初中数学二次函数随堂练习84
人教版初中数学九年级上册第22章:二次函数 练习题(含答案)
人教版初中数学九年级上册第22二次函数练习题一、选择题221axx a++-)提示:对于122-++=axaxy的图象,对称轴是直线ax21-=,当0>a时,021<-a,则抛物线的对称轴在y轴左侧,A、B、C、D四个选项均不符合;当0<a时,021>-a,则抛物线的对称轴在y轴右侧,只有B项图象符合,故选B2.抛物线247y x x=--的顶点坐标是()A.(211)-,B.(27)-,C.(211),D.(23)-,提示:11)2(114474222--=-+-=--=xxxxxy所以顶点坐标为(211)-,选A3.二次函数y=ax2+bx+c图象如图1所示,则点A(ac,bc)在().A、第一象限B、第二象限C、第三象限D、第四象限提示:由二次函数y=ax2+bx+c图象可知:0,0><ca,∵对称轴0>x,在y轴右侧,即02>-ab,所以0>b,∴0,0><bcac,即点A(ac,bc)在第二象限选B4.把抛物线22y x=-向上平移1个单位,得到的抛物线是()A.22(1)y x=-+B.22(1)y x=--C.221y x=-+D.221y x=--提示:备选答案A是向左移,备选答案B是向右移,备选答案D是向下移,所以选D5.已知二次函数)0(2≠++=acbxaxy的图象如图2所示,有下列5个结论:①0>abc;②cab+<;③024>++cba;④bc32<;⑤)(bammba+>+,(1≠m的实数)其中正确的结论有()A. 2个B. 3个C. 4个D. 5个A B C D图2提示:由图象可知:12,0,0=-><a b c a ,即b a 21-= ∴0>b 故①不正确;由1-=x 时,0<y 得0<+-c b a ,∴c a b +>,所以②不正确;由2=x 时,0>y ,即024>++c b a ,所以③正确;由b a 21-=及0<+-c b a 得④也正确;由1=x 时y 取最大值,故⑤正确,所以选B6.已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax 2-bx + 3的三条叙述: ① 过定点(2,1), ② 对称轴可以是x = 1,③ 当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是( )A .0B .1C .2D .3提示:把(-2,1)代入b ax y +=得b a +-=21 把(-2,1)代入32+-=bx ax y 得3241++=b a ,上述两个同解,所以①成立,由对称轴1=x 得12=ab,得a b 2=,与b a +-=21矛盾,所以②不成立;由于y = ax 2-bx + 3与y 轴交于点(0,3),所以抛物线的顶点最小值为3,③成立 ,所以选C二、填空题72+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 的值为__________.提示:选择两组y x ,的值代入c bx x y ++=2得⎩⎨⎧++=-++=-c b c 12001 解得⎩⎨⎧-=-=12c b ∴122--=x x y 把2=x 代入122--=x x y 得 1144-=--=y 即1-=m8.抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是_________ 提示:抛物线y =ax 2+2ax +a 2+2的对称轴为122-=-=aax 由图象可知抛物线与x 轴的一个交点为(-3,0),到直线1-=x 的距离为2,∴另一个交点为(1,0)9.将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为 .提示:将抛物线22(1)3y x =+-向右平移1个单位为322-=x y ,再向上平移3个单位得到3322+-=x y 即22x y =图310.已知二次函数22y x x m =-++的部分图象如图4所示,则关于x 的一元二次方程220x x m -++=的解为 .提示:由图象可知抛物线对称轴为1=x ,与x 轴交点(3,0),可知另一交点为(-1,以一元二次方程220x x m -++=的解为11x =-,23x =;11.已知二次函数2y ax bx c =++的图象如图5所示,则点()P a bc ,在第 象限. 提示:由图象可知02,0,0<-><abc a ,所以0,0<<bc b 所以点()P a bc ,在第三象限12.如图6所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 .提示:∵抛物线过原点O (0,0),∴012=-a∴1±=a ,又∵抛物线开口向下,∴0<a ∴1-=a13.如图7是一种带有黑白双色、边长是20cm 的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图8的图案.已知制作图7这样的瓷砖,其黑、白两部分所用材料的成本分别为0.02元/2cm 和0.01元/2cm ,那么制作这样一块瓷砖所用黑白材料的最低成本是元(π取3.14,结果精确到0.01元).图7 图8提示:设41圆半径为x ,阴影部分面积为40020441)20(2022+-=+-⨯=x x x x S ππ 因为阴影部分成本高,所以S 取最小值π400400-=最小S ,π400=白S图4图5图6所以最低成本=73.68840001.040040002.0≈-⨯+-⨯πππ=)((元)三、解答题14.已知一抛物线与x 轴的交点是)0,2(-A 、B (1,0),且经过点C (2,8)。
[初三数学]二次函数经典练习含答案
《二次函数》同步练习(一)一、填空题(共40小题,每小题2分,满分80分)1.(2分)(2009•北京)若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=_________.2.(2分)(2009•安徽)已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.3.(2分)(2012•新疆)当x=_________时,二次函数y=x2+2x﹣2有最小值.4.(2分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为_________.5.(2分)(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是_________.6.(2分)(2006•宜宾)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正确的结论是_________(填写序号)7.(2分)(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=_________.9.(2分)(2009•黔东南州)二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是_________.10.(2分)已知二次函数,当x_________时,y随x的增大而增大.11.(2分)(2009•襄阳)抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为_________.12.(2分)(2009•娄底)如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是_________.13.(2分)(2012•西青区二模)二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x 值的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有_________(请写出所有正确说法的序号).14.(2分)(2009•临夏州)抛物线y=﹣x2+bx+c的部分图象如图所示,请写出与其关系式,图象相关的2个正确结论:_________(对称轴方程,图象与x正半轴,y轴交点坐标例外).15.(2分)(2009•鄂州)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c=_________.16.(2分)(2009•包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是_________cm2.17.(2分)(2009•黄石)若抛物线y=ax2+bx+3与y=﹣x2+3x+2的两交点关于原点对称,则a、b分别为_________、_________.18.(2分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现:如果每件衬衫降价1元,商场平均每天可多售出2件.则商场降价后每天盈利y(元)与降价x(元)的函数关系式为_________.19.(2分)(2009•莆田)出售某种文具盒,若每个获利x元,一天可售出(6﹣x)个,则当x= _________元时,一天出售该种文具盒的总利润y最大.20.(2分)(2009•湖州)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=2,且经过点(﹣1,y1),(3,y2),试比较y1和y2的大小:y1_________y2.(填“>”,“<”或“=”)21.(2分)(2009•咸宁)已知A、B是抛物线y=x2﹣4x+3上位置不同的两点,且关于抛物线的对称轴对称,则点A、B的坐标可能是_________(写出一对即可).22.(2分)(2009•本溪)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A (﹣1,0)和B(2,0),当y<0时,x的取值范围是_________.23.(2分)(2009•兰州)二次函数y=x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴上,B1,B2,B3,…,B2008在二次函数y=x2第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△A0B1A1的边长=_________;△A1B2A2的边长=_________;△A2007B2008A2008的边长=_________.24.(2分)(2010•宣武区一模)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取一点A,过点A作AH⊥x轴于点H.在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是_________.25.(2分)已知抛物线y=x2﹣3x﹣4,则它与x轴的交点坐标是_________.26.(2分)抛物线y=2x2﹣5x+3与坐标轴的交点共有_________个.27.(2分)抛物线y=﹣2x2﹣4x+3的顶点坐标是_________;抛物线y=﹣2x2+8x﹣1的顶点坐标为_________.28.(2分)(2005•四川)用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m2)满足函数关系y=﹣(x﹣12)2+144(0<x<24),则该矩形面积的最大值为_________m2.29.(2分)根据y=ax2+bx+c的图象,思考下面五个结论①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0.正确的结论有_________.30.(2分)请写出符合以下三个条件的一个函数的解析式_________,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.31.(2分)(2008•山西)二次函数y=x2+2x﹣3的图象的对称轴是直线_________.32.(2分)(2010•南昌模拟)二次函数y=2x2﹣4x﹣1的最小值是_________.33.(2分)(2012•鞍山三模)函数y=ax2﹣(a﹣3)x+1的图象与x轴只有一个交点,那么a 的值和交点坐标分别为_________.35.(2分)将二次函数y=x2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是_________.36.(2分)(2008•南昌)将抛物线y=﹣3x2向上平移一个单位后,得到的抛物线解析式是_________.37.(2分)用铝合金型材做一个形状如图(1)所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图(2)所示.观察图象,当x=_________时,窗户透光面积最大.38.(2分)(2007•呼伦贝尔)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和点(1,0),且与y轴交于负半轴,给出下面四个结论:①abc<0;②2a+b>0;③a+c=1;④b2﹣4ac>0.其中正确结论的序号是_________.(请将自己认为正确结论的序号都填上)39.(2分)(2011•宝安区三模)二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴相交于负半轴.给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是_________;40.(2分)如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是_________.二、解答题(共6小题,满分40分)41.(6分)已知二次函数.(1)求出抛物线的顶点坐标、对称轴、最小值;(2)求出抛物线与x轴、y轴交点坐标;42.(6分)(2009•宁波)如图抛物线y=ax2﹣5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标.(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.43.(6分)已知抛物线y=﹣x2+bx+c的部分图象如图所示.(1)求b、c的值;(2)求y的最大值;(3)写出当y>0时,x的取值范围.44.(6分)(2009•黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1,y2与x之间的函数关系式.(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.45.(6分)(2009•哈尔滨)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值并求出最大值.(参考公式:二次函数y=ax2+bx+c(a≠0),当x=﹣时,y最大(小)值=)46.(10分)(2009•包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.《第26章二次函数》2010年同步练习(一)参考答案与试题解析一、填空题(共40小题,每小题2分,满分80分)1.(2分)(2009•北京)若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.考点:完全平方公式.专题:压轴题;配方法.分析:根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.解答:解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故填﹣3.点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.2.(2分)(2009•安徽)已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.考点:待定系数法求二次函数解析式.专题:综合题;压轴题.分析:由于点(,)不在坐标轴上,与原点的距离为1的点有两种情况:点(1,0)和(﹣1,0),所以用待定系数法求解需分两种情况:(1)经过原点及点(,)和点(1,0),设y=ax(x+1),可得y=x2+x;(2)经过原点及点(,)和点(﹣1,0),设y=ax(x﹣1),则得y=x2+x.解答:解:根据题意得,与x轴的另一个交点为(1,0)或(﹣1,0),因此要分两种情况: (1)过点(﹣1,0),设y=ax(x+1),则,解得:a=1, ∴抛物线的解析式为:y=x2+x;(2)过点(1,0),设y=ax(x﹣1),则,解得:a=,∴抛物线的解析式为:y=x2+x.点评:本题主要考查二次函数的解析式的求法.解题的关键利用了待定系数法确定函数的解析式.3.(2分)(2012•新疆)当x=﹣1时,二次函数y=x2+2x﹣2有最小值.考点:二次函数的最值.分析:先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.解答:解:∵二次函数y=x2+2x﹣2可化为y=(x+1)2﹣3,∴当x=﹣1时,二次函数y=x2+2x﹣2有最小值.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.(2分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为(1,3).考点:二次函数的性质.分析:直接利用顶点式的特点可知顶点坐标.解答:解:顶点坐标是(1,3).点评:主要考查了求抛物线顶点坐标的方法.5.(2分)(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是y=x2﹣1.考点:二次函数图象与几何变换.分析:根据二次函数图象的平移规律“上加下减,左加右减".解答:解:由“上加下减”的原则可知,将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是,y=x2﹣2+1,即y=x2﹣1.故答案为:y=x2﹣1.点评:本题比较容易,考查二次函数图象的平移.6.(2分)(2006•宜宾)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c >0;③4a+c<0;④2a﹣b+1>0.其中正确的结论是①②③④(填写序号)考点:二次函数图象与系数的关系.专题: 压轴题.分析:先根据图象与x轴的交点及与y轴的交点情况画出草图,再由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵图象与x轴交于点(﹣2,0),(x1,0),与y轴正半轴的交点在(0,2)的下方∴a<0,c>0,又∵图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,∴对称轴在y轴左侧,对称轴为x=<0,∴b<0,∵图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,∴对称轴<<,∴a<b<0,由图象可知:当x=﹣2时y=0,∴4a﹣2b+c=0,整理得4a+c=2b,又∵b<0,∴4a+c<0.∵当x=﹣2时,y=4a﹣2b+c=0,∴2a﹣b+=0,而与y轴正半轴的交点在(0,2)的下方,∴0<<1,∴2a﹣b+1>0,∵0=4a﹣2b+c,∴2b=4a+c<0而x=1时,a+b+c>0,∴6a+3c>0,即2a+c>0,∴正确的有①②③④.故填空答案:①②③④.点评:此题主要考查了二次函数的图象与性质,尤其是图象的开口方向,对称轴方程,及于y 轴的交点坐标与a,b,c的关系.7.(2分)(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=.考点:二次函数的最值.分析:先把二次函数化为一般式或顶点式的形式,再求其最值即可.解答:解:原二次函数可化为y=﹣x2+5x﹣6=﹣(x﹣)2+,取得最大值时x=﹣=.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.9.(2分)(2009•黔东南州)二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是y=﹣x2﹣2x+3.考点:二次函数图象与几何变换.专题:压轴题.分析:利用抛物线的性质.解答:解:可先从抛物线y=x2﹣2x﹣3上找三个点(0,﹣3),(1,﹣4),(﹣1,0).它们关于原点对称的点是(0,3),(﹣1,4),(1,0).可设新函数的解析式为y=ax2+bx+c,则c=3,a﹣b+c=4,a+b+c=0.解得a=﹣1,b=﹣2,c=3.故所求解析式为:y=﹣x2﹣2x+3.点评:解决本题的关键是得到所求抛物线上的三个点,这三个点是原抛物线上的关于原点对称的点.10.(2分)已知二次函数,当x<2时,y随x的增大而增大.考点:二次函数的性质.专题:计算题.分析:根据二次函数的对称轴,结合开口方向,可确定二次函数的增减性.解答:解:由对称轴公式,二次函数的对称轴为x=﹣=2,又∵a=﹣<0,抛物线开口向下,∴当x<2时,y随x的增大而增大.故本题答案为:<2.点评:本题考查了二次函数的对称轴,开口方向与函数的增减性的关系,二次函数的增减性以对称轴为分界线,结合开口方向进行判断.11.(2分)(2009•襄阳)抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3.考点: 待定系数法求二次函数解析式.分析:此图象告诉:函数的对称轴为x=1,且过点(3,0);用待定系数法求b,c的值即可.解答:解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,考查了数形结合思想.12.(2分)(2009•娄底)如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是2π.考点: 二次函数的图象.专题:压轴题.分析:不规则图形面积通过对称转化为可求的图形面积.解答:解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.点评:此题主要考查了学生的观察图形与拼图的能力.13.(2分)(2012•西青区二模)二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有①②④(请写出所有正确说法的序号).考点:抛物线与x轴的交点;二次函数图象与系数的关系.专题:压轴题.分析:①由抛物线的开口方向可以确定a的符号,由抛物线对称轴和开口方向可以确定b 的符号;②利用图象与x轴的交点坐标即可确定方程ax2+bx+c=0的根;③当x=1时,y=a+b+c,结合图象即可判定是否正确;④由图象可以得到抛物线对称轴为x=1,由此即可确定抛物线的增减性;⑤当y>0时,图象在x轴的上方,结合图象也可判定是否正确.解答:解:①∵抛物线开口方向朝上,∴a>0,又对称轴为x=1,∴b<0,∴ab<0,故正确;②∵二次函数y=ax2+bx+c的图象与x轴交点为(﹣1,0)、(3,0),∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,故正确;③∵当x=1时,y=a+b+c,从图象知道当x=1时,y<0,∴a+b+c<0,故错误;④∵抛物线的对称轴为x=1,开口方向向上,∴当x>1时,y随x值的增大而增大,故正确;⑤∵当y>0时,图象在x轴的上方,而抛物线与x轴的交点坐标为(﹣1,0)、(3,0),∴当y>0时,x<﹣1,x>3,故错误.故正确的结论有①②④.点评:由图象找出有关a,b,c的相关信息以及抛物线的交点坐标,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a﹣b+c,然后根据图象判断其值.14.(2分)(2009•临夏州)抛物线y=﹣x2+bx+c的部分图象如图所示,请写出与其关系式,图象相关的2个正确结论:答案不唯一.如:①c=3;②b+c=1;③c﹣3b=9;④b=﹣2;⑤抛物线的顶点为(﹣1,4),或二次函数的最大值为4;⑥方程﹣x2+bx+c=0的两个根为﹣3,1;⑦y>0时,﹣3<x<1;或y<0时,x<﹣3或x>1;⑧当x>﹣1时,y随x的增大而减小;或当x<﹣1时,y随x的增大而增大.等等(对称轴方程,图象与x正半轴,y轴交点坐标例外).考点:二次函数的性质.专题: 压轴题;开放型.分析:根据题意,利用二次函数的图象和限制随便写两个正确的答案则可.解答:解:∵x=0时,y=3代入抛物线解析式,∴c=3;当x=1时,y=0代入表达式得b+c=1,所以填c=3和b+c=1.点评:本题的答案很多,主要考查学生的散发性思维,比较灵活.15.(2分)(2009•鄂州)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c=11.考点:二次函数图象与几何变换.分析:因为抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,得到图象的解析式是y=x2﹣3x+5,所以y=x2﹣3x+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,先由y=x2﹣3x+5的平移求出y=ax2+bx+c的解析式,再求a+b+c=11.解答:解:∵y=x2﹣3x+5=(x﹣)2+,当y=x2﹣3x+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,∴y=(x﹣+3)2++2=x2+3x+7;∴a+b+c=11.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16.(2分)(2009•包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是12。
初中数学-二次函数经典练习含答案
二次函数 知识经典练习一、知识点之二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、知识点之二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、知识点之二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、知识点之二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、知识点之二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、知识点之二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、知识点之二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、知识点之二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、知识点之二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;2. 关于y轴对称2y ax bx c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y ax bx c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c=++关于顶点对称后,得到的解析式是222by ax bx ca=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、知识点之二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、知识点之函数的应用二次函数应用2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)2⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数重点练习题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
二次函数练习题及答案
二次函数练习题及答案1. 已知二次函数的顶点为(2, 3),且经过点(1, 5),求该二次函数的解析式。
2. 抛物线y=ax^2+bx+c与x轴交于点A(-1, 0)和B(3, 0),求抛物线的对称轴方程。
3. 函数f(x)=2x^2-4x+m在区间[0, 2]上的最大值为8,求m的值。
4. 已知二次函数y=ax^2+bx+c的图象经过点(-1, 2)和(2, 2),且在x=1处取得最小值,求a、b、c的值。
5. 抛物线y=ax^2+bx+c的图象开口向上,且经过点(0, 1)和(2, 5),求a的取值范围。
6. 函数y=x^2-2x+3的图象与x轴的交点坐标为多少?7. 抛物线y=-2x^2+4x+1的顶点坐标是什么?8. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, 2),且在x=-1处取得最大值,求a、b、c的值。
9. 函数f(x)=x^2-6x+8在区间[1, 4]上的最大值和最小值分别是多少?10. 抛物线y=3x^2-6x+2与x轴的交点坐标是什么?11. 已知二次函数y=ax^2+bx+c的图象经过点(1, 0)和(-2, 0),且在x=0处取得最小值,求a、b、c的值。
12. 函数y=2x^2-4x+1在区间[0, 3]上的最大值和最小值分别是多少?13. 抛物线y=-x^2+2x+3的图象开口向下,求抛物线的顶点坐标。
14. 已知二次函数y=ax^2+bx+c的图象经过点(-3, -2)和(1, -2),求a、b、c的值。
15. 函数y=x^2-4x+5的图象与x轴的交点坐标为多少?16. 抛物线y=4x^2-12x+9的顶点坐标是什么?17. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, -1),且在x=2处取得最大值,求a、b、c的值。
18. 函数f(x)=-2x^2+8x-8在区间[0, 4]上的最大值和最小值分别是多少?19. 抛物线y=x^2-4x+5的图象开口向上,求抛物线的对称轴方程。
初中数学二次函数随堂练习80
初中数学二次函数随堂练习80一、选择题(共5小题;共25分)1. 下列各点中,在函数的图象上的点是A. C. D.2. 矩形中,,.动点从点开始沿边向点以的速度运动,动点从点同时出发沿边向点以的速度运动至点停止.如图可得到矩形,设运动时间为(单位:),此时矩形去掉矩形后剩余部分的面积为(单位:),则与之间的函数关系用图象表示大致是下图中的A. B.C. D.3. 根据下列表格的对应值:判断方程(,,,为常数)一个解的范围是A. B. C. D.4. 已知抛物线经过点和.下列结论:①;②;③当时,抛物线与轴必有一个交点在点的右侧;④抛物线的对称轴为.其中结论正确的个数有A. 个B. 个C. 个D. 个5. 已知二次函数(为常数),在自变量的值满足的情况下,与其对应的函数值的最小值为,则的值为A. 或或 C. 或 D. 或二、填空题(共4小题;共22分)6. 抛物线,与抛物线的开口方向,顶点坐标.(填“相同”或“不相同”)7. (),(),,().8. 如果抛物线不经过第二象限,那么的取值范围是.9. 如图为二次函数的图象,则下列说法:①;②;③;④当时,.其中正确为.(只填序号)三、解答题(共4小题;共52分)10. 将抛物线先向左平移个单位,再向下平移个单位,得到新抛物线,求原抛物线的表达式.11. 在平面直角坐标系中,抛物线与轴的交点为,.(1)求抛物线的顶点坐标.(2)横、纵坐标都是整数的点叫做整点.①当时,求线段上整点的个数.②若抛物线在点,之间的部分与线段所围成的区域内(包括边界)恰有个整点,结合函数的图象,求的取值范围.12. 如图,在平面直角坐标系中,点,分别在轴正半轴和轴正半轴上,点在第一象限,.若点,,是轴上一点,且三角形和三角形的面积相等.求点的坐标.13. 在平面直角坐标系中,抛物线的开口向上,且经过点.(1)填空:(用含的代数式表示).(2)直线与抛物线交于点和点,点是直线下方抛物线上一点,过点作轴的平行线,与直线相交于点,当线段的长度最大时,求点的坐标.(3)若,当,求的值.答案第一部分1. B 【解析】A,把代入函数关系式:,故此点不在函数图象上;B,把代入函数关系式:,故此点在函数图象上;C,把代入函数关系式:,故此点不在函数图象上;D,把代入函数关系式:,故此点不在函数图象上;故选:B.2. A3. C4. B 【解析】①经过点和,,,,;②抛物线经过点,;③,抛物线与轴的一个交点为,又经过点,抛物线与轴必有一个交点在点的右侧;④对称轴为;②③④都正确.5. B【解析】当时,随的增大而增大,当时,随的增大而减小,①若,时,取得最小值,可得:,解得:或(舍),②若,当时,取得最小值,可得:,解得:或(舍).综上,的值为或.第二部分6. 相同,不相同7. ,,,,,,8.9.第三部分10. .11. (1)解法一:对称轴,当时,,抛物线的顶点坐标为.【解析】解法二:,抛物线的顶点坐标为.(2)①当时,,令,得到,;则线段上的整数点有,,,共个.②顶点为,所以整点只能落在顶点和轴上.有个整数点,所以轴上应该有个.根据对称性知,当二次函数经过点和之间(包括)时,符合题意.将代入二次函数,得;将代入,得;的取值范围为.12. 设,则,,,或.13. (1)【解析】抛物线过点,,.(2)设,则,,,当时,有最大值,.(3),抛物线的解析式为:.,当,,,①当,即时,有,解得:,(不合题意,舍去);②当,即时,有,解得:(不合题意,舍去),(不合题意,舍去).综上所述:的值为.。
完整版)初三数学二次函数专题训练(含标准答案)-
完整版)初三数学二次函数专题训练(含标准答案)-二次函数专题训练(含答案)一、填空题1.把抛物线y=-1/2x向左平移2个单位得抛物线,接着再向下平移3个单位,得抛物线.2.函数y=-2x+x^2图象的对称轴是x=1,最大值是1.3.正方形边长为3,如果边长增加x面积就增加y=x^2+6x+9.4.二次函数y=-2x+8x-6,通过配方化为y=a(x-2)^2-2的形为.5.二次函数y=ax+c(c不为零),当x取x1,x2(x1≠x2)时,函数值相等,则x1与x2的关系是x1+x2=-2a/c.6.抛物线y=ax^2+bx+c当b=0时,对称轴是x=0,当a,b同号时,对称轴在y轴侧,当a,b异号时,对称轴在x=-b/2a 处.7.抛物线y=-2(x+1)^2-3开口向下,对称轴是x=-1,顶点坐标是(-1,-3).如果y随x的增大而减小,那么x的取值范围是x<-1.8.若a5/2a时,函数值随x的增大而减小.9.二次函数y=ax^2+bx+c(a≠0)当a>0时,图象的开口向上;当a<0时,图象的开口向下,顶点坐标是(-b/2a,c-b^2/4a).10.抛物线y=-2(x-2)^2+2,开口向下,顶点坐标是(2,2),对称轴是x=2.11.二次函数y=-3(x-1)^2+2的图象的顶点坐标是(1,2).12.已知y=(x+1)^2-2,当x≥1时,函数值随x的增大而减小.13.已知直线y=2x-1与抛物线y=5x+k交点的横坐标为2,则k=9,交点坐标为(2,13).14.用配方法将二次函数y=x^2+x-2化成y=a(x-(-1/2))^2-9/4的形式是y=(x+1/2)^2-9/4.15.如果二次函数y=x^2-6x+m的最小值是1,那么m的值是10.二、选择题:16.在抛物线y=2x^2-3x+1上的点是(D)(3,4)17.直线y=5x/2-2与抛物线y=x^2-x的交点个数是(C)2个18.关于抛物线y=ax^2+bx+c(a≠0),下面几点结论中,正确的有(A、B、C)①当a>0时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大,当a<0时,情况相反。
(完整版)初中数学二次函数专题经典练习题(附答案)
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
二次函数的练习题及答案
二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。
A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。
A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。
A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。
2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。
三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。
2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。
四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。
求出当生产多少件产品时,成本最低,并求出最低成本。
2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。
设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。
答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。
2. 函数与x轴的交点坐标为(1,0)和(2,0)。
四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。
2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。
二次函数的练习题及答案
二次函数的练习题及答案二次函数是高中数学中的重要内容,也是考试中常考的知识点之一。
掌握好二次函数的相关概念和解题方法,对于提高数学成绩和解决实际问题都有很大的帮助。
本文将通过一些练习题和答案的形式,帮助读者巩固和加深对二次函数的理解。
1. 练习题一:已知二次函数y = ax^2 + bx + c的图像经过点(1,4)和(2,1),求a、b、c的值。
解法:根据已知条件,将点(1,4)和(2,1)带入二次函数的方程,得到两个方程:a +b +c = 44a + 2b + c = 1解这个方程组,可以得到a、b、c的值。
2. 练习题二:已知二次函数y = ax^2 + bx + c的图像与x轴有两个交点,且交点的横坐标分别为2和5,求a、b、c的值。
解法:根据已知条件,可以得到两个方程:4a + 2b + c = 025a + 5b + c = 0同样地,解这个方程组,可以得到a、b、c的值。
3. 练习题三:已知二次函数y = ax^2 + bx + c的图像经过点(-1,0),且在点(2,3)处的切线斜率为4,求a、b、c的值。
解法:根据已知条件,可以得到两个方程:a -b +c = 04a + 2b + c = 3同样地,解这个方程组,可以得到a、b、c的值。
通过以上几个练习题,我们可以看到,解二次函数的题目,关键在于将已知条件转化为方程,然后通过解方程组得到未知数的值。
这是一个基本的解题思路,需要我们熟练掌握。
除了解题方法,我们还可以通过一些图像来加深对二次函数的理解。
例如,我们可以画出二次函数y = x^2 + x - 2的图像,观察图像的开口方向、顶点位置以及与x轴的交点等特征。
这样可以帮助我们更好地理解二次函数的性质和特点。
此外,二次函数还有一些重要的应用,例如在物理学中,二次函数可以用来描述自由落体运动的轨迹;在经济学中,二次函数可以用来描述成本、收益等与产量之间的关系。
通过了解这些应用,我们可以将抽象的数学知识与实际问题联系起来,提高数学的应用能力。
九年级数学二次函数随堂练习题
九年级数学二次函数随堂练习题数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。
下文就为二次函数随堂练习,希望大家认真对待。
一、选择题1.已知二次函数y=ax2+bx+c的图象如图,下列结论中,正确的结论的个数有 ?① a + b + c>0 ② a - b + c<0? ③ abc< 0? ④ b =2a? ⑤ b >0A. 5个?B. 4个? C .3个? D. 2个2.抛物线y=x2-ax+a-2与坐标轴的交点个数有A.3个B.2个?C.1个D.0个3.下列过原点的抛物线是A.y=2x2-1B. y=2x2+1?C. y=2x+12D. y=2x2+x4.已知抛物线过A-1, 0和B 3, 0两点,与y轴交于点C,且BC= ,则这条抛物线的解析式为?A.y=-x2+2x+3B. y=x2-2x-3?C. y=x2+2x-3 或y= -x2+2x+3D. y= -x2+2x+3或y= x2-2x-35.二次函数y= a x+m2-m a≠0 无论m为什么实数,图象的顶点必在 ?A.直线y=-x上B. 直线y=x上C.y轴上D.x轴上6.如图,在直角三角形AOB中,ABOB,且OB=AB=3,设直线,截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为7. 关于二次函数y=ax2+bx+c的图象有下列命题:① 当c=0时,函数的图象经过原点;② 当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不等实根;③ 函数图象最高点的纵坐标是 ;④ 当b=0时,函数的图象关于y轴对称.其中正确的命题的个数有 ?A. 1个?B. 2个C. 3个D. 4个8. 若一抛物线y=ax2与四条直线x=1,x=2, y =1, y =2 围成的正方形有公共点,则a的取值范围是二、填空题9.抛物线y=-2x+12+1的顶点坐标是 .10.将y=2x2的函数图象向左平移3个单位,再向上平移2个单位,得到二次函数解析式为 .11.抛物线y=1-kx2-2x-1与x轴有两个交点,则k的取值范围是 .12.已知二次函数y=x2+kx-12的图象向右平移4个单位后,经过原点,则k的值是13.写出一个二次函数的解析式,使它的顶点恰好在直线y=x+2上,且开口向下,则这个二次函数解析式可写为? .14.二次函数 y=ax2+ca,c为已知常数,当x取值x1,x2时x1≠x2,函数值相等,则当x取x1+x2时,函数值为? .三、解答题15.根据下列不同条件,求二次函数的’解析式:l二次函数的图象经过A 1, l,Bl, 7, C2,4三点;2已知当x=2时,y有最小值3,且经过点l,5 ;3图象经过-3,0,l,0, -l,4三点.16.画出函数y=x2-2x-3象,利用图象回答下列问题:lx取何值时,y随x的增大而减小?2当x取何值时, y=0, y>O, y<0?3若x1>x2>x3>1 时,比较yl, y2, y3的大小17.已知二次函数y=-2x2,怎样平移这个函数图象,才能使它经过0,0和1,6 两点?18.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费为每平方米1000元,设矩形-边长为xm ,面积为Sm2.l求出S与t之间的函数关系式,并确定自变量x的取值范围;2请你设计一个方案,使获得的设计费最多,并求出这个费用.19.某跳水运动员进行IOm跳台跳水的训练时,身体看成一点在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线图中标出的数据为己知条件.在跳某个规定动作时,正确情况下,该运动员在空中的最高处距水面 m,入水处与池边的距离为4m, 同时,运动员在距水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.l求这条抛物线的解析式;2在某次试跳中,测得运动员在空中的运动路线是1中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为,问:此次跳水会不会失误?通过计算说明理由.2. 把y= -x2-4x+2化成y= a x+m2 +n的形式是?A.y= - x-2 2 -2B.y= - x-2 2 +6?C. y = - x+2 2 -2D. y= - x+2 2 +6感谢您的阅读,祝您生活愉快。
初中数学二次函数随堂练习81
初中数学二次函数随堂练习81一、选择题(共5小题;共25分)1. 关于二次函数,说法正确的是A. 有最大值B. 有最大值C. 有最小值D. 有最小值2. 已知二次函数的图象如图所示,则下列结论中正确的是A. B. C. D.3. ,是一元二次方程的两个根,,对的估算正确的是C. D.4. 如图,抛物线的对称轴为直线,与轴交于点,点在抛物线上,则下列结论中错误的是A.B. 一元二次方程的正实数根在和之间C.D. 点,在抛物线上,当实数时,5. 二次函数,当且时,的最小值为,最大值为,则的值为A. B. C. D.二、填空题(共4小题;共20分)6. 抛物线经过点,则.7. 把二次函数化成的形式是,顶点坐标是,对称轴是.8. 写出一个开口方向向下,顶点为的抛物线的解析式.9. 已知点,,在二次函数的图象上,则,,的大小关系是.(用" "连接)三、解答题(共4小题;共52分)10. 试分别说明将抛物线:();();();()的图象通过怎样的平移得到的图象.11. 已知二次函数.(1)求函数图象的顶点坐标、对称轴以及图象与坐标轴的交点坐标,并画出该函数的大致图象.(2)当取何值时,随的增大而增大?当取何值时,随的增大而减小?并求出函数的最大值或最小值.12. 如图,在平面直角坐标系中,已知点,,点在轴负半轴,,求点的坐标.13. 如图,抛物线经过,两点,与轴交于点,与轴交于另一点.(1)求此抛物线的解析式及顶点坐标;(2)若将此抛物线平移,使其顶点为点,需如何平移?写出平移后抛物线的解析式;(3)过点作轴的垂线,分别交平移前后的抛物线于点,,交直线于点,求证:.答案第一部分1. C2. D3. A 【解析】,是一元二次方程的两个根,,,,,,故选:A.4. D 【解析】抛物线开口向上,,抛物线的对称轴为直线,,,A选项的结论正确;抛物线的对称轴为直线,抛物线与轴的一个交点坐标在与之间,抛物线与轴的另一个交点坐标在与之间,一元二次方程的正实数根在和之间,B选项的结论正确;把,代入抛物线得,,而,,,C选项的结论正确;点,在抛物线上,当点,都在直线的右侧时,,此时;当点在直线的左侧,点在直线的右侧时,,此时且,即,当或时,,D选项的结论错误.5. D第二部分或7. ,,8. (不唯一)9.第三部分10. 将抛物线()向右平移一个单位,向下平移一个单位可得到的图象;将抛物线()向左平移一个单位,向上平移一个单位可得到的图象;将抛物线()向下平移一个单位,可得到的图象;将抛物线()向上平移一个单位,可得到的图象.11. (1)顶点坐标是,对称轴是直线,与轴交于点,与轴交于点.图象略.(2)当时,随的增大而增大;当时,随的增大而减小.当时,.12. 作轴于点,轴于点,,设,列方程,得,.13. (1)把,代入,得解得抛物线的解析式为,,其顶点坐标为.(2),当时,,点坐标为.将点向左平移个单位长度,再向上平移个单位长度,可得到点,将向左平移个单位长度,再向上平移个单位长度,顶点为点,此时平移后的抛物线解析式为.(3)设直线的解析式为,,,解得,直线的解析式为.当时,,则,当时,,,则,.。
初中数学二次函数随堂练习99
初中数学二次函数随堂练习99一、选择题(共5小题;共25分)1. 抛物线的对称轴是A. 直线B. 直线C. 直线D. 轴2. 若二次函数的图象经过点,则该图象必经过点A. C. D.3. 根据下列表格对应值,判断关于的方程的一个解在和之间 B. 和之间C. 和之间D. 和之间4. 二次函数的图象如图所示,下列说法错误的是A. B.C. D. 无实数根5. 对于二次函数的图象,下列说法正确的是A. 开口向下B. 顶点坐标是C. 对称轴是直线D. 与轴有两个交点二、填空题(共4小题;共20分)6. 已知二次函数的图象的最低点在轴上,则等于.7. 已知二次函数,用配方法化为的形式为.8. 请写出一个以轴为对称轴的二次函数表达式.9. 二次函数的顶点坐标为,对称轴是直线.三、解答题(共4小题;共52分)10. 把抛物线向右平移个单位,再向下平移个单位,求平移后所得图象的函数解析式.11. 求抛物线的顶点坐标.12. 如图,在平面直角坐标系中,已知点,,点在轴负半轴,,求点的坐标.13. 抛物线的顶点为点,交轴于点,对称轴交轴于点,点与点不重合,平移使其经过点,,得抛物线,顶点为,对称轴交轴于点.(1)当时,求点和点的坐标.(2)当时,设点关于的对称点为,当与不重合时,求,两点所在直线解析式.答案第一部分1. D2. A3. B4. C5. C第二部分6.7.8.,第三部分10. 根据平移的性质可解:平移后的图象解析式:.11. ,顶点坐标为.12. 作轴于点,轴于点,,设,列方程,得,.13. (1)时,,故点,当时,,故点.(2),则点,点于点关于点对称,则点,,不重合,,将点,代入一次函数表达式:并整理得:,,,故,两点所在直线的解析式为:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学二次函数随堂练习84
一、选择题(共5小题;共25分)
1. 二次函数的图象与轴的交点坐标是
A. B. C. D.
2. 下列说法中错误的是
A. 在函数中,当时,有最大值
B. 在函数中,当时,随的增大而增大
C. 抛物线,,中,抛物线的开口最小,抛物线
的开口最大
D. 不论是正数还是负数,抛物线的顶点都是坐标原点
3. 根据下列表格的对应值,判断方程(,,,为常数)一个解的范
围是
A. B. C. D.
4. 如图是二次函数(,,是常数,)图象的一部分,与轴的交点
在点和之间,对称轴是.对于下列说法:①;②;
③;④(为实数);⑤当时,,其中
正确的是
A. ①②④
B. ①②⑤
C. ②③④
D. ③④⑤
5. 对于二次函数的图象,下列说法正确的是
A. 开口向下
B. 对称轴是
C. 与轴的有两个交点
D. 顶点坐标是
二、填空题(共4小题;共20分)
6. 二次函数的图象的开口向,对称轴是过点且平行
于轴的直线,顶点坐标是.
7. 将函数化为的形式为.
8. 已知二次函数,若,则与对应的值与的大小关系
为.
9. 二次函数与函数图象的形状大小相同,那么.
三、解答题(共4小题;共52分)
10. 已知抛物线向右平移个单位后得到的抛物线是,求,的
值.
11. 求抛物线的顶点坐标.
.
顶点坐标为.
12. 如图,在三角形中,,,三点的坐标分别是,,.求三
角形的面积.
13. 抛物线(,为常数)与轴交于点和,与轴交于点,
点为抛物线顶点.
(1)当,时,求点,点的坐标;
(2)若顶点在直线上,当点位置最高时,求抛物线的解析式;
(3)若,,当满足值最小时,求的值.
答案
第一部分
1. D
2. C
3. C
4. A
5. D
【解析】,
开口向上,故A错误;
,对称轴为,故B错误;
,
,
该函数图象与轴没有交点,故C错误;
由函数解析式可知,顶点坐标是.
第二部分
6. 上,,,
7.
8.
【解析】由题意知,抛物线开口向下,对称轴为轴,故当时,随的增大而增大,又,所以.9.
第三部分
10. ,.
11. ;;
12. 如图,
13. (1)把点和代入函数,
有
解得,,
,
,.
(2)由,得,
点在直线上,
,
,
,
当时,点的位置最高,此时,.
(3)抛物线经过点,有,
,
,,
,,
关于轴的对称点为,
设过点,的直线为,
把,代入,得,
把点代入,
得,即,
解得,,
,
舍去,.。