大学物理 第二版 课后习题答案 第七章

合集下载

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电场中的导体和电介质课后习题及答案

1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21s s。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。

上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

(完整版)大学物理学(课后答案)第7章

(完整版)大学物理学(课后答案)第7章

第七章课后习题解答一、选择题7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ](A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强分析:理想气体分子的平均平动动能32k kT ε=,仅与温度有关,因此当氦气和氮气的平均平动动能相同时,温度也相同。

又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。

故选(C )。

7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ](A) 动能为2i kT (B) 动能为2iRT(C) 平均动能为2i kT (D) 平均平动动能为2iRT分析:由理想气体分子的的平均平动动能32k kT ε=和理想气体分子的的平均动能2ikT ε=,故选择(C )。

7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()1/21/21/222::2A B Cv v v =1:2:4,则其压强之比为A B C p :p :p[ ](A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1=,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。

故选择(C )。

7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。

如果()2p O v 和()2p H v 分别表示氧气和氢气的最概然速率,则[ ](A) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /4v v =(B) 图中a 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(C) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /1/4v v =(D) 图中b 表示氧气分子的速率分布曲线且()()22p p O H /4v v =分析:在温度相同的情况下,由最概然速率公式p ν=质量22H O M M <,可知氢气的最概然速率大于氧气的最概然速率,故曲线a 对应于氧分子的速率分布曲线。

《大学物理》课后解答题 第七章稳恒磁场

《大学物理》课后解答题  第七章稳恒磁场

第7章 稳恒磁场一、思考讨论题1、如图4.1所示的电流元Idl 是否在空间所有点的磁感应强度均不为零?请你指出Idl在a 、b 、c 、d 四点产生的磁感应强度的方向。

解:不是,电流元Idl在自身产生的磁感应强度为零。

a 、垂直纸面向外b 、垂直纸面向外c 、垂直纸面向内d 、垂直纸面向内2、分别求图4.2中的三种情况下,通有电流I 的直线电流在图中点产生磁感应强度B 的大小和方向。

解:a 图,()a I cos cos a I B πμπμ823145304--=-=方向垂直纸面向内 b 图,()aIcos cos a I B πμπμ82345604--=-= 方向垂直纸面向内 c 图() 30041cos cos a I B -=πμ () 1806030402cos cos tan c a I B -=πμ aIB B B πμ41312-=-= 方向垂直纸面向内3、电流分布如图4.3所示,分别求出各图中O 点的磁感应强度O B的大小和方向。

图4.1图4.2a图4.2ba图4.2c1 R 3解:a 图, 321B B B B ++=()30060431cos cos cos R IB B -==πμ23601202a I B μ=方向垂直纸面向内b 图, 01=B ,RIR I B 126122μμ==,()2322180150243-=-⋅=R I cos cos R I B πμπμ所以,⎪⎪⎭⎫⎝⎛-+=R R I B πμ432121 方向垂直纸面向内 c 图,RIR I B 834321μμ==,052==B B R I B B πμ16243==,所以,⎪⎪⎭⎫ ⎝⎛+=πμ238R I B 方向垂直纸面向外 4、若空间中存在两根无限长直载流导线,则磁场的分布就不存在简单的对称性,因此:(A )安培环路定理已不成立,故不能直接用此定理计算磁场分布。

(B )安培环路定理仍然成立,故仍可直接用此定理计算磁场分布。

大学物理第7章真空中的静电场答案解析

大学物理第7章真空中的静电场答案解析

第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。

解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。

7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。

(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。

解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。

(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。

θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。

解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。

对称分析E y =0。

θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。

普通物理学第二版第七章课后习题答案

普通物理学第二版第七章课后习题答案

第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s 估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转[解 答](1)22(30001200)1/601.57(rad /s )t 12ωπβ⨯-⨯===V V(2)222220()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为球t 时刻的角速度和角加速度.[解 答]7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45o 时,(3)转过90o时,A 点的速度和加速度在x 和y 轴上的投影.[解 答](1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==v(2)45θ=o时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v R πθωω=+==∴==⨯v v v得(3)当90θ=o时,由7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45o 时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D点相同。

所以:7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反. 已知收割机前进速率为1.2m/s ,拔禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度.[解 答]取地面为基本参考系,收割机为运动参考系。

大学物理第七章习题与答案

大学物理第七章习题与答案

自治区精品课程—大学物理学题库第七章振动学基础一、填空1.简谐振动的运动学方程是。

简谐振动系统的机械能是。

2.简谐振动的角频率由决定,而振幅和初相位由决定。

3.达到稳定时,受迫振动的频率等于,发生共振的条件。

-2㎏的小球与轻质弹簧组成的系统,按0.1cos(82)4.质量为10xt的规律3 做运动,式中t以s为单位,x以m为单位,则振动周期为初相位速度最大值。

5.物体的简谐运动的方程为xAsin(t),则其周期为,初相位6.一质点同时参与同方向的简谐振动,它们的振动方程分别为x10.1cos(t),x20.1cos(t),其合振动的振幅为,初相位44为。

7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为5x10.06cos(t),x20.05cos(t),其合振动的振幅为,初相44位为。

8.相互垂直的同频率简谐振动,当两分振动相位差为0或时,质点的轨迹是当相位差为或2 32时,质点轨迹是。

二、简答1.简述弹簧振子模型的理想化条件。

2.简述什么是简谐振动,阻尼振动和受迫振动。

3.用矢量图示法表示振动x0.02cos(10t),(各量均采用国际单位).6-1-自治区精品课程—大学物理学题库三、计算题-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos(8t+2/3)4.质量为10×10的规律做运动,式中t以s为单位,x以m为单位,试求:(1)振动的圆频率,周期,初相位及速度与加速度的最大值;(2)最大恢复力,振动能量;(3)t=1s,2s,5s,10s等时刻的相位是多少?(4)画出振动的旋转矢量图,并在图中指明t=1s,2s,5s,10s等时刻矢量的位置。

5.一个沿着X轴做简谐振动的弹簧振子,振幅为A,周期为T,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为:(1)X0=-A;(2)过平衡位置向正向运动;(3)过X=A/2处向负向运动;A(4)过X=处向正向运动。

2试求出相应的初相位之值,并写出振动方程。

大学物理课后习题答案第七章 a

大学物理课后习题答案第七章 a

第七章 电磁感应选择题7-1 在闭合导线回路的电阻不变的情况下,下述正确的是 ( B ) (A) 穿过闭合回路所围面积的磁通量最大时,回路中的感应电流最大; (B) 穿过闭合回路所围面积的磁通量变化越快,回路中的感应电流越大; (C) 穿过闭合回路所围面积的磁通量变化越大,回路中的感应电流越大; (D) 穿过闭合回路所围面积的磁通量为零时,回路中的感应电流一定为零.7-2 导体细棒ab 与载流长直导线垂直.在如图所示的四种情况中,细棒ab 均以与载流导线平行的速度v 平动,且b 端到长直导线的距离都一样.在(a)、(b)和(c)三种情况中,细棒ab 与光滑金属框保持接触.设四种情况下细棒ab 上的感应电动势分别为a E 、b E 、c E 和d E ,则 ( C )(A) a b c d ==<E E E E ; (B) a b c d ==>E E E >E ; (C) a b c d ===E E E E ;(D) a b c d >>>E E E E .7-3 如图所示,半圆周和直径组成的封闭导线,处在垂直于匀强磁场的平面内.磁场的磁感应强度的大小为B ,直径AB 长为l .如果线圈以速度v 在线圈所在平面内平动, v 与AB 的夹角为θ,则 ( A )(A) 线圈上的感应电动势为零,AB 间的感应电动势sin AB Bl θ=E v ; (B) 线圈上的感应电动势为零,AB 间的感应电动势cos AB Bl θ=E v ;(C) 线圈上的感应电动势为i 2sin Bl θ=E v ,AB 间感应电动势为sin AB Bl θ=E v ; (D) 线圈上的感应电动势为i 2cos Bl θ=E v ,AB 间感应电动势为cos AB Bl θ=E v . 7-4 一个面积210cm S =的圆线圈,其电阻0.10R =Ω,处于垂直于匀强磁场的平面内,若磁感应强度的大小随时间的变化率1d 10T s d Bt-=⋅,则线圈中的感应电流的大小为( D )(A) 3i 1.010A I -=⨯; (B) 2i 1.010A I -=⨯; (C) 2i 1.010A I =⨯; (D) 1i 1.010A I -=⨯.7-5 导线元d l 在磁感应强度为B 的磁场中以速度v 运动时,其上的动生电动势为()i d d =⨯⋅B l E v( D ) (A) 当v 与d l 垂直时,一定有i d d B l =E v ; (B) 当v 与B 垂直时,一定有i d d B l =E v ; (C) 当d l 与B 垂直时,一定有i d d B l =E v ;(D) 只有在v 、B 和d l 三者相互垂直时,才有i d d B l =E v 或i d d B l =-E v .7-6 下述正确的是 ( C )(A) 静电场和感生电场的电场线都不闭合;(B) 静电场的电场线是闭合的,感生电场的电场线不闭合; (C) 感生电场的电场线是闭合的,静电场的电场线不闭合; (D) 静电场和感生电场的电场线都是闭合的.7-7 静止的导体中产生涡电流的原因是 ( C ) (A) 导体处于不均匀的稳恒磁场中; (B) 导体处于不均匀的静电场中; (C) 导体处于随时间变化磁场中; (D) 导体处于通有稳恒电流的线圈内. 7-8 在自感线圈中,电流i 随时间t 的变化曲线如图(a)所示.若以i 的正流向为正方向,则线圈中自感电动势L E 随时间t 的变化曲线应为图(b)中的 ( D )7-9 尺寸相同的铜环和铝环,穿过它们所围面积的磁通量的变化率相同.设铜环上的感应电动势和感应电流分别为1E 和1I ,铝环上的感应电动势和感应电流分别为2E 和2I ,则( C )(A) 12=E E , 12I I =; (B) 12>E E , 12I I >; (C) 12=E E , 12I I >; (D) 12>E E , 12I I =.7-10 如图所示,若一块磁铁沿着一根竖直放置的长铜管的轴线,自管口竖直下落,如果忽略空气阻力,则 ( C )(A) 磁铁越落越快,最后速度趋于无限大; (B) 磁铁越落越慢,最后速度趋于零; (C) 磁铁越落越快,最后达到一恒定速度; (D) 磁铁越落越慢,最后达到一恒定速度;计算题7-11 一个匝数100N =的导线圈,通过每匝线圈的磁通量41510sin10πΦt =⨯,式中1Φ的单为Wb ,t 的单位为s .求:(1) 任意时刻线圈上的感应电动势;(2) 在10s t =时,线圈上的感应电动势的大小.解 (1) 根据法拉第电磁感应定律,任意时刻线圈上的感应电动势为()41i d d100510sin10π0.5πcos10πd d ΦNt t t t-=-=-⨯=-E 式中t 的单位为s ,i E 的单位为V .(2) 10s t =时,线圈上的感应电动势为()i 0.5πcos 10π10 V 1.57 V =-⨯=-i E大小为i 1.57 V =i E7-12 若在一方向不变的磁场中,有一面积为20.03m 的平面线圈,线圈所在平面的法线与磁场的夹角为θ,磁感强度的大小为510B t =+,式中B 的单位为T ,t 的单位为s .求:(1) 当π3θ=时,线圈中的感应电动势的大小; (2) 当π2θ=,2s t =时,线圈中的感应电动势的大小; 解 穿过线圈所围平面的磁通量为()()cos 5100.03cos 0.150.3cos BS t t Φθθθ==+⨯=+线圈中的感应电动势为()i d d0.150.3cos 0.3cos d d t t tΦθθ=-=-+=-E (1) 在π3θ=的情况下,线圈中的感应电动势为 i π0.3cos V 0.15V 3⎛⎫=-=- ⎪⎝⎭E其大小为0.15V(2) 在π2θ=的情况下,2s t =时,线圈中的感应电动势为 i π0.3cos V 02⎛⎫=-= ⎪⎝⎭E7-13 如图所示,一正方形线圈与载流长直导线共面,线圈的匝数为N ,边长为a ,其两边与长直导线平行,与长直导线之间的最小距离为b .长直导线中的电流为I .(1) 求通过线圈的磁通量;(2) 若100N =,20cm a =,10cm b =,当长直导线中的电流I 以12A s -⋅的变化率增长时,求线圈中的感应电动势.解 (1) 坐标选取如图所示.以顺时针为线圈回路的正方向, 则线圈所围平面的法向单位矢量n e 垂直纸面向里.在线圈平面上,长直载流导线的磁感应强度为0n 2πIaxμ=B e .在x 处取面元dS d a x =,则面元矢量为n d d a x =S e .穿过面元的磁通量为0d d d 2πIaΦx xμ=⋅=B S穿过线圈所围平面的磁通量为00d d ln2π2πa bSaIaNIaa bΦN N x xbμμ++=⋅==⎰⎰B S(2) 若100N =,20cm a =,10cm b =,则7064π101000.200.200.10ln ln Wb2π2π0.10 4.4010WbNIaa b I Φb I μ--⎛⎫+⨯⨯⨯⨯+== ⎪⎝⎭=⨯ 线圈中的感应电动势为()666i d d 4.4010 4.40102 V 8.8010 V d d ΦIt t--=-=-⨯=-⨯⨯=-⨯E i 0<E ,表明线圈中的感应电动势沿逆时针方向.7-14 如图所示,矩形导线框ABCD 与载流为I 的长直导线共面,边长分别为b 和l ,AB 与长直导线平行.矩形线框以速度v 在其平面内向右运动,v 与直导线垂直.在时刻t ,AB 与长直导线间的距离为a .求此时线框上的感应电动势.解 在长直导线右侧的线框平面上,到长直导线的距离为r 的点上,载流长直导线的磁场,方向垂直于纸面向里,磁感应强度的大小为02πIB rμ=以顺时针为导线回路的正方向,线圈中的感应电动势为()()()()()i d d d d d ABCDAAB BC CD DA =⨯⋅=⨯⋅+⨯⋅+⨯⋅+⨯⋅⎰⎰⎰⎰⎰B l B l B l B l B lv v v v v E 在BC 和DA 段上,d l v ,()d 0⨯⋅=B l v ,因此积分为零.在时刻t ,AB 处的磁感应强度大小为012πIB aμ=,CD 处的磁感应强度大小为()022πIB a b μ=+.于是()()()i 1200000d d d d d d 11 2π2π2πAB CD AB CD llB l B lI lI l Il a a b a a b μμμ=⨯⋅+⨯⋅=+-⎛⎫=-=- ⎪++⎝⎭⎰⎰⎰⎰⎰⎰B l B l E v v v v v v vi 0>E ,表明线圈中的感应电动势沿顺时针方向.7-15 如图所示,匀强磁场的磁感应强度的大小为B ,方向垂直纸面向外.有一根长为L 的金属棒MN ,可绕点O 在纸面内逆时针旋转,角速度为ω,4LOM =.求金属棒两端之间的电动势.那一端的电势较高?解 如图所示,在棒MN 上,到点O 的距离为l 处,沿径向取位移元d l .d l 的速度v 的方向如图,既垂直于d l ,也垂直于B ,大小为l ω=v .d l 上的动生电动势为()i d d d Bl l ω=⨯⋅=B l dE vMN 上的动生电动势为32441d 4L L MN Bl l BL ωω==⎰E0MN >E ,表明动生电动势的方向为从M 到N ,N 端电势较高.7-16 如图所示,矩形导线框ABCD 与载流长直导线共面,AB 与长直导线平行,相互间的距离为a ,导线框的边长分别为b 和l .如果长直导线上的电流为0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,式中0I 和ω为常量.求在0t =时,导线框上的感应电动势.解 坐标选取如图所示.以ABCDA ,即顺时针为线框回路的正方向,则平面ABCD 的法向单位矢量n e 垂直纸面向里.在平面ABCD 上,长直载流导线的磁感应强度为0n 2πIx μ=B e .由于0πcos 3I I t ω⎛⎫=+ ⎪⎝⎭,因此B 的具体指向随时间变化.在x 处取面元dS d l x =,则面元矢量为n d d l x =S e .穿过面元的磁通量为0d d d d 2πIlΦB S x xμ=⋅==B S穿过线框所围平面的磁通量为00d d ln2π2πa bSaIlIla bΦx xaμμ++=⋅==⎰⎰B S 矩形线框ABCD 上的感应电动势为0i 0000d d ln d 2πd d ππ ln cos ln sin 2πd 32π3l a b I t a tl I l a b a b I t t a t a μΦμμωωω+=-=-+⎡⎤+⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦E0t =时0000i πlnsin ln2π34πI lI l a b a b a aμωω++==E i 0>E ,表明此时线框上的感应电动势沿顺时针方向.7-17 在一个长为0.6m 、直径为5.0cm 的纸筒上,密绕1200匝线圈.求这个长直螺线管的自感.解 长直螺线管的自感为()2220027223π44π101200π 5.010H 5.9210H40.6N SN d L llμμ---==⨯⨯⨯⨯⨯==⨯⨯7-18 一螺线管的自感为21.010H -⨯,流过的电流为2.0A .求其储存的磁场能.解 载流螺线管储存的磁场能为2222m 11 1.010 2.0J 2.010J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭7-19 一个直径为0.01m 、长为0.10m 的长直密绕螺线管,共1000匝线圈,总电阻为7.76Ω.若把螺线管接到电动势为2V 的电池上,求电流稳定后,螺线管中储存的磁能和管内的磁能密度.解 长直螺线管的自感为()2220027223π44π101000π 1.010H 9.8710H40.1N SN d L llμμ--==⨯⨯⨯⨯⨯==⨯⨯线圈上稳定电流的强度为2A 0.258A 7.76U I R === 电流稳定后,螺线管中储存的磁能为2325m 119.87100.258J 3.2810J 22W LI --⎛⎫==⨯⨯⨯=⨯ ⎪⎝⎭载流螺线管中磁能密度为()533m m m 22244 3.2810J m 4.18J m ππ1.0100.1W W V d l ---⨯⨯===⋅=⋅⨯⨯w 7-20 在真空中,若一匀强电场中的电场能量密度与一0.5T 的匀强磁场的能量密度相等,求该电场的电场强度.解 设电场强度为E 的匀强电场的能量密度与0.5T B =的匀强磁场的能量密度相等,则有22001122B E εμ=由此可得181m 1.5010 V m E --==⋅=⨯⋅。

大学物理第七章稳恒磁场习题答案

大学物理第七章稳恒磁场习题答案

第七章 稳恒磁场习题7-1 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为多少?解:取平面S ’与半球面S 构成闭合曲面,根据高斯定理有 0m mS mS ΦΦΦ'=+=2cos mS mS r E ΦΦπα'=-=-球面外法线方向为其正方向7-2 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?08IR μ垂直画面向外0022II RR μμπ-垂直画面向里 00+42I IR Rμμπ垂直画面向外 7-3 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。

已知圆环的粗细均匀,求环中心O 的磁感应强度。

解: 如图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

且θ-πθ==21221R R I I 电阻电阻 1I 产生1B 方向⊥纸面向外πθπμ2)2(2101-=R I B2I 产生2B 方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有0210=+=B B B7-4 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T 。

如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大?流向如何?(已知圆电流轴线上北极点的磁感强度()R IRR IR B 24202/32220μμ=+=)解:9042 1.7310A RBI μ==⨯方向如图所示7-5 有一同轴电缆,其尺寸如题图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。

试计算以下各处的磁感应强度:(1)r<R 1;(2)R 1<r<R 2;(3)R 2<r<R 3;(4)r>R 3。

解:同轴电缆的电流分布具有轴对称性在电缆各区域中磁感应线是以电缆轴线为对称轴的同心圆。

普通物理学第二版第七章课后习题答案

普通物理学第二版第七章课后习题答案

普通物理学第二版第七章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?[解 答](1)22(30001200)1/601.57(rad /s )t12ωπβ⨯-⨯===(2)22222()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为球t 时刻的角速度和角加速度.[解 答]7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45时,(3)转过90时,A 点的速度和加速度在x 和y 轴上的投影.[解 答](1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==(2)45θ=时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v Rπθωω=+==∴==⨯得(3)当90θ=时,由7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D 点相同。

大学物理答案第七章

大学物理答案第七章
系统吸热为
(3)若沿过程曲线从a到c状态,内能改变为
应用热力学第一定律,系统所作的功为
7-3 2mol的氮气从标准状态加热到373 K,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?
分析根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 K,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.
分析气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度,而且定义了方均根速率 .只要温度不变,无论经历什么样的过程,方均根速率都不变.本题中,可以通过等温过程中系统所作的功的表达式确定该过程中系统的温度.
解等温过程中系统所作的功为
7-92 m3的气体等温地膨胀,压强从 变到 ,求完成的功.
第七章热力学基础
7-1 假设火箭中的气体为单原子理想气体,温度为2000 K,当气体离开喷口时,温度为1000 K,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率 .已知一个原子质量单位=1.6605×10-27kg;(2)假设气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.
p
p22
p0等温线
1
p1
OV2V1V
图7-12
分析对于双原子理想气体,热容比 .不论经历什么过程,只要初终态气体的温度相同,就可以应用理想气体状态方程,建立类似于等温过程中初态和终态压强和体积之间的关系.

力学第二版习题答案第七章

力学第二版习题答案第七章

第七章基本知识小结⒈刚体的质心定义:∑⎰⎰==dm dm r r mr m r c i i c//求质心方法:对称分析法,分割法,积分法。

⒉刚体对轴的转动惯量定义:∑⎰==dm r I r m Iii 22平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y. 常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理∑==cca m F v m p⒋刚体对轴的角动量和转动定理∑==βτωI I L⒌刚体的转动动能和重力势能c p k mgy E I E ==221ω⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程:∑∑==cc ccI a m F βτ(不必考虑惯性力矩)动能:221221cc c k I mv E ω+=⒎刚体的平衡方程∑=0F, 对任意轴∑=0τ7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。

⑵在此时间内,发动机转了多少转?解:⑴260/2)12003000(/7.15s rad ===-∆πωβ⑵rad 2)60/2)(12003000(1039.26222202⨯===∆--πωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a d d -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。

边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。

⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。

大学物理答案第七章热力学基础-习题解答

大学物理答案第七章热力学基础-习题解答

展望
学习方法建议
多做习题,提高解题能力 和综合分析能力。
加强理论学习,深入理解 热力学的物理意义和数学 表达。
关注学科前沿,了解热力 学在最新科研和技术中的 应用。
THANK YOU
感谢聆听
•·
热力学第一定律是能量守恒定律 在热学中的具体表现,它指出系 统能量的增加等于传入系统的热 量与外界对系统所做的功的和。
功的计算:在封闭系统中,外界 对系统所做的功可以通过热力学 第一定律进行计算,这有助于理 解系统能量的转化和利用。
能量平衡:利用热力学第一定律 ,可以分析系统的能量平衡,判 断系统是否处于热平衡状态。
热力学第二定律
热力学第二定律
描述了热力过程中宏观性质的自然方向性,即不可能把热量从低温物体传到高温物体而不引起其它变 化。
表达式
不可能通过有限个步骤将热量从低温物体传到高温物体而不引起其它变化。
03
热力学基础习题解答
热力学第一定律的应用
热量计算:通过热力学第一定律 ,可以计算系统吸收或放出的热 量,进而分析系统的能量变化。
热力学第二定律的应用
01
02
热力学第二定律指出,自
•·
发过程总是向着熵增加的
方向进行,即不可逆过程
总是向着宏观状态更混乱
、更无序的方向发展。
03
04
05
熵增加原理:根据热力学 第二定律,孤立系统的熵 永不减少,即自发过程总 是向着熵增加的方向进行 。
热机效率:利用热力学第 二定律,可以分析热机的 效率,探讨如何提高热机 的效率。
100%
制冷机效率的影响因素
制冷机效率受到多种因素的影响 ,如制冷剂的性质、蒸发温度和 冷凝温度、压缩机和冷却剂的流 量等。

大学物理 习题及答案

大学物理  习题及答案

- 1 -第七章 真空中的静电场一、选择题1、库仑定律的适用范围是 [ ]()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用;()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。

2、根据电场强度的定义式0q F E =,下列说法中正确的是:[ ] ()A 电场中某点处的电场强度在数值上等于该处单位正电荷所受的力;()B 从定义式中明显看出,场强反比于单位正电荷;()C 做定义式时0q 必须是正电荷;()D E 的方向可能与F 的方向相反。

3、一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 的一个带电量为σd S 的电荷元,在球面内各点产生的电场强度[ ]()A 处处为零; ()B 不一定都为零; ()C 处处不为零; ()D 无法判定。

4、关于真空中静电场的高斯定理⎰∑=⋅0εi q S d E ,下列说法正确的是:[ ] (A)该定理只有对某种对称性的静电场才成立(B)∑i q 是空间所有电荷的代数和(C) 积分式中的E 一定是电荷∑i q 激发的(D) 积分式中的E 是有高斯面内外所有电荷激发的5、静电场中某点电势的数值等于[ ](A) 试验电荷q 0置于该点时具有的电势能;(B) 单位试验电荷置于该点时具有的电势能;(C) 单位正电荷置于该点时具有的电势能;(D) 把单位正电荷从该点移到电势零点外力所作的功。

6、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:[]- 2 -(A) 0=E ,r Q U 04επ=; (B) 0=E ,R Q U 04επ=; (C) 204r Q E επ=,r Q U 04επ=; (D) 204r Q E επ=,RQ U 04επ=。

7、点电荷Q -位于圆心O 处,a 是一固定点,b 、c 、d 为同一圆周上的三点,如图所示。

普通物理学第二版第七章课后习题答案

普通物理学第二版第七章课后习题答案

第七章 刚体力学7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?[解 答](1)22(30001200)1/601.57(rad /s )t12ωπβ⨯-⨯===(2)22222()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为球t 时刻的角速度和角加速度.[解 答]7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45时,(3)转过90时,A 点的速度和加速度在x 和y 轴上的投影.[解 答](1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴==(2)45θ=时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v R πθωω=+==∴==⨯得 (3)当90θ=时,由7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad/s ω=逆时针转动,求臂与铅直45时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D 点相同。

所以:7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为1.2m/s ,拔禾轮直径1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度.[解 答]取地面为基本参考系,收割机为运动参考系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题精解7-1一条无限长直导线在一处弯折成半径为R 的圆弧,如图7.6所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O 处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O 处的磁感应强度。

解(1)如图7.6所示,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O 位于直线电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。

根据比奥—萨伐尔定律,半圆弧上任一电流元在O 点产生的磁感应强度为 024IdldB Rμπ=方向垂直纸面向内。

半圆弧在O 点产生的磁感应强度为 000220444RIIdl I B R R R Rπμμμπππ===⎰方向垂直纸面向里。

(2)如图7.6(b )所示,同理,圆心O 处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O 位于电流AB 和DE 的延长线上,直线电流上的任一电流元在O 点产生的磁感应强度均为零,所以直线电流AB 和DE 段在O 点不产生磁场。

根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O 点产生的磁感应强度为 024IdldB R μπ=方向垂直纸面向内,1/4圆弧电流在O 点产生的磁感应强度为00022204428RIIdl I R B R R Rπμμμπππ===⎰方向垂直纸面向里。

7.2 如图7.7所示,有一被折成直角的无限长直导线有20A 电流,P 点在折线的延长线上,设a 为,试求P 点磁感应强度。

解 P 点的磁感应强度可看作由两段载流直导线AB 和BC 所产生的磁场叠加而成。

AB 段在P 点所产生的磁感应强度为零,BC 段在P 点所产生的磁感应强度为 0120(cos cos )4IB r μθθπ=- 式中120,,2r a πθθπ=== 。

所以500(cos cos ) 4.010()42I B T a μπππ=-=⨯ 方向垂直纸面向里。

7-3 如图7.8所示,用毕奥—萨伐尔定律计算图中O 点的磁感应强度。

解 圆心 O 处的磁感应强度可看作由3段载流导线的磁场叠加而成, AB 段在P 点所产生的磁感应强度为 ()0120cos cos 4IB r μθθπ=-式中1200,,26r r πθθ=== ,所以00cos 0cos 1262I I B r r μμπππ⎛⎛⎫=-= ⎪ ⎝⎭⎝⎭方向垂直纸面向里。

同理,DE 段在P 点所产生的磁感应强度为005cos cos 1262I I B r r μμππππ⎛⎛⎫=-= ⎪ ⎝⎭⎝⎭ 圆弧段在P 点所产生的磁感应强度为 200032224436IIdl I B r r r rπμμμπππ===⎰O 点总的磁感应强度为0001231122226I I IB B B B r r rμμμππ⎛⎫⎛⎫=++=-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 方向垂直纸面向里。

7-4 如图7.9所示,两根长直导线沿半径方向接到粗细均匀的铁环上的A 、B 两点,并与很远处的电源相接,试求环中心O 点的磁感应强度。

解 因为O 点在两根长直导线上的延长线上,所以两根长直导线在O 点不产生磁场,设第一段圆弧的长为1l ,电流强度为1I ,电阻为1R ,第二段圆弧长为2l ,电流强度为2I ,电阻为2R ,因为1、2两段圆弧两端电压相等,可得 1122I R I R = 电阻1R Sρ=,而同一铁环的截面积为S 和电阻率是相同的,于是有 1122I l I l =由于第一段圆弧上的任一线元在O 点所产生的磁感应强度为 01124I dldB R μπ=方向垂直纸面向里。

第一段圆弧在O 点所产生的磁感应强度为 10011112244l I dl I l B R Rμμππ==⎰方向垂直纸面向里。

同理,第二段圆弧在O 点所产生的磁感应强度为 20022222244l I dl I l B R R μμππ==⎰方向垂直纸面向外。

铁环在O 点所产生的总磁感应强度为0011221222044I l I l B B B R R μμππ=-=-=7-5 在真空中有两根互相平行的截流长直导线1L 和2L ,相距0.1m ,通有方向相反的电流120I A =,210I A =,如图7.10所示,求12,L L 所决定的平面内位于2L 两侧各距2L 为0.05m的a,b 两点的磁感应强度为B 。

解 截流长直导线在空间产生磁感应强度为 02IB xμπ=长直导线在a,b 两点产生磁感应强度为 010111,20.0520.15a b I I B B μμππ==⨯⨯ 方向垂直纸面向里长直导线2L 在a,b 两点产生的磁感应强度为 020222,20.0520.05a b I I B B μμππ==⨯⨯ 长直导线2L 在a 点产生磁感应强度为 4010212 1.210()20.0520.05a a a I I B B B T μμππ-=+=+=⨯⨯⨯方向垂直纸面向里在b 点产生磁感应强度为5010212 1.3310()20.1520.05b b b I I B B B T μμππ-=+=+=-⨯⨯⨯方向垂直纸面向外7-6 如图7.11(a )所示载流长直导线中的电流为I ,求通过矩形面积CDEF 的磁通量。

解 在矩形平面上取一矩形面元dS ldx =(如图7.11(b ))截流长直导线的磁场穿过该面元的磁通量为 0022m I Id dS ldx x xμμφππ== 通过矩形面积的总磁通量为 00ln 22b m a I Il b ldx x aμμφππ==⎰7-7 一载流无限长直圆筒,内半径为a ,外半径为b ,传到电流为I ,电流沿轴线方向流动,并均匀的分布在管的横截面上,求磁感应强度的分布。

解 建立如图7.12所示半径为r 的安培回路,由电流分布的对称性,L 上各点B 值相等,方向沿圆的切线,根据安培环路定理有cos 2LLLB dl dl B dl B r I θπμ'•====⎰⎰⎰蜒?可得 02I B rμπ'= 其中I '是通过圆周L 内部的电流.当r a <时, 0,0I B '==当a r b <<时, 222202222(),2I I r a r a I B b a r b a μπ--'==--当r b >时, 0,2I I I B rμπ'==7-8 一根很长的电缆由半径为1R 的导体圆柱,以及内外半径分别为2R 和3R 的同轴导体圆柱构成。

电流I 从一导体流出,又从另一导体流回,电流都沿轴线方向流动,并均匀分布在其横截面上,设r 为到轴线的垂直距离,试求磁感应强度随r 的变化。

解 由电流分布具有轴对称性,可知相应的磁场分布也具有轴对称性,根据安培环路定理,有2LLB dl b dl B r I πμ'•===⎰⎰蜒可得 02I B rμπ'= 其中是通过圆周L 内部的电流,当r R <时, 202211r ,2I I r I B R R μπ'== 当12R r R <<时, 0,2II I B rμπ'==当23R r R << 时, ()2222223032222222323232(),2I R r I R r I r R I I B R R R R r R R μπ---'=-==--- 当3r R >时, 0,0I B '==7-9一根很长的同轴电缆,由一导线圆柱(半径为a )和一同轴的导线圆管(内、外半径分别为b 、c )构成。

使用时,电流I 从一导体流出,从另一导体流回。

设电流都是均匀分布在导体的横截面上,求:(1)导体圆柱内(r<a );(2)两导体之间(a<r<b );(3)导体圆管内(b<r<c );(4)电缆外(r>c )各点处磁感应强度的大小。

解 如图7.13所示,由电流分布具有轴对称性可知,相应的磁场分布也具有轴对称性。

根据安培环路定理有 02LLBdl B dl B r I πμ'===⎰⎰蜒可得02I B rμπ'=其中I '是通过圆周L 内部的电流(1)当r a <时, 2022,2I Ir r I B a aμπ'== (2)当a r b <<时, 0,2II I B Rμπ'==(3)当b r c <<时, ()()2222220322222232,2I r b I c r I R r I I B c bc b r R R μπ---'=-==--- (4)当3r R >时, 0,0I B '==7-10 一载有电流7.0I A =的硬导线,转折处为半径为0.10r m =的四分之一圆周ab 。

均匀外磁场的大小为1B T =,其方向垂直于导线所在的平面,如图7.14所示,求圆弧ab 部分所受的力。

解 在圆弧ab 上取一电流元Idl ,此电流元所受安培力为 dF Idl B =⨯ 把dF 沿轴正交分解,有图7.14有cos cos x dF dF BI dl θθ== sin sin y dF dF BI dl θθ== 由于dl Rd θ=,所以 cos sin x y dF BI Rd dF BI Rd θθθθ==因此x x y y F dF BIR F dF BIR====⎰⎰整个圆弧ab 所受的安培力为x y F F i F j BIRi BIRj =+=+7-11 用铅丝制作成半径为0.05R m =的圆环,圆环中载有电流7I A =,把圆环放在磁场中,磁场的方向与环面垂直,磁感应强度的大小为1.0T ,试问圆环静止时,铅丝内部张力为多少?解 如图7.15所示,整个圆环所受的合力为零,圆环静止不动。

欲求圆环内部任意一点的张力,可把圆环沿直径分为左右两部分,其中左半部分所受的安培力为,而左半部分又保持静止不动,则必有22BI R T = 铅丝内部张力T 为0.35()T BIR N ==7-12 通以电流I 的导线abcd 形状如图7.16所示,ab cd l ==,bc 弧是半径为R 的半圆周,置于磁感应强度为B 的均匀磁场中,B 的方向垂直纸面向里。

求此导线受到的安培力的大小和方向。

解 建立如图7.16所示的坐标系。

由安培定理得两线段和受力大小相等,方向相反,二力合力为零,导线所受力即为半圆弧所受力。

在bc 弧上任取一电流元Idl ,其受力为 dF Idl B =⨯由对称性可知sin 2x x y y F dF F dF BIR d BIRπππθθ=====⎰⎰⎰导线所受力2F BIRj =7-13 直径0.02d m =的圆形线圈,共10匝,通以0.1A 的电流时,问:(1)它的磁矩是多少 ?(2)若将该线圈置于1.5T 的磁场中,它受到的最大磁力矩是多少? 解 (1)载流圆形线圈的磁矩大小为2420.02100.1 3.110()2m NIS A m π-⎛⎫==⨯⨯⨯=⨯• ⎪⎝⎭(2)线圈置于的磁场中,它受到的最大磁力矩是442max 3.110 1.5 4.710()M mB N m --==⨯⨯=⨯•7-14 一电子动能为10eV ,在垂直于匀强磁场的平面内做圆周运动,已知磁感应强度41.010B T -=⨯,试求电子的轨道半径和回旋周期。

相关文档
最新文档