中考数学命题研究 第一编 教材知识梳理篇 第七章 圆 第三节 正多边形与圆有关的计算(精练)试题

合集下载

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

《正多边形与圆》 讲义

《正多边形与圆》 讲义

《正多边形与圆》讲义一、正多边形的定义在平面内,各边相等,各角也相等的多边形叫做正多边形。

比如等边三角形、正方形、正五边形等等。

要理解正多边形,关键在于“各边相等”和“各角相等”这两个条件同时满足。

如果只有边相等,角不相等,或者只有角相等,边不相等,都不能称之为正多边形。

二、圆的相关概念圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

圆具有很多独特的性质,比如圆上任意一点到圆心的距离都相等,这也是圆与正多边形产生紧密联系的重要基础。

三、正多边形与圆的关系正多边形与圆有着密切的关系。

我们可以借助圆来作出正多边形,同时,正多边形也可以被看作是圆的内接多边形。

以正六边形为例,如果我们以一个圆的圆心为顶点,依次连接圆上间隔相同距离的点,就可以得到一个正六边形。

从数学角度来看,将一个圆平均分成n 份(n 为正多边形的边数),依次连接各个分点,所得到的多边形就是圆的内接正多边形。

这种关系使得我们能够通过圆的性质来研究正多边形的特性,也能够利用正多边形来深入理解圆的相关知识。

四、正多边形的中心、半径、中心角和边心距1、中心正多边形的外接圆的圆心叫做这个正多边形的中心。

例如,对于正六边形,其外接圆的圆心就是正六边形的中心。

2、半径外接圆的半径叫做正多边形的半径。

仍以正六边形为例,从中心到任意顶点的距离就是正六边形的半径。

3、中心角正多边形每一边所对的圆心角叫做正多边形的中心角。

对于正 n 边形,其中心角的度数为 360°/n 。

比如正五边形的中心角为 72°。

4、边心距中心到正多边形的一边的距离叫做正多边形的边心距。

边心距在计算正多边形的面积等问题时经常用到。

五、正多边形的周长和面积1、周长正多边形的周长等于各边长度之和。

由于正多边形各边相等,所以周长等于边长乘以边数。

假设正 n 边形的边长为 a ,则周长 C = na 。

2、面积计算正多边形的面积有多种方法,其中一种常用的方法是将正多边形分割成若干个三角形,然后计算这些三角形的面积之和。

初三年级奥数知识点:正多边形与圆

初三年级奥数知识点:正多边形与圆

【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。

奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。

国际数学奥林匹克作为⼀项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育⽔平,难度⼤⼤超过⼤学⼊学考试。

奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。

下⾯是为⼤家带来的初三年级奥数知识点:正多边形与圆,欢迎⼤家阅读。

1、正多边形与圆有着密切的关系:1)把⼀个圆的圆周分成n等份,顺次连接各分点所得图形,即为圆的内接正n边形,这个圆叫做这个正n边形的外接圆。

2)正多边形的相关概念:正多边形的中⼼——是正多边外接圆的圆⼼。

正多边形的半径——是正多边形内切圆半径。

(rn)正多边形的中⼼⾓——是正多边形的边所对的外接圆的圆⼼⾓。

(αn)正多边形的边⼼距——是正多边形的边到中⼼的距离。

(rn)3)正n边形的有关计算:;边an、半径rn、边⼼距rn的关系:rn2—rn2=()2(勾股定理)正n边形的⾯积:sn=lnrn(ln—正多边形周长)(边数不同仅反应在中⼼⾓αn的不同)2、圆内接多边形各边相等时为正多边形;圆外切多边形各⾓相等时为正多边形.3、圆内接多边形各⾓相等且边数为奇数时,此内接多边形为正多边形;圆外切多边形各边相等且边数为奇数时,此外切多边形为正多边形.4、⼀个圆的内接正n边形与其外切正n边形相似,且相似⽐等于cos(180°/n);5、周长相等的正多边形与圆相⽐,圆的⾯积较⼤,且多边形边数越多,其⾯积越接近于圆;⾯积相等的正多边形与圆相⽐,圆的周长较⼩,且多边形边数越多,其周长越接近于圆.6、圆是轴对称图形,对称轴有⽆数条;正多边形也是轴对称图形,对称轴的条数与边数相等.7、圆也是中⼼对称图形;正多边形只有当边数为偶数时,它才是中⼼对称图形.练习1、下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个⾓的平分线如果相交,则交点为正多边形的中⼼.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中⼼.D.⼀个外⾓⼩于⼀个内⾓的正多边形⼀定是正五边形.2、若⼀个正多边形的⼀个外⾓⼤于它的⼀个内⾓,则它的边数是( )A.3B.4C.5D.不能确定解析:外⾓+内⾓=180现在外⾓>内⾓,所以内⾓<90,外⾓>90正n多边形,有:(n-2)*180/n<902n-4n<4只能是 n=3只能是正三⾓形3、同圆的内接正四边形与外切正四边形的⾯积之⽐是( )A.1:B.1:C.1:2D. :1。

2022届中考数学一轮复习知识点串讲专题32 正多边形与圆及弧长和扇形面积【含答案】

2022届中考数学一轮复习知识点串讲专题32 正多边形与圆及弧长和扇形面积【含答案】

2022届中考数学一轮复习知识点串讲专题32 正多边形与圆及弧长和扇形面积【知识要点】知识点一正多边形和圆正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形.正多边形的相关概念:➢正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.➢正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.➢正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.➢正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.半径、边心距,边长之间的关系:画圆内接正多边形方法(仅保留作图痕迹):1)量角器(作法操作复杂,但作图较准确)2)量角器+圆规(作法操作简单,但作图受取值影响误差较大)3)圆规+直尺(适合做特殊正多边形,例如正四边形、正八边形、正十二边形…..)知识点二求弧长与扇形面积设⊙ria MO的半径为R,圆心角所对弧长为l,弧长公式:l=nπR(弧长的长度和圆心角大小和半径的取值有关)180扇形面积公式:母线的概念:连接圆锥顶点和底面圆周任意一点的线段。

圆锥体表面积公式:(l为母线)备注:圆锥的表面积=扇形面积=底面圆面积【考查题型】考查题型一求多边形中心角典例1.(2020·福建模拟)将下列四个正多边形同时绕中心开始旋转,且旋转角相等,则最先与原图形重合的是()A.B.C.D.【答案】D【提示】由于正多边形是旋转中心对称图形,分别求出各个正多边形的中心角底数,比较大小即可得到结论.【详解】正方形中心角的度数=360=904︒︒;正五边形中心角的度数=360=725︒︒;正六边形中心角的度数=360=606︒︒;正八边形中心角的度数=360=458︒︒;∵457290︒︒︒︒<60<<, ∴最先与原图形重合的是正八边形. 故选:D.变式1-1.(2020·富顺县一模)正六边形的边长为4,则它的面积为( ) A .3B .3C .60D .123【答案】B【提示】根据题意画出图形,由正六边形的特点求出∠AOB 的度数及OG 的长,再由△OAB 的面积即可求解.【详解】解:如图,过正六边形中心O 作OG ⊥AB 于G ∵此多边形为正六边形, ∴∠AOB =3606︒=60°; ∵OA =OB ,∠AOB =60°,OG ⊥AB ∴△OAB 是等边三角形,1302AOG AOB ∠=∠=︒ ∴OA =AB =4, ∴OG =OA 33 ∴S △OAB =12×AB ×OG =12×4×33 ∴S 六边形=6S △OAB =6×33 故选:B .变式1-2.(2020·天津和平区模拟)如图,ABCDEF 是中心为原点O ,顶点A ,D 在x 轴上,半径为4的正六边形,则顶点F 的坐标为( )A .(2,23B .()2,2-C .(2,23-D .(3-【答案】C【提示】连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt∠GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可. 【详解】 解:连接OF ,在Rt∠OFG 中,∠GOF=13603026⨯=,OF=4. ∠GF=2,3 ∴F (-2,3. 故选C .变式1-3.(2020·河北唐山市二模)如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,若连接BM ,则MBC ∠的度数是( )A.12︒B.15︒C.30D.48︒【答案】A【提示】连接BM,OA,OC,分别求出正五边形ABCDE和正三角形AMN的中心角,求出∠BOM,从而得到∠MOC,再根据圆周角定理得出∠MBC.【详解】解:连接BM,OA,OC,∵五边形ABCDE是正五边形,∴∠AOB=∠BOC=3605︒=72°,∵△AMN是正三角形,∴∠AOM=3603︒=120°,∴∠BOM=∠AOM-∠AOB=48°,∴∠MOC=∠BOC-∠BOM=72°-48°=24°,∴∠MBC=12∠MOC=12°,故选A.考查题型二已知正多边形中心角求边数典例2.(2020·江苏南通市模拟)若一个圆内接正多边形的中心角是36°,则这个多边形是()A.正五边形B.正八边形C.正十边形D.正十八边形【答案】C【提示】一个正多边形的中心角都相等,且所有中心角的和是360︒,用360︒除以中心角的度数,就得到中心角的个数,即多边形的边数.【详解】由题意可得:边数为36036=10︒÷︒.则这个多边形是正十边形.故选:C.变式2-1.(2020·福建模拟)一个半径为3的圆内接正n边形的中心角所对的弧等于3π4,则n的值为()A.6B.8C.10D.12【答案】B【提示】先利用弧长公式求出中心角的度数,由此即可得出答案.【详解】设圆内接正n边形的中心角的度数为x︒由弧长公式得:33 1804 xππ⋅=解得45x=即圆内接正n边形的中心角的度数为45︒则360845n︒==︒故选:B.考查题型三正多边形与圆典例3.(2020·四川中考真题)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【答案】A【提示】分别画出符合题意的图形,利用直角三角形,BOH利用三角函数求解边心距,再比较大小即可.【详解】解:设圆的半径为R ,如图,,,,OB R OH a OH BC ==⊥ 由ABC 为圆O 内接正三角形,60,BOH ∴∠=︒则正三角形的边心距为a =R ×cos60°=12R . 如图,四边形ABCD 为圆O 的内接正方形,,,,OB R OH b OH BC ==⊥ 45,BOH ∴∠=︒四边形的边心距为b =R ×cos45°=22R , 如图,六边形ABCDEF 为圆O 的正内接六边形,,,,OB R OH c OH BC ==⊥30,BOH ∴∠=︒正六边形的边心距为c =R ×cos30°=32R . ∵12R 22<R 32<R , ∴a <b <c , 故选:A .变式3-1.(2020·湖北随州市·中考真题)设边长为a 的等边三角形的高、内切圆的半径、外接圆的半径分别为h 、r 、R ,则下列结论不正确...的是( )A .h R r =+B .2R r =C .34r =D .3R =【答案】C 【提示】将图形标记各点,即可从图中看出长度关系证明A 正确,再由构造的直角三角形和30°特殊角证明B 正确,利用勾股定理求出r 和R,即可判断C 、D . 【详解】如图所示,标上各点∠AO 为R∠OB 为r ∠AB 为h, 从图象可以得出AB=AO+OB∠即h R r =+∠A 正确∠∵三角形为等边三角形∠ ∴∠CAO=30°∠根据垂径定理可知∠ACO=90°∠ ∴AO=2OC∠即R=2r ∠B 正确∠在Rt △ACO 中,利用勾股定理可得∠AO 2=AC 2+OC 2∠即22212R a r ⎛⎫=+ ⎪⎝⎭∠ 由B 中关系可得∠()222122r a r ⎛⎫=+ ⎪⎝⎭,解得3=r ∠则3R =∠所以C 错误,D 正确; 故选:C .变式3-2.(2020·山东德州市·中考真题)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为( )A .34πB .1234πC .2438πD .34π【答案】A【提示】正六边形的面积加上六个小半圆的面积,再减去中间大圆的面积即可得到结果. 【详解】解:正六边形的面积为:142362432⨯⨯=六个小半圆的面积为:22312ππ⋅⨯=,中间大圆的面积为:2416ππ⋅=, 所以阴影部分的面积为:24312162434πππ+-=, 故选:A .考查题型四 利用弧长公式求弧长、圆心角、半径典例4.(2020·辽宁沈阳市·中考真题)如图,在矩形ABCD 中,3AB =2BC =,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则DE⏜的长为( )A .43π B .πC .23π D .3π 【答案】C 【提示】先根据矩形的性质可得2,90AD BC BAD B ==∠=∠=︒,再根据圆的性质可得2AE AD ==,然后利用余弦三角函数可得30BAE ∠=︒,从而可得60DAE ∠=︒,最后利用弧长公式即可得. 【详解】四边形ABCD 是矩形,3AB =2BC =2,90AD BC BAD B ∴==∠=∠=︒由圆的性质得:2AE AD == 在Rt ABE △中,3cos AB BAE AE ∠==30BAE =∴∠︒60DAE BAD BAE ∴∠=∠-∠=︒则DE ⏜的长为60221803ππ⨯⨯=故选:C .变式4-1.(2020·内蒙古)如图,AB 是O 的直径,CD 是弦,点,C D 在直径AB 的两侧.若::2:7:11AOC AOD DOB ∠∠∠=,4CD =,则CD⏜的长为( )A .2πB .4πC 2πD 2π【答案】D【提示】 根据::2:7:11AOC AOD DOB ∠∠∠=求出COD ∠的度数,根据4CD =得到半径,运用弧长公式计算即可.【详解】∠:7:11∠∠=AOD DOB ,+180∠∠=︒AOD DOB , ∠71807018AOD ∠=︒⨯=︒, 又∠:2:7∠∠=AOC AOD ,∠20AOC ∠=︒ ,∠90COD ∠=︒,又∠4CD =, ∠16222OD == ∴CD ⏜=90222180180n ODπππ⨯⨯⨯⨯==. 故答案选D .变式4-2.(2020·江苏苏州市·九年级二模)一个扇形的圆心角为120︒,扇形的弧长等于4,π则该扇形的面积等于( )A .2πB .4πC .12πD .24π【答案】C【提示】根据弧长公式180n r l π=,代入求出r 的值,即可得到结论. 【详解】解:由题意得,4π=120180r π, 解得:r =6,∴S =1642π⨯⨯=12π. 故选:C.变式4-3.(2020·黑龙江哈尔滨市模拟)若扇形的圆心角是150︒,且面积是2240cm π,则此扇形的弧长是( )A .10cm πB .20cm πC .30cm πD .40cm π【答案】B 【提示】 先根据S 扇形=2360n R π求出该扇形的半径R ,然后再根据S 扇形=12lR 即可求得弧长l . 【详解】解:由S 扇形=2360n R π,n=150°,可得240π=2150360R π,解得R=24; 又由S 扇形=12lR 可得240π=1242l ⨯,解得l =20π. 故答案为B .变式4-4.(2020·辽宁盘锦市一模)一个扇形的弧长是π,半径是2,则此扇形的圆心角的度数是( ) A .80°B .90°C .100°D .120° 【答案】B【提示】 直接由弧长公式180n r l π=,结合题意可得出扇形圆心角的度数. 【详解】解:∵弧长是π,半径是2, ∴2180n ππ=, 解得:90n =︒变式4-5.(2020·扬州二模)如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的AC⏜,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为( )A .(60π)° B .(90π)° C .(120π)° D .(180π)°【答案】D【提示】设∠ABC 的度数为n ,根据弧长的计算公式把已知条件代入计算即可.【详解】解:设∠ABC 的度数大小由60变为n ,则AC=180n AB π,由AC=AB , 解得n=180π故选D .变式4-5.(2020·广西中考真题)如图,已知AB 的半径为5,所对的弦AB 长为8,点P 是AB⏜的中点,将AB⏜绕点A 逆时针旋转90°后得到AB ′⏜,则在该旋转过程中,点P 的运动路径长是( )A 5πB 5C .5πD .2π【答案】B【提示】根据已知AB⏜的半径为5,所对的弦AB 长为8,点P 是AB ⏜的中点,利用垂径定理可得AC =4,PO ⊥AB ,再根据勾股定理可得AP 的长,利用弧长公式即可求出点P 的运动路径长.如图,设AB⏜的圆心为O,连接OP交AB于C,连接OA,AP, AB′, AP′,∵圆O半径为5,所对的弦AB长为8,点P是AB⏜的中点,根据垂径定理,得AC=12AB=4,PO⊥AB,OC22OA AC-=3,∴PC=OP﹣OC=5﹣3=2,∴AP22AC PC+5∵将AB⏜绕点A逆时针旋转90°后得到AB′⏜,∴∠PAP′=∠BAB′=90°,∴L PP′=905180π⨯5.则在该旋转过程中,点P5π.故选:B.考查题型五扇形面积的相关计算典例5.(2020·江苏南通市·中考真题)如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm2【提示】先判断这个几何体为圆锥,同时得到圆锥的母线长为8,底面圆的直径为6,然后利用扇形的面积公式计算这个圆锥的侧面积.【详解】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6, 所以这个几何体的侧面积=12×π×6×8=24π(cm 2). 故选:B .变式5-1.(2020·江苏泰州市·中考真题)如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D 、E .若CDE ∠为36︒,则图中阴影部分的面积为( )A .10πB .9πC .8πD .6π【答案】A【提示】 本题可通过做辅助线,利用矩形性质对角线相等且平分以及等面积性,利用扇形ABC 面积减去扇形AOC 面积求解本题.【详解】连接OC 交DE 为F 点,如下图所示:由已知得:四边形DCEO 为矩形.∵∠CDE=36°,且FD=FO ,∴∠FOD=∠FDO=54°,△DCE 面积等于△DCO 面积.2290105410==10360360AOB AOC S S S πππ••••--=阴影扇形扇形. 故选:A .变式5-2.(2020·湖北咸宁市·中考真题)如图,在⊙O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A .22πB .2πC .22π- D .2π-【答案】D【提示】根据圆周角定理得出∠AOB=90°,再利用S 阴影=S 扇形OAB -S △OAB 算出结果.【详解】解:∵∠C=45°,∴∠AOB=90°,∵OA=OB=2,∴S 阴影=S 扇形OAB -S △OAB =29021223602π⋅⋅-⨯⨯=2π-, 故选D.变式5-3.(2020·山东日照市·中考真题)如图,AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,若CD =3AE =9,则阴影部分的面积为( )A .6π932B .12π﹣3C .3π934D .3【答案】A【提示】根据垂径定理得出CE=DE=12CD =3,再利用勾股定理求得半径,根据锐角三角函数关系得出∠EOD=60°,进而结合扇形面积求出答案.【详解】解:∵AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,∴CE =DE =12CD =3 设⊙O 的半径为r ,在直角△OED 中,OD 2=OE 2+DE 2,即222(9)(33)r r =-+,解得,r =6,∴OE =3,∴cos ∠BOD =3162OE OD ==, ∴∠EOD =60°, ∴13666BOD S ππ=⨯=扇形,19333322RT OED S =⨯⨯=, 根据圆的对称性可得: ∴9=632S π阴影 故选:A .变式5-4.(2020·西藏中考真题)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .433πB .4233π-C .833πD .8233π-【答案】D【提示】 根据垂径定理得到AE⏜=CE ⏜,AD =CD ,解直角三角形得到OD =12OA =2,AD =32OA =3,根据扇形和三角形的面积公式即可得到结论.【详解】解:∵OD ⊥AC ,∴∠ADO =90°,AE⏜=CE ⏜,AD =CD , ∵∠CAB =30°,OA =4,∴OD =12OA =2,AD =32=3 ∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =2604360π⋅⨯﹣1232⨯=83π﹣3 故选:D .变式5-5.(2020·宁夏中考真题)如图,等腰直角三角形ABC 中,90,2C AC ∠=︒=C 为圆心画弧与斜边AB 相切于点D ,交AC 于点E ,交BC 于点F ,则图中阴影部分的面积是( )A .14π-B .14π-C .24π- D .14π+ 【答案】A【提示】连接CD ,并求出CD 的值,再分别计算出扇形ECF 的面积和等腰三角形ACB 的面积,用三角形的面积减去扇形的面积即可得到阴影部分的面积.【详解】连接CD ,如图,∵AB 是圆C 的切线,∴CD ⊥AB ,∵△ABC 是等腰直角三角形,∴CD=12AB , ∵90,2C AC ∠=︒=AC=BC ,∴AB=2,∴CD=1, 21901=22123604ABC ECFS S S ππ∆⨯∴-==-阴影扇形 故选:A . 考查题型六 圆锥侧面积的相关计算典例6.(2020·湖南中考真题)一个圆锥的底面半径r =10,高h =20,则这个圆锥的侧面积是( ) A .3πB .3C .5D .5 【答案】C【提示】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.【详解】 221020+5, 这个圆锥的侧面积=1255. 故选:C .变式6-1.(2020·山东东营市·中考真题)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.πB.2πC.2D.1【答案】D【提示】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•r•3=3π,然后解方程即可.【详解】解:根据题意得12•2π•r•3=3π,解得r=1.故选:D.变式6-2.(2020·青海中考真题)如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是()A.3.6B.1.8 C.3D.6【答案】A【提示】先计算阴影部分的圆心角度数,再计算阴影部分的弧长,再利用弧长计算圆锥底面的半径.【详解】由图知:阴影部分的圆心角的度数为:360°-252°=108°阴影部分的弧长为:1081236= 1805ππ⋅设阴影部分构成的圆锥的底面半径为r:则3625rππ=,即183.65r==故选:A.变式6-3.(2020·山东聊城市·中考真题)如图,有一块半径为1m,圆心角为90︒的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为().A .1m 4B .3m 4C .154D 3 【答案】C【提示】首先利用扇形的弧长公式求得圆锥的底面周长,求得底面半径的长,然后利用勾股定理求得圆锥的高.【详解】解:设圆锥的底面周长是l ,则l=9011801802n r πππ⨯⨯==m , 则圆锥的底面半径是:()1224ππ÷=m , 22115144⎛⎫-= ⎪⎝⎭. 故选:C .变式6-4.(2020·山东德州市·九年级三模)圆锥的母线长为9cm ,底面圆的直径为10cm ,那么这个圆锥的侧面展开图的圆心角度数是( )A .150°B .200°C .180°D .240°【答案】B【提示】 因为展开图的扇形的弧长等于圆锥底面周长,根据弧长公式列方程即可.【详解】 解:•910180n ππ=, 解得n=200°.故选B .变式6-5.(2020·湖北恩施土家族苗族自治州·九年级一模)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )A .60°B .90°C .120°D .180° 【答案】C【详解】解:设母线长为R ,底面半径为r ,可得底面周长=2πr ,底面面积=πr 2,侧面面积=12lr=πrR , 根据圆锥侧面积恰好等于底面积的3倍可得3πr 2=πrR ,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n ,有2180n R r ππ=, 即32180n r r ππ⋅=. 可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C .。

九年级上册数学《圆》正多边形和圆 知识点整理

九年级上册数学《圆》正多边形和圆 知识点整理

正多边形和圆有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网整理一、本节学习指导本节我们重点了解正多边形的各种概念和性质,在命题中正多边形经常和三角形、圆联合命题,部分地区也会以这部分综合题作为压轴题。

本节有配套学习视频。

二、知识要点1、正多边形(1)、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

如:正六边形,表示六条边都相等,六个角也相等。

(2)、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

(3)、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。

(4)、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。

(5)、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

(6)、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

2、正多边形的对称性(1)、正多边形的轴对称性正多边形都是轴对称图形。

一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

(2)、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

(3)、正多边形的画法先用量角器或尺规等分圆,再做正多边形。

三、经验之谈:学习了这么久的几何,估计同学们都已经习惯了探索性学习。

正多边形和其他图形一样,我们要注重了解他们的性质,然后结合其他知识来解答题目。

具体题型具体分析。

有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网整理。

正多边形和圆知识点归纳

正多边形和圆知识点归纳

正多边形和圆知识点归纳1. 正多边形①定义:各边相等,各角也相等的多边形,叫做正多边形;②定义中两个条件缺一不可.我们知道三边相等的三角形是正三角形,三个角相等的三角形也是正三角形.但菱形四条边相等,却不是正四边形.矩形四角都相等,也不是正四边形.所以正多边形的定义中各边相等和各角相等两个条件缺一不可.2. 正多边形与圆的关系把一个圆分成相等的一些弧,就可以得到这个圆的内接正多边形,这个圆是这个多边形的外接圆.3、正多边形中各元素间的关系一个正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.如图,设正多边形的边长为a n,半径为R,边心距为r n,中心角为αn,则它们有如下关系:;正n边形的中心角;正n边形的周长P n=na n;正n边形的面积.4、正多边形有关计算在解决有关正多边形计算时,通常运用转化的思想方法,将正多边形的有关计算化为一个边长分别是正多边形的半径、正多边形边长的一半,正多边形的边心距的直角三角形来解决.5、正多边形的对称性①多边形都是轴对称图形,当边数为偶数时,它的对称轴是每一边的垂直平分线和正多边形的边心距所在的直线,当边数为奇数时,它的对称轴是边心距所在的直线;②只有正偶边形才是中心对称图形;③正n边形绕着它的中心每旋转就与它本身重合.典例讲解例1、填空题1. 如图,小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则该圆的半径为()A. B. C. D.答案:D2. 正六边形两条平行边间的距离是1,则它的边长为()A. B. C. D.答案:C3. 已知正三角形的边长为2,则它的内切圆和外接圆组成的圆环面积为()A. B. C. D.答案:B4. 边长为a的正三角形的边心距、半径和高之比为()A.1∶2∶3B.C. D.答案:A例2、如图,圆内接正六边形ABCDEF中,对角线BD、EC相交于点G,求∠BGC的度数.解:正六边形ABCDEF中DC=DE,,∴,同理可证:∠2=,∴∠BGC=∠1+∠2=.例3、如图,已知正三角形ABC外接圆的半径为R,求正三角形ABC的边长、边心距、周长和面积.思路点拨:过中心向正多边形的边作垂线得到Rt△OCH,在Rt△OCH中包含了中心角的一半、边心距、半径、边长的一半等基本元素.解:连接OB、OC,作OH⊥BC于H.例4、如图,正方形的边长为4cm,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.解:由题意知PD=PE=FQ设PD=PE=FQ=xcm,则EF=ED=(4-2x)cm,∵∠P=90°,由勾股定理ED=,∴,∴正八边形的边长为4-2x=cm,面积为.。

数字中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)

数字中考总复习:正多边形与圆的有关的证明和计算--知识讲解(基础)

中考总复习:正多边形与圆的有关的证明和计算—知识讲解(基础)【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.(2015•镇江)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【高清课堂:正多边形与圆的有关证明与计算自主学习4】【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【高清课堂:正多边形与圆的有关证明与计算自主学习2】【变式3】(2015•广西自主招生)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.(2015秋•江都市期中)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC 交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠EAB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠AOC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。

中考数学复习指导:《正多边形与圆》知识点归纳

中考数学复习指导:《正多边形与圆》知识点归纳

正多边形与圆【学习目标】知道正多边形的有关概念,了解正多边形的对称性以及正多边形与圆的关系,能够将正多边形问题转变为解直角三角形问题,会用量角器画正多边形,能够利用直尺和圆规画一些特殊的正多边形.【课前热身】1.正十二边形每个内角的度数为_______.2.如图所示,一束平行太阳光线照射到正五边形上,则∠1=_______.3.如图,在分别以正六边形ABCDEF的顶点为圆心、4cm为半径的六个圆中,若相邻两圆外切,则该正六边形的边长是_______cm.4.给出下列说法:①正多边形的各条边相等;②各边相等的多边形是正多边形;③各角相等的多边形是正多边形;④各边相等的圆的内接多边形是正多边形;⑤既是轴对称又是中心对称的多边形是正多边形.其中正确说法的个数是( )A.1 B.2 C.3 D.45.如图,若过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为( ) A.30°B.36°C.38°D.45°6.如图,已知⊙O和⊙O上的一点A.用直尺和圆规作出⊙O的内接正方形ABCD和内接正八边形AEBFCGDH.【课堂互动】知识点1 正多边形的概念例1若一个多边形的每一个内角都等于108°,则这个多边形的边数是_______.例2一个正多边形的每个外角都等于36°,那么它是( )A.正六边形B.正八边形C正十边形D.正十二边形跟踪训练1.正八边形的一个内角是_______°.2.下列正多边形的中心角等于内角的是( )A.正六边形B.正五边形 C.正四边形 D.正三边形3.正六边形的边心距与边长之比为( )A.3:3 B.3:2 C.1:2 D.2:2知识点2 正多边形的性质例1 如图,在正五边形ABCDE中,对角线AC,AD与BE分别交于点M,N.下列说法错误的是( )A.四边形BCDN是菱形B.四边形CDNM是等腰梯形C.△AEM与△CBN相似D.△AEN与△ABM全等例2 用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1.用n个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则n的值为_______.例3 如图,有一个⊙O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和⊙O相切(我们称T1,T2分别为⊙O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,⊙O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.跟踪训练1.若一个正六边形的周长为24,则该正六边形的面积为_______.2.若正六边形的边心距为3,则它的周长是( )A.6 B.12 C.63 D.1233.半径为R的圆的内接正三角形的面积是( )A.32R2B.πR2C.332R2D.334R2知识点3 阅读理解题例数学课堂上,徐老师出示了一道试题:如图,在正三角形ABC中,M是边BC(不含端点B,C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.(1)经过思考,小明展示了一种正确的证明过程,请你将该证明过程补充完整.证明:在AB上截取EA=MC,连接EM,得△AEM.∵∠1=180°-∠AMB-∠AMN ,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.又∵CN平分∠ACP,∴∠4=12∠ACP=60°.∴∠MCN=∠3+∠4=120°.①又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM,∴△BEM为等边三角形,∴∠6=60°.∴∠5=180°-∠6=120°,②由①②得∠MCN=∠5.在△AEM和△MCN中,∵_______,_______,_______,∴△AEM≌△MCN(ASA).∴AM=MN.(2)如图所示,若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”,N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1是否还成立?(直接给出答案,不需要证明)(3)若将题中的“正三角形ABC”改为“正多边形A n B n C n D n…X n”,请你猜想:当∠A n M n N n=_______°时,结论A n M n=M n N n仍然成立.(直接写出答案,不需要证明)跟踪训练已知图1,图2,图3,…,图n,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDE--的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是_______,图3中∠MON的度数是_______;(3)试探究∠MON的度数与正n边形边数的关系.(直接写出答案)参考答案课前热身1.150°2.30°3.84.B5.B6.图略.课堂互动知识点1例1 5例2 C跟踪训练1.135 2.C3.B知识点2例1C例2 6例3 2 (2)3:4跟踪训练2.B 3.D知识点3例(1)∠5=∠MCN AE=MC ∠2=∠1(2)结论成立(3)2180 nn-⨯跟踪训练(1)120°(2)90°72°(3)360 n︒。

正多边形与圆的性质

正多边形与圆的性质

正多边形与圆的性质正多边形是指所有边和角都相等的多边形。

而圆是一个平面上所有点距离中心点相等的集合。

正多边形和圆都有一些独特的性质,下面将逐一探讨它们。

一、正多边形的性质1. 全等性质:正多边形的所有边和角都相等,因此它们可以互相重合,即具有全等性质。

2. 对称性质:正多边形具有多个对称轴。

以正三角形为例,它具有三个对称轴,分别连接顶点和中点。

对称轴可将正多边形分为几个全等的部分。

3. 外接圆性质:正多边形的顶点都位于一个外接圆上,且外接圆的圆心即为正多边形的重心。

4. 内角和外角和关系:以正五边形为例,可以发现它的内角和为540度,而外角和为360度。

一般情况下,正多边形的内角和为(n-2)×180度,外角和为360度,其中n为正多边形的边数。

二、圆的性质1. 圆周率:圆周率π是一个无理数,近似值为3.14159。

圆的周长可以通过周长公式C=2πr计算得出,其中r为圆的半径。

2. 面积计算:圆的面积可以通过面积公式A=πr^2计算得出。

半径越大,圆的面积越大。

3. 弧长和扇形面积:圆的一部分被称为弧,其长度可以通过角度和半径计算得出。

扇形是圆的一部分,由圆心与两个弧之间的线段围成。

扇形的面积可以通过扇形面积公式A=(θ/360°)×πr^2计算得出,其中θ为扇形的角度。

4. 切线和切线定理:切线是与圆只有一个交点的直线。

根据切线定理,切线与半径的交点处的角是直角。

三、正多边形与圆的关系1. 正多边形内切圆:正多边形的内角均为锐角,因此正多边形可以内切于一个圆。

内切圆的半径等于正多边形的所有边的长度之差的一半。

2. 正多边形外接圆:正多边形的顶点都位于一个外接圆上,且外接圆的半径等于正多边形每条边的长度。

通过以上讨论可知,正多边形和圆具有许多有趣的性质和规律,它们在数学和几何学中有着广泛的应用和重要的地位。

当我们深入研究它们的性质时,会对我们的数学思维和几何直觉有所帮助。

中考数学 第一编 教材知识梳理篇 第七章 圆 第三节 正

中考数学 第一编 教材知识梳理篇 第七章 圆 第三节 正

第三节正多边形与圆有关的计算,河北8年中考命题规律)年份题号考查点考查内容分值总分2014填空19 求扇形的面积已知扇形的弧长和半径,求扇形的面积3 32013选择14 求阴影部分面积利用垂径定理求圆半径,结合三角形全等性质将不规则图形转化为求扇形面积3 32010填空17 求圆锥的底面积由某路灯照射为背景,已知圆锥的高及母线与底面半径之间的夹角,求底面积3 32016、2015、2012、2011、2009年未考查命题规律纵观河北8年中考,在正多边形和圆、与圆有关的计算考点中,一般设置一道题,题型为选择、填空,分值为3分,题目难度不大,其中求扇形面积在填空题中考查了1次,选择题中考查了1次,求圆锥的底面积在填空题中考查了1次.命题预测预计2017年中考,本节内容考查的重点是扇形的有关计算题型,阴影部分面积的计算可能以选择或填空题为主,应对扇形有关公式熟练掌握加强训练.,河北8年中考真题及模拟)扇形面积的相关计算(2次)1.(2013河北14题3分)如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=23,则阴影部分图形的面积为( D)A.4πB.2πC.πD.2π(第1题图)(第2题图) 2.(2014河北19题3分)如图,将长为8 cm的铁丝AB首尾相接围成半径为 2 cm的扇形.则S扇形=__4__cm2.3.(2010河北17题3分)某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8 m,母线AB与底面半径OB的夹角为α,tanα=43,则圆锥的底面积是__36π__m2.(结果保留π)(第3题图)(第4题图)4.(2016保定模拟)如图,两个同心圆的半径分别为6 cm和3 cm,大圆的弦AB与小圆相切,则劣弧AB的长为( B)A.2πcm B.4πcmC.6πcm D.8πcm5.(2016邯郸二模)如图,圆柱底面半径为2πcm,高为9 cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( C)A.12 cm B.97 cm C.15 cm D.21 cm6.(2016河北石家庄一中一模)如果一个扇形的弧长是43π,半径是6,那么此扇形的圆心角为( A)A.40°B.45°C.60°D.80°7.(2016河北石家庄二十八中三模)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( C)A.πB.4πC.π或4πD.2π或4π,(第7题图)),(第8题图))8.(2016河北石家庄十二中一模)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( B)A.2π3-32B.2π3- 3C.π-32D.π- 39.(2016河北石家庄四十二中三模)如图,张老师在上课前用硬纸做了一个无底的圆锥形教具,那么这个教具的用纸面积是__300π__cm2.(不考虑接缝等因素,计算结果用π表示)10.(2016河北保定十七中一模)如图,AB为⊙O的直径,弦AC=2,∠ABC=30°,∠ACB的平分线交⊙O于点D.(1)求BC,AD的长;(2)求图中两阴影部分面积的和.解:(1)在Rt △ABC 中,∠ABC =30°,AC =2,∴AB =4,∴BC =AB 2-AC 2=2 3.∵∠ACB 的平分线交⊙O 于点D ,∴∠DCA =∠BCD,∴AD ︵=BD ︵,∴AD =BD ,∴在Rt △ABD 中,AD =BD =22AB =22;(2)如图,连接OC ,OD.∵∠ABC =30°,∴∠AOC =2∠ABC=60°.∵OA =OB ,∴S △AOC =12S △ABC =12×12×AC ·BC =12×12×2×23= 3.由(1),得∠AOD=90°,∴∠COD =150°,S △AOD =12×AO ×OD =12×22=2,∴S 阴影=S 扇形COD -S △AOC -S △AOD =150π×22360-3-2=53π-3-2.,中考考点清单)如果圆的半径是R ,弧所对的圆心角度数是n ,那么弧长公式 弧长l =①__n πR180__扇形面积公式S 扇=n πR 2360=②__12lR__图形圆锥简介(1)h 是圆锥的高,r 是底面半径;(2)l 是圆锥的母线,其长为侧面展开后所得扇形的③__半径__;(3)圆锥的侧面展开图是半径等于④__l__长,弧长等于圆锥底面⑤__周长__的扇形.圆锥的侧面积S 侧=⑥__πrl __圆锥的全面积S 全=⑦__πr 2+πrl__1.牢记圆的有关计算公式,并灵活处理好公式之间的转换,当出现求不规则图形的面积时,注意利用割补法与等积变换转化为规则图形,再利用规则图形的公式求解.2.圆锥的侧面问题转化为平面问题,如最短路线问题.,中考重难点突破)弧长与扇形面积【例1】(1)(2015苏州中考)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧BC的弧长为________.(结果保留π)例1(1)题图例1(2)题图(2)(2015邯郸二模)如图,正方形ABCD 中,分别以B 、D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( )A .πaB .2πaC .12πa D .3a【解析】(1)连接OC 、OB ,设法求半径OB 及∠BOC 即可;(2)阴影部分的周长为AC ︵的长的2倍.【学生解答】(1)13π;(2)A1.(2016安徽中考)如图,已知⊙O 的半径为2,A 为⊙O 外一点,过点A 作⊙O 的一条切线AB ,切点是B ,AO的延长线交⊙O 于点C ,若∠BAC=30°,则劣弧BC ︵的长为__4π3__.圆锥的侧面积与全面积【例2】(2016成都中考)一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________.(结果保留π)【学生解答】68π2.(2016铜仁中考)已知圆锥的底面直径为20 cm,母线长为90 cm,则圆锥的表面积是__1__000π__cm2.3.(2016遵义中考)有一圆锥,它的高为8 cm ,底面半径为6 cm ,则这个圆锥的侧面积是__60π__cm 2.(结果保留π)4.(2016巴中中考)如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为__18__.5.(2016天津中考)正六边形的边心距为3,则该正六边形的边长是( B ) A . 3 B .2 C .3 D .2 36.(2016石家庄四十三中模拟)如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白=( C )A .3B .4C .5D .6,中考备考方略)1.(2016台州中考)如图,△ABC 的外接圆O 的半径为2,∠C =40°,则AB ︵的长是__89π__.2.(2016长沙中考)如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为__2π__.(结果保留π)3.(2016自贡中考)一个扇形的半径为8 cm,弧长为16π3cm,则扇形的圆心角为( B)A.60°B.120°C.150°D.180°4.(2016德州中考)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4∶5,那么所需扇形铁皮的圆心角应为 ( A)A.288°B.144°C.216°D.120°,(第4题图)),(第5题图))5.(2016苏州中考)如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为2.6.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是__3π__.,(第6题图)),(第7题图))7.(2016宁波中考)如图,半圆O 的直径AB =2,弦CD∥AB,∠COD =90°,则图中阴影部分的面积为__π4__.8.(2016邵阳中考)如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O ,A ,B 均为格点,则扇形OAB 的面积大小是__5π4__.,(第8题图)),(第9题图))9.(2016德州中考)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O垂合,则图中阴影部分的面积是2-π6__.10.(2016烟台中考)如图,C为半圆内一点,O为圆心,直径AB长为2 cm,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为__14π__ cm 2.11.(2015烟台中考)如图,将弧长为6π,圆心角为120°的圆形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(粘连部分忽略不计),则圆锥形纸帽的高是__62__.12.(2016石家庄二十八中二模)如图,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF 上.若∠BAD=120°,则弧BC 的长度等于__π3__.(结果保留π)(第12题图)(第13题图)13.(2016滨州中考)如图,△ABC 是等边三角形,AB =2,分别以A ,B ,C 为圆心,以2为半径作弧,则图中阴影部分的面积是.14.(2016潍坊中考)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8 cm ,水的最大深度是2 cm ,则杯底有水部分的面积是( A )A .(163π-43)cm 2B .(163π-83)cm 2C .(83π-43)cm 2D .(43π-23)cm 2,(第14题图)),(第15题图))15.(2016潍坊中考)如图,在Rt △ABC 中,∠A=30°,BC =23,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( A )A .1534-32πB .1532-32πC .734-π6 D .732-π616.(2015遵义中考)如图,在圆心角为90°的扇形OAB 中,半径OA =2 cm ,C 为AB ︵的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为__⎝ ⎛⎭⎪⎫12π+2-12cm 2__.,(第16题图)),(第17题图))17.(2016泰州中考)如图,⊙O 的半径为2,点A ,C 在⊙O 上,线段BD 经过圆心O ,∠ABD =∠CDB=90°,AB =1,CD =3,则图中阴影部分的面积为__53π__.18.(2016贵港中考)如图,Rt △ABC 中∠C=90°,∠BAC =60°,将△ABC 绕点A 逆时针方向旋转60°后得到△ADE,若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是__π2__.(结果保留π)19.(2016兰州中考)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线AD 交BC 边于D.以AB 上某一点O 为圆心作⊙O,使⊙O 经过点A 和点D.(1)判断直线BC 与⊙O 的位置关系,并说明理由; (2)若AC =3,∠B =30°. ①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)解:(1)直线BC 与⊙O 相切;连接OD ,∵OA = OD ,∴∠OAD =∠ODA.∵∠BAC 的角平分线AD 交BC 边于D ,∴∠CAD =∠OAD,∴∠CAD =∠ODA,∴OD ∥AC ,∴∠ODB =∠C=90°,即OD⊥BC.又∵直线BC 过半径OD 的外端,∴直线BC 与⊙O 相切;(2)①设OA =OD =r ,在Rt △BDO 中,∠B =30°,∴OB =2r.在Rt △ACB 中,∠B =30°,∴AB =2AC =6,∴3r =6,解得r =2.②在Rt △ACB 中,∠B =30°.∴∠BOD =60°.∴S 扇形ODE =23π.∴所求图形面积为:S △BOD -S 扇形ODE =23-23π.20.(2016廊坊二模)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,且∠BOD=60°,过点D 作⊙O 的切线CD 交AB 的延长线于点C ,E 为AD ︵的中点,连接DE ,EB.(1)求证:四边形BCDE 是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O 的半径r.解:(1)连接OE ,依题意得,AE ︵=ED ︵=BD ︵,∴∠AOE =∠EOD=∠DOB=60°,∴∠EBA =12∠EOA =30°,∠DEB=12∠DOB =30°,∴∠EBA =∠DEB,∴DE ∥AB ,∵AE ︵=ED ︵=BD ︵,∴OD ⊥BE ,又CD 是⊙O 切线,∴OD ⊥CD ,∴BE ∥CD ,∴四边形BCDE 为平行四边形;(2)∵阴影部分面积为6π,∴60°·π·r 2360°=6π,∴r 2=36,∴r =6.21.(2016邢台二中一模)如图,已知AB 是⊙O 的直径,直线CP 切⊙O 于点C ,过点B 作BD⊥CP 于点D. (1)求证:△ACB∽△CDB;(2)若⊙O 的半径为1,∠BCP =30°,求图中阴影部分的面积.解:(1)∵直线CP 是⊙O 的切线,∴∠BCD =∠BAC.∵AB 是直径,∴∠ACB =90°.又∵BD⊥CP,∴∠CDB =90°,∴∠ACB =∠CDB=90°,∴△ACB ∽△CDB ;(2)如图,连接OC.∵直线CP 是⊙O 的切线,∠BCP =30°,∴∠COB =2∠BCP=30°,∴△OCB 是正三角形.∵⊙O 的半径为1,∴S △OCB =34,S 扇形OCB =60πr 2360=π6,∴S 阴影=S 扇形OCB-S △OCB =π6-34.。

初中数学知识点精讲精析 正多边形和圆

初中数学知识点精讲精析  正多边形和圆

第七节正多边形和圆要点精讲一、正多边形的定义及有关概念:1.正多边形的定义:各边相等,各角也相等的多边形叫做正多边形.当n≥3时,这个正多边形就叫做正n边形.2.正多边形中的有关概念:(1)正多边形的外接圆或内切圆的圆心叫做正多边形的中心;(2)外接圆的半径叫做正多边形的半径;(3)中心到正多边形一边的距离叫做正多边形的边心距;(4)正多边形每一边所对的圆心角叫做正多边形的中心角,每个中心角等于;(5)任何一个正多边形的中心角都等于外角,等于;(6)外接圆的半径叫做正多边形的半径,用R表示;(7)内切圆的半径叫做正多边形的边心距,用r表示.二、正多边形的性质1.由正多边形的定义可以知道,正多边形的各边相等,各角相等.2.正多边形的性质定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3.正多边形具有对称性:(1)正多边形是轴对称图形,其对称轴是通过正多边形的一个顶点和其外接圆(或内切圆)圆心的一条直线.当n为偶数时,综上述对称轴外,正n边形一边中点与其外接圆(或内切圆)圆心所确定的直线也是它的对称轴.正n边形共有n条对称轴.(2)当n为偶数时,正n边形又是中心对称图形,其对称中心就是正n边形的外接圆(或内切圆)的圆心.4.边数相同的正多边形相似,它们周长的比等于它们边长的比,它们面积的比等于它们的边长平方的比.三、正多边形和圆的关系:把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆是这个正多边形的外接圆.弦相等各边相等弧相等→→→正多边形圆周角相等各角相等相关链接正多边形的有关计算公式:任意(正)多边形的面积公式:½rl(r表示内切圆的半径,l表示内切圆的周长)任意(正)多边形的内角和公式:(n-2)×180°任意正多边形的内角公式:任意(正)多边形的对角线条数公式:½n(n-3)任意(正)多边形的外角和公式:360°典型分析1.判断图中正六边形ABCDEF 与正三角形FCG 的面积比为何( )A.2:1B.4:3C.3:1D.3:2【答案】D【解析】如图:作EH ∥CG 交CF 于H ,连接DH ,∴S 正三角形FCG =4S △GED S 正六边形ABCDEF =6S △DEG ∴正六边形ABCDEF 与正三角形FCG 的面积的比为:3:2,故选D.中考案例1.(2012 达州)如图,正方形ABCD 内接于⊙O,点E 在上,则∠BEC= ___________°.【答案】45°.【分析】连接OB 、OC ,则∠BEC =∠BOC ,∵O 是正方形外接圆的圆心,AD∴∠BOC=90°.∴∠BEC=∠BOC=45°.针对训练1.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于()A.30°B.45°C.55°D.60°2.已知一个正六边形的半径是r,则此正六边形的周长是()A.3rB.6rC.12rD.24r3.同一个圆的内接正方形和它的外切正方形的边长之比为()A.sin45°B.sin60°C.cos30°D.cos60°4.下列命题正确的有()A.在同圆或等圆中,等弦所对的弧相等B.圆的两条不是直径的相交弦,不能互相平分C.正多边形的中心是它的对称中心D.各边相等的圆外切多边形是正多边形5.如图,AB是⊙的直径,弦CD垂直平分OB,则∠BDC=()A.15°B.20°C.30°D.45°6.已知圆内接正六边形的周长为18,那么圆的面积为()A.18πB.9πC.6πD.3π7.中心角为30°的正n边形的n等于()A.10B.12C.14D.158.如图,已知∠AOB=30°,P为边OA上一点,且OP=5 cm,若以P为圆心,r为半径的圆与OB相切,则半径r为()A.5cmcmC.cmcm参考答案1.【答案】B【解析】连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°.故选B.2.【答案】B【解析】连接正六边形的中心与一边的两个端点,根据中心角是60°,因而正六边形的一边与半径构成正三角形;正六边形的半径是r,因而正六边形的边长是r,因而正六边形的周长是6r.故选B.3.【答案】A【解析】连接圆心和切点,作出边心距,可得到内接正方形和它的外切正方形的边长一半的比为sin45°.∴同一个圆的内接正方形和它的外切正方形的边长之比为sin45度.故选A.4.【答案】B【解析】A.错误.因为一条弦对应着两条弧;B.正确.只有垂直于弦的直径才能平分弦;C.错误.正多边形的中心是它的外接圆的圆心;52D.错误.各边相等的圆外切多边形不一定是正多边形,因为角不一定相等.故选B.5.【答案】C【解析】连接OC,BC,∵弦CD垂直平分OB,∴根据线段垂直平分线上的点到线段两端距离相等的性质,得OC=BC.又∵OC=OB,∴△OCB是等边三角形.∴∠COB=60°.∴根据同弧所对圆周角是圆心角一半的圆周角定理,得∠D=30°.故选C.6.【答案】B【解析】已知圆内接正六边形的周长为18,则边长是3,进而可得到其半径是3,因而圆的面积是9π.故选B.7.【答案】B【解析】利用正多边形的中心角相等,一个周角为360度求解,正n边形的n=360°÷30°=12,故选B.8.【答案】C【解析】作PD⊥OB于D,∵在直角三角形POD中,∠AOB=30°,P为边OA上一点,且OP=5 cm,∴PD=(cm).∵根据直线和圆相切,则圆的半径等于圆心到直线的距离,∴r=cm.故选C.扩展知识雪花的形成原因雪花为什么是正六边形的结晶体?雪花都是由空中的尘埃引起水分子层层凝结而成的,尽管每一朵都呈六边形,但是细心观察,肯定找不到两片完全相同的雪花.有的雪花晶体矮矮胖胖,有的纤细修长,有的扁平如板,也有的带着精致的枝杈.为什么雪花的形状各不相同呢?原来雪花的结构形状取决于晶体迅速穿越高空大气层时经历的温度、水汽及气流的变化.雪晶总是对称的,因为云层中的环境虽说在不断变化,但这些变化却始终是对称地同时作用于晶体的六条边.形成一颗雪晶需要大约15分钟. 雪花产生雪晶的云层温度必须在华氏4度到14度之间,云中必须充满稠密的水蒸气.因为大量水蒸气的存在,为晶体提供了丰富的可加工的原料,同时也提供了构制各种复杂图案的可能性.晶体长大到重量足以使它穿越云层下的气流时,以每秒钟约3公里的速度悠然飘向地面.如果近地面的温度高于华氏32度,雪晶化成雨水降落;如果温度恰好比32度略低,晶体在飘落的途中就与另一些晶体结合在一块形成雪花落下.当雪晶飘落时,如果云层下有上升的气流盘旋,晶体就一会儿上升,一会儿下降,粘结成越来越大的冰块,直至重量增大到足以克服上升的气流时,就以冰雹的形式下落到地面.雪花形成的时候,大气里水气是饱和的,温度则在摄氏零度以下.微细的冰晶会渐渐围绕着凝结核.然后,冰晶连结在一起而雪花亦随之诞生.这过程被称为“结晶”.在结晶过程中,水分子会以它们的基本排列方式从液态变成固态.由于冰晶的基本模式是六角棱体,大部份冰晶的雏形都是六角形的.当更多的水分子与冰晶结合后,,它们会由第一个六角形开始保持冰晶的形状继续向外生长.虽然大部份冰晶形成时有着六边对称的特性,但是它们会因应温度的改变而做成很多不同形状的变化.若温度低于摄氏零下三十度,六角柱体的冰晶便会形成,典型的六角形的扁平片状雪花会在摄氏零下十五度左右时形成.当温度上升至摄氏零下五度,无论针状、柱状抑或一些不能估计的形状的雪花便会产生.由于雪层越高,温度越冷,因此六角柱状的雪花通常会在高云形成.较低的云层通常会形成六角平面的片状雪花,而不同形状的结晶会在低云中产生.雪晶的六角形状能细分为两大类,一是片状,另一类是柱状.经常看到比较美丽的雪花便是那些六边对称的片状雪晶.它们通常会在温度介乎摄氏零下五度至零下二十度之间形成,柱状雪花包括了针状和中空柱状,针状雪晶在温度介乎摄氏零度至摄氏零下五度形成,中空柱状在是低于摄氏零下二十度形成.如果希望找出大部分冰晶是六角棱体的原因,或许应该首先了解一下水分子.水分子是由两个氢原子以及一个氧原子(这便是我们常把水称为H2O的原因),它们以一种很强的键——共价键, 黏合在一起.当液态的水分子被冷却至凝固点,水分子会互相碰撞,形成固态冰晶,然后它们会利用氢键结合在一起.若分子与分子之间结合,便会更稳定.相对来说,最稳定的排列方式是以六角形状把六个水分子黏在一起,这也是为什么大部份冰晶是六角形的.。

中考数学几何温习第七章圆第32课时正多边形和圆一教案

中考数学几何温习第七章圆第32课时正多边形和圆一教案

第七章:圆第32课时:正多边形和圆(一)教学目标:1、使学生明白得正多边形概念;2、使学生了解依次连结圆的n等分点所得的多边形是正多边形;过圆的n等分点作圆的切线,以相邻切线的交点为极点的多边形是正多边形.3、通过正多边形概念教学培育学生归纳能力;4、通过正多边形与圆关系定理的教学培育学生观看、猜想、推理、迁移能力.教学重点:(1)正多边形的概念;(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.教学难点:对正n边形中泛指“n”的明白得.教学进程:一、新课引入:同窗们试探以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[安排中下生回答] 3.等边三角形与正方形的边、角性质有什么一起点?[安排中上生回答:各边相等、各角相等].各边相等,各角相等的多边形叫做正多边形.这确实是咱们今天学习的内容“正多边形和圆”.二、新课讲解:正多边形在生产实践中有普遍的应用性,因此,正多边形的知识对学生进一步学习和参加生产劳动都是必要的.因此本节课第一给出正多边形的概念,然后依照正多边形的概念和圆的有关知识推导出正多边形与圆的第一个关系定理,即n等分圆周就可取得圆的内接或外切正n边形,它是正多边形画图的理论依据,因此也是本节课的重点之一.同窗回答:什么是正多边形?[安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]若是一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.幻灯展现图形:上面这些图形都是正几边形?[安排中下生回答:正三角形,正四边形,正五边形,正六边形.]矩形是正多边形吗?什么缘故?菱形是正多边形吗?什么缘故?[安排中下生回答:矩形不是正多边形,因为边不必然相等.菱形不是正多边形,因为角不必然相等.]哪位同窗记得在同圆中,圆心角、弧、弦、弦心距关系定理?[安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其余量都相等.]要将圆三等分,那么其中一等份的弧所对圆心角度数是多少?要将圆四等分、五等分、六等分呢?[安排中下生回答:将圆三等分,其中每等份弧所对圆心角120°、将圆四等分,每等份弧所对圆心角90°、五等分,圆心角72°、六等分,圆心角60°]哪位同窗能用量角器将黑板上的圆三等分、四等分、五等分、六等分?[接排四名上等生上黑板完成,其余学生在下面练习本上用量角器等分圆周.]大伙儿依次连结各分点看所得的圆内接多边形是什么样的多边形?[学生答:正多边形.]求证:五边形ABCDE是⊙O的内接正五边形.以幻灯所示五边形为例,哪位同窗能证明这五边形的五条边相等?[安排中等生回答:]哪位同窗能证明这五边形的五个角相等?[安排中等生回答:]前面的证明说明“依次连结圆的五等分点所得的圆内接五边形是正五边形”的观看后的猜想是正确的.若是n等分圆周,(n≥3)、n=6,n=8……是不是也正确呢?[安排学生们充分讨论].因为在同圆中,弧等弦等,n等分圆就取得n条弦等,也确实是n边形的各边都相等.又n边形的每一个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,依照弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.定理:把圆分成n(n≥3)等份:(1)依次连结各分点所得的多边形是那个圆的内接正n边形;为何要“依次”连结各分点呢?缺少“依次”二字会显现什么现象?大伙儿讨论讨论看看.通过圆的五等分点作圆的切线,大伙儿观看以相邻切线的交点为极点的五边形是不是正五边形?PQ、QR、RS、ST别离是通过度点A、B、C、D、E的⊙O的切线.求证:五边形PQRST是⊙O的外切正五边形.由弧等推得弦等、弦切角等,哪位同窗能说明五边形PQRST的各角都相等?[安排中上生回答]哪位同窗能证明五边形PQRST的各边都相等?[安排中等生回答.]前面同窗的证明,说明“通过圆的五等分点作圆的切线,以相邻切线的交点为极点的多边形是那个圆的外切正五边形.”一样依照弧等弦等、弦切角等就可证明通过圆的n等分点作圆的切线,以相邻切线的交点为极点的n个等腰三角形全等,从而证明了那个圆的以它n等分点为切点的外切n边形是正n边形.(2)通过各分点作圆的切线,以相邻切线的交点为极点的多边形是那个圆的外切正n边形.定理(2)中少“相邻”两字行不行?少“相邻”两字会显现什么现象?同窗们彼其间讨论研究看看.三、课堂小结:本堂课咱们学习的知识:1.学习了正多边形的概念.2.n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.四、布置作业教材.练习2、3;中2、3、4(1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 正多边形与圆有关的计算
1.(2015福建中考)在半径为6的⊙O 中,60°圆心角所对的弧长是( B )
A .π
B .2π
C .4π
D .6π
2.(2016成都中考A 卷)如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA =50°,AB =4,则弧BC 的长为( B )
A .310π
B .910π
C .95π
D .185π
,(第2题图))
,(第3题图))
3.(2016吉林中考)如图,阴影部分是两个半径为1的扇形,若α=120°,β=60°,则大扇形与小扇形的
面积之差为( B )
A .3π
B .6π
C .35π
D .65π
4.(2016临沂中考)如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D ,C.若∠ACB =30°,AB =,则阴影部分的面积是( C )
A .23
B .6π
C .23-6π
D .33-6π
,(第4题图)) ,(第6题图))
5.(2016南京中考)已知正六边形的边长为2,则它的内切圆的半径为( B )
A .1
B .
C .2
D .2
6.(2016深圳中考)如图,在扇形AOB 中,∠AOB =90°,正方形CDEF 的顶点C 是︵AB
的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( A )
A .2π-4
B .4π-8
C .2π-8
D .4π-4
7.(2016长沙中考)如图,扇形OAB 的圆心角为120°,半径为3,则该扇形的弧长为__2π__.(结果保留π)
,(第7题图)) ,(第8题图))
8.(2015益阳中考)如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则︵AB 的长为__3π
__.
9.(2016宁夏中考)已知正△ABC 的边长为6,那么能够完全覆盖这个正△ABC 的最小圆面的半径是__2__.
10.(2016泰州中考)如图,⊙O 的半径为2,点A ,C 在⊙O 上,线段BD 经过圆心O ,∠ABD =∠CDB =90°,AB =1,CD =,则图中阴影部分的面积为__35π
__.
,(第10题图)) ,(第11题图))
11.(2016原创)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是__23-6π
__.
12.(2016乐山中考)如图,在Rt △ABC 中,∠ACB =90°,AC =2,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为__2-32
π__.
13.(2016郴州中考)如图,OA ,OD 是⊙O 的半径,过A 作⊙O 的切线,交∠AOD 的平分线于点C ,连接CD ,延长AO 交⊙O 于点E ,交CD 的延长线于点B.
(1)求证:直线CD 是⊙O 的切线;
(2)如果D 点是BC 的中点,⊙O 的半径为3 cm ,求︵DE
的长度.(结果保留π)
解:(1)∵OC 平分∠AOD ,∴∠COA=∠COD ,又AO =OD ,OC =OC ,∴△ACO≌△DCO,∴∠CDO=∠CAO ,又AC 是⊙O 的切线,∴∠CDO=∠CAO =90°,∴直线CD 是⊙O 的切线;(2)解法一:∵D 为BC 中点,∴CD=21
CB ,又CA =CD ,∴AC=21CB.又∠CAO =90°,∴∠B=30°,∴∠DOE=60°,∴︵DE =18060π×3
=π(cm ).解法二:∵CD =BD ,∠ODC=∠ODB =90°,OD =OD ,∴△COD≌△BOD,∴∠COD=∠BOD ,∴∠BOD=∠COD =∠AOC =60°,∴︵DE
=18060π×3
=π(cm ).
14.(2016巴中中考)如图,在平面直角坐标系xOy 中,以点O 为圆心的圆分别交x 轴的正半轴于点M ,交y
轴的正半轴于点N.劣弧︵MN 的长为56π,直线y =-34
x +4与x 轴、y 轴分别交于点A ,B.
(1)求证:直线AB 与⊙O 相切;
(2)求图中所示的阴影部分的面积.(结果用π表示)
解:(1)作OD ⊥AB 于D ,如图所示.∵劣弧︵MN 的长为56π,∴18090π×OM =56π,解得OM =512
,即⊙O 的半径为512,∵直线y =-34
x +4与x 轴,y 轴分别交于点A ,B ,当y =0时,x =3;当x =0时,y =4,∴A(3,0),B(0,4),∴OA=3,OB =4,∴AB==5,∵S △AOB =21AB ·OD =21OA·OB,∴OD=AB OA ×OB =512
=半径OM ,∴直线AB 与⊙O 相切;(2)S 阴影=S △AOB -S 扇形OMN =21×3×4-41π×(512)2=6-2536
π.
15.(2016福州中考)如图,正方形ABCD 内接于⊙O ,M 为︵AD
中点,连接BM ,CM. (1)求证:BM =CM ;
(2)当⊙O 的半径为2时,求︵BM
的长.
解:(1)∵四边形ABCD 是正方形,∴AB=CD ,∴︵AB =︵CD .∵M 为︵AD 中点,∴︵AM =︵DM ,∴︵BM =︵CM
,∴BM=CM ;(2)连接OM ,OB ,OC.∵︵BM =︵CM ,∴∠BOM=∠COM.∵正方形ABCD 内接于⊙O ,∴∠BOC=4360°
=90°,∴∠BOM=135°,由弧长公式,得︵BM 的长l =180135×2×π=23
π.
16.(2016原创)如图,CD 是⊙O 的弦,AB 是直径,且CD ∥AB.连接AC ,AD ,OD ,其中AC =CD.过点B 的切线交CD 的延长线于E.
(1)求证:DA 平分∠CDO ;
(2)若AB =12,求图中阴影部分的周长之和.(参考数据:π≈3.1,≈1.4,≈1.7)
解:(1)∵CD ∥AB ,∴∠CDA=∠BAD.又∵OA =OD ,∴∠ADO=∠BAD ,∴∠ADO=∠CDA ,∴DA 平分∠CDO ;(2)连接BD ,∵AB 是直径,∴∠ADB=90°.∵AC=CD ,∴∠CAD=∠CDA.又∵CD ∥AB ,∴∠CDA=∠BAD ,∴∠CDA=∠BAD =∠CAD ,∴︵AC =︵DC =︵BD .又∵∠AOB =180°,∴∠DOB=60°,∴∠BAD=21
∠DOB=30°.在△ADB 中,∠DAB=30°,∠ADB=90°,∠ABD=60°,AB =12,∴BD=21×AB =6.∵︵AC =︵BD
,∴AC=BD =6.∵BE 切⊙O 于B ,∴BE⊥AB,∴∠DBE=∠ABE -∠ABD =30°.又∵CD ∥AB ,∴BE⊥CE,∴DE=21BD =3,BE =BD ×cos ∠DBE=6×23
=3,∴︵BD 的长为18060π×6=2π,又︵AC =︵BD ,∴︵AC
的长为2π,∴图中阴影部分周长之和为2π+6+2π+3+3=4π+9+3≈4×3.1+9+3×1.7=26.5.。

相关文档
最新文档