[精品]初中数学竞赛专项训练

合集下载

初中中数学竞赛试题及答案

初中中数学竞赛试题及答案

初中中数学竞赛试题及答案初中数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0或13. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,则这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形4. 一个多项式f(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. 2, 3, 4C. 1, 3, 4D. 2, 2, 35. 一个圆的半径为5,圆心到直线的距离为4,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切6. 以下哪个是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 椭圆7. 一个数列1, 3, 5, ..., 19,这个数列共有多少项?A. 10B. 11C. 12D. 138. 一个等差数列的首项是2,公差是3,那么第10项是:A. 29B. 32C. 35D. 389. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加8平方米,求原长方形的宽是多少?A. 2米B. 3米C. 4米D. 5米10. 一个分数的分子与分母的和是21,如果分子增加5,分母增加1,新的分数等于1,求原分数是多少?A. 3/18B. 4/17C. 5/16D. 6/15二、填空题(每题4分,共20分)11. 如果一个数的平方根等于它本身,那么这个数是________。

12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。

13. 一个多项式f(x) = x^2 - 5x + 6可以分解为________。

14. 一个数的立方根等于它本身,这个数是________。

15. 如果一个数列的前三项是1, 2, 3,且每一项都是前一项的两倍,这个数列的第5项是________。

历年初中数学竞赛试题精选(含解答)

历年初中数学竞赛试题精选(含解答)

初三数学竞赛试题 4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是()A. m(1+a%)(1-b%)元B. m?a%(1-b%)元C. m(1+a%)b%元D. m(1+a%b%)元解:选C。

设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。

由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于是x=a+b+c+d=9。

解:出发1小时后,①、②、③号艇与④号艇的距离分别为各艇追上④号艇的时间为对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。

解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则由①②得,代入③得:∴,故n的最小整数值为23。

答:要在2小时内抽干满池水,至少需要水泵23台解:设第一层有客房间,则第二层有间,由题可得由①得:,即由②得:,即∴原不等式组的解集为∴整数的值为。

答:一层有客房10间。

解:设劳动竞赛前每人一天做个零件由题意解得∵是整数∴=16(16+37)÷16≈3.3故改进技术后的生产效率是劳动竞赛前的3.3倍。

初中数学竞赛专项训练(2)(方程应用)一、选择题:答:D。

解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程:,化简得,解得不合题意舍去)。

应选D。

答:C。

解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为所以,生产第9档次产品获利润最大,每天获利864元。

答:C。

解:若这商品原来进价为每件a元,提价后的利润率为,则解这个方程组,得,即提价后的利润率为16%。

答:B。

解:设甲乙合作用天完成。

由题意:,解得。

故选B。

答:A。

解:A与B比赛时,A胜2场,B胜0场,A与B的比为2∶0。

七年级上册数学竞赛题和经典题

七年级上册数学竞赛题和经典题

七年级上册数学竞赛题和经典题一、竞赛题与经典题。

1. (有理数运算)计算:( 2)^3+[26 ( 3)×2]÷4解析:先计算指数运算( 2)^3=-8。

再计算括号内的式子,[26-( 3)×2]=[26 + 6]=32。

然后进行除法运算32÷4 = 8。

最后进行加法运算-8+8 = 0。

2. (整式的加减)化简:3a + 2b 5a b解析:合并同类项,3a-5a=-2a,2b b=b。

所以化简结果为-2a + b。

3. (一元一次方程)解方程:3(x 1)-2(x + 1)=6解析:先去括号,3x-3-2x 2=6。

再移项,3x-2x=6 + 3+2。

合并同类项得x = 11。

4. (数轴相关)在数轴上,点A表示的数为-3,点B表示的数为5,求A、B两点间的距离。

解析:数轴上两点间的距离等于右边的数减去左边的数(大数减小数)。

所以AB = 5-( 3)=5 + 3 = 8。

5. (绝对值)已知| x|=3,| y| = 5,且x>y,求x + y的值。

解析:因为| x|=3,所以x=±3;因为| y| = 5,所以y=±5。

又因为x>y,当x = 3时,y=-5,此时x + y=3+( 5)=-2;当x=-3时,y=-5,此时x + y=-3+( 5)=-8。

6. (有理数的混合运算)计算:(1)/(2)×(-2)^2-((2)/(3))^2÷(2)/(9)解析:先计算指数运算,(-2)^2 = 4,((2)/(3))^2=(4)/(9)。

然后进行乘除运算,(1)/(2)×4 = 2,(4)/(9)÷(2)/(9)=(4)/(9)×(9)/(2)=2。

最后进行减法运算2-2 = 0。

7. (整式的概念)若3x^m + 5y^2与x^3y^n是同类项,则m=_ ,n=_ 。

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专题训练试题及解析(共10套)

初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。

则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

【初中数学竞赛】 专题02 代数式竞赛综合-50题真题专项训练(全国竞赛专用)解析版

【初中数学竞赛】 专题02 代数式竞赛综合-50题真题专项训练(全国竞赛专用)解析版

【初中数学竞赛】专题02代数式竞赛综合-50题真题专项训练(全国竞赛专用)一、单选题1.(2021·全国·九年级竞赛)已知3a b -=,则339a b ab --的值是().A .3B .9C .27D .81【答案】C 【详解】3322229()()93()9a b ab a b a ab b ab a ab b ab --=-++-=++-22223(2)3()3327a ab b a b =-⨯+=-==.故选C .2.(2021·全国·九年级竞赛)如果21x x --是31ax bx ++的一个因式,则b 的值是().A .2-B .1-C .0D .23.(2021·全国·九年级竞赛)若223894613M x xy y x y =-+-++(,x y 是实数),则M 的值一定是().A .正数B .负数C .零D .整数【答案】A 【详解】因为22222222(44)(44)(69)2(2)(2)(3)0M x xy y x x y y x y x y =-++-++++=--++≥+,并且2,2,3x y x y --+不能同时等于零,所以0M >.故选A .4.(2021·全国·).A .无理数B .真分数C .奇数D .偶数14=-5.(2021·全国·九年级竞赛)满足等式2003=的正整数对(),x y 的个数是().A .1B .2C .3D .46.(2021·全国·九年级竞赛)已知199919991999200020002000200120012001,,199819981998199919991999200020002000a b c ⨯-⨯-⨯-=-==-⨯+⨯+⨯+,则abc 的值等于().A .1-B .3C .3-D .1故选:D .二、填空题7.(2021·全国·九年级竞赛)若3233x x x k +-+有一个因式是1x +,则k =_______.【答案】-5【详解】解法一依题意,原多项式当=1x -时,其值等于0,即32(1)3(1)3(1)0k -+---+=,从而5k =-.解法二依题意1x +也是多项式332(1)(33)6(1)x x x x k x k +-+-+=+-的因式,故16k -=,即5k =-.解法三依题意可设()3223233(1)()(1)x x x k x x ax b x a x a b x b+-+=+++=+++++比较同次幂系数得13,2,3,5,, 5.a a a b b k b k +==⎧⎧⎪⎪+=-∴=-⎨⎨⎪⎪==-⎩⎩故5k =-.注:虽然解法三计算量较大,但它的好处是同时求出了原多项式的另一个因式为225x x +-.若题目还要求对原多项式进行因式分解,则解法三是可取的好方法之一.8.(2021·全国·九年级竞赛)设x =,a 是x 的小数部分,b 是x -的小数部分,则333a b ab ++=__________.9.(2021·全国·九年级竞赛)已知x 、y 为正偶数,且2296x y xy +=,则22x y +=__________.【答案】40【分析】根据22x y xy 96+=可知xy(x+y)=96,由x 、y 是正偶数可知xy≥4,x+y≥4,进而可知96可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x 、y 的值,根据x 、y 的值求得答案即可.【详解】∵22x y xy 96+=,∴xy(x+y)=96,∵x 、y 为正偶数,xy≥4,x+y≥4,∴96=2⨯2⨯2⨯2⨯2⨯3=6⨯16=8⨯12=4⨯24当xy(x+y)=4⨯24时,无解,当xy(x+y)=6⨯16时,无解,当xy(x+y)=8⨯12时,x+y=8,xy=12,解得:x=2,y=6,或x=6,y=2,∴x 2+y 2=22+62=40.故答案为40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.10.(2021·全国·九年级竞赛)已知对任意正整数n 都有312n a a a n +++= ,则11111111a a a a ++++=---- ___________.三、解答题11.(2021·全国·九年级竞赛)分别在有理数范围内和实数范围内分解因式:4662248365427a a b a b b -+-.12.(2021·全国·九年级竞赛)分解因式:()22223()(2)6()(2)3()2x y a b m n xy a b m n xy a b m n ++-++++⋅+.【答案】()()()32421xy a b m n ax bx my ny +++--+【详解】解原式()()()()32221xy a b m n x a b y m n =+++-++⎡⎤⎣⎦()()()32421xy a b m n ax bx my ny =+++--+.13.(2021·全国·九年级竞赛)分解因式:54323331x x x x x -+---+.【答案】42(31)(1)x x x -+-【详解】解法一原式5432(3)(3)(31)x x x x x =-+---4(31)(31)(31)x x x x x =-+----42(31)(1)x x x =-+-.解法二原式5342(333)(1)x x x x x =+-+--+42423(1)(1)x x x x x =+--+-42(31)(1)x x x =-+-.14.(2021·全国·九年级竞赛)分解因式:2222x yz axyz yz xy xz az ++---.【答案】()()xy z ax xz y -+-【详解】解法一原式2222()()()axyz az x yz xz yz xy =-+-+-()()()az xy z xz xy z y xy z =-+---()()xy z ax xz y =-+-.解法二原式2222()()x yz axyz xy yz xz az =+-+--()()xy xz az y z xz az y =+--+-()()xy z xz az y =-+-.15.(2021·全国·九年级竞赛)分解因式:3223x x xy y y ----.【答案】22()(1)x xy y x y ++--【详解】解原式3322()()x y x xy y =--++2222()()()x y x xy y x xy y =-++-++22()(1)x xy y x y =++--.16.(2021·全国·九年级竞赛)分解因式:2()4()()c a b c a b ----.【答案】2(2)a c b +-【详解】解法一原式222(2)4()c ca a ab b ac bc =-+---+222(2)(44)4c ca a ab bc b =++-++22()4()(2)a c b a c b =+-++2(2)a c b =+-.解法二原式2[()()]4()()c b a b c b a b =---+--22()2()()()4()()c b c b a b a b c b a b =----+-+--22()2()()()c b c b a b a b =-+--+-2[()()]c b a b =-+-2(2)a c b =+-.17.(2021·全国·九年级竞赛)分解因式:222222()()x x a a x a x a ++++.【答案】222()x ax a ++【详解】解法一原式222222[()()]x x a a x a a x =++++22222()()x a x a a x ++=+222222()(2)x a x ax a a x =++++222222()2()()x a ax x a ax =++++222()x a ax =++222()x ax a =++.解法二原式22222[()]()x x a a a x a =++++22222(22)()x x ax a a x a =++++2222()2()[()]x x a x a a x a =++++⋅22[()]x a x a =++222()x ax a =++.18.(2021·全国·九年级竞赛)分解因式:3333a b c abc ++-.【答案】222()()a b c a b c ab ac bc ++++---【详解】解原式33()3()3a b ab a b c abc=+-++-33()3()a b c ab a b c =++-++3[()]3()()3()a b c a b c a b c ab a b c =++-+++-++2()[()3()3]a b c a b c a b c ab =++++-+-222()(222333)a b c a b c ab ac bc ac bc ab =+++++++---222()()a b c a b c ab ac bc =++++---.19.(2021·全国·九年级竞赛)若238x ax bx +++有两个因式1x +和2x +,求a b +的值.所以21a b +=.20.(2021·全国·九年级竞赛)分解因式333(2)()()a b c a b b c ++-+-+.【答案】3()()(2)++++a b b c a b c 【详解】设,A a b B b c =+=+,则原式33333()()[()3()]3()3()()(2)A B A B A B A B AB A B AB A B a b b c a b c =+--=+-+-+=+=++++.21.(2021·全国·九年级竞赛)在实数范围内分解因式:423344x x x x +---.22.(2021·全国·九年级竞赛)分解因式:2()()()()abc bcd cda dab ab cd bc ad ca bd +++----.【答案】2()+++abcd a b c d 【详解】原式是关于a b c d ,,,的对称多项式.若视a 为主元,并以0a =代入得原式0=,故原式有因式a ,由对称性知原式有因式abcd .又原式是六次齐次多项式,而abcd 是四次齐次多项式,故还有一个关于a b c d ,,,的二次齐次对称多项式因式,所以可设2()()()()abc bcd cda dab ab cd bc ad ca bd +++----2222[()()]abcd A a b c d B ab bc cd da ac bd =+++++++++.令1,1a b c d ====-,得44A -=-;令1a b c d ====,得4616A B +=.所以1,2A B ==.原式2222[()2()]abcd a b c d ab bc cd da ac bd =+++++++++22[()()2()()]abcd a b c d a b c d =++++++2()abcd a b c d =+++23.(2021·全国·九年级竞赛)若122122(1025)(1025)10n +--=,求n 的值.【答案】14【详解】()()()()()()22121212121212102510251025102510251025⎡⎤⎡⎤+--=++-+--⎣⎦⎣⎦12142105010=⨯⨯=,所以41010n =,故14n =.24.(2021·全国·九年级竞赛)设a b c d ,,,是四个整数,且使得2222221()()4m ab cd a b c d =+-+--是一个非零整数,求证:||m 一定是合数.25.(2021·全国·九年级竞赛)若2221995199519961996a ⨯=++,证明:a 是一个完全平方数(即a 等于另一个整数b 的平方).【答案】见解析【详解】设1995x =,则222222(1)(1)(1)2(1)2(1)a x x x x x x x x x x ⎡⎤=++++=+-+++++⎣⎦2222222(1)[(1)]2(1)(1)12(1)[(1)][1(1)]x x x x x x x x x x x x x x +=+-++++=++++=++=22(119951996)3982021+⨯=,故a 是一个完全平方数.26.(2021·全国·九年级竞赛)设,a b 是实数且422223a b a b =,求22222010a b a b -的值.27.(2021·全国·九年级竞赛)已知a 是正整数,且3221215a a a +-+表示质数,求这个质数.【答案】7【详解】解3221215a a a +-+3225315315a a a a a =+--++2(5)3(5)3(5)a a a a a =+-+++2(5)(33)a a a =+-+.要使2(5)(33)a a a +-+为质数,必须2331a a -+=,即()()210a a --=,故1a =或2.但1a =时,56a +=是合数.只有2a =时,57a +=才是质数.故所求的质数是7.28.(2021·全国·九年级竞赛)分解因式:2(25)(9)(27)91a a a +---.29.(2021·全国·九年级竞赛)证明:对任何整数x 和54322345,3515412y x x y x y x y xy y +--++的值都不等于33.【答案】见解析【详解】解法一原式54322345(3)(515)(412)x x y x y x y xy y =+-+++4224(3)5(3)4(3)x x y x y x y y x y =+-+++4224(3)(54)x y x x y y =+-+2222(3)()(4)x y x y x y =+--()()()()()322x y x y x y x y x y =+-+-+.当0y =时,原式533x =≠;当0y ≠时,3,,,2,2x y x y x y x y x y +-+-+互不相等,而33不可能分解为4个以上不同因数之积,所以0,y x ≠为整数时,原式33≠,所以对,x y 取任何整数值,原式的值都不等于33.解法二将原式看成x 的多项式,y 当成常数,用综合除法有所以,原式()()()()()223x y x y x y x y x y =-+-++.下同解法一.30.(2021·全国·九年级竞赛)设,,a b c 互不相等,且0a b c ++=,化简222222222a b c a bc b ca c ab++.31.(2021·全国·九年级竞赛)分解因式:222222444222a b b c c a a b c ++---.【答案】()()()()a b c b c a c a b a b c+++-+-+-【详解】解法一以a 为主元降幂排列,再配方得:原式422244222()(2)a b c a b c b c -++-+=-4222222222222[2()()]()()a b c a b c b c b c =--+++++--222222222222[()][()()][()()]a b c b c b c b c b c =--++++-+--22222(2)()bc a b c =---222222[2()][2()]bc a b c bc a b c =---+--2222[()][()]b c a a b c =+---()()()()b c a b c a c a b a b c =+++-+-+-.解法二原式42244222(2)2()a a b b c a b c =--+-++222222222222[()2()]2()2()a b a b c c a b c a b c '=--+-++-++222222()4a b c a c =--++222222(2)(2)ac a b c ac a b c =+-+-+-2222[()][()]a cb b ac =+---()()()()a c b a c b b a c b c a =+++-+-+-.解法三注意到下列公式:2222444222222()222a b c a b c a b a c b c +-=+++--,为了完成整个式子的直接配方,应将222a b 拆成222242a b a b -.原式224442222224(222)a b a b c a b a c b c =-+++--22222(2)()ab a b c =-+-22222(2)(2)ab a b c ab a b c =++---+2222[()][()]a b c c a b =+---()()()()a b c a b c c a b c a b =++-+--++()()()()a b c b c a c a b a b c =+++-+-+-.32.(2021·全国·九年级竞赛)分解因式:22242(1)2(1)(1)y x y x y +-++-.【答案】()()()()1111x x xy x y xy x y +--++---【详解】解法一添加22(1)(1)y x y +-,再减去同一项得:原式2242222[(1)2(1)(1)(1)]2(1)(1)2(1)y y x y x y y x y x y =+++-+--+--+22222[(1)(1)]2[(1)(1)]y x y x y y =++---++2222(1)(2)x x y y x =-++-2222(12)(12)x x y y x x x y y x =-+++-++-2222[(1)(1)][(1)(1)]x y x x y x =+-----()()()()()111111x x y x x x y x ⎡⎤⎡⎤⎣⎦=++-----+⎣⎦()()()()1111x x x y xy x y xy =+-++--+--()()()()1111x x x y xy x y xy =+-++--++.解法二以y 为主元降幂排列.原式422442(21)2(1)(21)x x y x y x x =-+--+-+222222(1)2(1)(1)(1)x y x x y x =---++-22222(1)[(1)2(1)1]x x y x y x =---++-222(1)(1)[(21)(21)]x x x y y y y =+--+-++222(1)(1)[(1)(1)]x x x y y =+---+()()()()()111111x x x y y x y y ⎡=+--++--⎤⎦+⎡⎤⎣⎣⎦()()()()1111x x xy x y xy x y =+--++---.33.(2021·全国·九年级竞赛)分解因式:4444444()()()()a b c a b b c c a a b c ++-+-+-++++.【答案】4444444()()()()12()a b c a b b c c a a b c abc a b c ++-+-+-++++=++【详解】解设4444444(,,)()()()()f a b c a b c a b b c c a a b c =++-+-+-++++.因为444444(0,,)0()()0f b c b c b b c c b c =++--+-++=,所以(),,f a b c 有因式a .由(),,f a b c 是,,a b c 的四次对称多项式知(),,f a b c 有因式abc ,而(),,f a b c 与abc 分别是四次、三次对称多项式,所以(),,f a b c 还含有,,a b c 的一个一次对称多项式()k a b c ++,即4444444(,,)()()()()f a b c a b c a b b c c a a b c =++-+-+-++++()kabc a b c =++.令1a b c ===,得444444*********k ++---+=,所以12k =,故4444444()()()()12()a b c a b b c c a a b c abc a b c ++-+-+-++++=++.34.(2021·全国·九年级竞赛)分解因式:444()()()a b c b c a c a b -+-+-.【答案】444()()()a b c b c a c a b -+-+-222()()()()a b b c c a a b c ab bc ca =----+++++.【详解】解设444(,,)()()()f a b c a b c b c a c a b =-+-+-.因为()(),,,,f a b c f b c a =,所以(),,f a b c 是轮换对称多项式.又a b =时,444(,,)()()()0f b b c b b c b c b c b b =-+-+-=,所以(),,f a b c 有因式a b -.又(),,f a b c 是轮换对称多项式,故(),,f a b c 有因式()()()a b b c c a ---.因(),,f a b c 与()()()a b b c c a ---分别是齐五次与齐三次轮换对称多项式,所以(),,f a b c 的另一个因式应是齐二次轮换对称多项式:222()()A a b c B ab bc ca +++++,即444222()()()()()()[()()]a b c b c a c a b a b b c c a A a b c B ab bc ca -+-+-=---+++++.令2,1,0a b c ===及1,0,1a b c ===-,分别得到16202(52),1012(2),A B A B -+=-+⎧⎨++=--⎩即527,21,A B A B +=-⎧⎨-=-⎩解得1A B ==-,故444()()()a b c b c a c a b -+-+-222()()()()a b b c c a a b c ab bc ca =----+++++.35.(2021·全国·九年级竞赛)分解因式:()()()()23222336x y x y y x y x x y -++---+.【答案】()()3221x y x --【详解】解因为()()22,3632y x x y x y x y -=---+=--,所以原式()()()()()23222332x y x y x y y x x y =-+-----()()()232233x y x y y x =-+---⎡⎤⎣⎦()()263x y x =--()()3221x y x =--.36.(2021·全国·九年级竞赛)已知2410a a ++=,且42321322a ma a ma a-+=,求m 的值.37.(2021·全国·九年级竞赛)已知322210a a a +++=,求200920102011a a a ++的值.【答案】-1【详解】()()()32322222112(1)12(1)(1)(a a a a a a a a a a a a a a +++=+++=+-+++=+-+212)(1)(1)0a a a a +=+++=,38.(2021·全国·九年级竞赛)计算444444444411111135989944444111112469910044444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅++ ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅++ ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值.39.(2021·全国·九年级竞赛)若0a b c abc ++=≠,计算222222(1)(1)(1)(1)(1)(1)b c c a a b bc ca ab------++的值.40.(2021·全国·九年级竞赛)分解因式:555()()()x y y z z x -+-+-.【答案】2225()()()()x y y z z x x y z xy yz zx ---++---【详解】因x y =时,原式0=,故原式有因式x y -.又原式是关于,,x y z 的五次齐次轮换对称多项式,故原式有因式()()()x y y z z x ---,并可设()555222()()()()()()()x y y z z x x y y z z x A x y z B xy yz zx ⎡⎤-+-+-=---+++++⎣⎦.令0,1,1x y z ===-,得()3022A B =-,即215A B -=,再令0,1,2x y z ===,得()30252A B =+,即5215A B +=,解出5,5A B ==-.所以,原式2225()()()()x y y z z x x y z xy yz zx =---++---.41.(2021·全国·九年级竞赛)计算:()()()()222220012007200220082003200920042010(199920035)(199820045)(200120055)(200020065)----⨯-⨯+⨯-⨯+.42.(2021·全国·九年级竞赛)计算:()()()()()()()()()()444444444476415642364316439643641164196427643564++++++++++⨯43.(2021·全国·九年级竞赛)计算+44.(2021·全国·九年级竞赛)计算:()()()()()()()()()()44444444441032422324343244632458324432416324283244032452324++++++++++.45.(2021·全国·九年级竞赛)把()()()()16a b c d b c a d c a b d a b c d abcd ++++--+--+--+分解因式.【答案】()()()()a b c d b c d a c d a b d a b c ------------【详解】解法一原式2222[()()][()()]16b c a d a d b c abcd=++---+-22222222(22)(22)16b c a d bc ad a d b c ad bc abcd=+--+-+---++22222222[2()()][2()()]16bc ad b c a d bc ad b c a d abcd =-++----+--+2222224()()16bc ad b c a d abcd=--+--+2222224()()bc ad b c a d =+-+--2222222[2()()][2()()]z bc ad b c a d bc ad b c a d =+++--+-+--2222[()()][()()]b c a d a d b c =+--+--()()()()b c a d b c a d a d b c a d b c =++-+-+++-+-+.解法二把原式看成a 的多项式,当a b c d =++时,原式()()()()()2222160b c d d c b b c d bcd =++-+++=,所以原式有因式a b c d ---.又原式是a b c d ,,,的对称多项式,由对称性知原式有因式()()()()a b c d b c d a c d a b d a b c ------------.又此式和原式都是四次齐次多项式,故()()()()16a b c d b c a d c a b d a b c d abcd++++--+--+--+()()()()k a b c d b c d a c d b a d a b c =------------,其中k 是常数.上式中令1,0a b c d ====得1k -=-,即1k =,所以原式()()()()a b c d b c d a c d a b d a b c =------------.46.(2021·全国·九年级竞赛)已知,b c 是整数,二次三项式2x bx c ++既是42625x x ++的一个因式,也是4234285x x x +++的一个因式,求1x =时2x bx c ++的值.【答案】4【详解】解依题意,2x bx c ++应是424223(625)(34285)14(25)x x x x x x x ++-+++=-+的一个因式,所以2225x bx c x x ++=-+,故当1x =时,22251254x bx c x x ++=-+=-+=.47.(2021·全国·九年级竞赛)把多项式322222422x x x x y xyz xy y z --++-分解因式.【答案】2(2)()x z x y --【详解】解法一原式32222(2)(42)(2)x x z x y xyz xy y z =---+-22(2)2(2)(2)x x z xy x z y x z =---+-22(2)(2)x z x xy y =--+2(2)()x z x y =--.解法二原式32222(242)(2)x x y xy x z xyz y z =-+--+22222(2)(2)x x xy y z x xy y =-+--+222()()x x y z x y =---2(2)()x z x y =--.48.(2021·全国·九年级竞赛)分解因式:2(1)(2)(2)xy x y x y xy -++-+-.【答案】22(1)(1)x y --【详解】解法一原式是关于,x y 的对称多项式.可设,x y u xy v +==,则原式2(1)(2)(2)v u u v =-+--2221242v v u u v uv=-++-+-2222()1u uv v u v =-+--+22()2()1(1)u v u v u v =---+=--222(1)(1)(1)x y xy x y =+--=--.解法二当1x =时,原式2(1)(1)(1)0y y y =-+--=,故原式有因式1x -.又原式是关于,x y 的对称多项式,故原式又有因式1y -,且可设222(1)(2)(2)(1)(1)[()()]xy x y x y xy x y A x y Bxy C x y D -++-+-=--+++++,令0x y ==,得210D +=,得1D =.令0,2x y ==,得210(42)A C D +=-++,即4212A C D +=--=-.令0,3x y ==,得21132(93)A C D +=-++⨯,即9323A C D +=--=-.令2x y ==,得232(4)844A B C D +-=+++⨯,即84410A B C D ++=-=.从上面式子可解出0,1,1,1A B C D ===-=,于是原式()()()111x y xy x y =---++⎡⎤⎣⎦22(1)(1)(1)(1)(1)(1)x y x y x y =----=--.49.(2021·全国·九年级竞赛)分解因式:3333()x y z x y z ++---.【答案】3()()()x y y z z x +++【详解】解法一由公式333()3()a b a b ab a b ±=±± ,得原式3333[()]()x y z z x y =++--+33()3()()[()3()]x y z z x y z z x y z z x y xy x y =++-+++++--+-+()()()33x y x y z z xy x y =+++++()()3x y x y z z xy =++++⎡⎤⎣⎦23()[()]x y z x y z xy =++++()()()3x y z x z y =+++.解法二设3333(,,)()f x y z x y z x y x =++---.将(),,f x y z 看成x 的多项式,令x y =-得3333(,,)()()0f y y z y y z y y z -=-++----=,所以(),,f x y z 有因式x y +.而(),,f x y z 是关于,,x y z 的三次齐次对称多项式,故(),,f x y z 有因式()()()x y y z z x +++,故可设3333(,,)()()()()f x y z x y z x y z k x y y z z x =++---=+++.令1,0x y z ===,得3338110211k ---=⋅⋅⋅,故3k =,所以3333()3()()()x y z x y z x y y z z x ++---=+++.50.(2021·全国·九年级竞赛)分解因式:()()ab bc ca a b c abc ++++-.【答案】()()()()()ab bc ca a b c abc a bb c c a ++++-=+++【详解】解设()()(),,f a b c ab bc ca a b c abc =++++-,当a b =-时,有22(,,)()()0f b b c b bc bc b b c b c -=-+--+++=,所以(),,f a b c 有因式a b +.又因为(),,f a b c 关于,,a b c 对称,故(),,f a b c 还有因式,b c c a ++,即(),,f a b c 有因式()()()a b b c c a +++,并且(),,f a b c 与()()()a b b c c a +++都是齐三次式(各项都是3次的多项式),所以()()()()()(),,f a b c ab bc ca a b c abc k a b b c c a=++++-=+++,其中k 为常数.上式中令1a b ==得3318k ⨯-=,即1k =,所以()()()()()ab bc ca a b c abc a b b c c a ++++-=+++.。

2024全国初中数学竞赛试题

2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。

初中数学竞赛试卷真题

初中数学竞赛试卷真题

一、选择题(每题5分,共25分)1. 已知等差数列{an}中,a1=2,公差d=3,则a10的值为()A. 31B. 32C. 33D. 342. 若函数f(x) = 2x - 3在x=2时取得最小值,则该函数的解析式为()A. f(x) = 2x - 3B. f(x) = 2x + 3C. f(x) = -2x + 3D. f(x) = -2x - 33. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=6,b=8,c=10,则角C的度数为()A. 30°B. 45°C. 60°D. 90°4. 已知一元二次方程x^2 - 5x + 6 = 0的解为x1、x2,则x1 + x2的值为()A. 2B. 5C. 6D. 75. 下列各组数中,不能构成三角形的三边长是()A. 3,4,5B. 5,12,13C. 2,3,5D. 6,8,10二、填空题(每题5分,共25分)6. 若等差数列{an}中,a1=1,公差d=2,则第10项an的值为______。

7. 函数f(x) = x^2 - 4x + 3在x=______时取得最大值。

8. 在△ABC中,若角A、B、C的对边分别为a、b、c,且a=10,b=12,c=15,则角A的余弦值为______。

9. 已知一元二次方程x^2 - 2x - 15 = 0的解为x1、x2,则x1^2 + x2^2的值为______。

10. 在直角坐标系中,点A(2,3)关于y轴的对称点为______。

三、解答题(每题15分,共45分)11. (15分)已知数列{an}的前n项和为Sn,且S1=2,S2=5,S3=10,求an和Sn 的通项公式。

12. (15分)已知函数f(x) = 3x^2 - 4x + 1,求f(x)的图像与x轴的交点坐标。

13. (15分)在△ABC中,已知a=8,b=6,角A的余弦值为1/2,求△ABC的面积。

九年级数学竞赛题

九年级数学竞赛题

九年级数学竞赛题一、代数部分1. 一元二次方程竞赛题题目:已知关于公式的一元二次方程公式有两个实数根公式和公式。

(1)求实数公式的取值范围;(2)当公式时,求公式的值。

解析:(1)对于一元二次方程公式,判别式公式。

在方程公式中,公式,公式,公式,因为方程有两个实数根,所以公式。

展开公式得公式,即公式,解得公式。

(2)由公式可得公式。

根据韦达定理,在一元二次方程公式中,公式,公式。

对于方程公式,公式,公式。

当公式时,即公式,解得公式,但公式不满足公式(由(1)得),舍去。

当公式时,即公式,那么公式,由(1)中公式,解得公式。

2. 二次函数竞赛题题目:二次函数公式的图象经过点公式,且与公式轴交点的横坐标分别为公式、公式,其中公式,公式,求公式的取值范围。

解析:因为二次函数公式的图象经过点公式,所以公式,则公式。

二次函数与公式轴交点的横坐标是方程公式的根,由韦达定理公式,公式。

设公式,因为公式,公式,当公式时,公式;当公式时,公式;当公式时,公式。

将公式代入公式,公式中:由公式得公式,化简得公式,即公式。

由公式得公式,化简得公式,即公式,公式。

所以公式,则公式,解得公式。

二、几何部分1. 圆的竞赛题题目:在公式中,弦公式与弦公式相交于点公式,公式、公式分别是弦公式、公式的中点,连接公式、公式,若公式,公式的半径为公式。

(1)求证:公式是等边三角形;(2)求公式的长(用公式表示)。

解析:(1)连接公式、公式。

因为公式、公式分别是弦公式、公式的中点,根据垂径定理,公式,公式。

在四边形公式中,公式,公式,根据四边形内角和为公式,可得公式。

又因为公式(半径),公式、公式分别是弦公式、公式的中点,所以公式,公式。

在公式中,公式,公式(同圆中,弦心距相等则弦相等的一半也相等),所以公式是等边三角形。

(2)设公式与公式交于点公式,公式与公式交于点公式。

在公式中,公式,公式,公式,则公式。

同理,在公式中,公式。

因为公式是等边三角形,公式,在公式中,公式,公式,则公式,所以公式。

竞赛初中数学试题及答案

竞赛初中数学试题及答案

竞赛初中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. ±3D. ±93. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 以下哪个分数是最接近1的?A. 1/2B. 3/4C. 4/3D. 5/45. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 100πD. 125π6. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -4D. 47. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 都不是8. 以下哪个是二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. x^3 - 6x^2 + 11x - 6 = 0D. x^4 - 1 = 09. 一个数的相反数是-7,这个数是多少?A. 7B. -7C. 0D. 1410. 一个数的倒数是1/4,这个数是多少?A. 4B. 1/4C. 1/2D. 4/1二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是______。

12. 一个数的立方根是2,这个数是______。

13. 一个数的倒数是2,这个数是______。

14. 一个数的绝对值是8,这个数可以是______。

15. 如果一个数的平方是16,那么这个数是______。

16. 一个圆的直径是10,它的半径是______。

17. 一个直角三角形的斜边长度是13,一条直角边是5,另一条直角边是______。

18. 一个数的平方是25,这个数是______。

19. 一个数的立方是-125,这个数是______。

20. 如果一个数的绝对值是-5的相反数,这个数是______。

三、解答题(每题10分,共50分)21. 解方程:2x + 5 = 13。

初一数学竞赛测试题及答案

初一数学竞赛测试题及答案

初一数学竞赛测试题及答案【测试题一】题目:计算下列表达式的值:\[ 2^3 + 3^2 - 4 \times 5 \]【答案】首先,按照运算顺序,先计算乘方和乘法,再计算加法和减法。

\[ 2^3 = 8 \]\[ 3^2 = 9 \]\[ 4 \times 5 = 20 \]然后进行加减运算:\[ 8 + 9 - 20 = 17 - 20 = -3 \]所以,表达式的值为 -3。

【测试题二】题目:如果一个数的平方等于这个数本身,这个数是什么?【答案】设这个数为 \( x \),根据题意,我们有:\[ x^2 = x \]这个方程可以重写为:\[ x^2 - x = 0 \]\[ x(x - 1) = 0 \]根据零乘律,\( x = 0 \) 或 \( x - 1 = 0 \),所以 \( x = 0 \) 或 \( x = 1 \)。

【测试题三】题目:一个长方体的长、宽、高分别是 8 厘米、6 厘米和 5 厘米,求这个长方体的体积。

【答案】长方体的体积可以通过长、宽、高的乘积来计算:\[ \text{体积} = 长 \times 宽 \times 高 \]\[ \text{体积} = 8 \times 6 \times 5 = 240 \text{ 立方厘米} \]【测试题四】题目:一个圆的半径是 7 厘米,求这个圆的周长和面积。

【答案】圆的周长公式是 \( C = 2\pi r \),面积公式是 \( A = \pi r^2 \)。

将半径 \( r = 7 \) 厘米代入公式中:\[ C = 2 \times \pi \times 7 \approx 44 \text{ 厘米} \]\[ A = \pi \times 7^2 \approx 153.94 \text{ 平方厘米} \]【测试题五】题目:一个班级有 40 名学生,其中 2/5 是男生,3/5 是女生。

如果班级里增加了 10 名男生,那么班级里男生和女生的比例是多少?【答案】首先,计算原有男生和女生的人数:男生:\( 40 \times \frac{2}{5} = 16 \) 人女生:\( 40 \times \frac{3}{5} = 24 \) 人增加 10 名男生后,男生总数变为 \( 16 + 10 = 26 \) 人,女生人数不变。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。

设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。

2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

3. 一个数的绝对值是它本身,这个数是______。

4. 一个数的平方等于16,这个数是______。

5. 一个数的相反数是它本身,这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。

七年级上学期数学竞赛试题(含答案)

七年级上学期数学竞赛试题(含答案)

学习资料七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+C 、2245a b ab ab -=-D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( ) A 、1 B 、21k - C 、21k + D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能. 8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( )A 、0B 、 2C 、 1D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( ) A 、11 B 、8 C 、7 D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . 14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________. 15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方A学习资料00201003...-x002003..-形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________. 18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分) 19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。

初中数学竞赛试题及答案

初中数学竞赛试题及答案

初中数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是质数?A. 2B. 3C. 4D. 52. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 0C. 负数D. 正数或05. 以下哪个表达式的结果不是整数?A. 3 + 2C. 4 × 2D. 6 ÷ 26. 如果一个数的立方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 27. 一个圆的半径是5,它的面积是:A. 25πB. 50πC. 100πD. 125π8. 如果一个数的倒数是其本身,那么这个数可能是:A. 1B. -1C. 2D. 09. 一个数的平方根是其本身,这个数可能是:A. 0B. 1C. -1D. 210. 一个数的立方根是其本身,这个数可能是:A. 0B. 1D. 8答案:1. C2. A, B3. A4. D5. C6. A, B, C7. C8. A, B9. A, B10. A, B, C二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数可能是________。

12. 如果一个数的绝对值是5,那么这个数可能是________。

13. 一个三角形的内角和是________度。

14. 一个数的立方是-27,这个数可能是________。

15. 一个数的平方根是2,那么这个数是________。

答案:11. ±412. ±513. 18014. -315. 4三、解答题(每题10分,共50分)16. 证明勾股定理。

17. 解方程:2x + 5 = 15。

18. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求其体积。

19. 一个圆的周长是12π,求其半径。

七年级数学上学期竞赛试题(含答案)

七年级数学上学期竞赛试题(含答案)

七年级数学竞赛试题(满分:150分,时间:120分钟)第一卷 基础知识(满分100分)一、选择题(每小题5分,共50分) 1、(-0.125)2007×(-8)2008的值为( )(A )-4 (B )4 (C)-8 (D)82、任意有理数a ,式子1,1,,1a a a a a -+-++中,值不为0的是( ) (A )1a - (B )1a + (C )a a -+ (D )1a +3、若,,,a b c m 是有理数,且23,2a b c m a b c m ++=++=,那么b 与c ( ) (A )互为相反数 (B )互为倒数 (C )互为负倒数 (D )相等4、要使不等式753246a a a a a a a <<<<<<<成立,有理数a 的取值范围是( )(A )01a << (B )1a > (C )10a -<< (D )1a <- 5、把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分涂成红色,那么红色部分的面积为( ) (A )21 (B )24 (C )33 (D )376、某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( ) A.不赔不赚 B.赚160元 C.赚80元 D.赔80元7、已知9999909911,99P Q ==,那么,P Q 的大小关系是( )(A )P Q > (B )P Q = (C )P Q < (D )无法确定8、小刘写出四个有理数,其中每三数之和分别是2,17,1,3--,那么小刘写出的四个有理数的乘积是( )(A )-1728 (B )102 (C )927 (D )无法确定 9、122-+-++x x x 的最小值是 ( ) (A ) 5 (B)4 (C)3 (D) 210、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( ) (A) 273 (B) 819 (C) 1911 (D) 3549二、填空题(每小题6分,共30分) 11、当整数m =_________ 时,代数式136-m 的值是整数。

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。

解答:根据已知条件,我们可以使用配方法来求解。

首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。

将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。

简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。

试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。

解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。

代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。

因此,\( BC = \sqrt{100} = 10 \)。

试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。

解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。

将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。

试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。

解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。

然后计算取出两个红球或两个蓝球的情况。

两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。

则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。

3、已知正整数a 、b 之差为120,它们的最小公倍数是其最大公约数的105倍,那么,a 、b 中较大的数是_____。

4、设m 是不能表示为三个互不相等的合数之和的最大整数,则m =_________5、满足19982+m 2=19972+n 2(0<m <n <1998)的整数对(m 、n )共有____个6、已知x 为正整数,y 和z 均为素数,且满足zy x yz x 111=+= ,则x 的值是___ 三、解答题1、试求出这样四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数。

2、从1、2、3、4……205共205个正整数中,最多能取出多少个数使得对于取出来的数中的任意三个数a 、b 、c (a <b <c ),都有ab ≠c 。

3、已知方程0324622=---n n x x 的根都是整数。

求整数n 的值。

4、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。

5、若勾股数组中,弦与股的差为1。

证明这样的勾股数组可表示为如下形式:122221222++++a a a a a , , ,其中a 为正整数。

初中数学竞赛专项训练(2)(代数式、恒等式、恒等变形)一、选择题:下面各题的选项中,只有一项是正确的,请将正确选项的代号填在括号内。

1、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元2、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值为( ) A. 0B. 1或-1C. 2或-2D. 0或-23、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则bc ab ac +++的值为 ( ) A. 21B. 22C. 1D.24、设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为( )A.3B.6C. 2D. 35、已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) A. 0 B. 1 C. 2 D. 36、设a 、b 、c 为实数,226232222πππ+-=+-=+-=a c z c b y b a x ,,,则x 、y 、z 中,至少有一个值( )A. 大于0B. 等于0C. 不大于0D. 小于07、已知abc ≠0,且a+b+c =0,则代数式abc ca b bc a 222++的值是 ( )A. 3B. 2C. 1D. 08、若136498322++-+-=y x y xy x M (x 、y 是实数),则M 的值一定是 ( ) A. 正数 B. 负数C. 零D. 整数二、填空题1、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d 可用p 表示为_____2、已知-1<a <0,化简4)1(4)1(22+-+-+aa a a 得_______ 3、已知实数z 、y 、z 满足x+y=5及z 2=xy+y-9,则x+2y+3z=_______________4、已知x 1、x 2、……、x 40都是正整数,且x 1+x 2+……+x 40=58,若x 12+x 22+……+x 402的最大值为A ,最小值为B ,则A +B 的值等于________5、计算=+⋯⋯+++++⋯⋯++++)441()417)(413)(49)(45()439()415)(411)(47)(43(4444444444________________ 6、已知多项式154723--+x bx ax 可被13+x 和32-x 整除,则=+b a _____三、解答题:1、已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111,试求x 的值。

2、如果对一切x 的整数值,x 的二次三项式c bx ax ++2的值都是平方数(即整数的平方)。

证明:①2a 、ab 、c 都是整数。

②a 、b 、c 都是整数,并且c 是平方数。

反过来,如果②成立,是否对于一切x 的整数值,x 的二次三项式c bx ax ++2的值都是平方数?3、若22221996199619951995+⋅+=a ,求证:a 是一完全平方数,并写出a 的值。

4、设a 、b 、c 、d 是四个整数,且使得222222)(41)(d c b a cd ab m --+-+=是一个非零整数,求证:|m |一定是个合数。

5、若2a 的十位数可取1、3、5、7、9。

求a 的个位数。

\初中数学竞赛专项训练(3)(方 程)一、选择题:1、方程018)8(2=-++-a x a x 有两个整数根,试求整数a 的值 ( )A. -8B. 8C. 7D. 9 2、方程1)1(32=-++x x x 的所有整数解的个数是 ( )A. 2B. 3C. 4D. 53、若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的大小关系是( ) A. △>MB. △=MC. △<MD. 不能确定4、已知ac b 42-是一元二次方程)0(02≠=++a c bx ax 的一个实数根,则ab 的取值范围为( )A. ab ≥81 B. ab ≤81 C. ab ≥41 D. ab ≤41 5、已知1x 、2x 是方程0)53()2(22=+++--k k x k x 的两个实根,则2221x x +的最大值是( ) A. 19B. 18C. 955D. 以上答案都不对6、已知z y x 、、为三个非负实数,且满足132523=-+=++z y x z y x , ,z y x u 73-+=若,则u 的最大值与最小值之和为 ( )A. 7762-B. 7764-C. 7768-D. 7774-7、若m 、n 都是正实数,方程022=++n mx x 和方程022=++m nx x 都有实数根,则m+n 的最小值是 ( ) A. 4 B. 6 C. 8 D. 108、气象爱好者孔宗明同学在x (x 为正整数)天中观察到:①有7个是雨天;②有5个下午是晴天;③有6个上午是晴天;④当下午下雨时上午是晴天。

则x 等于( ) A. 7 B. 8 C. 9 D. 10 二、填空题1、已知两个方程0022=++=++a bx x b ax x 与有且只有一个公共根,则这两个方程的根应是____________2、若)(016110161122b a b b a a ≠=++=++, ,则=-baa b _______3、已知关于x 的方程012)1(2=-+++n x n x 的两根为整数,则整数n 是_____4、设1x 、2x 是方程02)1(222=+++-k x k x 的两个实数根,且8)1)(1(21=++x x ,则k 的值是__________5、已知a 、b 是方程042=+-m x x 的两个根,b 、c 是方程0582=+-m x x 的两个根,则m =__________6、设1x 、2x 是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为__________ 三、解答题1、关于x 的方程01)1(2=+--x k kx 有有理根,求整数k 的值。

2、设方程0120012003200222=-⋅-x x 的较大根是r ,方程01200220012=+-x x 的较小根是s ,求r -s 的值。

3、确定自然数n 的值,使关于x 的一元二次方程07635108222=-+-+-n n x nx x 的两根均为质数,并求出此两根。

4、已知关于x 的一元二次方程054)15117()9)(6(2=+----x k x k k 的两个根均为整数,求所有满足条件的实数k 的值。

相关文档
最新文档