图形是等腰梯形;③平面APE⊥平面BDD1B1;④PE∥平面CDD1C1.其中正确结论的序号是( )A.①④B.②③C.②④D.①③答案 B2.(2019课标Ⅲ,8,5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案 B3.(2020吉林4月联考,11)我国古代的数学著作《九章算术·商功》中,将底面是直角三角形的直三棱柱称为“堑堵”.在如图所示的“堑堵”ABC-A1B1C1中,AB=AC=AA1=2,M、N分别是BB1和A1C1的中点,则平面AMN截“堑堵”ABC-A1B1C1所得截面图形的面积为( )A.2√213B.4√213C.2√73D.4√73答案 A4.(2022届黑龙江大庆实验中学月考,11)给出下列命题:①若△ABC的三条边所在直线分别交平面α于P,Q,R三点,则P,Q,R三点共线;②若直线a,b是异面直线,直线b,c是异面直线,则直线a,c是异面直线;③若三条直线a,b,c两两平行且分别交直线l于A,B,C三点,则这四条直线共面;④对于三条直线a,b,c,若a⊥c,b⊥c,则a∥b.其中所有真命题的序号是( )A.①②B.①③C.③④D.②④答案 B5.(2022届成都期中,12)已知正方体ABCD-A1B1C1D1的棱长为1,P是空间中任意一点,有下列结论:;①若P为棱CC1中点,则异面直线AP与CD所成角的正切值为√52;②若P在线段A1B上运动,则AP+PD1的最小值为√6+√22③若P在以CD为直径的球面上运动,当三棱锥P-ABC体积最大时,三棱锥P-ABC外接球的表面积为2π;④若过点P的平面α与正方体每条棱所成角相等,则α截此正方体所得截面面积的最大值为3√3.4其中正确结论的个数为( )A.4B.3C.2D.1答案 B6.(2022届山西长治第二中学月考,15)已知两条不同的直线m,n,两个不重合的平面α,β,给出下列5个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④m⊥α,m∥β⇒α⊥β;⑤α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是.答案①④⑤7.(2021内蒙古赤峰2月月考,16)如图,在棱长为2的正方体中,点M、N在棱AB、BC上,且AM=BN=1,P在棱AA1上,α为过M、N、P三点的平面,则下列说法正确的是.①存在无数个点P,使面α与正方体的截面为五边形;②当A1P=1时,面α与正方体的截面面积为3√3;③只有一个点P,使面α与正方体的截面为四边形;④当面α交棱CC1于点H时,PM、HN、BB1三条直线交于一点.答案①②④考法二异面直线所成角的求解方法1.(2022届黑龙江模拟,8)如图,某圆锥SO的轴截面SAC是等边三角形,点B是底面圆周上的一点,且∠BOC=60°,点M是SA的中点,则异面直线AB与CM所成角的余弦值是( )A.13B.√74C.34D.√32答案 C2.(2020湖北重点高中联考,8)在直三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,且斜边BC=2,D是BC的中点,若AA1=√2,则异面直线A1C与AD所成角的大小为( )A.30°B.45°C.60°D.90°答案 C3.(2021全国乙,10,5分)在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( )A.π2B.π3C.π4D.π6答案 D4.(2021全国重点中学领航高考冲刺卷(九),9)已知SA,SB,SC是圆锥SO的三条母线,如图为圆锥SO的正视图,点S,A,B,C在圆锥SO的正视图中分别对应点S',A',B',C',其中C'为A'B'的中点,若D为母线SB的中点,则异面直线SC与OD所成角的余弦值为( )A.√34B.√23C.34D.23答案 C5.(20215·3原创题)沿正三角形ABC的中线AD翻折,使点B与点C间的距离等于中线AD的长,若三棱锥A-BCD的体积为2,则异面直线AC与BD所成角的余弦值为.答案14。
【走向高考】(2013春季发行)高三数学第一轮总复习 8-2圆的方程 新人教A版
8-2圆的方程基础巩固强化1.(2011²广州检测)圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1[答案] A[解析] 设圆心坐标为(0,b ),则由题意知 0-12+b -22=1,解得b =2,故圆的方程为x 2+(y -2)2=1.2.(文)(2011²广东文,8)设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则圆C 的圆心轨迹为( )A .抛物线B .双曲线C .椭圆D .圆[答案] A[解析] 动圆圆心C 到定点(0,3)的距离与到定直线y =-1的距离相等,符合抛物线的定义,故选A.(理)(2011²广州模拟)动点A 在圆x 2+y 2=1上移动时,它与定点B (3,0)连线的中点的轨迹方程是( )A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1 D .(x +32)2+y 2=12[答案] C[解析] 设中点M (x ,y ),则点A (2x -3,2y ), ∵A 在圆x 2+y 2=1上,∴(2x -3)2+(2y )2=1, 即(2x -3)2+4y 2=1,故选C.3.方程(x 2+y 2-4)x +y +1=0表示的曲线形状是( )[答案] C[解析] 注意到方程(x 2+y 2-4)x +y +1=0等价于①⎩⎪⎨⎪⎧x 2+y 2-4=0,x +y +1≥0,或②x +y +1=0.①表示的是不在直线x +y +1=0的左下方且在圆x 2+y 2=4上的部分;②表示的是直线x +y +1=0.因此,结合各选项知,选C.4.(2011²华安、连城、永安、漳平、龙海、泉港六校联考)圆x 2+y 2-2x -2y +1=0上的点到直线3x +4y +5=0的距离最大值是a ,最小值是b ,则a +b =( )A.125B.245C.65 D .5[答案] B[解析] 圆心C (1,1)到直线3x +4y +5=0距离d =125,∴a +b =⎝ ⎛⎭⎪⎫125+r +⎝ ⎛⎭⎪⎫125-r =245(r 为圆的半径).5.(2012²福州八县联考)已知函数f (x )=1-x -12,x ∈[1,2],对于满足1<x 1<x 2<2的任意x 1、x 2,给出下列结论:①f (x 2)-f (x 1)>x 2-x 1; ②x 2f (x 1)>x 1f (x 2);③(x 2-x 1)[f (x 2)-f (x 1)]<0; ④(x 2-x 1)[f (x 2)-f (x 1)]>0. 其中正确结论的个数为( )A .1B .2C .3D .4 [答案] B[解析] 曲线y =1-x -12,x ∈[1,2]表示圆(x -1)2+y 2=1,位于直线x =1右侧x 轴上方的四分之一个圆,∵1<x 1<x 2<2,∴f (x 1)>f (x 2).因此,(f (x 2)-f (x 1))(x 2-x 1)<0,④错,③对;显然有k OA >k OB ,∴f x 1x 1>f x 2x 2,∴x 2f (x 1)>x 1f (x 2),故②正确;又k AB =f x 2-f x 1x 2-x 1<0,可能有k AB <-1,也可能k AB >-1,∴①错.6.(文)(2011²日照模拟)圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -1)2+(y -3)2=(185)2B .(x -3)2+(y -1)2=(165)2C .(x -2)2+(y -32)2=9D .(x -3)2+(y -3)2=9 [答案] C[解析] 设圆心坐标为(a ,3a)(a >0),则圆心到直线3x +4y +3=0的距离d =|3a +12a +3|5=35(a +4a +1)≥35(4+1)=3,等号当且仅当a =2时成立.此时圆心坐标为(2,32),半径为3,故所求圆的方程为(x -2)2+(y -32)2=9.(理)(2011²西安模拟)若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为( )A .1B .5C .4 2D .3+2 2[答案] D[解析] 由条件知圆心C (2,1)在直线ax +2by -2=0上,∴a +b =1, ∴1a +2b =(1a +2b)(a +b )=3+b a+2ab≥3+22,等号在b a=2ab,即b =2-2,a =2-1时成立.7.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,则点P 的轨迹方程为________.[答案] (x +3)2+(y -4)2=4(x ≠-95且x ≠-215)[解析]如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为(x 2,y 2),线段MN 的中点坐标为(x 0-32,y 0+42).由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42. 从而⎩⎪⎨⎪⎧x 0=x +3y 0=y -4.因为N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点(-95,125)和(-215,285)(点P在直线OM 上时的情况).8.(2011²南京模拟)已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.[答案] x +y -1=0[解析] 过点M 的最短的弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1), ∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-1(x -1),即x +y -1=0.9.(文)已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.[答案] (x +2)2+y 2=2[解析] 设圆的方程为(x -a )2+y 2=2(a <0),由条件得2=|a |2,∴|a |=2,又a <0,∴a =-2.(理)(2012²石家庄一模)已知动圆的圆心C 在抛物线x 2=2py (p >0)上,该圆经过点A (0,p ),且与x 轴交于两点M 、N ,则sin ∠MCN 的最大值为________.[答案] 1[解析] 当圆心C 的纵坐标为p 时,C (2p ,p )为圆心的圆方程为(x -2p )2+(y -p )2=2p 2,令y =0得,x =2p ±p ,∴MC ⊥NC ,∴sin ∠MCN =1.10.(文)已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5),求: (1)过点A 的圆的切线方程;(2)O 点是坐标原点,连结OA ,OC ,求△AOC 的面积S . [解析] (1)⊙C :(x -2)2+(y -3)2=1.当切线的斜率不存在时,过点A 的直线方程为x =3,C (2,3)到直线的距离为1,满足条件.当k 存在时,设直线方程为y -5=k (x -3),即kx -y +5-3k =0,由直线与圆相切得, |-k +2|k 2+1=1,∴k =34.∴直线方程为x =3或y =34x +114.(2)|AO |=9+25=34, 直线OA :5x -3y =0, 点C 到直线OA 的距离d =134,S =12²d ²|AO |=12.(理)(2011²兰州一诊)已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA 、PB 是圆M 的两条切线,A 、B 为切点,求四边形PAMB 面积的最小值.[解析] (1)设圆M 的方程为: (x -a )2+(y -b )2=r 2(r >0). 根据题意,得⎩⎪⎨⎪⎧1-a 2+-1-b 2=r 2,-1-a 2+1-b 2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形PAMB 的面积S =S △PAM +S △PBM=12|AM |²|PA |+12|BM |²|PB |, 又|AM |=|BM |=2,|PA |=|PB |,所以S =2|PA |, 而|PA |=|PM |2-|AM |2=|PM |2-4, 即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P , 使得|PM |的值最小,所以|PM |min =|3³1+4³1+8|32+42=3,所以四边形PAMB 面积的最小值为:S =2|PM |2-4=232-4=2 5.能力拓展提升11.(2011²西安模拟)已知圆的方程为x 2+y 2-6x -8y =0,设该圆中过点M (3,5)的最长弦、最短弦分别为AC 、BD ,则以点A 、B 、C 、D 为顶点的四边形ABCD 的面积为( )A .10 6B .20 6C .30 6D .40 6[答案] B[解析] 圆的方程:(x -3)2+(y -4)2=25, ∴半径r =5,圆心到最短弦BD 的距离d =1, ∴最短弦长|BD |=46, 又最长弦长|AC |=2r =10,∴四边形的面积S =12³|AC |³|BD |=20 6.12.(文)(2011²成都龙泉第一中学模拟)以抛物线y 2=20x 的焦点为圆心,且与双曲线x 216-y 29=1的两渐近线都相切的圆的方程为( ) A .x 2+y 2-20x +64=0 B .x 2+y 2-20x +36=0 C .x 2+y 2-10x +16=0 D .x 2+y 2-10x +9=0[答案] C[解析] 抛物线的焦点坐标是(5,0),双曲线的渐近线方程是3x ±4y =0,点(5,0)到直线3x ±4y =0的距离d =3即为所求圆的半径.故所求圆的方程为(x -5)2+y 2=9,即x 2+y 2-10x +16=0,故选C.(理)设A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程是( )A .(x -1)2+y 2=4 B .(x -1)2+y 2=2 C .y 2=2x D .y 2=-2x[答案] B[解析] 设P (x ,y ),圆心C (1,0),由题意知PA ⊥AC ,∴|PC |2=|PA |2+|AC |2=2,∴(x -1)2+y 2=2,故选B.13.(2011²长春市调研)若圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交所得的弦长为22,则圆的方程是________________.[答案] (x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244[解析] 设圆的方程为(x -a )2+(y -b )2=r 2,点A (2,3)关于直线x +2y =0的对称点仍在圆上,说明圆心在直线x +2y =0上,即有a +2b =0,根据题意可得⎩⎪⎨⎪⎧a +2b =0,2-a 2+3-b 2=r 2,r 2-a -b +122=2.解得⎩⎪⎨⎪⎧a =6,b =-3,r 2=52.或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.所求圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.14.(文)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为__________.[答案] (x +1)2+y 2=2[解析] 在直线方程x -y +1=0中,令y =0得,x =-1,∴圆心坐标为(-1,0), 由点到直线的距离公式得圆的半径R =|-1+0+3|2=2, ∴圆的标准方程为(x +1)+y 2=2.(理)圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于A 、B ,|AB |=3,则该圆的标准方程是________.[答案] (x -1)2+⎝ ⎛⎭⎪⎫y -122=1[解析]设圆心C (a ,b ),由条件知a =1,取弦AB 中点D ,则CD =AC 2-AD 2=12-⎝⎛⎭⎪⎫322=12, 即b =12,∴圆方程为(x -1)2+⎝ ⎛⎭⎪⎫y -122=1.15.(文)(2011²青岛模拟)已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程. [解析] (1)证明:∵圆C 过原点O ,∴OC 2=t 2+4t2.设圆C 的方程是(x -t )2+⎝⎛⎭⎪⎫y -2t 2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12|OA |²|OB |=12³⎪⎪⎪⎪⎪⎪4t ³|2t |=4,即△OAB 的面积为定值. (2)∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴直线OC 的方程是y =12x .∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.(理)(2011²北京模拟)已知点A (-3,0),B (3,0).动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线C 的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.[解析] (1)设P (x ,y ),∵|PA |=2|PB |, ∴(x +3)2+y 2=4[(x -3)2+y 2] 整理得(x -5)2+y 2=16. (2)由条件知QM 与圆C 相切,则问题转化为在直线l 1上求一点Q ,过点Q 作⊙C 的切线,求切线长的最小值. 由于⊙C 的半径为定值4,欲使切线长最小,只需QC 最小,而点C (5,0)为定点,因此,当CQ ⊥l 1时取得最小值,∵C 到l 1的距离d =42,∴|QM |min =d 2-42=4.16.(文)已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.[分析] (1)设出点P 的坐标,由|PA |=2|PB |写出方程,化简即可;(2)直线l 2与曲线C 只有一个公共点M ,故l 2与C 相切,当|QC |取最小值时,|QM |取到最小值,故|CQ |为点C 到l 1的距离时满足要求.[解析] (1)设点P 的坐标为(x ,y ), 则x +32+y 2=2x -32+y 2,化得可得(x -5)2+y 2=16即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图. 由题意知直线l 2是此圆的切线,连接CQ , 则|QM |=|CQ |2-|CM |2=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4.(理)(2012²河南六市联考)已知直线l 与抛物线x 2=4y 相切于点P (2,1),且与x 轴交于点A ,O 为坐标原点,定点B 的坐标为(2,0),动点Q 满足AB →²BQ →+2|AQ →|=0.(1)求动点Q 的轨迹C 的方程;(2)是否存在圆心在原点的圆,只要该圆的切线与切点Q 的轨迹C 有两个不同交点M ,N ,就一定有OM →²ON →=0?若存在,求出该圆的方程;若不存在,请说明理由.[解析] (1)由x 2=4y 得y =14x 2,∴y ′=12x ,∴直线l 的斜率为y ′|x =2=1,故l 的方程为:y -1=1(x -2),即y =x -1, ∴点A 坐标为(1,0),设Q (x ,y ),则AB →=(1,0),BQ →=(x -2,y ),AQ →=(x -1,y ), 由AB →²BQ →+2|AQ →|=0得,x -2+0+2x -12+y 2=0,化简整理得x 22+y 2=1,故动点Q 的轨迹C 的方程为:x 22+y 2=1.(2)假设存在这样的圆,其方程为x 2+y 2=r 2(r >0).(ⅰ)当直线MN 的斜率存在时,设其方程为y =kx +m 代入x 22+y 2=1,可得(1+2k 2)x 2+4kmx +2m 2-2=0,判别式Δ=16k 2m 2-4(1+2k 2)(2m 2-2)>0, ∴m 2<1+2k 2,①设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4km1+2k 2,②x 1x 2=2m 2-21+2k 2,③由OM →²ON →=0,可得x 1x 2+y 1y 2=0,即x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0,④ 将②③代入④得2m 2-11+k 21+2k 2-4k 2m 21+2k 2+m 2=0,m 2=23(1+k 2),⑤显然满足①式由直线MN :y =kx +m 与圆x 2+y 2=r 2相切知:r =|m |1+k2,∴r =m 21+k 2=23,即存在圆x 2+y 2=23满足题意. (ⅱ)当直线MN 的斜率不存在时,可得x 1=x 2=63或x 1=x 2=-63,y 1=-y 2=63,满足OM →²ON →=0,综上所述:存在圆x 2+y 2=23满足题意.1.双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为60°,直线ax +by -a +1=0平分圆C :(x -2)2+(y -3)2=1,则点P (a ,b )与圆C 的位置关系是( )A .P 在⊙C 内B .P 在⊙C 上 C .P 在⊙C 外D .无法确定[答案] C[解析] 由条件得,⎩⎪⎨⎪⎧b a =tan60°,2a +3b -a +1=0,解之得⎩⎪⎨⎪⎧a =-14,b =-34,∵(-14-2)2+(-34-3)2>1,∴点P 在⊙C 外.2.(2011²临沂模拟)圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是( )A .(-∞,14]B .(0,14]C .(-14,0)D .(-∞,14)[答案] A[解析] 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,∴ab ≤(a +b2)2=14.3.已知圆(x+1)2+(y-1)2=1上一点P到直线3x-4y-3=0距离为d,则d的最小值为( )A.1 B.4 5C.25D.2[答案] A[解析] ∵圆心C(-1,1)到直线3x-4y-3=0距离为2,∴d min=2-1=1.4.(2011²东北育才中学期末)圆x2+y2-2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a-b的取值范围是( )A.(-∞,4) B.(-∞,0)C.(-4,+∞) D.(4,+∞)[答案] A[解析] 圆(x-1)2+(y+3)2=10-5a,由条件知,圆心C(1,-3)在直线y=x+2b上,∴b=-2,又10-5a>0,∴a<2,∴a-b<4.5.(2011²浙江宁波八校联考)点(a,b)为第一象限内的点,且在圆(x+1)2+(y+1)2=8上,ab的最大值为________.[答案] 1[解析] 由条件知a>0,b>0,(a+1)2+(b+1)2=8,∴a2+b2+2a+2b=6,∴2ab+4ab ≤6,∵ab>0,∴0<ab≤1,等号在a=b=1时成立.[点评] 作出图形可见,点(a,b)为⊙C在第一象限的一段弧,由对称性可知,当点(a,b)为直线y=x与⊙C的交点(1,1)时,ab取最大值1.。
2020年高考文科数学新课标第一轮总复习练习:8-2直线的交点与距离公式含解析
课时规范练A 组 基础对点练1.(2018·兰州一模)一只虫子从点O (0,0)出发,先爬行到直线l :x -y +1=0上的P 点,再从P 点出发爬行到点A (1,1),则虫子爬行的最短路程是( B ) A. 2 B.2 C .3D.42.在平面直角坐标系中,点(0,2)与点(4,0)关于直线l 对称,则直线l 的方程为( C ) A .x +2y -4=0 B.x -2y =0 C .2x -y -3=0D.2x -y +3=03.若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( A ) A .-6<k <-2 B.-5<k <-3 C .k <-6D.k >-24.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( B ) A .(0,4) B.(0,2) C .(-2,4)D.(4,-2)5.已知直线3x +2y -3=0与直线6x +my +7=0互相平行,则它们之间的距离是( B ) A .4 B.132 C.21313D.713266.圆C :x 2+y 2-4x -4y -10=0上的点到直线l :x +y -14=0的最大距离与最小距离的差是( C ) A .36 B.18 C .6 2D.5 27.(2016·高考浙江卷)若平面区域⎩⎨⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( B ) A.355B. 2C.322D. 58.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n = 345 . 解析:由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线, 于是⎩⎪⎨⎪⎧3+n 2=2×7+m 2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,故m +n =345.9.若在平面直角坐标系内过点P (1,3)且与原点的距离为d 的直线有两条,则d 的取值范围为__(0,2)__.10.已知直线l 1与直线l 2:4x -3y +1=0垂直且与圆C :x 2+y 2=-2y +3相切,则直线l 1的方程是__3x +4y +14=0或3x +4y -6=0__.11.已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0. 由题意得|10+5λ-5|(2+λ)2+(1-2λ)2=3, 即2λ2-5λ+2=0,∴λ=2或12. ∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎨⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤|P A |(当l ⊥P A 时等号成立). ∴d max =|P A |=10.B 组 能力提升练1.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2=( D ) A .2 B.4 C .5D.10解析:如图,以C 为原点,CB ,CA 所在直线为x 轴,y 轴,建立平面直角坐标系.设A (0,a ),B (b,0),则D ⎝ ⎛⎭⎪⎫b 2,a 2,P ⎝ ⎛⎭⎪⎫b 4,a 4.由两点间的距离公式可得|P A |2=b 216+9a 216,|PB |2=9b 216+a 216,|PC |2=b 216+a 216.所以|P A |2+|PB |2|PC |2=1016(a 2+b 2)a 2+b 216=10.2.(2016·高考四川卷)设直线l 1,l 2分别是函数f (x )=⎩⎨⎧-ln x ,0<x <1,ln x ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( A ) A .(0,1) B.(0,2) C .(0,+∞)D.(1,+∞)解析:不妨设P 1(x 1,ln x 1),P 2(x 2,-ln x 2),由于l 1⊥l 2,所以1x 1×⎝ ⎛⎭⎪⎫-1x 2=-1,则x 1=1x 2.又切线l 1:y-ln x 1=1x 1(x -x 1),l 2:y +ln x 2=-1x 2(x -x 2),于是A (0,ln x 1-1),B (0,1+ln x 1),所以|AB |=2.联立⎩⎪⎨⎪⎧y -ln x 1=1x 1(x -x 1),y +ln x 2=-1x 2(x -x 2),解得x P =2x 1+1x1,所以S △P AB =12×2×x P =2x 1+1x1.因为x 1>1,所以x 1+1x1>2,所以S △P AB 的取值范围是(0,1),故选A.3.已知圆C :(x -1)2+(y -2)2=2与y 轴在第二象限所围区域的面积为S ,直线y =2x +b 分圆C 的内部为两部分,其中一部分的面积也为S ,则b =( D ) A .- 6 B.±6 C .- 5D.±5解析:因为圆心C 到y 轴的距离为1,所以圆心C (1,2)到直线2x -y +b =0的距离也等于1才符合题意,于是有|2×1-2+b |5=1,解得b =±5,故选D.4.(2018·贵阳监测)已知曲线y =a x (a >0,且a ≠1)恒过点A (m ,n ),则点A 到直线x +y -3=0的距离为2 .解析:由题意,可知曲线y =a x (a >0,且a ≠1)恒过点(0,1),所以A (0,1),点A (0,1)到直线x +y -3=0的距离d =|0+1-3|2= 2.5.(2018·岳阳模拟)已知动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 的最大距离为3,则12a +2c 的最小值为 94 .解析:因为动直线l :ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),所以a +bm +c -2=0.又Q (4,0)到动直线l 的最大距离为3,所以(4-1)2+(-m )2=3,解得m =0.所以a +c =2,则12a +2c =12(a +c )·⎝ ⎛⎭⎪⎫12a +2c =12⎝ ⎛⎭⎪⎫52+c 2a +2a c ≥12⎝ ⎛⎭⎪⎫52+2c 2a ·2a c =94, 当且仅当c =2a =43时取等号.6.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是__(2,4)__. 解析:由已知得k AC =6-23-1=2,k BD =5-(-1)1-7=-1, 所以AC 的方程为y -2=2(x -1), 即2x -y =0,①BD 的方程为y -5=-(x -1), 即x +y -6=0,② 联立①②解得⎩⎨⎧x =2,y =4.所以直线AC 与直线BD 的交点为P (2,4), 此点即为所求点.因为|P A |+|PB |+|PC |+|PD |=|AC |+|BD |,取异于P 点的任一点P ′, 则|P ′A |+|P ′B |+|P ′C |+|P ′D | =(|P ′A |+|P ′C |)+(|P ′B |+|P ′D |)> |AC |+|BD |=|P A |+|PB |+|PC |+|PD |.故P 点就是到A ,B ,C ,D 的距离之和最小的点.7.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是__6x -8y +1=0__.解析:由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1:y =k (x -3)+5+b ,再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b .∴b =3-4k +b ,解得k =34.∴直线l 的方程为y =34x +b ,直线l 1的方程为y =34x +114+b .设直线l 上的一点P ⎝ ⎛⎭⎪⎫m ,b +3m 4,则点P 关于点(2,3)的对称点为⎝ ⎛⎭⎪⎫4-m ,6-b -34m ,∴6-b -34m =34(4-m )+b +114,解得b =18.∴直线l 的方程是y =34x +18,即6x -8y +1=0.8.著名数学家华罗庚曾说过:“数形结合百般好,割裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为 52 .解析:∵f (x )=x 2+4x +20+x 2+2x +10=(x +2)2+(0-4)2+(x +1)2+(0-3)2,∴f (x )的几何意义为点M (x,0)到两定点 A (-2,4)与B (-1,3)的距离之和,设点 A (-2,4)关于x 轴的对称点为A ′,则A ′为(-2,-4).要求f (x )的最小值,可转化为|MA |+|MB |的最小值,利用对称思想可知|MA |+|MB |≥|A ′B |=(-1+2)2+(3+4)2=52,即f (x )=x 2+4x +20+x 2+2x +10的最小值为5 2. 9.已知直线l :(2+m )x +(1-2m )y +4-3m =0. (1)求证:不论m 为何实数,直线l 过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 解析:(1)证明:直线l 的方程整理得(2x +y +4)+m (x -2y -3)=0, 由⎩⎨⎧ 2x +y =-4,x -2y =3,解得⎩⎨⎧x =-1,y =-2,所以无论m 为何实数,直线l 过定点M (-1,-2).(2)过定点M (-1,-2)作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分, 则直线l 1过点(-2,0),(0,-4), 设直线l 1的方程为y =kx +b , 把两点坐标代入得⎩⎨⎧-2k +b =0,b =-4,解得⎩⎨⎧k =-2,b =-4,∴直线方程为y =-2x -4.。
2015届高考数学一轮总复习 8-2圆的方程
2015届高考数学一轮总复习 8-2圆的方程基础巩固强化一、选择题1.(2012·重庆三模)在同一坐标系下,直线ax +by =ab 和圆(x -a )2+(y -b )2=r 2(ab ≠0,r >0)的图象可能是( )[答案] D[解析] 直线方程可化为x b +ya =1,依据A 、B 、C 、D 中的图象可知a >0,b <0,满足圆心(a ,b )中a >0,b <0的只有选项D.2.(文)已知直线3x +4y -24=0与坐标轴的两个交点及坐标原点都在一个圆上,则该圆的半径是( )A .3B .4C .5D .6[答案] C[解析] 直线3x +4y -24=0与坐标轴的两个交点为A (8,0),B (0,6),由题知AB 为圆的直径,且|AB |=10,∴圆的半径是5.(理)圆心在抛物线y 2=2x (y >0)上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .x 2+y 2-x -2y -14=0B .x 2+y 2+x -2y +1=0C .x 2+y 2-x -2y +1=0D .x 2+y 2-x -2y +14=0[答案] D[解析] 抛物线y 2=2x (y >0)的准线为x =-12,圆与抛物线的准线及x 轴都相切,则圆心在直线y =x +12(y >0)上,与y 2=2x (y >0)联立可得圆心的坐标为⎝⎛⎭⎫12,1,半径为1,则方程为⎝⎛⎭⎫x -122+(y -1)2=1,即x 2+y 2-x -2y +14=0.3.(文)已知圆C 的方程为x 2+y 2+2x -2y +1=0,当圆心C 到直线kx +y +4=0的距离最大时,k 的值为( )A.13B.15C .-13D .-15[答案] D[解析] 圆C 的方程可化为(x +1)2+(y -1)2=1,所以圆心C 的坐标为(-1,1),又直线kx +y +4=0恒过点A (0,-4),所以当圆心C 到直线kx +y +4=0的距离最大时,直线CA 应垂直于直线kx +y +4=0,直线CA 的斜率为-5,所以-k =15,k =-15.(理)(2013·开封模拟)已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上的点到直线l 的距离的最小值为( )A.2B.3 C .1 D .3[答案] A[解析] 由题意知,圆C 上的点到直线l 的距离的最小值等于圆心(1,1)到直线l 的距离减去圆的半径,即|1-1+4|12+(-1)2-2= 2.4.(文)设A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程是( ) A .(x -1)2+y 2=4 B .(x -1)2+y 2=2 C .y 2=2x D .y 2=-2x [答案] B[解析] 设P (x ,y ),圆心C (1,0),由题意知P A ⊥AC , ∴|PC |2=|P A |2+|AC |2=2,∴(x -1)2+y 2=2,故选B.(理)圆x 2+y 2-2x +6y +5a =0关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( ) A .(-∞,4) B .(-∞,0) C .(-4,+∞) D .(4,+∞) [答案] A[解析] 圆(x -1)2+(y +3)2=10-5a ,由条件知,圆心C (1,-3)在直线y =x +2b 上,∴b =-2,又10-5a >0,∴a <2,∴a -b <4.5.(文)圆心在直线y =x 上,经过原点,且在x 轴上截得弦长为2的圆的方程为( )A .(x -1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2D .(x -1)2+(y +1)2=或(x +1)2+(y -1)2=2 [答案] C[解析] 由圆心在直线y =x 上排除B 、D ;由对称轴知,若圆(x -1)2+(y -1)2=2满足题意,则(x +1)2+(y +1)2=2也必满足题意,故选C.(理)已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3x +4y +4=0相切,则圆的方程是( )A .x 2+y 2-4x =0B .x 2+y 2+4x =0C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0[答案] A[解析] 设圆心为C (m,0)(m >0),因为所求圆与直线3x +4y +4=0相切,所以|3m +4×0+4|32+42=2,整理得:|3m +4|=10,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=22,即x 2+y 2-4x =0,故选A.6.一束光线从点A (-1,1)出发经x 轴反射到圆C :(x -2)2+(y -3)2=1上的最短路程是( ) A .4 B .5 C .32-1 D .2 6 [答案] A[解析] 如图,作出A 关于x 轴的对称点B ,最短路程是BD =BC -r =4.二、填空题7.(2013·山东)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. [答案] 2 2[解析] 最短弦为过点(3,1),且和点(3,1)与圆心的连线垂直的弦,易知弦心距d =(3-2)2+(1-2)2=2,所以最短弦长为2r 2-d 2=222-(2)2=2 2.8.(2013·陕西检测)已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.若点P 到直线l 的距离为2,则符合题意的点P 有________个.[答案] 2[解析] 由题意知圆的标准方程为(x +2)2+(y -3)2=42,∴圆心(-2,3)到直线l 的距离d =|-6-12-5|5=235>4,故直线与圆相离,则满足题意的点P 有2个. 9.(2012·石家庄一模)已知动圆的圆心C 在抛物线x 2=2py (p >0)上,该圆经过点A (0,p ),且与x 轴交于两点M 、N ,则sin ∠MCN 的最大值为________.[答案] 1[解析] 当圆心C 的纵坐标为p 时,C (2p ,p )为圆心的圆方程为(x -2p )2+(y -p )2=2p 2,令y =0得,x =2p ±p ,∴MC ⊥NC ,∴sin ∠MCN =1.三、解答题10.(文)已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.[分析] (1)设出点P 的坐标,由|P A |=2|PB |写出方程,化简即可;(2)直线l 2与曲线C 只有一个公共点M ,故l 2与C 相切,当|QC |取最小值时,|QM |取到最小值,故|CQ |为点C 到l 1的距离时满足要求.[解析] (1)设点P 的坐标为(x ,y ), 则(x +3)2+y 2=2(x -3)2+y 2, 化得可得(x -5)2+y 2=16即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图.由题意知直线l 2是此圆的切线,连接CQ , 则|QM |=|CQ |2-|CM |2 =|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4.(理)(2013·福建)如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(1)若点C 的纵坐标为2,求|MN |; (2)若|AF |2=|AM |·|AN |,求圆C 的半径.[解析] (1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2), 所以点C 到准线l 的距离d =2,又|CO |= 5. 所以|MN |=2|CO |2-d 2=25-4=2.(2)设C (y 204,y 0),则圆C 的方程为(x -y 204)2+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0,设M (-1,y 1),N (-1,y 2),则⎩⎨⎧Δ=4y 20-4(1+y 202)=2y 20-4>0,y 1y 2=y202+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4, 所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为(32,6)或(32,-6),从而|CO |2=334,|CO |=332,即圆C 的半径为332. 能力拓展提升一、选择题11.(文)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1 [答案] A[解析] 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y2.解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.(理)已知圆x 2+y 2=4,过点A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( ) A .(x -1)2+y 2=4 ⎝⎛⎭⎫-1≤x <12 B .(x -1)2+y 2=4 (0≤x <1) C .(x -2)2+y 2=4 ⎝⎛⎭⎫-1≤x <12 D .(x -2)2+y 2=4 (0≤x <1) [答案] D[分析] 直线过点A ,可设出点斜式方程,由OP 与割线ABC 垂直,消去斜率k 可得轨迹方程,注意k 不存在的情形.[解析] 设割线的方程为y =k (x -4),再设BC 中点的坐标为(x ,y ),则y x =-1k ,代入y =k (x -4)消去k 得,(x -2)2+y 2=4.画出图形易知轨迹应是在已知圆内的部分,且x 的取值范围是0≤x <1.故选D.[点评] 求动点M 的轨迹方程时,设M (x ,y ),然后结合已知条件找x 、y 满足的关系式.如果点M 的运动依赖于点A 的运动,而点A 在已知曲线C 上,这时将A 的坐标用x 、y 表示,代入C 的方程,即得M 点的轨迹方程.12.(2013·重庆)设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( )A .6B .4C .3D .2[答案] B[解析] 如图所示,要使|PQ |最小,则过圆心作直线x =-3的垂线分别与圆及直线交于点P 、Q ,此时|PQ |最小,圆心到直线x =-3的距离为6,则|PQ |min =6-2=4.故选B.13.(文)过点A (11,2)作圆x 2+y 2+2x -4y -164=0的弦,其中弦长为整数的共有( ) A .16条 B .17条 C .32条 D .34条 [答案] C[解析] ∵圆x 2+y 2+2x -4y -164=0的标准方程为:(x +1)2+(y -2)2=132,即此圆是一个以点O (-1,2)为圆心,以R =13为半径的圆.∵|OA |=12,而R =13,经过A 点且垂直于OA 的弦是经过A 点的最短的弦,∴其长度为2132-122=10;而经过A 点的最长的弦为圆的直径2R =26;∴经过A 点且为整数的弦长还可以取11,12,13,14,15,…,25共15个值,又由于圆内弦的对称性,经过某一点的弦的长若介于最大值与最小值之间,则一定有2条,而最长弦与最短弦各只有1条,故一共有15×2+2=32条.(理)已知直线x a +yb =1(a 、b 是非零常数)与圆x 2+y 2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( )A .60条B .66条C .72条D .78条 [答案] A[解析] 在第一象限内圆x 2+y 2=100上的整数点只有(6,8),(8,6),又点(10,0),(0,10)在圆上, ∴由对称性知x 2+y 2=100上横、纵坐标均为整数的点共有12个.过这12个点的圆x 2+y 2=100的切线有12条,割线有11×122=66条,共78条.其中垂直于坐标轴的有14条,过原点与坐标轴不垂直的有4条,∴共有78-18=60条. 二、填空题 14.(2013·江西联考)如图,已知长度为2的线段AB 的两个端点在动圆O 的圆周上运动,O 为圆心,则AB →·AO →=________.[答案] 2[解析] 取AB 的中点C ,连接OC ,则OC ⊥AB ,AO →=AC →+CO →=12AB →+CO →,所以AB →·AO →=AB →·(12AB →+CO →)=12AB →2=2.15.(2013·惠州调研)已知直线2ax +by =1(a ,b 是实数)与圆O :x 2+y 2=1(O 是坐标原点)相交于A ,B 两点,且△AOB 是直角三角形,点P (a ,b )是以点M (0,1)为圆心的圆M 上的任意一点,则圆M 的面积的最小值为________.[答案] (3-22)π[解析] 因为直线与圆O 相交所得△AOB 是直角三角形,可知∠AOB =90°,所以圆心O 到直线的距离为12a 2+b 2=22,所以a 2=1-12b 2≥0,即-2≤b ≤ 2.设圆M 的半径为r ,则r =|PM |=a 2+(b -1)2=12b 2-2b +2=22(2-b ),又-2≤b ≤2,所以2+1≥|PM |≥2-1,所以圆M 的面积的最小值为(3-22)π.三、解答题16.(文)(2013·新课标Ⅱ)在平面直角坐标系xOy 中,己知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程. [解析] (1)设P (x ,y ),圆P 的半径为r .由题意知y 2+2=r 2,x 2+3=r 2,从而得y 2+2=x 2+3. ∴点P 的轨迹方程为y 2-x 2=1. (2)设与直线y =x 平行且距离为22的直线为l :x -y +c =0,由平行线间的距离公式得C =±1. ∴l :x -y +1=0或x -y -1=0.与方程y 2-x 2=1联立得交点坐标为A (0,1),B (0,-1). 即点P 的坐标为(0,1)或(0,-1),代入y 2+2=r 2得r 2=3. ∴圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.(理)设O 点为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q 关于直线x +my +4=0对称,且OP →·OQ →=0.(1)求m 的值; (2)求直线PQ 的方程.[解析] (1)曲线方程为(x +1)2+(y -3)2=9,表示圆心为(-1,3),半径为3的圆. ∵点P ,Q 在圆上且关于直线x +my +4=0对称. ∴圆心(-1,3)在直线上,代入直线方程得m =-1. (2)∵直线PQ 与直线y =x +4垂直,∴设P (x 1,y 1),Q (x 2,y 2),PQ 方程为y =-x +b . 将y =-x +b 代入圆方程得, 2x 2+2(4-b )x +b 2-6b +1=0. Δ=4(4-b )2-8×(b 2-6b +1)>0, ∴2-32<b <2+32, 由韦达定理得,x 1+x 2=b -4,x 1·x 2=b 2-6b +12,y 1·y 2=(-x 1+b )(-x 2+b )=b 2-b (x 1+x 2)+x 1·x 2=b 2+2b +12,∵OP →·OQ →=0,∴x 1x 2+y 1y 2=0, 即b 2-6b +12+b 2+2b +12=0.解得b =1∈(2-32,2+32). ∴所求的直线方程为y =-x +1.考纲要求1.掌握确定圆的几何要素.2.掌握圆的标准方程与一般方程,会用适当方法求圆的方程. 补充说明 一、数形结合思想在解决与圆有关的最值问题时,主要借助圆的几何性质,用数形结合的方法求解.1.圆上点到定点P 的距离的最大(小)值:连结圆心C 与P 交圆于两点为最大(小)值点.(1)点P 在⊙C 内,过点P 的⊙C 的弦中,最长的为EF (过圆心),最短的为AB (AB ⊥EF ),在⊙C 上所有点中,点E 到点P 距离最小,点F 到点P 距离最大.(2)点P 在⊙C 外,PC 与圆交于E 、F ,圆上所有点中到点P 距离最大(小)的点为F (E ),过点P 可作两条直线P A 、PB 与⊙C 相切,则PC 为∠APB 的平分线,PC 垂直平分AB .2.圆上的点到定直线的距离最值:由圆心向直线作垂线与圆两交点为最值点.直线l 与⊙C 外离,PC ⊥l 交⊙C 于A 、B ,则在⊙C 上到直线l 距离最大(小)的点为B (A ).二、等价转化思想 已知点P (x ,y )为圆上动点(1)形如y -bx -a的最值转化为动直线的斜率求解,一般在相切位置取最值.(2)形如ax +by 的最值,一般设u =ax +by ,转化为动直线的截距问题.用判别式法求解,或在相切位置取最值.(3)形如(x -a )2+(y -b )2的最值转化为动点到定点的距离问题或设(x -a )2+(y -b )2=k 2,转化为两圆有公共点时,k 的取值范围问题.备选习题1.已知两点A (1,-2),B (-4,-2)及下列四条曲线:①4x +2y =3 ②x 2+y 2=3③x 2+2y 2=3 ④x 2-2y 2=3其中曲线上存在点P ,使|P A |=|PB |的曲线有( )A .①③B .②④C .①②③D .②③④[答案] C[解析] ∵|P A |=|PB |,∴P 点在线段AB 的垂直平分线上,易知线段AB 的垂直平分线l 的方程为x =-32,画图知与直线l 有公共点的曲线有①②③,故选C. 2.方程(x 2+y 2-4)x +y +1=0表示的曲线形状是( )[答案] C[解析] 注意到方程(x 2+y 2-4)x +y +1=0等价于①⎩⎪⎨⎪⎧x 2+y 2-4=0,x +y +1≥0,或②x +y +1=0.①表示的是不在直线x +y +1=0的左下方且在圆x 2+y 2=4上的部分;②表示的是直线x +y +1=0.因此,结合各选项知,选C.3.与直线3x +4y +3=0相切且圆心在曲线y =3x(x >0)上的面积最小的圆的方程为________. [答案] (x -2)2+(y -32)2=9 [解析] 设圆心坐标为(a ,3a)(a >0), 则圆心到直线3x +4y +3=0的距离d =|3a +12a +3|5=35(a +4a +1)≥35(4+1)=3,当且仅当a =2时等号成立.此时圆心坐标为(2,32),半径r =⎪⎪⎪⎪3×2+4×32+332+42=3,故所求圆的方程为(x -2)2+(y -32)2=9. 4.(2013·山东淄博联考)在直角坐标系xOy 中,以坐标原点O 为圆心的圆与直线x -3y =4相切.(1)求圆O 的方程;(2)若圆O 上有两点M 、N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程.[解析] (1)依题意知圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =41+3=2, 所以圆O 的方程为x 2+y 2=4.(2)由题意,可设直线MN 的方程为2x -y +m =0, 则圆心O 到直线MN 的距离d =|m |5. 由垂径定理得m 25+(3)2=22,即m =±5. 所以直线MN 的方程为2x -y +5=0或2x -y -5=0.。
2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(真题测试)解析版
专题8.2 空间几何体的表面积和体积(真题测试)一、单选题1.(2020·天津·高考真题)若棱长为 ) A .12π B .24π C .36π D .144π【答案】C【解析】【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R =,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.2.(2020·北京·高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为(). A .63+ B .623+ C .123+ D .1223+【答案】D【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.3.(2022·浙江·高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .22πB .8πC .22π3D .16π3【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =⨯⨯+⨯⨯+⨯⨯⨯+⨯=3cm .故选:C .4.(2022·全国·高考真题)已知正三棱台的高为1,上、下底面边长分别为面上,则该球的表面积为( )A .100πB .128πC .144πD .192π【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =121d d -=或121d d +=,即1=1,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .5.(2021·浙江·高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .【答案】A【解析】【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,1=故1111131222ABCD A B C D V -=⨯⨯=, 故选:A. 6.(2021·全国·高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D A 【解析】【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=,则ABC 1, 设O 到平面ABC 的距离为d ,则2d =所以11111332O ABC ABC V S d -=⋅=⨯⨯⨯= 故选:A.7.(2022·全国·高考真题(文))已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A .13B .12CD 【答案】C【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α, 则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅= (当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r又22r h 1+=则2123O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立,故选:C8.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦ B .2781,44⎡⎤⎢⎥⎣⎦ C .2764,43⎡⎤⎢⎥⎣⎦ D .[18,27]【答案】C【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =- 所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭, 所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =V 取最大值,最大值为643,又3l =时,274V =,l =814V =, 所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,. 故选:C.二、多选题9.(2022·广东茂名·二模)某一时段内,从天空降落到地面上的液态或固态的水,未经蒸发,而在水平面上积聚的深度称为这段时间的降雨量.24h 降雨量的等级划分如下:在一次暴雨降雨过程中,小明用一个大容量烧杯(如图,瓶身直径大于瓶口直径,瓶身高度为50cm ,瓶口高度为3cm )收集雨水,容器内雨水的高度可能是( )A .20cmB .22cmC .25cmD .29cm【答案】CD【解析】【分析】设降雨量为x ,容器内雨水高度为h,根据雨水的体积相等关系可得到h,x 之间的关系49h x =,结合题意可得4200400[,)999x ∈,由此判断出答案. 【详解】设降雨量为x ,容器内雨水高度为h,根据体积相等关系可得:22π100π150x h ⨯=⨯,解得49h x = , 由于[50,100)x ∈ ,故4200400[,)999x ∈, 故20040020040020,22[,),25,29[,)9999∉∈故选:CD .10.(2023·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为42B .体积为5023π C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC【解析】 【分析】设圆台的上底面半径为r ,下底面半径为R ,求出1,3r R ==,即可判断选项A 正确;利用公式计算即可判断选项BCD 的真假得解.【详解】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h ==,则选项A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误; 圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误.故选:AC .11.(2022·湖南·长沙一中模拟预测)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤ ⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为2⎡+⎣【答案】BCD【解析】【分析】利用球的表面积公式及圆柱的表面积公式可判断A ,由题可得O 到平面DEF 的距离为1d 平面DEF 截得球的截面面积最小值可判断B ,由题可得四面体CDEF 的体积等于12E DCO V -可判断C ,设P 在底面的射影为P ',设2t P E '=,PE PF +PE PF +的取值范围可判断D.【详解】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得12OG == 设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S =⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确; 由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ', 则2222222,2,2,16PP PE P E PF P F P E P F '''''==+=++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,PE PF +所以()2224PE PF +==+2424⎡⎤=++⎣⎦,所以2PE PF ⎡+∈+⎣,故D 正确.故选:BCD.12.(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD【解析】【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可.【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅=, ()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥, 又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ===,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFM SEM FM =⋅=,AC =, 则33123A EFM C EFM EFM V V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.三、填空题 13.(2021·全国·高考真题(文))已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.【答案】39π【解析】【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h ππ=⋅=∴52h =∴132l =∴136392S rl πππ==⨯⨯=侧. 故答案为:39π.14.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是 ____ cm 3. 【答案】1232π-【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为262⨯ 圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π15.(2019·天津·高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】4π. 【解析】【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】借助勾股定理,2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 16.(2022·吉林·长春市第二实验中学高三阶段练习)在三棱锥P ABC -中,点P 在底面的射影是ABC 的外心,2,3BAC BC PA π∠===___________. 【答案】12548π 【解析】【分析】先由正弦定理得,ABC 外接圆的半径,再由勾股定理,即可求出半径,从而可得外接球体积.【详解】解:设ABC 的外心为1O ,连接1PO ,则球心O 在1PO 上,连接1O A ,则1O A 为ABC 外接圆的半径r ,连接OA ,设外接球的半径为R ,则OA OP R ==,在ABC 中,由正弦定理得2,BC r sin BAC ==∠解得1r =,即11O A =, 在1Rt PAO 中,12,PO =在1Rt AOO ,中22211OO AO AO +=,即()22221R R -+=,解得:54R =, 所以外接球的体积为:3344125334854R V πππ⎛⎫⋅ ⎪⎝⎭===, 故答案为:12548π 四、解答题17.(2022·安徽芜湖·高一期末)如图①,有一个圆柱形状的玻璃水杯,底面圆的直径为20cm ,高为30cm ,杯内有20cm 深的溶液.如图①,现将水杯倾斜,且倾斜时点B 始终不离开桌面,设直径AB 所在直线与桌面所成的角为α.要使倾斜后容器内的溶液不会溢出,求α的最大值. 【答案】4π【解析】【分析】当水杯倾斜过程中,溶液恰好不溢出时,此时α最大;在这个临界条件下,结合溶液的体积不变,可以得到关于α的一个不等式,即可求出α的取值范围,得到最大值.【详解】如图所示,在Rt △CDE 中20tan DE α=,()2221020tan 103020tan 10202παπαπ⨯⨯⨯⨯-+≥⨯⨯解得tan 1α≤,即α的最大值4π. 18.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面;(2)求图2中三棱锥C BDG -的体积.【答案】(1)证明见解析【解析】【分析】(1)依题意可得//AB FG ,//AB CD ,即可得到//AB GE ,从而得到//CD EG ,即可得证;(2)依题意可得AE AD ⊥、AE AB ⊥,即可得到AE ⊥平面ABCD 从而得到BG ⊥平面ABCD ,再根据13C BDG G BCD BCD V V BG S --==⋅计算可得;(1)证明:在矩形ABGF 和菱形ABCD 中,//AB FG ,//AB CD ,所以//AB GE ,所以//CD EG ,所以C 、D 、E 、G 四点共面;(2)解:在Rt ADE △中AE AD ⊥,矩形ABGE 中AE AB ⊥,AD AB A ⋂=,,AD AB ⊂平面ABCD ,所以AE ⊥平面ABCD ,又//BG EA ,所以BG ⊥平面ABCD ,又11sin 2222BCD S BC CD BCD =⋅⋅∠=⨯⨯=所以11133C BDG G BCD BCD V V BG S --==⋅=⨯ 19.(2022·山西吕梁·高一期末)如图是某种水箱用的“浮球”,它是由两个半球和一个圆柱筒组成.已知球的半径是2cm ,圆柱筒的高是2cm .(1)求这种“浮球”的体积;(2)要在100个这种“浮球”的表面涂一层防水漆,每平方厘米需要防水漆0.5g ,共需多少防水漆?【答案】(1)356(cm)3π (2)1200g π【解析】【分析】(1)由球的体积公式和圆柱的体积公式求解即可;(2)由球的表面积公式和圆柱的侧面积公式求解即可.(1)因为该“浮球”的圆柱筒底面半径和半球的半径2cm r =,圆柱筒的高为2cm ,所以两个半球的体积之和为331432(cm)33V r ππ==, 圆柱的体积2328(cm)V r h ππ==,∴该“浮球”的体积是31256(cm)3V V V π=+=; (2)根据题意,上下两个半球的表面积是221416(cm)S r ππ==,而“浮球”的圆柱筒侧面积为2228(cm)S rh ππ==,∴“浮球”的表面积为21224(cm)S S S π=+=;所以给100个这种浮球的表面涂一层防水漆需要100240.51200g ππ⨯⨯=.20.(2022·全国·高三专题练习)如图1,在直角梯形ABCD 中,//AD BC ,∠BAD =90°,12AB BC AD a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中1A BE 的位置,使平面1A BE ⊥平面BCDE ,得到四棱锥1A BCDE -.当四棱锥1A BCDE -的体积为a 的值.【答案】6a =.【解析】【分析】在直角梯形ABCD 中,证明BE AC ⊥,在四棱锥1A BCDE -中,由面面垂直的性质证得1A O ⊥平面BCDE ,再利用锥体体积公式计算作答.【详解】如图,在直角梯形ABCD 中,连接CE ,因E 是AD 的中点,12BC AD a ,有//,AE BC AE BC =,则四边形ABCE 是平行四边形,又,90BAD AB BC ∠==,于是得ABCE 是正方形,BE AC ⊥,在四棱锥1A BCDE -中,1BE AO ⊥,因平面1A BE ⊥平面BCDE ,且平面1A BE 平面BCDE BE =,1A O ⊂平面1A BE ,因此1A O ⊥平面BCDE ,即1A O 是四棱锥1A BCDE -的高,显然112AO AO CO AC ====,平行四边形BCDE 的面积2S CO BE a =⋅==,因此,四棱锥1A BCDE -的体积为2311133V S AO a =⋅===6a =, 所以a 的值是6.21.(2022·北京·高一期末)《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑 (四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,已知3AB =,4BC =,5AC =.当阳马111C ABB A -体积等于24时, 求:(1)堑堵111ABC A B C -的侧棱长;(2)鳖臑1C ABC -的体积;(3)阳马111C ABB A -的表面积.【答案】(1)6(2)12 (3)51313【解析】【分析】(1)设堑堵111ABC A B C -的侧棱长为x ,根据阳马111C ABB A -体积等于24求解即可;(2)根据棱锥的体积计算即可;(3)分别计算111C ABB A -的侧面积与底面积即可(1)因为3AB =,4BC =,5AC =,所以222AB BC AC +=.所以△ABC 为直角三角形.设堑堵111ABC A B C -的侧棱长为x ,则113A ABB S x 矩形,则111143243AA BB V x C , 所以6x =,所以堑堵111ABC A B C -的侧棱长为6.(2)因为13462ABC S =⨯⨯=△, 所以1111661233ABC ABC V S CC C . 所以鳖臑1C ABC -的体积为12.(3) 因为11113462A B C S,11164122BB C S , 11165152AA C S ,1132133132ABC S , 113618A ABB S 矩形,所以阳马111C ABB A -的表面积的表面积为612151831351313. 22.(2022·重庆市巫山大昌中学校高一期末)如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5,3AB BC CD ===,(1)求该圆柱的表面积;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求ACD △的三边在旋转过程中所围成的几何体的体积.【答案】(1)75π2(2)15π【解析】【分析】(1)由题意求出柱的底面圆的半径即可求解;(2)ACD △绕AB 旋转一周而成的封闭几何体的体积为两个圆锥的体积之差,结合圆锥体积公式求解即可(1)由题意知AB 是圆柱OO '的一条母线,BC 过底面圆心O ,且5AB BC ==, 可得圆柱的底面圆的半径为52R =, 则圆柱的底面积为221525πππ24S R ⎛⎫==⨯= ⎪⎝⎭, 圆柱的侧面积为252π2π525π2S Rl ==⨯⨯= 所以圆柱的表面积为12257522π25ππ42S S S =+=⨯+=. (2) 由线段AC 绕AB 旋转一周所得几何体为以BC 为底面半径,以AB 为高的圆锥,线段AD 绕AB 旋转一周所得的几何体为BD 为底面半径,以AB 为高的圆锥,所以以ACD △绕AB 旋转一周而成的封闭几何体的体积为:22221111πππ55π4515π3333V BC AB BD AB =⋅⋅-⋅⋅=⋅⋅-⋅⋅=.。
高考数学总复习提素能高效题组训练8-2
[命题报告·教师用书独具]一、选择题1.(2013年滨州模拟)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:解方程组⎩⎨⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝⎛⎭⎪⎫kk -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限.答案:B2.(2013年茂名模拟)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13 C .-32D.23解析:设P (x P ,y P ),由题意及中点坐标公式,得x P +7=2,解得x P =-5,∴P (-5,1),∴直线l 的斜率k =1-(-1)-5-1=-13.答案:B3.(2013年武汉模拟)已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为( )A.79B .-13C .-79或-13D.79或13解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.答案:C4.(2013年广州模拟)直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1). 又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:D5.(2013年成都模拟)在直角坐标系中,A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .3 3D .2 5解析:如图,设点P 关于直线AB ,y 轴的对称点分别为D ,C ,易求得D (4,2),C (-2,0),则△PMN 的周长=|PM |+|MN |+|PN |=|DM |+|MN |+|NC |.由对称性,D ,M ,N ,C 共线,∴|CD |即为所求,由两点间的距离公式得|CD |=40=210.答案:A 二、填空题6.若点(1,1)到直线x cos α+y sin α=2的距离为d ,则d 的最大值是________. 解析:依题意有d =|cos α+sin α-2| =⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫α+π4-2. 于是当sin ⎝ ⎛⎭⎪⎫α+π4=-1时,d 取得最大值2+ 2.答案:2+ 27.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析:由题意得,36=-2a ≠-1c , ∴a =-4且c ≠-2, 则6x +ay +c =0可化为 3x -2y +c2=0, 由两平行线间的距离, 得21313=⎪⎪⎪⎪⎪⎪c 2+113,解得c =2或c =-6,所以c +2a =±1. 答案:±18.(2013年安庆模拟)从点(2,3)射出的光线沿与直线x -2y =0平行的直线射到y 轴上,则经y 轴反射的光线所在的直线方程为________.解析:由题意得,射出的光线方程为y -3=12(x -2), 即x -2y +4=0,与y 轴交点为(0,2), 又(2,3)关于y 轴的对称点为(-2,3), ∴反射光线所在直线过(0,2),(-2,3). 故方程为y -2=3-2-2x ,即x +2y -4=0.答案:x +2y -4=09.(2013年绍兴模拟)已知0<k <4,直线l 1:kx -2y -2k +8=0和直线l 2:2x +k 2y -4k 2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k 值为________.解析:由题意知直线l 1,l 2恒过定点P (2,4),直线l 1的纵截距为4-k ,直线l 2的横截距为2k 2+2,所以四边形的面积S =12×2×(4-k )+12×4×(2k 2+2)=4k 2-k +8,故面积最小时,k =18.答案:18 三、解答题10.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解析:设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎨⎧4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0,即⎩⎨⎧ 4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎨⎧x 0=-2,y 0=5, 因此直线l 的方程为y -25-2=x -(-1)-2-(-1),即3x +y +1=0.11.已知直线l 经过直线2x +y -5=0与x -2y =0的交点, (1)点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解析:(1)经过两已知直线交点的直线系方程为 (2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0, ∴|10+5λ-5|(2+λ)2+(1-2λ)2=3.解得λ=2或λ=12.∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,得P (2,1).如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤|P A |(当l ⊥P A 时等号成立). ∴d max =|P A |=10.12.(能力提升)(1)在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大;(2)在直线l :3x -y -1=0上求一点Q ,使得Q 到A (4,1)和C (3,4)的距离之和最小.解析:(1)如图甲所示,设点B 关于l 的对称点为B ′,连接AB ′并延长交l 于P ,此时的P 满足|P A |-|PB |的值最大.设B ′的坐标为(a ,b ),则k BB ′·k l =-1, 即b -4a ·3=-1. ∴a +3b -12=0.①又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且中点在直线l 上, ∴3×a 2-b +42-1=0,即3a -b -6=0.②①②联立,解得a =3,b =3,∴B ′(3,3). 于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解方程组⎩⎨⎧ 3x -y -1=0,2x +y -9=0.得⎩⎨⎧x =2,y =5,即l 与AB ′的交点坐标为P (2,5).(2)如图乙所示,设C 关于l 的对称点为C ′,连接AC ′交l 于点Q ,此时的Q 满足|QA |+|QC |的值最小.设C ′的坐标为(x ′,y ′), ∴⎩⎪⎨⎪⎧y ′-4x ′-3·3=-1,3·x ′+32-y ′+42-1=0.解得⎩⎪⎨⎪⎧x ′=35,y ′=245.∴C ′⎝ ⎛⎭⎪⎫35,245.由两点式得直线AC ′的方程为 y -1245-1=x -435-4, 即19x +17y -93=0.解方程组⎩⎨⎧19x +17y -93=0,3x -y -1=0,得⎩⎪⎨⎪⎧x =117,y =267.∴所求点Q 的坐标为⎝ ⎛⎭⎪⎫117,267.[因材施教·学生备选练习]1.(2013年武汉调研)点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x +2的最短距离为( )A.22 B. 2 C .2 2D .2解析:当点P 为直线y =x +2平移到与曲线y =x 2-ln x 相切的切点时,点P 到直线y =x +2的距离最短.设点P (x 0,y 0),f (x )=x 2-ln x ,则f ′(x 0)=1.∵f ′(x )=2x -1x , ∴2x 0-1x 0=1.又x 0>0, ∴x 0=1.∴点P 的坐标为(1,1),此时点P 到直线y =x +2的距离为22= 2. 答案:B2.(2013年武汉模拟)已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 斜率的取值范围为________.解析:从特殊位置考虑.∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),∴kA 1F =4. ∵点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,∴kA1F<k FD,即k FD∈(4,+∞).答案:(4,+∞)。
高考数学理一轮复习 8-2双曲线精品课件
x= ,x=-
y= ,y=-
y= x,y=- x, y= x,y=- x
3.双曲线特例. (1)等轴双曲线的方程可为 x2-y2=λ(λ≠0) .
(2)共轭双曲线的方程可为
.
(3)共渐近线的双曲线的方程可为
.
4.双曲线上的点P(x0,y0)与左(下)焦点F1,或右(上)焦 点F2之间的线段长度称作焦半径,分别记作r1=|PF1|,r2= |PF2|.
备考例题 1
已知椭圆xa221+by212=1(a1>b1>0)与双曲线
x2 a22
-yb222=1(a2>0,b2>0)有公共焦点 F1、F2,设 P 是它们的一个
交点.
(1)试用 b1,b2 表示△F1PF2 的面积; (2)当 b1+b2=m(m>0)是常数时,求△F1PF2 面积的最大 值.
[分析] 在△PF1F2中利用余弦定理得出|F1F2|、|PF1|、 |PF2|的关系,再利用双曲线定义,得到|PF1|·|PF2|与a、b、c 的关系,再利用三角形面积得到关于a,b,c的方程,解方
程组求得a,b,c,从而得到双曲线方程.
即 4c2=4a2+|PF1|·|PF2|. 又∵S△PF1F2=2 3,
(1)求双曲线的离心率; (2)若此双曲线过 N( 3,2),求此双曲线的方程; (3)在(2)的条件下的双曲线的虚轴端点分别为 B1,B2(B2 在 x 轴的正半轴上),点 A,B 在该双曲线上,且B→2A=μB→2B,求B→1A⊥B→1B 时直线 AB 的方程.
[分析] 第(1)问先由向量关系判断四边形OF1PM的形状, 进而得到a,c的关系,求出离心率.第(2)问设出双曲线方 程,将N点坐标代入得到;第(3)问,先设出直线方程,与 双曲线方程联立,再由根与系数的关系得到.
新高考数学复习考点知识与题型专题练习8---二次函数与一元二次方程、不等式(解析版)
新高考数学复习考点知识与题型专题练习 8 二次函数与一元二次方程、不等式一、选择题:本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的 1.若26(8)0kx kx k -++≥(k 为常数)对一切x ∈R 恒成立,则k 的取值范围是() A .01k ≤≤ B .01k <<C .01k <≤D .0k <或1k >【答案】A【解析】由已知得,当0k =时,原不等式为80≥,显然恒成立;当0k ≠时,需满足2364(8)0k k k k >⎧⎨∆=-+≤⎩,解得01k <≤,所以k 的取值范围是01k ≤≤. 故选:A2.若0<m <1,则不等式(x -m )1()x m-<0的解集为() A .{}x m <B .{x∣1x m>或}x m > C .{x∣x m >或1x m ⎫>⎬⎭D .1|x m x m ⎧⎫<<⎨⎬⎩⎭【答案】D【解析】∵0<m <1,∴1m>1>m , 故原不等式的解集为1x m x m ⎧⎫<<⎨⎬⎩⎭,故选:D . 3.与不等式302x x-≥-同解的不等式是() A .()()320x x --≥B .021x <-≤C .203xx -≥- D .()()320x x -->【答案】B【解析】302x x -≥-,即()()32020x x x ⎧--≥⎨-≠⎩,解得23x <≤, A 项:()()320x x --≥,解得23x ≤≤,不正确; B 项:021x <-≤,解得23x <≤,正确; C 项:203xx -≥-,即()()32030x x x ⎧--≥⎨-≠⎩,解得23x ≤<,不正确; D 项:()()320x x -->,解得23x <<,不正确, 故选:B.4.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x (单位:元)的取值范围是() A .{}1016x x ≤< B .{}1218x x ≤< C .{}1520x x << D .{}1020x x ≤<【答案】C【解析】结合题意易知,30215400x x ,即2302000x x -+<,解得1020x <<, 因为15x >,所以1520x <<,这批台灯的销售单价x 的取值范围是{}1520x x <<, 故选:C.5.不等式222x x x --->0的解集为()A .{x |x >-1且x ≠2}B .{x |x >-1}C .{x |-1<x <2}D .{x |x <-1或x >2}【答案】A【解析】解析原不等式可化为()()10210202x x x x x +>-+⎧>⇒⎨-≠-⎩,解得x >-1且x ≠2. 故选:A .6.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是()A .{1x <-或}3x >B .{x |-1<x <3}C .{x |1<x <3}D .{x |x <1或x >3}【答案】A【解析】由题意,知a >0,且1是ax -b =0的根,所以a =b >0,所以(ax +b )(x -3)=a (x +1)(x -3)>0,所以x <-1或x >3,因此原不等式的解集为{x |x <-1或x >3}. 故选:A7.若关于x 的不等式2420x x a ---≥在{}|14x x ≤≤内有解,则实数a 的取值范围是() A .{}|2a a ≤- B .{}|2a a ≥- C .{}|6a a ≥- D .{}|6a a ≤-【答案】A【解析】不等式2420x x a ---≥在{}|14x x ≤≤内有解等价于14x ≤≤时,2max (42)a x x ≤--.当14x ≤≤时,()2max422x x --=-,所以2a ≤-.故选:A.8.不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++>的解集为() A .{1x x <-或12x ⎫>⎬⎭B .112x x ⎧⎫-<<⎨⎬⎩⎭C .{}21x x -<<D .{2x x <-或}1x >【答案】A【解析】由题意可知:-1、2是关于x 的二次方程220ax bx ++=的两根,由韦达定理可得21212a b a ⎧-⨯=⎪⎪⎨⎪-+=-⎪⎩,解得11a b =-⎧⎨=⎩,不等式220x bx a ++>即为2210x x +->,解得1x <-或12x >. 因此,不等式220x bx a ++>的解集为{1x x <-或12x ⎫>⎬⎭.故选:A .二、选择题:本题共4小题,在每小题给出的选项中,有多项符合题目要求.9.在一个限速40km/h 的弯道上,甲,乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事发后现场测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m .又知甲、乙两种车型的刹车距离S m 与车速x km/h 之间分别有如下关系:S 甲=0.1x +0.01x 2,S 乙=0.05x +0.005x 2.则下列判断错误的是() A .甲车超速 B .乙车超速 C .两车均不超速 D .两车均超速【答案】ACD【解析】设甲的速度为1x 由题得0.1x 1+0.0121x >12, 解之得140x <-或130x >; 设乙的速度为2x , 由题得0.05x 2+0.00522x >10. 解之得x 2<-50或x 2>40.由于x >0,从而得x 1>30km /h ,x 2>40km /h . 经比较知乙车超过限速. 故选:ACD10.已知a ∈Z ,关于x 的一元二次不等式x 2﹣4x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .0 B .1 C .2 D .3【答案】BCD【解析】解:当a =0时,一元二次不等式x 2﹣4x +a ≤0即为x 2﹣4x ≤0,解得0≤x ≤4,有5个整数解,∴A 错;当a =1时,一元二次不等式x 2﹣4x +a ≤0即为x 2﹣4x +1≤0解得2x ≤2有3个整数解“1,2,3”,∴B 对;当a =2时,一元二次不等式x 2﹣4x +a ≤0即为x 2﹣4x +2≤0,解得2x ≤22,有3个整数解“1,2,3”,∴C 对;当a =3时,一元二次不等式x 2﹣4x +a ≤0即为x 2﹣4x +3≤0,解得1≤x ≤3,有3个整数解“1,2,3”,∴D 对;故选:BCD .11.已知不等式20ax bx c ++>的解集为1|22x x ⎧⎫-<<⎨⎬⎩⎭,则下列结论正确的是()A .0a >B .0b >C .0c >D .0a b c ++>【答案】BCD【解析】解:对A ,不等式20ax bx c ++>的解集为1|22x x ⎧⎫-<<⎨⎬⎩⎭,故相应的二次函数2y ax bx c =++的图象开口向下, 即0a <,故A 错误;对B ,C ,由题意知:2和12-是关于x 的方程20ax bx c ++=的两个根,则有12()102c a =⨯-=-<,132()022b a -=+-=>, 又0a <,故0,0bc >>,故B ,C 正确; 对D ,1ca=-,0a c ∴+=,又0b >,0a b c ∴++>,故D 正确.故选:BCD.12.若关于x 的不等式20ax bx c ++>的解集为{}|12x x -<<,则能使不等式21()12()a x b x c ax ++-+<成立的x 可以为() A .{}|03x x << B .{}|0x x < C .{}|3x x > D .{|2x x <-或}1x >【答案】BC【解析】因为不等式20ax bx c ++>的解集为{}|12x x -<<, 所以1-和2是方程20ax bx c ++=的两个根,且0a <, 所以121,122b ca a-=-+==-⨯=-. 则,2b a c a =-=-.由21()12()a x b x c ax ++-+<,得230ax ax -<, 因为0a <,所以230x x ->, 解得0x <或3x >,所以不等式21()12()a x b x c ax ++-+<的解集为{|0x x <或3}x >. 故选:BC三、填空题:本题共4小题.13.现有含盐7%的食盐水200克,生产含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是________. 【答案】{x |100<x <400} 【解析】解析5%<4%2007%200x x ⋅+⋅+<6%,解得x 的取值范围是{x |100<x <400}.故答案为:{x |100<x <400}.14.一元二次不等式的一般形式:ax 2+bx +c >0,ax 2+bx +c <0,ax 2+bx +c ≥0,ax 2+bx +c ≤0,其中a ≠0,其中a ,b ,c 均为____ 【答案】常数【解析】根据一元二次不等式的一般形式的相关概念可知,式中的参数a b c ,,均为常数 故答案为:常数. 15.在R 上定义运算:b a b c da d c =-.若不等式1211x a a x--≥+对任意实数x 恒成立,则实数a 的最大值为________. 【答案】32【解析】由题意可知,()()()121211x a x x a a a x--=---++,不等式1211x a a x--≥+恒成立即()()()1211x x a a ---+≥恒成立,()()()1211x x a a ---+≥,()()2121x x a a --≥-+, 因为221551244x x x ⎛⎫--=--≥- ⎪⎝⎭,所以()()5214a a -≥-+,即2304a a --≤,解得1322a -≤≤,则实数a 的最大值为32, 故答案为:32. 16.在一个限速40km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m .又知甲、乙两种车型的刹车距离sm 与车速x km/h 之间分别有如下关系:s 甲=0.1x +0.01x 2,s 乙=0.05x +0.005x 2.这次事故的主要责任方为________. 【答案】乙车【解析】解:由题意列出不等式s 甲=0.1x +0.01x 2>12, s 乙=0.05x +0.005x 2>10. 分别求解,得 x 甲<-40或x 甲>30. x 乙<-50或x 乙>40.由于x >0,从而得x 甲>30km /h ,x 乙>40km /h . 经比较知乙车超过限速,应负主要责任. 故答案为:乙车.四、解答题:本题共6小题.解答应写出文字说明、证明过程或演算步骤. 17.已知关于x 的不等式23208kx kx +-<.(1)若不等式的解集为3|12x x ⎧⎫-<<⎨⎬⎩⎭,求实数k 的值;(2)若不等式23208kx kx +-<恒成立,求实数k 的取值范围.【答案】(1)18k =;(2){}|30k k -<≤.【解析】(1)因为关于x 的不等式23208kx kx +-<的解集为3|12x x ⎧⎫-<<⎨⎬⎩⎭,所以0k ≠,且32-和1时关于x 的方程23208kx kx +-=的两个实数根,则338122k--⨯=,解得18k =. (2)因为关于x 的不等式23208kx kx +-<恒成立,所以0k =或22030k k k <⎧⎨∆=+<⎩,即0k =或30k -<<, 则实数k 的取值范围为{}|30k k -<≤.18.232(,,)y ax bx c a b c R =++∈,若0,(32)0a b c a b c c ++=++>.求证:(1)方程2320ax bx c ++=有实数根;(2)若21b a -<<-,且12,x x 是方程2320ax bx c ++=1223x x ≤-<. 【答案】(1)证明见详解;(2)证明见详解.【解析】(1)若0a =,又0a b c ++=,则b c =-,2(32)0a b c c c ∴++=-≤,与已知矛盾,0a ∴≠.方程2320ax bx c ++=的判别式22(2)434(3)b a c b ac ∆=-⋅⋅=-,又知0a b c ++=,即()b a c =-+,22222134(3)4()4[()]024b ac a c ac a c c ∴∆=-=+-=-+>,故方程2320ax bx c ++=有实数根. (2)由题意得,12122,333b c a bx x x x a a a++=-==-, ∴22221212122244()43()()4(3)939b a b b b x x x x x x a a a a+-=+-=+=++22433431[()]()924923b b a a =++=++, 21b a -<<-,21214()39x x ∴≤-<,1223x x ≤-<. 19.设函数2y x mx n =++,已知不等式0y <的解集为{}|14x x <<. (1)求m 和n 的值;(2)若y ax ≥对任意0x >恒成立,求a 的取值范围. 【答案】(1)5,4m n =-=;(2)1a ≤-.【解析】(1)有题意得121,4x x ==是关于x 的方程20x mx n ++=的两个根, 所以12125,4m x x n x x -=+==⋅=,故5,4m n =-=;(2)由(1)得254y x x =-+,则254x x ax -+≥对任意0x >恒成立, 即45a x x≤+-,对任意0x >恒成立.又因为44x x +≥=(当且仅当2x =时,等号成立),所以451x x+-≥-, 所以1a ≤-.20.已知关于x 的不等式2220()x mx m m R -++≤∈的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求2251m m m +++的最小值;(3)当M 不为空集,且{}|14M x x ⊆≤≤时,求实数m 的取值范围. 【答案】(1){}|12m m -<<;(2)4;(3)18|27m m ⎧⎫≤≤⎨⎬⎩⎭.【解析】(1)因为M 为空集,所以2244(2)02012m m m m m ∆=-+<⇒--<⇒-<<. 所以m 的取值范围为{}|12m m -<<;(2)由(1)可知12m -<<,则013m <+<,所以2225(1)4414111m m m m m m m ++++==++≥=+++,当且仅当4111m m m +=⇒=+等号成立,所以2252m m m +++的最小值为4.(3)设函数222y x mx m =-++,当M 不为空集时,由{}|14M x x ⊆≤≤,得22244(2)012201827482014m m m m m m m m ⎧∆=-+≥⎪-++≥⎪⇒≤≤⎨-++≥⎪⎪≤≤⎩. 所以实数m 的取值范围18|27m m ⎧⎫≤≤⎨⎬⎩⎭.21.已知二次函数22y ax bx a =+-+.(1)若关于x 的不等式220ax bx a +-+>的解集是{}|13x x -<<.求实数,a b 的值; (2)若2,0b a =>,解关于x 的不等式220ax bx a +-+>. 【答案】(1)1a =-,2b =;(2)答案见解析.【解析】(1)因为关于x 的不等式220ax bx a +-+>的解集是{}|13x x -<< 所以1-和3是方程220ax bx a +-+=的两根, 所以13213b a a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得:12a b =-⎧⎨=⎩, (2)当2b =时,220ax bx a +-+>即2220ax x a +-+>可化为()()120x ax a +-+>,因为0a >,所以()210a x x a -⎛⎫+-> ⎪⎝⎭ 所以方程()210a x x a -⎛⎫+-= ⎪⎝⎭的两根为1-和2a a -, 当21a a--<即1a >时,不等式的解集为{|1x x <-或2a x a -⎫>⎬⎭, 当21a a--=即1a =时,不等式的解集为{}|1x x ≠-, 当21a a -->即01a <<时,不等式的解集为2|a x x a -⎧<⎨⎩或}1x >-, 综上所述:当01a <<时,不等式的解集为2|a x x a -⎧<⎨⎩或}1x >-, 当1a =时,不等式的解集为{}|1x x ≠-,当1a >时,不等式的解集为{|1x x <-或2a x a -⎫>⎬⎭. 22.已知p :-2≤x ≤10,q :x 2-2x +1-m 2≤0(m >0),若q 是p 的充分不必要条件,求实数m 的取值范围.【答案】{m |0<m ≤3}.【解析】p :-2≤x ≤10. q :x 2-2x +1-m 2≤0⇔[x -(1-m )][x -(1+m )]≤0 (m >0)⇔1-m ≤x ≤1+m (m >0). 因为q 是p 的充分不必要条件,所以{x |1-m ≤x ≤1+m } {x |-2≤x ≤10},故12110mmm-≥-⎧⎪+≤⎨⎪>⎩,解得03m<≤.所以实数m的取值范围为{m|0<m≤3}.。
高考数学 8-2直线的焦点与距离公式课件 新人教A
第四模块 平面向量、数系的扩充与复数的引入
数学
高考总复习人教A版 · (理)
5.k为何值时,直线l1:y=kx+3k-2与直线l2:x+4y -4=0的交点在第一象限.
数学
高考总复习人教A版 · (理)
解析:两平行线间的距离为 d= |31-+11| = 2,如右图 所示,可知直线 m 与 l1、l2 的夹角为 30°,l1、l2 的倾斜 角为 45°,所以直线 m 的倾斜角等于 30°+45°=75°或 45° -30°=15°.故填①⑤.
答案:①⑤
第四模块 平面向量、数系的扩充与复数的引入
数学
高考总复习人教A版 · (理)
第四模块 平面向量、数系的扩充与复数的引入
数学
高考总复习人教A版 · (理)
1.能用解方程组的方法求两条相交直线的交点
考纲要求
坐标. 2.掌握两点间的距离公式、点到直线的距离
公式,会求两条平行直线间的距离.
1.高考卷中小题、大题均有涉及对本节内容的 考查,难度多为中档.
解析:由对称性知,所求直线方程设为 2x+3y+C= 0.
又(1,-1)到两直线距离相等, ∴|2-223+-362|=|2-223++3C2 |,解得 C=8(C=-6 舍去).
答案:2x+3y+8=0
第四模块 平面向量、数系的扩充与复数的引入
数学
高考总复习人教A版 · (理)
4.已知点 P 在直线 2x-y+4=0 上,且到 x 轴的距 离是 y 轴距离的2 3,则点 P 的坐标为__________.
2022版高考一轮总复习数学(文)模拟演练 第8章 平面解析几何 8-2 Word版含答案
(时间:40分钟)1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A .平行 B .垂直C .相交但不垂直D .不能确定 答案 C解析 由⎩⎪⎨⎪⎧2x +y +m =0,x +2y +n =0,可得3x +2m -n =0,由于3x +2m -n =0有唯一解,故方程组有唯一解,故两直线相交,两直线的斜率分别为-2,-12,斜率之积不等于-1,故不垂直,故选C.2.已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0平行,则实数a 的值为( ) A .3 B .-1 C .1 D .-1或3 答案 B解析 由l 1∥l 2,得-1a =-a -23,解得a =3或a =-1,验证当a =3时,l 1,l 2的方程分别为x +3y +6=0,x +3y +6=0,l 1与l 2重合.∴a =-1,故选B.3.直线l 1:kx +(1-k )y -3=0和l 2:(k -1)x +(2k +3)y -2=0相互垂直,则k =( ) A .-3或-1 B .3或1 C .-3或1 D .-1或3 答案 C解析 若1-k =0,即k =1,直线l 1:x =3,l 2:y =25,明显两直线垂直.若k ≠1,直线l 1,l 2的斜率分别为k 1=kk -1,k 2=1-k 2k +3.由k 1k 2=-1,得k =-3.综上k =1或k =-3,故选C. 4.不论m 为何值时,直线(m -1)x +(2m -1)y =m -5恒过定点( ) A.⎝⎛⎭⎪⎫1,-12 B .(-2,0)C .(2,3)D .(9,-4) 答案 D解析 由(m -1)x +(2m -1)y =m -5,得(x +2y -1)·m -(x +y -5)=0,由⎩⎪⎨⎪⎧x +2y -1=0,x +y -5=0,得定点坐标为(9,-4),故选D.5.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为( )A .0或-12 B.12或-6C .-12或12D .0或12答案 B解析 依题意,得|3m +5|m 2+1=|-m +7|m 2+1.化简得8m 2+44m -24=0,所以2m 2+11m -6=0.所以m =12或m =-6,故选B.6.两条平行直线l 1:3x +4y -4=0与l 2:ax +8y +2=0之间的距离是________.答案 1解析 由直线l 1:3x +4y -4=0与l 2:ax +8y +2=0平行,可得a =6,l 2的方程为3x +4y +1=0,两直线间的距离d =|c 1-c 2|A 2+B 2=|-4-1|32+42=1. 7.点P (2,1)到直线l :mx -y -3=0(m ∈R )的最大距离是________. 答案 2 5解析 直线l 经过定点Q (0,-3),如图所示.由图知,当PQ ⊥l 时,点P (2,1)到直线l 的距离取得最大值|PQ |=2-02+1+32=25,所以点P (2,1)到直线l 的最大距离为2 5.8.已知点P (x ,y )到A (0,4)和B (-2,0)的距离相等,则2x+4y的最小值为________. 答案 4 2解析 由题意得,点P 在线段AB 的中垂线上,则易得x +2y =3,∴2x+4y≥22x·4y=22x +2y=42,当且仅当x =2y =32时等号成立,故2x +4y的最小值为4 2.9.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解 (1)由已知可得l 2的斜率存在,且k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,∴直线l 1的斜率k 1必不存在,即b =0. 又∵l 1过点(-3,-1), ∴-3a +4=0,即a =43(冲突),∴此种状况不存在,∴k 2≠0,即k 1,k 2都存在.∵k 2=1-a ,k 1=a b,l 1⊥l 2, ∴k 1k 2=-1,即ab(1-a )=-1.①又∵l 1过点(-3,-1),∴-3a +b +4=0.② 由①②联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab=1-a .③又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b ,④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.10.已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 解 (1)设A ′(x ,y ),由已知条件得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. (3)解法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A (-1,-2)的对称点M ′,N ′均在直线l ′上, 易得M ′(-3,-5),N ′(-6,-7), 再由两点式可得l ′的方程为2x -3y -9=0. 解法二:∵l ∥l ′,∴设l ′的方程为2x -3y +C =0(C ≠1). ∵点A (-1,-2)到两直线l ,l ′的距离相等, ∴由点到直线的距离公式,得|-2+6+C |22+32=|-2+6+1|22+32,解得C =-9, ∴l ′的方程为2x -3y -9=0.解法三:设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ).∵点P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. (时间:20分钟)11.已知直线l 的倾斜角为34π,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by+1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2 答案 B解析 由题意知l 的斜率为-1,则l 1的斜率为1, ∴k AB =2--13-a=1,解得a =0.由l 1∥l 2,得-2b=1,b =-2,所以a +b =-2,故选B.12.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( ) A.95 B.185 C.2910 D.295 答案 C解析 由于36=48≠-125,所以两直线平行,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ | 的最小值为2910. 13.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________________.答案 6x -y -6=0解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --3·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.14.已知直线l :x -2y +8=0和两点A (2,0),B (-2,-4). (1)在直线l 上求一点P ,使|PA |+|PB |最小; (2)在直线l 上求一点P ,使||PB |-|PA ||最大.解 (1)设A 关于直线l 的对称点为A ′(m ,n ),则⎩⎪⎨⎪⎧n -0m -2=-2,m +22-2·n +02+8=0,解得⎩⎪⎨⎪⎧m =-2,n =8,故A ′(-2,8).P 为直线l 上的一点,则|PA |+|PB |=|PA ′|+|PB |≥|A ′B |,当且仅当B ,P ,A ′三点共线时,|PA |+|PB |取得最小值,为|A ′B |,点P 即是直线A ′B 与直线l 的交点,解⎩⎪⎨⎪⎧x =-2,x -2y +8=0,得⎩⎪⎨⎪⎧x =-2,y =3,故所求的点P 的坐标为(-2,3).(2)A ,B 两点在直线l 的同侧,P 是直线l 上的一点,则||PB |-|PA ||≤|AB |,当且仅当A ,B ,P 三点共线时,||PB |-|PA ||取得最大值,为|AB |,点P 即是直线AB 与直线l 的交点,又直线AB 的方程为y =x -2,解⎩⎪⎨⎪⎧y =x -2,x -2y +8=0,得⎩⎪⎨⎪⎧x =12,y =10,故所求的点P 的坐标为(12,10).。
高考数学总复习 8-2 圆的方程课件 新人教B版
误区警示 1.解决有关轨迹问题时,要注意所求得轨迹方程表 示的曲线上的点是否都是满足题设要求的轨迹上的点. 2.与圆有关的最值问题,要特别注意是整个圆周上 的点,还是一段圆弧上的点. 3.确定圆的方程必须有三个独立条件,解题时要注 意通过分析找足条件,列出相应的方程.
一、数形结合思想 在解决与圆有关的最值问题时,主要借助圆的几何 性质,用数形结合的方法求解. 1.圆上点到定点 P 的距离的最大(小)值:连结圆心 C 与 P 交圆于两点为最大 (小 )值点.
2.圆上的点到定直线的距离最值:由圆心向直线作 垂线与圆两交点为最值点. 直线 l 与⊙ C 外离, PC⊥ l 交⊙ C 于 A、 B,则在⊙ C 上到直线 l 距离最大 (小 )的点为 B(A).
二、等价转化思想 已知点 P(x, y)为圆上动点 y- b (1)形如 的最值转化为动直线的斜率求解,一般 x- a 在相切位置取最值. (2)形如 ax+ by 的最值,一般设 u= ax+ by,转化为 动直线的截距问题.用判别式法求解,或在相切位置取最 值.
D E 解析: 依题意得,圆心 (- ,- )在直线 x+y= 1 2 2 D E 上,因此有- - = 1,即 D+ E=要熟练由圆的一般方程求出圆心坐标和半径 .
圆的标准方程
[例 2] (2011· 河南重点中学调研 )若圆 C 的半径为 1,
圆心在第一象限,且与直线 4x- 3y= 0 和 x 轴都相切,则 该圆的标准方程是 ( A. (x- 3)
2
)
7 2 +y- = 1 3
B. (x- 2)2+ (y- 1)2= 1 C. (x- 1)2+ (y- 3)2= 1
3 2 D.x- +(y- 1)2= 1 2
2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(知识点讲解)解析版
专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R=2. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%【答案】C【解析】【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为: 226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.h r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1⊙4,则该圆台外接球的表面积为( ) A .56πB .64πC .112πD .128π【答案】C【解析】作出圆台的轴截面等腰梯形,其外接圆是圆台外接球的大圆,在这个轴截面中进行计算可得.【详解】如图等腰梯形ABCD 是圆台的轴截面,EF 是圆台的对称轴,圆台上、下底面的面积之比为1:4,则半径比为1:2,设圆台上、下底面半径分别为r ,2r ,因母线与轴的夹角是60︒,母线长为2,可得圆台的高为1,r =R ,球心到下底面(大圆面)的距离为x ,若球心在圆台两底面之间,如图点M 位置,则222R x =+且222(1)R x =-+,无解;若圆台两底面在球心同侧,如图点O 位置,则222R x =+且222(1)R x =++,解得4x =,则228R =, 则该圆台外接球的表面积为2112R 4π=π.故选:C .【总结提升】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π【答案】B【解析】【分析】设圆锥的高为h ,利用母线与底面所成角求出高即可得解.【详解】设圆锥的高为h , 因为母线与底面所成的角为π6,所以πtan 61h =.圆锥的体积2π1π3=⨯⨯=V . 故选:B例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯ 【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯' ()()679933320607109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( ) AB.CD【答案】C【解析】【分析】 设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r , 则11222S rl r S r l r ππ===甲乙, 所以122r r =, 又12222r r l lπππ+=, 则121r r l +=, 所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以221122214313r h l V V r h ππ==甲乙 故选:C.例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.【答案】 203##263 22##322 【解析】【分析】第一空,将该多面体置于正方体中,由此可知该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,由此可求得其体积;第二空,结合阿基米德多面体的外接球刚好是补形后正方体的棱切球,再求M ,N 两点间距离的最大值即可.【详解】依题意,可将该多面体补成一个棱长为2的正方体,如图,所以该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,其体积112088111323V =-⨯⨯⨯⨯⨯=; 该阿基米德多面体的外接球刚好是正方体的棱切球,即与正方体的各条棱相切于棱的中点的球,该球直径为M ,N 两点间距离的最大值为外接球的直径,则max MN =故答案为:203; 【总结提升】1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:AB AD DB===∴ADB△是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△该几何体的表面积是:632⨯++ 故选:C.例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【答案】232π+33π##3π3【解析】【分析】先画出直观图,再求出圆锥的高,求出两个半圆锥的侧面积之和,从而求出此几何体的表面积和体积.【详解】该几何体为两个底面半径为1,母线长为2的半圆锥拼接而成,设圆锥的高为h,由勾股定理得:413h=-=,则两个半圆锥的侧面积之和为12π22π2⨯⨯=,如图,AB =2CD =,且AB CD ⊥,所以四边形ADBC 的面积为22÷=, 该几何体的表面积为232π+,该几何体的体积为21π13⨯=故答案为:2π 【总结提升】 求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【答案】B【解析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,CD ∴= 因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .2【答案】C【解析】 设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d = 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=3a =,2233r ∴==∴球心O 到平面ABC 的距离1d .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C . D【答案】D【解析】【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D . 解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =, D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==PA PB PC ∴=====2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴R ∴=,34433V R ∴=π==,故选D. 例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B .34π C .2π D .4π 【答案】B 【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴2r ==. ∴圆柱的体积为V =πr 2h =34π×1=34π. 故选B .例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3【答案】B【解析】由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为68102+-=2,∴R ≤2. 又2R ≤3,∴R ≤32,∴V ma x =3439()322ππ=.故选B . 点睛:解答本题的关键是当V 取得最大值时,球与上下底面还是与侧面相切的问题.例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.【答案】144π【解析】【分析】设球心为O ,作出过球心的截面图如图所示,然后根据已知条件结合球的性质求解即可.【详解】 设球心为O,作出过球心的截面图如图所示,则OA =由截面圆的周长为6π,得26AB ππ⨯=,∴3AB =,6.所以该球的表面积为246=144ππ⨯.故答案为:144π.例18. (2019年高考天津卷理)的正方形,侧棱长若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】,借助勾股定理,可知四棱锥的高.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,圆柱的底面半径为, 故圆柱的体积为. 例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】 25π42=11221ππ124⎛⎫⨯⨯= ⎪⎝⎭易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O , 由于223122AM =-=,故1222222S =⨯⨯=△ABC , 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:343V r π==.. 【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.。
高中数学8-2
2.两条直线垂直
如果两条直线l1,l2斜率存在,设为k1,k2,则l1⊥l2⇔ k1·k2=-1 .
大一轮复习 ·高三数学 ·文科 ·经典方案
进入导航
第八章·第二节
第6页
系列丛书
1.直线ax+2y-1=0与直线2x-3y-1=0垂直,则a的值为( D )
____4__x+___3_y_-__6_=__0_________.
(2)已知直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点
_____(2__,__-__2_)_____.
大一轮复习 ·高三数学 ·文科 ·经典方案
进入导航
第八章·第二节
第23页
系列丛书
【解析】 (1)解法1:由方程组xx+-y2-y+2=4=0,0,
大一轮复习 ·高三数学 ·文科 ·经典方案
进入导航
第八章·第二节
第16页
系列丛书
课堂探究·深度剖析
课堂升华 强技提能
大一轮复习 ·高三数学 ·文科 ·经典方案
进入导航
第八章·第二节
第17页
系列丛书
考向一 两条直线的平行与垂直
【例1】 (1)已知两条直线l1:(a-1)x+2y+1=0,l2:x+ay+3
进入导航
第八章·第二节
第29页
系列丛书
【解析】 (1)因为36=48≠-512,所以两直线平行,将直线3x+ 4y-12=0化为6x+8y-24=0,由题意可知|PQ|的最小值为这两条 平行直线间的距离,即|-6224+-852|=2190,所以|PQ|的最小值为2190.
(2)设所求直线的方程为y-4=k(x-3), 即kx-y-3k+4=0, 由已知及点到直线的距离公式可得 |-2k-12++k42-3k|=|4k+21++4k-2 3k|,解得k=2或k=-23, 即所求直线的方程为2x+3y-18=0或2x-y-2=0.
2022年高考数学理科第一轮复习资料:8-2
上页
下页
末页
第8章 圆锥曲线方程
知
识 梳 理
《 走 向
高
考
》
课 堂 题 型 设 计
【例1】 (1)动点P到定点F1(1,0)的距离比它到定点 F2(3,0)的距离小2,则点P的轨迹是( )
·
高 考 总 复 习 数
规
A.双曲线
B.双曲线的一支
学
律
方 法
C.一条射线
D.两条射线
提
炼
课 后 强 化 作 业
故得|MC1|-|MC2|= 在④的情况下,同理得|MC2| -|MC1|=
由③④得|MC1|-|MC2|=±
·
考 》 高 考 总 复 习
数
规
根据双曲线定义,可知点M的轨迹是以C1(-4,0)、 学
律
方 法 提
C2(4,0)为焦点的双曲线,且a=
c=4,b2=c2-a2=
炼 14,其方程为
由①②③④可知,选择D.
知
识
梳
理
(2008·长沙一中月考七)已知双曲线
《
在
走 向
高
课 堂 题 型 设 计
左支上一点M到右焦点F1的距离为18,N是线段MF1的中
点,O为坐标原点,则|ON|等于
()
考 》 高 考 总 复 习
·
规
A.4
律
方 法
C.1
提
炼
数
B.2
学
D.
课
答案:A
后
强
化
作
业
首页
上页
下页
末页
第8章 圆锥曲线方程
知
·
高 考 总 复 习
专题8-2 立体几何中的截面及其归类2023年高考数学一轮复习热点题型归纳与变式演练(原卷版)
C.①③④
D.②③④
【题型二】截面作图基本功:相交线法
【典例分析】
基础模型:如下图 E、F 是几等分点,不影响作图。可以先默认为中点,等学生完全理解了,再改成任意等 分点。做出过三 E,F,C1 点的截面
【题型三】截面作图基本功:平行线法
【典例分析】
基础模型:如下图 E、F 是几等分点,不影响作图。可以先默认为中点,等学生完全理解了,再改成任意等 分点。做出过三 E,F,C1 点的截面
2
:1的两部分,则
A1K KB1
的值为(
)
A.
2 3
B. 5 1 2
C. 5 1 2
D. 3- 5 2
2.如图,在棱长为 2 的正方体 ABCD A1B1C1D1 中,点 P 是棱 AB 上的动点,过 A1,C1 ,P 三点作正方体的截 面,若截面把正方体分成体积之比为 7:25 的两部分,则该截面的周长为( )
B.
1 2
C. 2 4
D. 2 1
2.如图,在四面体
中,截面
经过四面体的内切球(与四个面都相切的球)球心 ,且与
分别截于
,如果截面将四面体分成体积相等的两部分,设四棱锥
与三棱锥
面积分别是
,则必有( )
的表
A.
B.
C.
D.
的大小关系不能确定
3.已知球 O 为棱长为 1 的正方体 ABCD A1B1C1D1 的内切球,则平面 B1CD1 截球 O 的截面面积为______.
【题型一】截面基础:截面形状
【典例分析】
用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是( )
A.圆锥 C.三棱锥
B.圆柱 D.正方体
2022届高考数学总复习 第八章 圆锥曲线 8-2课后巩固提升新人教A版
【创优导学案】2022届高考数学总复习第八章圆锥曲线 8-2课后巩固提升(含解析)新人教A版对应学生用书2”=0,又过点-1,2,∴-3+4+m=0,m=-1,∴3+2-1=0为所求.3.两直线3+4-2=0与6+8-5=0的距离等于A.3 B.7解析 C 方程6+8-5=0化为3+4-错误!=0,∴d=错误!=错误!4.与直线3-4+5=0关于轴对称的直线方程为A.3+4+5=0 B.3+4-5=0C.-3+4-5=0 D.-3+4+5=0解析 A 与直线3-4+5=0关于轴对称的直线方程是3-4-+5=0,即3+4+5=0,故选A5.2022·湖北重点中学联考已知点A-3,-4,B6,3到直线:a++1=0的距离相等,则实数a的值为B.-错误!C.-错误!或-错误!或错误!解析 C 由题意及点到直线的距离公式得错误!=错误!,解得a=-错误!或-错误!6.已知直线1:=2+3,直线2与1关于直线=对称,直线3⊥2,则3的斜率为B.-错误!C.-2 D.2解析 C ∵直线1与2关于=对称,∴直线2的方程为=2+3,即=错误!-错误!,∴2=错误!又3⊥2,∴3=-错误!=-2二、填空题本大题共3小题,每小题8分,共24分7.2022·浙江高考若直线-2+5=0与直线2+m-6=0互相垂直,则实数m=________ 解析由题意可得1×2-2m=0,解得m=1【答案】 18.与直线7+24-5=0平行,并且距离等于3的直线方程是________.解析设所求的直线方程为7+24+b=0,由两条平行线间的距离为3,得错误!=3,则b=-80或b=70,故所求的直线方程为7+24-80=0或7+24+70=0 【答案】7+24-80=0或7+24+70=09.若点1,1到直线co α+in α=2的距离为d,则d的最大值是________.解析d=|co α+in α-2|=|错误!in错误!-2|,于是当in错误!=-1时,d取得最大值2+错误!【答案】2+错误!三、解答题本大题共3小题,共40分10.12分在△ABC中,已知A点坐标为3,-1,∠B的内角平分线BD所在直线的方程是-3+6=0,AB边上中线CE所在直线的方程是+-8=0,求点B的坐标.解析设Bm,n,由于E为AB中点,∴E错误!由B点在直线BD上,E点在直线CE上,得错误!解得错误!∴点B的坐标为9,5.11.12分已知直线在两坐标轴上的截距相等,且点A1,3到直线的距离为错误!,求直线的方程.解析当直线过原点时,设直线方程为=,则由点A1,3到直线的距离为错误!,得错误!=错误!,解得=-7或=1∴直线的方程为=-7或=当直线不过原点时,设直线方程为错误!+错误!=1,则由点A1,3到直线的距离为错误!,得错误!=错误!,解得a=2或a=6∴直线的方程为+-2=0或+-6=0综上所述,直线的方程为=-7,=,+-2=0,+-6=012.16分2022·合肥月考已知两直线1:a-b+4=0和2:a-1++b=0,求满足下列条件的a,b的值.11⊥2,且直线1过点-3,-1;21∥2,且坐标原点到这两条直线的距离相等.解析1∵1⊥2,∴aa-1-b=0又∵直线1过点-3,-1,∴-3a+b+4=0故a=2,b=22∵直线2的斜率存在,1∥2,∴直线1的斜率存在.∴1=2,即错误!=1-a又∵坐标原点到这两条直线的距离相等,∴1,2在轴上的截距互为相反数,即错误!=b 故a=2,b=-2或a=错误!,b=2。
2022年高考数学理科第一轮复习资料:8-2
第八章 第二讲时间:60分钟 满分:100分一、选择题(8×5=40分)1.(2010·宁夏模拟)双曲线x 210-y 22=1的焦距为 ( )A .32B .42C .33D .4 3答案:D解析:由已知有c 2=a 2+b 2=12,所以c =23,故双曲线的焦距为4 3.故选D.2.(2009·福建,4)若双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a 等于 ( ) A .2 B. 3 C.32D .1 答案:D解析:∵x 2a 2-y 23=1(a >0),∴b 2=3, ∴c 2=a 2+b 2,∴c 2a 2=a 2+b 2a 2=1+3a2=4,∴a 2=1.故选D. 3.(2009·安徽,6)下列双曲线中离心率为62的是 ( ) A.x 22-y 24=1 B.x 24-y 22=1 C.x 24-y 26=1 D.x 24-y 210=1 答案:B解析:由已知e 2=c 2a 2=a 2+b 2a 2=32得b 2a 2=12,即a 2=2b 2,观察选项,故选B. 4.(2009·宁夏、海南4)双曲线x 24-y 212=1的焦点到渐近线的距离为 ( ) A .2 3 B .2 C. 3 D .1答案:A 解析:双曲线x 24-y 212=1的焦点为(4,0)、(-4,0).渐近线方程为y =±3x .由双曲线的对称性可知,任一焦点到任一渐近线的距离相等.d =|43+0|3+1=2 3. 5.如果双曲线x 24-y 22=1上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是 ( )A.463B.263C .2 6D .2 3 答案:A命题意图:考查双曲线的基本定义. 解析:依题意知P 在右支上,准线l :x =46,右焦点F :(6,0),离心率e =62. 设P 到l 的距离为d ,由第二定义可知,|PF |d =2d =62, ∴d =46. 故P 到y 轴的距离为46+46=436,故选A. 6.(2009·湖北,5)已知双曲线x 22-y 22=1的准线经过椭圆x 24+y 2b2=1(b >0)的焦点,则b = ( )A .3 B. 5 C. 3 D. 2答案:C解析:已知双曲线的准线方程为x =±a 2c =±22+2=±1, ∴椭圆的焦点坐标为(±1,0),即c =1.∴b 2=4-1=3,∴b = 3.故选C.7.(2009·山东临沂一模)已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是 ( )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1 D.x 27-y 23=1 答案:A解析:∵MF 1→·MF 2→=0,∴MF 1→⊥MF 2→.∵||MF 1→|-|MF 2→||=2a ,∴|MF 1→|2+|MF 2→|2=40.∴|MF 1→|·|MF 2→|=20-2a 2=2,∴a 2=9, b 2=1,∴所求双曲线的方程为x 29-y 2=1. 8.(2010·辽宁省东北育才模拟)若双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的离心率是 ( ) A. 5 B.62 C .2 D.233答案:D解析:由已知得b =14×2c =12c ,∴b 2=c 2-a 2=14c 2,∴a 2=34c 2,∴c 2a 2=43,∴e =233,故选D.二、填空题(4×5=20分)9.双曲线x 2-y 23=1的焦点坐标为________;若曲线x 2-my 2=1有一条准线方程为x =2,则实数m 为________.答案:(±2,0) m =-43解析:∵x 2-y 23=1, ∴a =1,b =3,c =2,∴焦点坐标为(±2,0).若曲线x 2-my 2=1为双曲线,则准线方程x =a 2c<2,故不符.则曲线为椭圆,m <0,a 2=1,b 2=-1m ,c 2=1+1m ,x =11+1m=2,∴m =-43. 10.(2009·浙江宁波一模)已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则此双曲线的标准方程是________. 答案:x 25-y 220=1 解析:设双曲线的标准方程为x 2a 2-y 2b2=1, c =5,y =±b a x ,b a=2,又c 2=a 2+b 2, ∴a 2=5,b 2=20,∴所求双曲线的标准方程是x 25-y 220=1. 11.已知圆C 过双曲线x 29-y 216=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是________.答案:163解析:由双曲线的几何性质易知圆C 过双曲线同一支上的顶点和焦点,所以圆C 的圆心的横坐标为4,故圆心坐标为(4,±473),易求它到中心的距离为163. 12.(2009·北京宣武)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值是______________.答案:53解析:设|PF 1|=m ,|PF 2|=n ,由定义得:m -n =2a ,由已知m =4n ,解得⎩⎨⎧m =8a 3,n =2a 3, 在△PF 1F 2中,由余弦定理得(2c )2=m 2+n 2-2mn cos ∠F 1PF 24c 2=(8a 3)2+(2a 3)2-2·8a 3·2a 3·cos ∠F 1PF 2 整理得:e 2=179-89cos ∠F 1PF 2, 当cos ∠F 1PF 2=-1时,e 2最大为259,∴e 最大为53.三、解答题(4×10=40分)13.(2009·成都检测)由双曲线x 29-y 24=1上的一点P 与左、右两焦点F 1、F 2构成△PF 1F 2,求△PF 1F 2的内切圆与边F 1F 2的切点坐标.解析:由双曲线方程知a =3,b =2,c =13.如右图,根据从圆外一点引圆的两条切线长相等及双曲线定义可得|PF 1|-|PF 2|=2a .由于|NF 1|-|NF 2|=|PF 1|-|PF 2|=2a .①|NF 1|+|NF 2|=2c . ②由①②得|NF 1|=2a +2c 2=a +c . ∴|ON |=|NF 1|-|OF 1|=a +c -c =a =3.故切点N 的坐标为(3,0).根据对称性,当P 在双曲线左支上时,切点N 的坐标为(-3,0).14.已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0;(3)求ΔF 1MF 2的面积.解析:(1)解:∵e =2,∴可设双曲线方程为x 2-y 2=λ(λ≠0).∵过点(4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 2-y 2=6.(2)证明:方法一:由(1)可知,双曲线中a =b =6,∴c =23,∴F 1(-23,0),F 2(23,0),∴kMF 1=m 3+23,kMF 2=m 3-23, kMF 1·kMF 2=m 29-12=-m 23. ∵点(3,m )在双曲线上,∴9-m 2=6,m 2=3,故kMF 1·kMF 2=-1,∴MF 1⊥MF 2,∴MF 1→·MF 2→=0.方法二:∵MF 1→=(-3-23,-m ),MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2.∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0.(3)解:ΔF 1MF 2的底|F 1F 2|=43,ΔF 1MF 2的高h =|m |=3,∴SΔF 1MF 2=6.15.直线l :y =kx +1与双曲线C: 2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解析:(1)将直线l 的方程y =kx +1代入双曲线C 的方程2x 2-y 2=1后,整理得(k 2-2)x 2+2kx +2=0①依题意,直线l 与双曲线C 的右支交于不同两点, 故⎩⎪⎨⎪⎧k 2-2≠0Δ=(2k )2-8(k 2-2)>0-2k k 2-2>02k 2-2>0, 解得k 的取值范围为-2<k <- 2.(2)设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则由①式得⎩⎨⎧ x 1+x 2=2k 2-k 2x 1·x 2=2k 2-2, ②假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0),则由F A ⊥FB 得(x 1-c )(x 2-c )+y 1y 2=0.即(x 1-c )(x 2-c )+(kx 1+1)(kx 2+1)=0.整理得:(k 2+1)x 1x 2+(k -c )(x 1+x 2)+c 2+1=0 ③把②式及c =62代入③式化简得5k 2+26k -9=0. 解得k =-6+65或k =6-65∉(-2,-2)(舍去). 可知k =-6+65使得以线段AB 为直径的圆经过双曲线C 的右焦点. 16.(2009·上海,21)已知双曲线C :x 22-y 2=1,设过点A (-32,0)的直线l 的方向向量e =(1,k ).(1)当直线l 与双曲线C 的一条渐近线m 平行时,求直线l 的方程及l 与m 的距离;(2)证明:当k >22时,在双曲线C 的右支上不存在点Q ,使之到直线l 的距离为 6. 解析:(1)双曲线C 的渐近线m :x 2±y =0,即x ±2y =0, ∴直线l 的方程x ±2y +32=0.∴直线l 与m 的距离d =|32|12+(2)2= 6. (2)证法一:设过原点且平行于l 的直线b :kx -y =0,则直线l 与b 的距离d =32|k |1+k 2, 当k >22时,d > 6.又双曲线C 的渐近线为x ±2y =0, ∴双曲线C 的右支在直线b 的右下方. ∴双曲线C 右支上的任意点到直线l 的距离大于 6.故在双曲线C 的右支上不存在点Q ,使之到直线l 的距离为 6.证法二:假设双曲线C 右支上存在点Q (x 0,y 0)到直线l 的距离为6,则⎩⎪⎨⎪⎧ |kx 0-y 0+32k |1+k 2=6, (1)x 20-2y 20=2, (2)由(1)得y 0=kx 0+32k ±6·1+k 2,设t =32k ±6·1+k 2,当k >22时,t =32k +6·1+k 2>0, t =32k -6·1+k 2=6×2k 2-13k 2+1+k 2>0. 将y 0=kx 0+t 代入(2)得(1-2k 2)x 20-4ktx 0-2(t 2+1)=0,∵k >22,t >0,∴1-2k 2<0,-4kt <0,-2(t 2+1)<0, ∴方程()不存在正根,即假设不成立,故在双曲线C 的右支上不存在点Q ,使之到直线l 的距离为 6.。
中职高考数学一轮复习讲练测专题8-2 圆(练)解析版
专题8.2 圆1.圆心是(4,-1),且过点(5,2)的圆的标准方程是( A )A .(x -4)2+(y +1)2=10B .(x +4)2+(y -1)2=10C .(x -4)2+(y +1)2=100D .(x -4)2+(y +1)2=10[解析] 设圆的标准方程为(x -4)2+(y +1)2=r 2,把点(5,2)代入可得r 2=10,即得选A .2.圆(x +1)2+(y -2)2=4的圆心坐标和半径分别为( A )A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),4[解析] 圆(x +1)2+(y -2)2=4的圆心坐标为(-1,2),半径r =2.3.点⎝⎛⎭⎫12,32与圆x 2+y 2=12的位置关系是( C ) A .在圆上 B .在圆内 C .在圆外 D .不能确定[解析] 将点⎝⎛⎭⎫12,32的坐标代入圆的方程可知(12)2+(32)2=1>12.∴点在圆外. 4.若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是( B )A .RB .(-∞,1)C .(-∞,1]D .[1,+∞)[解析] ∵D 2+E 2-4F >0,∴16+4-20k >0,∴k <1,故选B .5.已知A (0,-5)、B (0,-1),则以线段AB 为直径的圆的方程是( B )A .(x +3)2+y 2=2B .x 2+(y +3)2=4C .(x +3)2+y 2=4D .(x -3)2+y 2=2[解析] 圆的圆心是(0,-3),半径是r =12|-5-(-1)|=2.故圆的方程为x 2+(y +3)2=4. 6.圆x 2+y 2-4x -1=0的圆心坐标及半径分别为( B )A .(2,0),5B .(2,0),5C .(0,2),5D .(2,2),5[解析] (x -2)2+y 2=5,圆心坐标为(2,0),半径为 5.7.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( C ) A .-2或2 B .12或32 C .2或0 D .-2或0[解析] 化圆的标准方程为(x -1)2+(y -2)2=5,则由圆心(1,2)到直线x -y +a =0距离为22,得|1-2+a |2=22,∴a =2或0. 8.方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是__(-2,-4)__,半径是__5__.[解析] 由题可得a 2=a +2,解得a =-1或a =2.当a =-1时,方程为x 2+y 2+4x +8y -5=0,表示圆,故圆心为(-2,-4),半径为5.当a =2时,方程不表示圆.9.圆O 1:x 2+y 2-2x =0与圆O 2:x 2+y 2-4y =0的位置关系是( B )A .外离B .相交C .外切D .内切[解析] 圆O 1(1,0),r 1=1,圆O 2(0,2),r 2=2,|O 1O 2|=(1-0)2+(0-2)2=5<1+2,且5>2-1,故两圆相交.10. 以(-2,1)为圆心且与直线x +y =3相切的圆的方程为( D )A .(x -2)2+(y +1)2=2B .(x +2)2+(y -1)2=4C .(x -2)2+(y +1)2=8D .(x +2)2+(y -1)2=8[解析] 由所求的圆与直线x +y -3=0相切,∴圆心(-2,1)到直线x +y -3=0的距离d =|-2+1-3|2=22,∴所求圆的方程为(x +2)2+(y -1)2=8. 11. 经过A (0,0),B (1,0),C (2,1)三点的圆的方程为 ( )A.x 2+y 2+x -3y -2=0 B .x 2+y 2+3x+y -2=0C .x 2+y 2+x+3y=0D .x 2+y 2-x -3y=0 [解析] 把三点代入验证,只有D 选项满足题意.1.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( A )A .-43B .-34C .3D .2[解析] 配方得(x -1)2+(y -4)2=4,∴圆心为C (1,4).由条件知|a +4-1|a 2+1=1.解之得a =-43.故选A .2.已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足( C )A .是圆心B .在圆上C .在圆内D .在圆外[解析] 因为(3-2)2+(2-3)2=2<4,故点P (3,2)在圆内.3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( A )A .(x -2)2+(y +1)2=1B .(x -2)2+(y -1)2=1C .(x -1)2+(y +2)2=1D .(x +1)2+(y +2)2=1[解析] ∵点P (x ,y )关于原点的对称点为P ′(-x ,-y ),∴将-x ,-y 代入⊙C 的方程得(-x +2)2+(-y -1)2=1.即(x -2)2+(y +1)2=1.故选A .4.若点(2a ,a -1)在圆x 2+y 2-2y -5a 2=0的内部,则a 的取值范围是( D )A .(-∞,45]B .(-43,43)C .(-34,+∞)D .(34,+∞) [解析] 化圆的标准方程为x 2+(y -1)2=5a 2+1,点(2a ,a -1)的圆的内部,则(2a )2+(a -1-1)2<5a 2+1,解得a >34. 5.若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为 .[解析] 因为点C 与点(2,0)关于点(1,0)对称,所以点C 的坐标为(0,0).又圆C 的半径为1,所以圆C 的标准方程为x 2+y 2=1.6.以A (2,2),B (5,3),C (3,-1)为顶点的三角形的外接圆的标准方程是 . [解析]设所求圆的标准方程为(x-a )2+(y-b )2=r 2,则有{(2-a )2+(2-b )2=r 2,(5-a )2+(3-b )2=r 2,(3-a )2+(-1-b )2=r 2,解得{a =4,b =1,r 2=5,则ABC 的外接圆的标准方程为(x-4)2+(y-1)2=5.7.圆x 2+y 2-2y -1=0关于直线y =x 对称的圆的方程是( A )A .(x -1)2+y 2=2B .(x +1)2+y 2=2C .(x -1)2+y 2=4D .(x +1)2+y 2=4 [解析] 圆x 2+y 2-2y -1=0的圆心坐标为(0,1),半径r =2,圆心(0,1)关于直线y =x 对称的点的坐标为(1,0),故所求圆的方程为(x -1)2+y 2=2.8.判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.[解析] 由方程x 2+y 2-4mx +2my +20m -20=0,可知D =-4m ,E =2m ,F =20m -20,∴D 2+E 2-4F =16m 2+4m 2-80m +80=20(m -2)2,因此,当m =2时,D 2+E 2-4F =0,它表示一个点,当m ≠2时,D 2+E 2-4F >0,原方程表示圆的方程,此时,圆的圆心为(2m ,-m ),半径为r =12D 2+E 2-4F =5|m -2|. 1.(2018年河北对口)过圆2225x y +=上一点(3,4)的切线方程为( )A 、34250x y +-=B 、 34250x y ++=C 、34250x y --=D 、34250x y -+=【答案】A2.(2011年河北对口) 圆0422=-+x y x 关于直线x+y=0的对称圆的方程是( ) A.0422=-+y y x B.0222=-+y y x C.0222=++y y x D.0422=++y y x 【答案】D。
中职高考数学一轮复习讲练测专题8-2 圆(讲)(含详解)
专题8.2 圆【考纲要求】1.掌握圆的标准方程,理解确定圆的条件,能够根据条件求出圆的标准方程;2.了解圆的一般方程的特点,会从一般方程中求出圆心坐标和半径长。
【考向预测】1. 求圆的方程2. 判断点与圆的位置关系3. 从一般方程中求出圆心坐标和半径长4. 二元二次方程与圆的关系【知识清单】1.圆的定义及方程2. 点与圆的位置关系圆C:(x-a)2+(y-b)2=r2(r>0),其圆心为(a,b),半径为r,点P(x0,y0),设d=|PC|=(x0-a)2+(y0-b)2.【考点分类剖析】考点一 求圆的方程例1.(1)以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是__ __. 例2.求过点A (-1,0)、B (3,0)和C (0,1)的圆的方程. 【变式探究】1.写出下列各圆的标准方程. (1)圆心在原点,半径长为2;(2)圆心是直线x +y -1=0与2x -y +3=0的交点,半径长为14.2.圆心既在直线x -y =0上,又在直线x +y -4=0上,且经过原点的圆的方程是__ __.3.已知△ABC 的三个顶点为A (1,4)、B (-2,3)、C (4,-5),求△ABC 的外接圆的一般方程. 考点二 判断点与圆的位置关系例1.已知两点P 1(3,8)和P 2(5,4),求以线段P 1P 2为直径的圆的方程,并判断点M (5,3)、N (3,4)、P (3,5)是在此圆上,在圆内,还是在圆外? 【方法归纳】点与圆的位置关系的判断方法:(1)几何法:利用圆心到该点的距离d 与圆的半径r 比较; (2)代数法:直接利用下面的不等式判定:①(x 0-a )2+(y 0-b )2>r 2,点在圆外;②(x 0-a )2+(y 0-b )2=r 2,点在圆上;③(x 0-a )2+(y 0-b )2<r 2,点在圆内.【变式探究】写出圆心为(3,4),半径为5的圆的方程,并判定点A (0,0)、B (1,3)与该圆的位置关系.考点三 圆的一般方程例1.圆x 2+y 2-2x +y +14=0的圆心坐标和半径分别是( )A .(-1,12);1B .(1,-12);1C .(1,-12);62D .(-1,12);62【变式探究】方程x 2+y 2+2ax -by +c =0表示圆心为C (2,2),半径为2的圆,则a ,b ,c 的值依次为( )A .-2,4,4B .-2,-4,4C .2,-4,4D .2,-4,-4考点四 圆的标准方程的综合应用例1.求过点A (1,-1)、B (-1,1),且圆心在直线x +y -2=0上的圆的标准方程.【变式探究】求经过A (6,5)、B (0,1)两点,并且圆心C 在直线l :3x +10y +9=0上的圆的标准方程.考点五 二元二次方程与圆的关系例题1. m 是什么实数时,关于x 、y 的方程(2m 2+m -1)x 2+(m 2-m +2)y 2+m +2=0表示一个圆?【方法归纳】 形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时可有两种方法:①由圆的一般方程的定义,若D 2+E 2-4F >0,则表示圆,否则不表示圆;②将方程配方,根据圆的标准方程的特征求解.应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式.若不是,则要化为这种形式再求解. 【变式探究】已知方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求: (1)实数m 的取值范围; (2)圆心坐标和半径.专题8.2 圆【考纲要求】1.掌握圆的标准方程,理解确定圆的条件,能够根据条件求出圆的标准方程;2.了解圆的一般方程的特点,会从一般方程中求出圆心坐标和半径长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
最新考纲 高考热点
掌握双曲线的定义、标准方程和双 曲线的简单几何性质. 以客观题的形式考查双曲线的定义 、离心率、渐近线、焦半径等知识.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
题 型一 思 维提示
例1
双曲线定义的应用 ①准确理解定义 ②定义的灵活应用
已知双曲线的中心在坐标原点,焦点在 x 轴上,F1、 π F2 分别为左、右焦点,双曲线的右支上有一点 P,∠F1PF2= , 3 且△PF1F2 的面积为 2 3,又双曲线的离心率为 2,求该双曲线 的方程.
.
.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
4.双曲线上的点P(x0,y0)与左(下)焦点F1,或右(上)焦 点F2 之间的线段长度称作焦半径,分别记作r1 =| ·数学(理) 数学(
5.双曲线上的点P(x0 ,y0)与两焦点构成△PF1F2 称做焦 点三角形,∠F1PF2=θ. (1)θ= (2)S△PF1F2= 6.与双曲线
衡水 · 名师新作
2.双曲线的几何性质.
标准 方程 中心 顶点 范围
=1 (a>0,b>0) (0,0) (a,0),(-a,0) |x|≥a
=1 (a>0,b>0) (0,0) (0,a),(0,-a) |y|≥a
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
标准 方程
=1 (a>0,b>0) (c,0),(-c,0) x= ,x=-
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
题型三 思维提示
双曲线几何性质的应用 ①熟练掌握双曲线的几何性质 ②灵活应用几何性质解题
x2 y2 例 3 双曲线 2- 2=1(a>1,b>0)的焦距为 2c, a b 直线 l 过点(a,0)和(0,b),且点(1,0)到直线 l 的距离与 4 点(-1,0)到直线 l 的距离之和 s≥ c,求双曲线的离心 5 率 e 的取值范围.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
备考例题 2
5 x2 已知双曲线的离心率 e= ,且与椭圆 2 13
y2 + =1 有共同的焦点,求该双曲线方程. 3
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
x2 y2 x2 解法二: 设与椭圆 + =1 共焦点的双曲线方程为 + 13 3 13-k y2 x2 y2 =1(3<k<13),即 - =1. 3-k 13-k k-3 ∴a= 13-k,c= 10. c 10 ∴离心率 e= = , a 13-k 10 5 即 = ,解得 k=5, 13-k 2 x2 y2 ∴所求双曲线方程为 - =1. 8 2
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
[分析]
在△PF1F2 中利用余弦定理得出|F1F2|、|PF1|、
|PF2|的关系,再利用双曲线定义,得到|PF1|·|PF2|与a、b、c 的关系,再利用三角形面积得到关于a,b,c的方程,解方 程组求得a,b,c,从而得到双曲线方程.
衡水 · 名师新作
中的一个未知数表示出双曲线的标准方程,但要判断点P的 位置,才能确定双曲线方程的类型,再由点P在双曲线上, 用待定系数法求出该双曲线的方程.已知渐近线方程也可用 双曲线系写出标准方程,再把P点坐标代入方程可求出参数λ, 从而求出双曲线方程.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
[解] 解法一:∵双曲线的一条渐近线方程为 x-2y=0, 1 即 y= x.当 x=4 时,y=2<yP=3, 2 y2 x2 ∴焦点在 y 轴上, 设双曲线方程为 2- 2=1(a>0, b>0), a b a 1 则 = ,设 a=k,b=2k,则 a2=k2,b2=4k2, b 2 y2 x2 ∴双曲线方程为 2- 2=1, k 4k 9 16 ∵P(4,3)在双曲线上, 2- 2=1, k 4k y2 x2 ∴k2=5,∴a2=5,b2=20,∴所求双曲线方程为 - = 5 20 1.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
[规律总结]
在利用双曲线定义解题时,要注意焦点三
角形中余弦定理的应用,即||PF1|-|PF2||=2a与|F1F2|2=|PF1|2 +|PF2|2-2|PF1|·|PF2|·cos∠F1PF2的联系.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
1.双曲线的定义. (1)第一定义:平面内动点P与两个定点F1 、F2(|F1F2|= 2c>0)的距离之差的绝对值为常数2a. ①当 a<c 时,P点的轨迹是 双曲线 ; ②当 a=c时,P点的轨迹是 以F1、F2为端点的两条射线 ; ③当 a>c 时,P点的轨迹不存在. (2)第二定义:平面内动点P到定点F的距离和它到定直 线l距离的比是常数e,且xa>c 的轨迹是双曲线.定点F是 焦点 ,定直线l是 焦点 ,常数e是双曲线的离心率 . 高考总复习 ·数学(理) 数学(
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
求双曲线的标准方程 ①注意双曲线方程的标准形式 思维提示 ②双曲线方程的设法 例2 已知双曲线的一条渐近线方程是x-2y=0,且过
题型二
点P(4,3),求双曲线的标准方程. [ [分析] ] 已知渐近线方程,即知道a与b的比,可用a、b a b a b
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
解:(1)如图所示, 令∠F1PF2=θ. 因|F1F2 |=2c, 2 则 a2-b1=a2+b2=c2, 1 2 2 2 即 a2-a2=b2+b2. 1 1 2 由椭圆、双曲线定义,得 |PF1|+|PF2 |=2a1,|PF1 |-|PF2|=2a2 (令|PF1 |>|PF2 |). 所以|PF1|=a1+a2,|PF2|=a1-a2. |PF1|2+|PF2 |2-4c2 cosθ= 2|PF1|·|PF2 | 2 (a1+a2)2+(a1-a2)2-2(a2-b2)-2(a2+b2) 1 1 2 = 2(a2-a2) 1 2 2 b2-b2 b2-b2 1 1 2 = 2 = 2 2 2. a1-a2 b1+b2
. = c|y0| .
=
=
=1(a>0,b>0)有共同渐近线的双
曲线方程为 7.以
.. .
=0为渐近线的双曲线方程为
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
(1)对于双曲线的第一定义,应注意:①若点 P 在双 曲线的左支上,则有|PF2|-|PF1 |=2a;若点 P 在双曲线 的右支上,则有|PF1 |-|PF2 |=2a(其中 F1、F2 分别为双曲 线的左、右焦点);②2c>2a 是双曲线定义中的隐含条 件. c=a, 若 则轨迹是以 F1、 2 为端点的两条射线(向外); F 若 c<a,则无轨迹. (2)与椭圆类似,双曲线的标准方程有两种形式,具 x2 体是哪一种形式,由焦点位置确定.若给定标准方程 - m y2 =1(m,n 同号),判定焦点位置的方法是:m>0,n>0, n 焦点在 x 轴上;m<0,n<0,焦点在 y 轴上.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
[规律总结]
要解决双曲线中有关离心率或求离心率范
围的问题,应找好题中的等量关系或不等关系,构造出离心 率e= 的关系式,这里应和椭圆中a,b,c的关系区分好,即 c2=a2+b2.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
备考例题 3 已知双曲线的中心在原点,焦点 F1,F2 在坐标轴上,离心率为 2,且过点(4,- 10). (1)求双曲线方程; → → (2)若点 M(3,m)在双曲线上,求证:MF1·MF2=0; (3)求△F1MF2 的面积.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
x y [解] 直线 l 的方程为 + =1, a b 即 bx+ay-ab=0. 由点到直线的距离公式,且 a>1,得点(1,0)到直 b(a-1) 线 l 的距离 d1= 2 2. a +b b(a+1) 同理可得点(-1,0)到直线 l 的距离 d2= 2 a +b2 2ab 2ab ∴s=d1+d2= 2 2= c , a +b 4 2ab 4 又 s≥ c 得 ≥ c,即 5a· c2-a2≥2c2, 5 5 c 于是得:5 e2-1≥2e2,即 4e4-25e2+25≤0. 5 5 2 解得 e ∈[ ,5],又 e>1,∴e 的范围是 e∈[ , 4 2 5].
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
(2)证法一:由(1)可知,双曲线中 a=b= 6, ∴c=2 3, ∴F1(-2 3,0),F2(2 3,0), m m ∴kMF1= ,kMF2= , 2+2 3 3-2 3 m2 m2 =- . kMF1·kMF2= 3 9-12 ∵点(3,m)在双曲线上,∴9-m2=6,m2=3, 故 kMF1·kMF2=-1,∴MF1⊥MF2. → → ∴MF1·MF2=0.
衡水 · 名师新作
高考总复习 ·数学(理) 数学(
x 解法二:∵双曲线的一条渐近线方程为 x-2y=0,即 -y 2 x2 2 =0.∴双曲线的渐近线方程为 -y =0, 4 x2 2 ∴可设双曲线方程为 -y =λ(λ≠0). 4 42 2 ∵双曲线经过点 P(4,3),∴ -3 =λ,∴λ=-5, 4 x2 2 y2 x2 ∴所求的双曲线方程为 -y =-5,即 - =1. 4 5 20
备考例题 1
y2 - 2=1(a2>0,b2>0)有公共焦点 F1、F2,设 P 是它们的一个 b2 交点. (1)试用 b1,b2 表示△F1PF2 的面积; (2)当 b1+b2=m(m>0)是常数时,求△F1PF2 面积的最大 值.