北师大版八年级下册数学练习册答案
北师大版八年级数学下册第一章有理数1.4-1.6练习题及答案
北八(下)第一章1.4-1.6章节水平测试题一、填空题:(每题3分,共24分)1.已知不等式7)1(68)2(5+-<+-x x 的最小整数解为方程42=-ax x 解,则a 值是 .2.已知)1(645)25(3+-<++x x x ,化简xx --+11= .3.a 取正整数 时,方程73-=a x 的解是负整数.4.k 为整数 时,方程425+-=-x k x 的解在1和3之间.7.如果三角形的三边长分别是 3 cm 、(1-2a ) cm 、8 cm ,那么a 的取值范围是________.8.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.二、选择题:(每题3分,共24分)9.不等式3(x -2)≤x +4的非负整数解有几个( ) A .4 B .5 C .6D .无数个10.不等式4x -41141+<x 的最大的整数解为( ) A .1B .0C .-1D .不存在A .5B .4C .3D .无数个A .a =3 b =5B .a =-3 b =-5C .a =-3 b =5D .a =3 b =-513.若方程4152435-=-m m x 的解是非正数,则m 的取值范围是( ). A 3m ≤ B 2m ≤ C 3m ≥ D 2m ≥14.七年级(3)班同学假日外出游玩,要拍合影留念,若一张彩色底片要0.57,冲印一张要0.35元,每人预定要一张,花钱不超过0.45元,则参加合影的同学至少有( )个人?A 5 B.6 C.7 D.815.如果关于x 、y 的方程组⎩⎨⎧=+=-a y x y x 53102的解满足x >0且y <0,则实数a 的取值范围是( ).A2<a<3 B-3<a<2 C-2<a <3 D-3<a<-216.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x 千米,个体车主收费y 1元,国营出租车公司收费为y 2元,观察下列图象可知,当x( )时,选用个体车较合算.A. x<1500B. x=1500C. x>1200D. x >1500 三、解答题:(共30分)17(10分)解下列不等式(组),并把解集在数轴上表示出来:(1)612312531+-≥--x x (2)18.(10分)已知5x -2y =6,当x 满足6≤7x -1<13时,请确定y 的取值范围.19.(10分)如果方程组,⎩⎨⎧-=++=+m y x m y x 13313的解满足x +y >0,求m 的取值范围,并把m 的值表示在数轴上. 是多少?四、综合探究题:(22分)20.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需调往A 县10辆,调至B 县8辆,已知从甲仓库调往A 县和B 县的费用分别40元和80元;从乙仓库调往A 县和B 县的费用分别为30元和50元.(1)设从乙仓库调往A 县农用车x 辆.求总运费y 与x 的函数关系式. (2)若要求总运费不超过900元.问共有几种调配方案? (3)求出总运费最低的调运方案,最低运费是多少?。
八年级下册数学练习册答案北师大版
八年级下册数学练习册答案北师大版第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面; “⊙”,表示“森哥马”,§,¤,♀,∮,≒ ,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2。
1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABC DEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位置上.学生通过量或其他方法说明B’ E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’) 2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题 1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
最新北师大版八年级数学下册第二章同步测试题及答案全套
最新北师大版八年级数学下册第二章同步测试题及答案全套第二章 一元一次不等式与一元一次不等式组1 不等关系知能演练提升能力提升1.下面给出了6个式子:①3>0;②4x+3>0;③x=3;④x -1;⑤x+2≤3;⑥2x ≠0. 其中不等式共有( ) A .2个 B .3个 C .4个 D .5个2.根据下列数量关系列出相应的不等式,其中错误的是( ) A.a 与3的和大于1:a+3>1 B.a 与2的差不小于3:a -2≥3C.b 与1的和的3倍是一个非负数:3(b+1)>0D.b 的2倍与3的差是负数:2b -3<03.如图,对a ,b ,c 三种物体的质量判断正确的是( )A.a<cB.a<bC.a>cD.b<c4.在开山工程爆破时,已知导火索燃烧的速度为0.5 cm/s,人跑开的速度是4 m/s,为了使放炮的人在爆破时能安全跑到100 m 以外(不包括100 m)的安全区,导火索的长度x (cm)应满足的不等式是( ) A.4×x0.5≥100 B.4×x0.5≤100 C.4×x 0.5<100D.4×x0.5>1005.如图,左托盘物体x 的质量与右托盘两个砝码的质量之间的大小关系是:x 80.6.某饮料瓶上有这样的字样:保质期18个月.如果用x (月)表示保质期,那么该饮料的保质期可以用不等式表示为 .7.某班同学外出春游,要拍照合影留念,若一张彩色底片需0.57元,冲印一张需0.35元.每人预定一张,出钱不超过0.45元.设合影的同学有x 人,则可列不等式为 .8.在“庆祝世界反法西斯战争胜利70周年”知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:答题情况 答对 答错或不答 题 数 x每题分值 10 -5得 分 10x(2)小明同学的竞赛成绩超过100分,写出满足关系的不等式.创新应用9.如图,用锤子以相同的力将铁钉钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm .若铁钉总长度是 6 cm,试求a 的取值范围.答案: 能力提升1.C2.C3.C4.D5.>6.x ≤187.0.57+0.35x ≤0.45x8.解 (1)25-x -5(25-x )(2)根据题意,得10x -5(25-x )>100. 创新应用9.解 若敲击2次后铁钉恰好全部进入木块,则有a+13a=6,解得a=92,而实际这个铁钉被敲击3次后全部进入木块,所以a<92.若敲击 3次后恰好全部进入木块,则有 a+13a+19a=6,解得a=5413.综上可知,a 的取值范围是5413≤a<92.2 不等式的基本性质知能演练提升能力提升1.已知a ,b ,c 均为实数,若a>b ,c ≠0,则下列结论不一定正确的是( )A.a+c>b+cB.c -a<c -bC.a c2>b c2D.a 2>ab>b 22.已知实数a ,b 在数轴上的位置如图,则a -ba+b 0.(填“>”“<”或“=”)3.下列四个判断:①若ac 2>bc 2,则a>b ;②若a>b ,则a|c|>b|c|;③若a>b ,则b a<1;④若a>0,则b -a<b.其中正确的是 .(填序号)4.已知-m+5>-n+5,试比较10m+8与10n+8的大小.5.如图,有四个小朋友在公园玩跷跷板,他们的体重分别为P ,Q ,R ,S.请你根据图中的情境确定他们的体重大小关系.(用“>”连接起来)6.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,请问在哪家超市购买这种商品更合算?创新应用7.阅读下列材料:试判断a 2-3a+7与-3a+2的大小.分析:要判断两个数的大小,我们往往使用作差法,即若a -b>0,则a>b ;若a -b<0,则a<b ;若a -b=0,则a=b. 解:∵(a 2-3a+7)-(-3a+2)=a 2-3a+7+3a -2=a 2+5,且a 2≥0, ∴a 2+5>0.∴a 2-3a+7>-3a+2.阅读后,应用这种方法比较a 2-b 2+22与a 2-2b 2+13的大小.答案:能力提升 1.D2.< 由数轴知0<a<1,b<-1,故a -b>0,a+b<0.由不等式的基本性质3,a -b>0两边除以a+b ,得a -b a+b<0.3.①④4.解 根据不等式的基本性质1,不等式-m+5>-n+5的两边都减去5,得-m>-n ,根据不等式的基本性质3,不等式的两边都乘-1,得m<n ;根据不等式的基本性质2,不等式的两边都乘10,得 10m<10n ,根据不等式的基本性质1,不等式的两边都加上8,得10m+8<10n+8.5.解 由题中第一个图知S>P ;由题中第二个图知P>R ,故S>P>R.又由题中第三个图知P+R>S+Q ,而由S>P ,得S+Q>P+Q ,所以P+R>P+Q ,故R>Q.因此,S>P>R>Q.6.解 设这种商品的价格为a (a>0)元,在甲超市购买需付款a (1-10%)·(1-10%)元,即0.81a 元.在乙超市购买需付款a (1-20%)元,即0.8a 元.∵0.81>0.8,且a>0,∴0.81a>0.8a ,∴在乙超市购买更合算. 创新应用 7.解a 2-b 2+22−a 2-2b 2+13=3a 2-3b 2+66−2a 2-4b 2+26=3a 2-3b 2+6-2a 2+4b 2-26=a 2+b 2+46,由a 2≥0,b 2≥0,得a 2+b 2≥0, 故a 2+b 2+4≥4.故a 2+b 2+46≥46.∵46>0,∴a 2-b 2+22>a 2-2b 2+13.3 不等式的解集知能演练提升能力提升1.下列数值不是不等式5x ≥2x+9的解的是( )A.5B.4C.3D.22.如果式子√2x +6 有意义,那么x 的取值范围在数轴上表示出来正确的是( )3.若关于x 的不等式x -b>0恰有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b ≤-2C.-3≤b≤-2D.-3≤b<-24.已知关于x的不等式的解集如图,则这个不等式的非负整数解是.5.如果a与12的差小于a的9倍与8的和,那么请写出一个符合题意的a的值.6.已知x=3是方程x=x-a-1的解,求关于x的不等式ax+5<0的解集.27.是否存在整数m,使关于x的不等式mx-m>3x+2的解集为x<-4?若存在,求出整数m的值;若不存在,请说明理由.创新应用8.现有A,B两种型号的钢管,每根A型钢管的长度比每根B型钢管的长度的2倍少5 cm.现取这两种型号的钢管分别做长方形的钢框的长与宽,焊成周长大于2.9 m的长方形钢框.(1)B型钢管至少有多长才合适?列出不等式.(2)如果每根B型钢管的长度有以下四种选择:45 cm,55 cm,48 cm,50 cm,那么哪些合适?哪些不合适?答案:能力提升1.D2.C3.D4.0,1,2题中数轴表示的解集是x<3,满足x<3的非负整数有0,1,2,故这个不等式的非负整数解是0,1,2.5.答案不唯一,如0,1,2.只要满足a>-5即可.26.分析本题是方程与不等式的综合运用,通过解方程求出a的值,把a的值代入不等式,然后求不等式的解集.解由x=x-a-1,得2x=x-a-2,2∵x=3是原方程的解,∴a=-x-2=-3-2=-5.∴不等式ax+5<0可化为-5x+5<0,利用不等式的性质,得x>1.7.解∵mx-m>3x+2,∴(m-3)x>m+2.=-4,要使x<-4,必须m-3<0,且m+2m-3解得m<3,m=2,∴存在整数m=2,使关于x 的不等式mx -m>3x+2的解集为x<-4.创新应用8.解 (1)设B 型钢管的长为x cm,则A 型钢管的长为(2x -5) cm .根据题意,得2(x+2x -5)>290.(2)把45 cm,55 cm,48 cm,50 cm 分别代入(1)中的不等式,得x=55是该不等式的解,所以 55 cm 合适,45 cm,48 cm ,50 cm 不合适.4 一元一次不等式第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式2(x+1)<3x 的解集在数轴上表示为 ( )2.不等式x -72+1<3x -22的负整数解有( )A.1个B.2个C.3个D.4个3.若不等式ax>b 的解集是x<ba,则a 的取值范围是( )A.a ≤0B.a<0C.a ≥0D.a>04.定义新运算:对于任意实数a ,b 都有:a b=a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2 5=2×(2-5)+1=2×(-3)+1=-5.则不等式3 x<13的解集为 .5.若(m -2)x 2m+1-1>5是关于x 的一元一次不等式,则该不等式的解集是 .6.解不等式x -1≤1+x3,并把解集在数轴上表示出来.7.已知不等式x+8>4x+m (m 是常数)的解集是x<3,求m 的值.8.当1≤x ≤2时,ax+2>0,试求a 的取值范围.创新应用9.已知关于x ,y 的方程组{x -y =3,2x +y =6a的解满足不等式x+y<3,求实数a 的取值范围.答案: 能力提升1.D2.A3.B4.x>-15.x<-3 根据一元一次不等式的定义,可知2m+1=1,且m -2≠0,即m=0.把m=0 代入不等式,得-2x -1>5.解这个不等式,得x<-3.6.解 去分母,得3(x -1)≤1+x.去括号,得3x -3≤1+x.移项、合并同类项,得2x ≤4. 两边同除以2,得x ≤2.该不等式的解集用数轴表示如图所示:7.解 移项,得4x -x<8-m.合并同类项,得 3x<8-m.两边同除以3,得x<8-m 3.∵不等式的解集为x<3,∴8-m 3=3,解得m=-1.8.解 由题可知,当1≤x ≤2时,ax+2>0恒成立.①当a>0时,得x>-2a ,故-2a <1,故a>-2,又∵a>0,∴a>0;②当a=0时,原不等式为2>0,故当1≤x ≤2时,不等式恒成立;③当a<0时,得x<-2a ,故-2a >2,故a>-1,又∵a<0,∴-1<a<0.综上所述,a 的取值范围是a>-1. 创新应用9.解 把方程组中的两个方程相加,得3x=3+6a ,得x=1+2a,代入x-y=3,得y=x-3=2a-2.故x+y=4a-1,于是有4a-1<3,解得a<1.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,最多可打()A.6折B.7折C.8折D.9折2.老王家上个月付电话费31元以上,其中月租费21元.已知市内通话如果每次不超过3分钟,则话费为0.18元.如果老王家上个月打的全部是市内电话,且每次都不超过3分钟,那么老王家上个月通话次数最少为()A.55次B.56次C.57次D.58次3.小宏准备用50元买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买甲饮料.4.一只纸箱的质量为1 kg,放入一些苹果(每个苹果的质量约为0.25 kg)后,箱子和苹果的总质量不超过10 kg.这只箱子内最多能装个苹果.5.为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B 种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.6.某超市有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1 600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1 640元,且总利润(利润=售价-进价)不少于600元,请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.7.某城市平均每天产生垃圾700 t,由甲、乙两个处理厂处理.已知甲厂每小时可处理垃圾55 t,需费用550元;乙厂每小时可处理垃圾45 t,需费用495元.问:(1)甲、乙两厂同时处理该城市的垃圾,每天需多长时间完成?(2)如果规定该城市每天用于处理垃圾的费用不得超过7 370元,那么甲厂每天处理垃圾至少需要多长时间?创新应用8.为了提倡低碳经济,某公司为了更好地节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2 040吨,为了节约资金,请你设计一种最省钱的购买方案.答案:能力提升1.B2.B3.3瓶 设小宏买x 瓶甲饮料.列不等式为7x+4(10-x )≤50,解得x ≤313,即最多能买3瓶甲饮料.4.36 设这只纸箱内装x 个苹果.根据题意得0.25x+1≤10,解得x ≤36, 所以x 的最大值是36.5.解 (1)y=-20x+1 890 y=90(21-x )+70x=-20x+1 890.(2)由题意,得x<21-x ,解得x<10.5.又∵x ≥1,∴1≤x<10.5,且x 为整数.由(1)中一次函数知,y 随x 的增大而减小,故当x=10时,y 取最小值-20×10+1 890=1 690,因此,费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1 690元.6.解 (1)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得10x+30(80-x )=1 600.解得x=40,80-x=40.因此,购进甲、乙两种商品各40件.(2)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得{10x +30(80-x )≤1 640,(15-10)x +(40-30)(80-x )≥600.解得38≤x ≤40.∵x 为整数,∴x=38,39,40,相应的y=42,41,40.从而利润分别为5×38+10×42=610,5×39+10×41=605,5×40+10×40=600. 因此,使该超市利润最大的方案是购进甲商品38件,乙商品42件.7.解 (1)设甲、乙两厂同时处理垃圾,每天需x h .依题意,得(55+45)x=700.解这个方程,得x=7.所以,甲、乙两厂同时处理垃圾,每天需7 h 完成. (2)设甲厂每天处理垃圾需要y h . 依题意,得55y×55055+(700-55y )×49545≤7 370,解得y ≥6.所以,甲厂每天处理垃圾至少需要6 h . 创新应用8.解 (1)设购买节省能源的甲型新设备x 台,乙型新设备(10-x )台.根据题意得12x+10(10-x )≤110, 解得x ≤5,∵x 取非负整数, ∴x=0,1,2,3,4,5, ∴有6种购买方案.(2)由题意得240x+180(10-x )≥2 040, 解得x ≥4, 则x 为4或5.当x=4时,购买资金为12×4+10×6=108(万元), 当x=5时,购买资金为12×5+10×5=110(万元),则最省钱的购买方案为选购甲型设备4台,乙型设备6台.5 一元一次不等式与一次函数第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.如图,已知直线y=kx+b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b<0 的解集为( ) A.x>-3 B.x<-3 C.x>3 D.x<3 2.如图,函数y 1=|x|和y 2=13x+43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是( ) A.x<-1 B.-1<x<2 C.x>2 D.x<-1或x>23.如图,已知直线y 1=x+b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x+b>kx -1的解集在数轴上表示正确的是( )4.在一次800 m 的长跑比赛中,甲、乙两人所跑的路程s (m)与各自所用时间t (s)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后180 s 时,两人相遇D.在起跑后50 s 时,乙在甲的前面5.如图,已知一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有.(把你认为说法正确的序号都填上)6.若直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式2x<kx+b的解集为.7.当x为何值时,一次函数y=-2x+3的值小于一次函数y=3x-5的值?(1)一变:当x为何值时,一次函数y=-2x+3的值等于一次函数y=3x-5的值?(2)二变:当x为何值时,一次函数y=-2x+3的图象在一次函数y=3x-5的图象的上方?(3)三变:已知一次函数y1=-2x+a,y2=3x-5a,当x=3时,y1>y2,求a的取值范围.8.x+3的图象,观察图象回答下列问题:如图,直线l是函数y=12(1)当x取何值时,1x+3>0?2x+3<5?(2)当x取何值时,12x+3,则点P的坐标可能是(-2,1)吗?(3)若点P(x,y)满足x<5,且y>129.我边防局接到情报,在离海岸5海里处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶.如图,l A,l B分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪个速度更快?(2)B能否追上A?创新应用10.甲有存款600元,乙有存款2 000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.(1)列出甲、乙的存款额y1,y2(元)与存款月数x(月)之间的函数关系式,并画出函数图象;(2)请问到第几个月,甲的存款额超过乙的存款额?答案:能力提升1.A2.D3.A4.D5.①②③6.x<-1易知y=-x-3,所以2x<-x-3,解得x<-1.7.解由题意,可知-2x+3<3x-5,.即-5x<-8,得x>85(1)由题意,可知-2x+3=3x-5,.即-5x=-8,得x=85(2)由题意,可知-2x+3>3x-5,.即-5x>-8,得x<85(3)当x=3时,y1=-6+a,y2=9-5a,∵y1>y2,∴-6+a>9-5a,.即6a>15,得a>528.解由题图可以看出函数与x轴的交点为(-6,0).x+3>0.(1)当x>-6时,12(2)由题图可以看出,当y=5时,x=4,x+3<5.所以当x<4时,12(3)由题意,得点P 满足横坐标x<5的同时,对应的点P 的位置要在直线的上方,而点(-2,1)在直线的下方, 故点P 的坐标不可能是(-2,1).9.分析 根据题图提供的信息,分别求出l A ,l B 的关系式,根据k 值的大小来判断谁的速度快,B 能否追上A.实际上,根据图象就可以直接作出判断.解 (1)∵直线l A 过(0,5),(10,7)两点,设直线l A 的函数表达式为s=k 1t+b ,则{5=b ,7=10k 1+b ,∴{k 1=15,b =5.∴s=15t+5. ∵直线l B 过(0,0),(10,5)两点,设直线l B 的函数表达式为s=k 2t ,则5=10k 2,∴k 2=12.∴s=12t.∵k 1<k 2,∴B 的速度快. (2)∵k 1<k 2,∴B 能追上A.创新应用10.解 (1)y 1=600+500x ;y 2=2 000+200x.函数图象如图.(2)令600+500x>2 000+200x ,解得x>423, 所以到第5个月甲的存款额超过乙的存款额.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某市打市话的收费标准是:每次3 min 以内(含3 min)收费0.2元,以后每 min 收费0.1元(不足1 min 按1 min 计).某天小芳给同学打了一个6 min 的市话,所用电话费为0.5元;小刚现准备给同学打市话6 min,他经过思考以后,决定先打3 min,挂断后再打3 min,这样只需电话费0.4元.若你想给某同学打市话,准备通话10 min,则你所需要的电话费至少为( ) A.0.6元 B.0.7元 C.0.8元 D.0.9元2.声音在空气中的传播速度y (m/s)(简称音速)与气温x (℃)满足关系式:y=35x+331.当音速超过340 m/s 时,气温 .3.某医药公司要把药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米再加收2元.当运输路程时,选择邮车运输较好.4.某单位需刻录一批光盘,若在电脑公司刻录每张需8元(包括空白光盘费);若单位自制,除租用刻录机需120元外,每张还需成本4元(包括空白光盘费).问刻录这批光盘是到电脑公司刻录费用省,还是自制费用省?请说明理由.5.某商场计划投入一笔资金采购一批商品,经市场调研发现,如果本月初出售,那么可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售,那么可获利25%,但要支付仓储费8 000元.请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.6.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,农机租赁公司这50台联合收割机一天获得的租金为y(元),求y与x 之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.7.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍每副定价60元,乒乓球每盒定价10元.世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需用y1元,在乙商店购买需用y2元.(1)请分别写出y1,y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.创新应用8.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元.已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,则开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.答案:能力提升1.B2.超过15 ℃3.小于210千米4.解设需刻录x张光盘,单位自制的总费用为y1元,电脑公司刻录的总费用为y2元.由题意,得y1=4x+120,y2=8x.(1)当y1>y2,即4x+120>8x时,解得x<30;(2)当y1=y2,即4x+120=8x时,解得x=30;(3)当y1<y2,即4x+120<8x时,解得x>30.所以,当刻录光盘少于30张时,到电脑公司刻录费用省;当刻录光盘等于30张时,两个地方都行;当刻录光盘多于30张时,单位自制费用省.5.解设商场投入资金x元,如果本月初出售,到下月初可获利y1元,则y1=10%x+(1+10%)x·10%=0.1x+0.11x=0.21x;如果下月初出售,可获利y2元,则y2=25%x-8 000=0.25x-8 000.当y1=y2,即0.21x=0.25x-8 000时,x=200 000;当y1>y2,即0.21x>0.25x-8 000时,x<200 000;当y1<y2,即0.21x<0.25x-8 000时,x>200 000.所以,若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多.6.解(1)派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台,派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台.则y=1 600x+1 800(30-x)+1 200(30-x)+1 600(x-10)=200x+74 000(10≤x≤30,x是正整数).(2)由题意,得200x+74 000≥79 600,解得x≥28.由于10≤x≤30,所以,x取28,29,30三个值.因此有三种分配方案.(3)由于一次函数y=200x+74 000的值是随着x的增大而增大的,故当x=30时,y取最大值.建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,可使公司获得的租金最高.7.解(1)y1=10(x-4)+120=10x+80,y2=(10x+120)×90%=9x+108,x≥4,且x是整数.(2)若y1>y2,即10x+80>9x+108,解得x>28;若y1=y2,即10x+80=9x+108,解得x=28;若y1<y2,即10x+80<9x+108,解得x<28.故当x>28时,在乙商店购买所需的商品比较便宜;当4≤x<28时,在甲商店购买所需的商品比较便宜;当x=28时,在两家商店购买所需商品价钱一样.(3)若所需商品全部在一家商店购买,由(2)知,购买2副球拍和20盒乒乓球时,在甲商店购买比乙商店购买便宜,需10×20+80=280(元).若所需商品在两家商店购买,可以到甲商店购买2副乒乓球拍,需要2×60=120(元),同时获得4盒乒乓球;到乙商店购买16盒乒乓球,需16×10×90%=144(元),共需120+144=264(元).∵264元<280元,∴最佳的购买方案是:到甲商店购买2副乒乓球拍,获赠4盒乒乓球,到乙商店购买16盒乒乓球. 创新应用8.解 (1)当1≤x ≤8时,每平方米的售价应为y=4 000-(8-x )×30=30x+3 760(元/m 2),当9≤x ≤23时,每平方米的售价应为y=4 000+(x -8)×50=50x+3 600(元/m 2).故y={30x +3 760(1≤x ≤8),50x +3 600(9≤x ≤23).(2)第十六层楼房的每平方米的价格为50×16+3 600=4 400(元/m 2), 按照方案一所交房款为W 1=4 400×120×(1-8%)-a=485 760-a (元), 按照方案二所交房款为W 2=4 400×120×(1-10%)=475 200(元), 当W 1>W 2时,即485 760-a>475 200,解得0<a<10 560, 当W 1<W 2时,即485 760-a<475 200,解得a>10 560,故当0<a<10 560时,方案二合算;当a>10 560时,方案一合算;当a=10 560时,两种方案一样合算.6 一元一次不等式组第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.若一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A.-2<x<1B.-2<x ≤1C.-2≤x<1D.-2≤x ≤12.如图,天平右盘中的每个砝码的质量都是1 g,则物体A 的质量m (g)的取值范围在数轴上可表示为 ( )3.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为( )A.1B.2C.3D.44.已知不等式组{x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A.7<a ≤8B.6<a ≤7C.7≤a<8D.7≤a ≤85.如果不等式组{3-2x ≥0,x ≥m ①②有解,那么m 的取值范围是 .6.不等式组{3x +4≥0,12x -24≤1的所有整数解的积为 .7.将一箱苹果分给若干名小朋友,若每名小朋友分5个苹果,则还剩12个苹果,若每名小朋友分8个苹果,则有一名小朋友分到了苹果但不足5个,则有小朋友 名,苹果 个.8.已知三个一元一次不等式:2x>6,2x ≥x+1,x -4<0,请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并把解集在数轴上表示出来.9.解不等式组{4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.创新应用10.一个长方形足球场的长为x m,宽为70 m.如果它的周长大于350 m,面积小于7 560 m 2,求x 的取值范围,并判断这个足球场是否可以用作国际足球比赛.(注:用于国际足球比赛的足球场地的长在100 m 到110 m 之间,宽在64 m 到75 m 之间)答案: 能力提升1.C2.A3.C4.A5.m ≤32 首先将不等式组化简,由不等式①解得x ≤32,∵不等式组有解,∴m 的取值范围为m ≤32.6.07.6 428.解 答案不唯一,如(1)2x>6与x -4<0结合,组成不等式组{2x >6,x -4<0.①②解不等式①,得x>3;解不等式②,得x<4. 故不等式组的解集为3<x<4.不等式组的解集在数轴上表示如图.(2)2x ≥x+1与x -4<0结合,组成不等式组{2x ≥x +1,x -4<0.①②解不等式①,得x ≥1;解不等式②,得x<4.故不等式组的解集为1≤x<4.不等式组的解集在数轴上表示如图.9.解 {4(x +1)≤7x +10,x -5<x -83.①②由①得4x+4≤7x+10,-3x ≤6,x ≥-2. 由②得3x -15<x -8,2x<7,x<72.把不等式①②的解集在数轴上表示如图.所以不等式组的解集为-2≤x<72,其非负整数解为0,1,2,3. 创新应用10.解 由题意,得{2(x +70)>350,70x <7 560,解得105<x<108.所以可以用作国际足球比赛.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式组{2x +12<12x -4,3x -1≤2x的解集在数轴上表示正确的是( )2.关于x 的不等式组{3x -1>4(x -1),x <m的解集为x<3,则m 的取值范围为( )A.m=3B.m>3C.m<3D.m ≥33.生物兴趣小组要在温箱里培养A,B 两种菌苗.已知A 种菌苗的生长温度x (℃)的范围是35≤x ≤38,B 种菌苗的生长温度y (℃)的范围是34≤y ≤36.则温箱里的温度T (℃)的范围是( ) A.34≤T ≤38 B.35≤T ≤38C.35≤T ≤36D.36≤T ≤384.若不等式组{x <m +1,x >2m -1无解,则m 的取值范围是 . 5.若ab>0,根据学过的知识可将其转化为{a >0,b >0或{a <0,b <0.若x -2与x -3的乘积为正数,则x 的取值范围是 .6.关于x 的不等式组{x+152>x -3,2x+23<x +a 只有4个整数解,求a 的取值范围.7.一种药品的说明书上写着:“每日用量60~120 mg,分3~4次服用.”一次服用这种药品的剂量在什么范围?创新应用8.南海地质勘探队在一次勘探中发现了很有价值的A,B 两种矿石,A 矿石大约565 t,B 矿石大约500 t .要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1 000元,乙货船每艘运费1 200元.(1)设运送这些矿石的总运费为y 元,若使用甲货船x 艘,请写出y 和x 之间的函数关系式.(2)如果甲货船最多可装A 矿石20 t 和B 矿石15 t,乙货船最多可装A 矿石15 t 和B 矿石25 t,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.答案:能力提升1.C2.D3.C4.m ≥2 不等式组{x <m +1,x >2m -1无解, 因此,2m -1≥m+1,解这个不等式得m ≥2.5.x>3或x<2 由(x -2)(x -3)>0得{x -2>0,x -3>0或{x -2<0,x -3<0.解第一个不等式组得x>3,解第二个不等式组得x<2.故x 的取值范围是x>3或x<2.6.解 解不等式组{x+152>x -3,2x+23<x +a ,得{x <21,x >2-3a . 由不等式组有4个整数解,可知这4个解应是20,19,18,17,则 16≤2-3a<17,解得a 的取值范围为-5<a ≤-143.7.解 设一次服用的剂量为x mg .若分3次服用,则{3x ≥60,3x ≤120,解得20≤x ≤40; 若分4次服用,则{4x ≥60,4x ≤120,解得15≤x ≤30. 创新应用8.解 (1)y=1 000x+1 200(30-x ).(2){20x +15(30-x )≥565,15x +25(30-x )≥500,解得23≤x ≤25.因为x 为整数,所以x 可取23,24,25.因此共有3种方案. 方案一:甲货船23艘、乙货船7艘,运费y=1 000×23+1 200×7=31 400元; 方案二:甲货船24艘、乙货船6艘,运费y=1 000×24+1 200×6=31 200元; 方案三:甲货船25艘、乙货船5艘,运费y=1 000×25+1 200×5=31 000元. 所以,方案三运费最低,最低运费为31 000元.。
北师大版八年级数学下册分式的加减法练习试题及答案
3.3 分式的加减法(1)一、目标导航1.同分母的分式的加减法的运算法则及其应用;2.简单的异分母的分式相加减的运算.二、基础过关1.计算:(1)ab ab c ab c 743+-= ;(2)ab b b a a -+-= ; (3)=+-+3932a a a __________;(4)abcac ab 433265+-= . 2.下列计算正确的是( )A .m m m 312=-+B .1=---ab b b a a C .212122++=++-+y y y y y D .b a a b b b a a -=---1)()(22 3.分式25,34ca bc a 的最简公分母是_________. 4.计算:242+-x = . 5.计算213122x x x ---- 的结果是____________. 6.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.7.计算:(1)ab a b 1+- (2) ab b a ab b a 22)2()2(+--(3)222)3(9)3(x y x y x ----- (4)22225421a a a a a a --+--8.先化简,再求值:))(())((2222a c b a b c c a b a b a ---+---,其中3=a ,2-=b ,1-=c .三、能力提升9.若222222M xy y x y x y x y x y--=+--+ ,则M=___________. 10.化简131224a a a -⎛⎫-÷ ⎪--⎝⎭ 的结果是___________. 11.化简11x y y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .1 B .x y C .y x D .-1 12.计算:(1)969392222++-+++x x x x x x x (2)23111x x x x -⎛⎫÷+- ⎪--⎝⎭13. 已知03461022=+--+b a b a ,求ab a b ab a ab b a b a b a -++⨯-÷⎪⎭⎫ ⎝⎛+-2222222的值.四、聚沙成塔已知x +y 1=z +x 1=1,求y +z 1的值.3.3分式的加减法(1)1.⑴abc -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.。
八年级下册数学课本练习题答案北师大版
八年级下册数学课本练习题答案北师大版第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“”里面;“⊙”,表示“森哥马”,,¤,♀,∮,≒,均表示本章节内的类似符号。
1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.x=l0;x=12.2.面积为60cm:,.问题解决12cm。
1.2知识技能1.8m.数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。
.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’ F’和△D’F’C’的位置上.学生通过量或其他方法说明B’ E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即=AB+CD:也就是BC=a+b。
, 22222这样就验证了勾股定理l.能得到直角三角形吗随堂练习l.可以作为直角三角形的三边长.2.有4个直角三角影.数学理解2.仍然是直角三角形;略;略问题解决4.能.1.蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题 1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
复习题知识技能1.蚂蚁爬行路程为28cm.2.能;不能;不能;能.3.200km.4.169cm。
5.200m。
数学理解6.两直角边上的半圆面积之和等于斜边上半圆的面积.7.提示:拼成的正方形面积相等:8.能.9.18;能.10.略.问题解决11.24m;不是,梯子底部在水平方向上滑动8m.12.≈30.6。
北师大版八年级数学下册第4章测试题及参考答案
北师大版八年级数学下册第4章测试题一、选择题1.下列运算正确的是()A.(a+b)2=a2+b2B.(﹣2ab3)2=﹣4a2b6C.3a2﹣2a3=a6D.a3﹣a=a(a+1)(a﹣1)2.因式分解3y2﹣6y+3,结果正确的是()A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D.3.分解因式:y3﹣4y2+4y=()A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2)4.下列各因式分解正确的是()A.x2+2x﹣1=(x﹣1)2B.﹣x2+(﹣2)2=(x﹣2)(x+2)C.x3﹣4x=x(x+2)(x﹣2)D.(x+1)2=x2+2x+15.把代数式x3﹣4x2+4x分解因式,结果正确的是()A.x(x2﹣4x+4)B.x(x﹣4)2C.x(x+2)(x﹣2)D.x(x﹣2)2 6.因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)7.把多项式x2﹣8x+16分解因式,结果正确的是()A.(x﹣4)2B.(x﹣8)2C.(x+4)(x﹣4)D.(x+8)(x﹣8)8.下列代数式变形正确的是()A.﹣a+b=(a+b)B.﹣4a2+b2=(2a﹣b)(2a+b)C.(﹣x﹣y)2=(x+y)2D.x2﹣4x﹣3=(x﹣2)2﹣39.下列各式中,能用完全平方公式进行因式分解的是()A.x2﹣1B.x2+2x﹣1C.x2+x+1D.4x2+4x+110.因式分解4﹣4a+a2正确的是()A.(2﹣a)2B.(2+a)2C.(2﹣a)(2+a)D.4(1﹣a)+a2 11.把x2y﹣y分解因式,正确的是()A.y(x2﹣1)B.y(x+1)C.y(x﹣1)D.y(x+1)(x﹣1)12.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3﹣4a2=a2(a﹣4)D.1﹣4x2=(1+4x)(1﹣4x)二、填空题13.分解因式:x2﹣4=.14.把多项式x2﹣3x因式分解,正确的结果是.15.因式分解:x2+6x=.16.分解因式:m2+4m=.17.因式分解3a2+a=.三、解答题18.一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.19.若一个两位正整数m的个位数为8,则称m为“好数”.(1)求证:对任意“好数”m,m2﹣64一定为20的倍数;(2)若m=p2﹣q2,且p,q为正整数,则称数对(p,q)为“友好数对”,规定:H(m)=,例如68=182﹣162,称数对(18,16)为“友好数对”,则H(68)==,求小于50的“好数”中,所有“友好数对”的H(m)的最大值.20.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.21.先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.22.对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当D(p,q)=30时,求的最大值.23.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m 的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.答案与解析1.下列运算正确的是()A.(a+b)2=a2+b2B.(﹣2ab3)2=﹣4a2b6C.3a2﹣2a3=a6D.a3﹣a=a(a+1)(a﹣1)【考点】55:提公因式法与公式法的综合运用;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式.【专题】选择题【分析】A、原式利用完全平方公式化简得到结果,即可做出判断;B、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;C、原式不能合并,错误;D、原式提取公因式,再利用平方差公式分解即可.【解答】解:A、原式=a2+b2+2ab,错误;B、原式=4a2b6,错误;C、原式不能合并,错误;D、原式=a(a+1)(a﹣1),正确,故选D【点评】此题考查了提公因式法与公式法的综合运用,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.2.因式分解3y2﹣6y+3,结果正确的是()A.3(y﹣1)2B.3(y2﹣2y+1)C.(3y﹣3)2D.【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】直接提取公因式3,进而利用完全平方公式分解因式即可.【解答】解:3y2﹣6y+3=3(y2﹣2y+1)=3(y﹣1)2.故选:A.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.3.分解因式:y3﹣4y2+4y=()A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2)【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2,故选B【点评】此题考查了提公式法与公式法的综合运用,要注意有没有分解到不能分解.4.下列各因式分解正确的是()A.x2+2x﹣1=(x﹣1)2B.﹣x2+(﹣2)2=(x﹣2)(x+2)C.x3﹣4x=x(x+2)(x﹣2)D.(x+1)2=x2+2x+1【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【解答】解:A、x2+2x﹣1无法因式分解,故A错误;B、﹣x2+(﹣2)2=(2+x)(2﹣x),故B错误;C、x3﹣4x=x(x+2)(x﹣2),故C正确;D、(x+1)2=x2+2x+1,是多项式的乘法,不是因式分解,故D错误.故选:C.【点评】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.5.把代数式x3﹣4x2+4x分解因式,结果正确的是()A.x(x2﹣4x+4)B.x(x﹣4)2C.x(x+2)(x﹣2)D.x(x﹣2)2【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】根据提公因式,完全平方公式,可得答案.【解答】解:原式=x(x2﹣4x+4)=x(x﹣2)2,故选:D.【点评】本题考查了因式分解,利用提公因式,完全平方公式是解题关键.6.因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.1【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2).故选:D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.7.把多项式x2﹣8x+16分解因式,结果正确的是()A.(x﹣4)2B.(x﹣8)2C.(x+4)(x﹣4)D.(x+8)(x﹣8)【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用完全平方公式分解因式得出答案.【解答】解:x2﹣8x+16=(x﹣4)2.故选:A.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.8.下列代数式变形正确的是()A.﹣a+b=(a+b)B.﹣4a2+b2=(2a﹣b)(2a+b)C.(﹣x﹣y)2=(x+y)2D.x2﹣4x﹣3=(x﹣2)2﹣3【考点】54:因式分解﹣运用公式法;36:去括号与添括号;4C:完全平方公式.【专题】选择题【分析】直接利用添括号法则以及公式法分解因式、配方法的应用分别分析得出答案.【解答】解:A、﹣a+b=﹣(a﹣b),故此选项错误;B、﹣4a2+b2=(b﹣2a)(2a+b),故此选项错误;C、(﹣x﹣y)2=(x+y)2,正确;D、x2﹣4x﹣3=(x﹣2)2﹣7,故此选项错误;故选:C.【点评】此题主要考查了添括号法则以及公式法分解因式、配方法的应用,正确掌握运算法则是解题关键.9.下列各式中,能用完全平方公式进行因式分解的是()A.x2﹣1B.x2+2x﹣1C.x2+x+1D.4x2+4x+1【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】根据完全平方公式,可得答案.【解答】解:4x2+4x+1=(2x+1)2,故D符合题意;故选:D.【点评】本题考查了因式分解,熟记公式是解题关键.10.因式分解4﹣4a+a2正确的是()A.(2﹣a)2B.(2+a)2C.(2﹣a)(2+a)D.4(1﹣a)+a2【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用公式法分解因式进而得出答案.【解答】解:4﹣4a+a2=(2﹣a)2.故选:A.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.11.把x2y﹣y分解因式,正确的是()A.y(x2﹣1)B.y(x+1)C.y(x﹣1)D.y(x+1)(x﹣1)【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】先提取公因式y,然后利用平方差公式进行分解.【解答】解:原式=y(x2﹣1)=y(x+1)(x﹣1).故选:D.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3﹣4a2=a2(a﹣4)D.1﹣4x2=(1+4x)(1﹣4x)【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】各项利用提取公因式法及公式法分解得到结果,即可作出判断.【解答】解:A、原式不能分解,错误;B、原式不能分解,错误;C、原式=a2(a﹣4),正确;D、原式=(1+2x)(1﹣2x),错误,故选C【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.分解因式:x2﹣4=.【考点】54:因式分解﹣运用公式法.【专题】填空题【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.把多项式x2﹣3x因式分解,正确的结果是.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】直接提公因式x即可.【解答】解:原式=x(x﹣3),故答案为:x(x﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确确定公因式.15.因式分解:x2+6x=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】根据提公因式法,可得答案.【解答】解:原式=x(6+x),故答案为:x(x+6).【点评】本题考查了因式分解,利用提公因式法是解题关键.16.分解因式:m2+4m=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.因式分解3a2+a=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】直接提公因式a即可.【解答】解:3a2+a=a(3a+1),故答案为:a(3a+1).【点评】此题主要考查了提公因式法进行因式分解,关键是正确确定公因式.18.一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)根据题意可以表示出M的友谊数,然后作差再除以15即可解答本题;(2)根据题意可以表示出N和N的团结数,然后作差即可解答本题.【解答】解:(1)由题意可得,设M为100a+10b+c,则它的友谊数为:100b+10a+c,(100a+10b+c)﹣(100b+10a+c)=100a+10b+c﹣100b﹣10a﹣c=100(a﹣b)+10(b﹣a)=90(a﹣b),∵,∴M与其“友谊数”的差能被15整除;(2)由题意可得,N=2×100+10a+b=200+10a+b,N的团结数是:10×2+a+10a+2+10×2+b+10×b+2+10a+b+10b+a=22a+22b+44,∴22a+22b+44﹣(200+10a+b)=24,解得,或,即N是284或218.【点评】本题考查因式分解的应用、解二元一次方程,解答本题的关键是明确题意,找出所求问题需要的条件.19.若一个两位正整数m的个位数为8,则称m为“好数”.(1)求证:对任意“好数”m,m2﹣64一定为20的倍数;(2)若m=p2﹣q2,且p,q为正整数,则称数对(p,q)为“友好数对”,规定:H(m)=,例如68=182﹣162,称数对(18,16)为“友好数对”,则H(68)==,求小于50的“好数”中,所有“友好数对”的H(m)的最大值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)设m=10t+8,1≤t≤9,且t为整数,由于m2﹣64=20(5t2+8t),于是得到结论;(2)根据已知条件得到10t+8=(p+q)(p﹣q),于是得到H(28)=,H (48)=或H(48)==或H(48)=,即可得到结论.【解答】(1)证明:设m=10t+8,1≤t≤9,且t为整数,∴m2﹣64=(10t+8)2﹣64=100t2+160t+64﹣64=20(5t2+8t),∵1≤t≤9,且t为整数,∴5t2+8t是正整数,∴m2﹣64一定为20的倍数;(2)解:∵m=p2﹣q2,且p,q为正整数,∴10t+8=(p+q)(p﹣q),当t=1时,18=1×18=2×9=3×6,没有满足条件的p,q;当t=2时,28=1×28﹣3×14=4×7,其中满足条件的p,q的数对有(8,6),即28=82﹣62,∴H(28)=,当t=3时,38=1×38=2×19,没有满足条件的p,q;当t=4时,48=1×48=2×24=3×16=4×12=6×8,满足条件的p,q的数对为或或,解得:或或,即48=132﹣92=82﹣42=72﹣12,∴H(48)=或H(48)==或H(48)=,∵,∴H(m)的最大值为.【点评】本题考查了因式分解的应用,正确的理解”好数”和“友好数对”是解题的关键.20.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.【考点】59:因式分解的应用.【专题】解答题【分析】(1)根据题意即可得到结论;(2)设这个“和平数”为,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7,②、当a=4,d=8时,得到c=4则b=8,于是得到结论;(3)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到+=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.【解答】解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,故答案为:1001,9999;(2)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k,∴2c+a=12k,即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),①、当a=2,d=4时,2(c+1)=12k,可知c+1=6k且a+b=c+d,∴c=5则b=7,②、当a=4,d=8时,2(c+2)=12k,可知c+2=6k且a+b=c+d,∴c=4则b=8,综上所述,这个数为2754和4848.(3)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则+=1100(a+b)+11(c+d)=1111(a+b),即两个“相关和平数”之和是1111的倍数.【点评】本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.21.先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)根据欢喜数的定义可得出a+c=b,由=100a+10b+c可得出=99a+11b,结合b能被9整除即可证出“欢喜数”能被99整除;(2)设m=,n=(且a1>a2),根据F(m)﹣F(n)=(a1﹣a2)(b﹣a1﹣a2)=3结合a1、a2、b均为整数,即可得出a1﹣a2=1或a1﹣a2=3,将其代入m﹣n=99(a1﹣a2)中即可得出结论.【解答】(1)证明:∵为欢喜数,∴a+c=b.∵=100a+10b+c=99a+10b+a+c=99a+11b,b能被9整除,∴11b能被99整除,99a能被99整除,∴“欢喜数”能被99整除.(2)设m=,n=(且a1>a2),∵F(m)﹣F(n)=a1•c1﹣a2•c2=a1•(b﹣a1)﹣a2(b﹣a2)=(a1﹣a2)(b﹣a1﹣a2)=3,a1、a2、b均为整数,∴a1﹣a2=1或a1﹣a2=3.∵m﹣n=100(a1﹣a2)﹣(a1﹣a2)=99(a1﹣a2),∴m﹣n=99或m﹣n=297.∴若F(m)﹣F(n)=3,则m﹣n的值为99或297.【点评】本题考查了因式分解的应用,解题的关键是:(1)找出=99a+11b;(2)由F(m)﹣F(n)=3,求出a1﹣a2=1或a1﹣a2=3.22.对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当D(p,q)=30时,求的最大值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)当k为奇数时,k+1是偶数,则k(k+1)是能被3整除的偶数,故k(k+1)是6的倍数;当k为偶数时,则k(k+1)是能被3整除的偶数,故k(k+1)是6的倍数,(2)根据题意得p=t(t+1),q=s(s+1),D(p,q)=t(t+1)﹣s(s+1)=30,即t2+t﹣s2﹣s=30,分解因式得到(t﹣s)(t+s+1)=30,根据30=1×30=2×15=3×10=5×6,得到方程组求得或或或,于是得到结论.【解答】解:(1)若“矩数”m=k(k+1)是3的倍数,则k(k+1)是3的倍数,k是正整数,当k为奇数时,k+1是偶数,则k(k+1)是能被3整除的偶数,故k(k+1)是6的倍数;当k为偶数时,则k(k+1)是能被3整除的偶数,故k(k+1)是6的倍数,综上所述,若“矩数”m是3的倍数,则m一定是6的倍数;(2)根据题意得p=t(t+1),q=s(s+1),D(p,q)=t(t+1)﹣s(s+1)=30,即t2+t﹣s2﹣s=30,∴(t﹣s)(t+s+1)=30,∵t,s是正整数,t>s,∴t﹣s,t+s+1是正整数,且t+s+1>t﹣s,∵30=1×30=2×15=3×10=5×6,∴或或或,解得:或或或,∵t,s是正整数,∴符合条件的是:或或,∴或=或=,∵,∴的最大值是.【点评】本题考查了因式分解的应用,解二元一次方程组,正确的理解题意是解题的关键.23.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m 的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【考点】51:因式分解的意义.【专题】解答题【分析】根据例题中的已知的两个式子的关系,两个中二次三项式x2﹣4x+m 的二次项系数是1,因式是(x+3)的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子2x2+3x﹣k的二次项系数是2,因式是(2x﹣5)的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【解答】解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)【点评】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.。
北师大版八年级数学下册第五章测试题(附答案)
北师大版八年级数学下册第五章测试题(附答案)一、单选题1.观察下列图标,从图案看是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个2.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=3,则点D到AB边的距离为()A. 3B. 32C. 2D. 33.等腰三角形的一个内角是80°,则它的另外两个角的度数是()A. 80°、20°B. 50°、50°C. 80°、50°D. 80°、20°或50°、50°4.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC 的周长是()cmA. 9B. 12C. 15D. 185.如图,在Rt△ABC中,∠ACB=90 °,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD于E,过点D作DF⊥AB于F.下列结论①∠CED= ∠CDE;② S△AEC :S△AEG=AC:AG;③∠ADF=2∠FDB;④CE=DF.正确的是()A. ①②④B. ②③④C. ①③D. ①②③④6.如图,在△ABC中,∠ABC=50°,∠BAC=20°,D为线段AB的垂直平分线与直线BC的交点,连结AD,则∠CAD=()A. 40°B. 30°C. 20°D. 10°7.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′ 恰好落在CD上,若∠BAD=110°,则∠ACB 的度数为( )A. 40°B. 35°C. 60°D. 70°8.如图,在锐角△ABC中,AB=AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD 和AB上的动点,则BM+MN的最小值是()C. 5D. 6A. 4B. 245二、填空题9.如图,在△ABC中,AB=AC,若∠B=70°,则∠C的度数为________.AB为半径画弧,两弧相交于点M、N,10.如图,在△ABC中,分别以点A和点B为圆心,大于12作直线MN,交BC于点D,△ADC的周长为15,AB=7,则△ABC的周长为________.11.等腰三角形的一个底角比顶角大30°,那么顶角度数为________.12.正五角星形共有________条对称轴.13.如图的4×4的正方形网格中,有A,B,C,D四点,直线a上求一点P,使PA+PB最短,则点P应选________点(C或D).14.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.点D是AC上一点,沿过BD折叠,使点C落在AB上的点E处,则△AED的周长为________cm.15.如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在D′处,AF的长为________.16.如图,将长方形纸片进行折叠,ED,EF为折痕,A与A′,B与B′,C与C′重合,若∠AED=25°32′则∠BEF的度数为________.三、解答题17.如图1,已知三角形纸片ABC,AB=AC,∠A=50∘,将其折叠,如图2,使点A与点B重合,折痕为ED,点E,D分别在AB,AC上,求∠DBC的大小.18.如图所示,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于点D,连接BD.若DC:DB=3:5,求DC的长.19.如图,在△ABC中,AD ⊥BC,垂足是D,∠B=2∠C.求证:AB+BD= DC.20.如图所示,Rt△ABC中,∠C=90°,BE平分∠ABC交AC于E,DE垂直平分AB交AB于D,求∠A的度数.21.已知:OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠COD=40°.分别求∠AOD和∠BOC的度数.22.已知:如图,点M在锐角∠AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得△PMQ的周长最小.23.如图,A点是牧马营地.每天牧马人都要从营地出发,赶着马群先到河边饮水,再到草地吃草,然后回到营地.问:怎样的放牧路线,路程最短?24.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若∠AOB′=50°,求∠B′OG的度数.25.如图,将长方形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:AE=CE.26.如图所示,沿AE折叠长方形ABCD使点D恰好落在BC边上的点F处,已知AB=8 cm,BC=10 cm,求EC 的长。
2021-2022学年北师大版八年级数学下册《3-3中心对称》同步练习题(附答案)
2021-2022学年北师大版八年级数学下册《3-3中心对称》同步练习题(附答案)一.选择题1.栖霞市文明城市建设中,大力开展“垃圾分类”知识宣传活动,活动中推出下列图标(不包含文字),则其中是中心对称图形的是()A.可回收物B.有害垃圾C.厨余垃圾D.其他垃圾2.在以下四个标志中,既是轴对称图形又是中心对称图形的有()A.B.C.D.3.在平面直角坐标系中,点P(﹣2,﹣4)关于原点对称的点的坐标是()A.(2,﹣4)B.(2,4)C.(﹣2,4)D.(﹣2,﹣4)4.已知点A(a+b,4)与点B(﹣2,a﹣b)关于原点对称,则a与b的值分别为()A.﹣3;1B.﹣1;3C.1;﹣3D.3;﹣15.如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE6.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′7.在平面直角坐标系xOy中,△ABC与△A'B'C'关于原点O成中心对称的是()A.B.C.D.8.如图,已知△ABC与△DEF成中心对称,则对称中心是()A.点C B.点DC.线段BC的中点D.线段FC的中点二.填空题9.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.10.如图,△ABC和△DEC关于点C成中心对称,若AC=,AB=1,∠BAC=90°,则AE的长是.11.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=4,OD=3,则阴影部分的面积之和为.12.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则直线l的函数关系式为.13.如图中阴影部分是由4个完全相同的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在处(填写区域对应的序号).14.直角坐标系中,已知点A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A3,点A3关于y轴对称点A4,点A4关于原点对称点A5…,按此规律,则点A2020的坐标为.三.解答题(共6小题)15.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.16.作出与△ABC关于点E成中心对称的图形.17.如图,已知四边形ABCD和点P,画四边形A'B'C'D',使四边形A'B'C'D'与四边形ABCD 关于点P成中心对称.18.如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O对称.求证:AE=CF.19.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出△ABC各个顶点的坐标;(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;(3)求线段BC的长.20.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC 边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF,若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.参考答案一.选择题1.解:A.不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意.故选:B.2.解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.既是轴对称图形,又是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:B.3.解:点P(﹣2,﹣4)关于原点对称的点的坐标是(2,4),故选:B.4.解:∵点A(a+b,4)与点B(﹣2,a﹣b)关于原点对称,∴解得.故选:B.5.解:根据旋转的性质可知,点A与点D是对应点,BO=EO,AB∥DE,∠ACB=∠DFE≠∠FDE.故选:C.6.解:∵△ABC与△A′B′C′关于点O成中心对称,∴点A与点A′是对称点,BO=B′O,AB∥A′B′,故A,B,C正确,故选:D.7.解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(﹣,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;故选:D.8.解:△ABC与△DEF成中心对称,则对称中心是线段FC的中点,故选:D.二.填空题9.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.10.解:∵△ABC和△DEC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=1,AC=CD=,∠D=BAC=90°,∴AD=DE=1,∴AE===.故答案为:.11.解:如图,∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB ⊥a于点B,A'D⊥b于点D,OB=4,OD=3,∴AB=3,∴图形①与图形②面积相等,∴阴影部分的面积之和=长方形ABOE的面积=3×4=12.故答案为:12.12.解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC 于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线方程为y=kx,则3=k,k=,∴直线l解析式为y=x,故答案为:y=x.13.解:把正方形添加在②处,使它与阴影部分组成的新图形是中心对称图形,故答案为:②.14.解:∵点A(3,2),∴点A关于y轴的对称点为A1是(﹣3,2);点A1关于原点的对称点为A2是(3,﹣2);点A2关于x轴的对称点为A3是(3,2),显然此为一循环,……按此规律,2020÷3=673…1,∴点A2020的坐标是(﹣3,2).故答案为:(﹣3,2).三.解答题15.解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).16.解:依次寻找点A、B、C关于点E的中心对称点,顺次连接,所作图形如下所示:17.解:如图,四边形A'B'C'D'为所作.18.证明:如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵点E、F关于点O中心对称,∴OF=OE,∴AO﹣EO=CO﹣FO,∴AE=CF.19.解:(1)A(﹣4,3),C(﹣2,5),B(3,0);(2)如图所示:点A′的坐标为:(﹣4,﹣3),B′的坐标为:(﹣3,0),点C′的坐标为:(2,﹣5);(3)线段BC的长为:=5.20.解:(1)延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),∴CF=BG,DF=DG,∵DE⊥DF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF.(2)若∠A=90°,则∠EBC+∠FCB=90°,由(1)知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2.。
北师大版八年级数学下册第三章测试卷及答案
北师大版八年级数学下册第三章测试卷及答案一、选择题(共10小题,每小题3分,共30分)1.在以下生活现象中,属于旋转变换的是( )A .钟表的指针和钟摆的运动B .站在电梯上的人的运动C .坐在火车上睡觉的旅客D .地下水位线逐年下降2.下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(-2,1),则点B 的对应点的坐标为( )A .(5,3)B .(-1,-2)C .(-1,-1)D .(0,-1)4.如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(-5,2),(-2,-2),(5,-2),则点D 的坐标为( )A .(2,2)B .(2,-2)C .(2,5)D .(-2,5)5.若P 与A(1,3)关于原点对称,则点P 落在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在△ABC 中,∠ACB =90°,∠BAC =α,将△ABC 绕点C 顺时针旋转90°得到△A′B′C,点B 的对应点B′在边AC 上(不与点A ,C 重合),则∠AA′B′的度数为( )A .αB .α-45°C .45°-αD .90°-α7.如图,在△AOB 中,BO =32,将△AOB 绕点O 逆时针旋转90°,得到△A′OB′,连接BB′,则线段BB′的长为( )A .1 B. 2 C. 32 D.322 8.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD.下列结论一定正确的是( )A .∠ABD =∠EB .∠CBE =∠CC .AD ∥BC D .AD =BC9.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O′A′B′,点A 的对应点A′在直线y =34x 上,则点B 与其对应点B′之间的距离为( )A.94B .3C .4D .5 10. 如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB 边上,则点B′与点B 之间的距离为( )A .12B .6C .6 2D .6 3二.填空题(共8小题,每小题3分,共24分)11.将线段AB 平移1 cm ,得到线段A′B′,则点B 到点B′的距离是_________.12. 一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化.其中说法正确的是__________.( 填序号)13.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_______.14.如图,等边三角形AOB 绕点O 逆时针旋转到△A′OB′的位置,OA′⊥OB ,则△AOB 旋转了____度.15.如图,△ABC 的顶点分别为A(3,6),B(1,3),C(4,2).若将△ABC 绕点B 顺时针旋转90°,得到△A′BC′,则点A 的对应点A′的坐标为________.16.如图,将长方形ABCD 绕点A 顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=________.17.如图,OA ⊥OB ,△CDE 的边CD 在OB 上,∠ECD =45°,CE =4.若将△CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC =________.18.如图,将Rt △ABC 沿着直角边CA 所在的直线向右平移得到Rt △DEF ,已知BC =a ,CA =b ,FA =13b ,则四边形DEBA 的面积等于__________.三.解答题(共7小题, 66分)19.(8分) 如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 的对应点C 1的坐标为(4,0),画出△A 1B 1C 1;(2)若△A 2B 2C 2是△ABC 关于原点O 中心对称的图形,写出△A 2B 2C 2各顶点的坐标;(3)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 3B 3C 3,画出△A 3B 3C 3.20.(8分) 如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O 为AD边的中点.若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.21.(8分) 如图,已知线段AB和点A′.尺规作图:作出由线段AB平移得到的线段A′B′,其中点A的对应点为A′.(不写作法,保留作图痕迹)22.(8分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD 绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.23.(10分)如图,在△ABC中,∠BAC=120°,以BC为边向外作等边三角形BCD,连接AD,把△ABD绕着D点按顺时针方向旋转60°后到△ECD的位置,A,C,E三点恰好在同一直线上.若AB=6,AC=4,求∠BAD 的度数和AD的长.24.(10分) 如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C 并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.25.(14分) 如图,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图②),量得它们的斜边长为10 cm,较小的锐角为30°,再将这两张三角形纸片摆成如图③的形状,且点B,C,F,D在同一条直线上,且点C与点F重合(在图③至图⑥中统一用F表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决:(1)将图③中的△ABF沿BD向右平移到图④的位置,使点B与点F重合,请你求出平移的距离;(2)将图③中的△ABF绕点F顺时针方向旋转30°到图⑤的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图③中的△ABF沿直线AF翻折到图⑥的位置,AB1交DE于点H,请证明:AH=DH.参考答案1-5ABCAB 6-10CDCCD11. 1cm12. ②③④13. 1414. 15015. (4,1)16. 20°17. 218. 23ab 19. 解:(1)如图,△A 1B 1C 1为所作.(2)A 2(3,-5),B 2(2,-1),C 2(1,-3).(3)如图,△A 3B 3C 3为所作.20.解:(1)旋转后的图形如图所示.(2)如图,连接OC.由题意可知,点C 的旋转路径是以O 为圆心,OC 的长为半径的半圆.∵OC =12+22=5,∴点C 在旋转过程中经过的路径长为5π.21. 解:如图,线段A′B′即为所求.(画法不唯一)22. (1)解:补全图形,如图所示.(2)证明:由旋转的性质得∠DCF =90°,DC =FC ,∴∠DCE +∠ECF =90°.∵∠ACB =90°,∴∠DCE +∠BCD =90°.∴∠ECF =∠BCD.∵EF ∥DC ,∴∠EFC +∠DCF =180°.∴∠EFC =90°,在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC.∴∠BDC =∠EFC =90°.23.解:∵△BAD 绕D 点顺时针旋转60°得到△CED ,∴AD =DE ,∠ADE =60°,∴△ADE 为等边三角形,∴∠E =60°,∵∠BAC =120°,∴∠BAC +∠E =180°,∴AB ∥DE ,∴∠BAD =∠ADE =60°.∵△ABD ≌△ECD ,∴CE =AB =6,∴AE =AC +CE =4+6=10,∵△ADE 为等边三角形,∴AD =AE =10.24. 解:(1)∵AC =BC ,∠A =30°,∴∠CBA =∠CAB =30°.∵∠ADC =45°,∴∠BCD =∠ADC -∠CBA =15°.(2)①由旋转的性质,得CB =C′B=AC ,∠C′BD′=∠CBD =∠A =30°,∴∠CC′B=∠C′CB=75°. ②证明:∵AC =C′B,∠C′BD′=∠A ,∴∠CEB =∠C′CB-∠CBA =45°,∴∠ACE =∠CEB -∠A =15°,∴∠BC′D′=∠BCD =∠ACE ,在△C′BD′和△CAE 中,⎩⎪⎨⎪⎧∠BC′D′=∠ACE ,C′B=CA ,∠C′BD′=∠A ,∴△C′BD′≌△CAE(ASA).25. 解:(1)图形平移的距离就是线段BC 的长,∵在Rt △ABC 中,斜边长为10 cm ,∠BAC =30°,∴BC =5 cm.∴平移的距离为5 cm(2)∵∠A 1FA =30°,∴∠GFD =60°,又∵∠D =30°,∴∠FGD =90°.在Rt △DFG 中,由勾股定理得FD =5 3 cm ,∴FG =12FD =532cm (3)在△AHE 与△DHB 1中,∵∠FAB 1=∠EDF =30°,FD =FA ,EF =FB =FB 1,∴FD -FB 1=FA -FE ,即AE =DB 1.又∵∠AHE =∠DHB 1.∴△AHE ≌△DHB 1(AAS).∴AH =DH。
北师大版八年级数学下册几何综合练习题(有答案)
北师大版八年级数学下册几何综合练习题(有答案)1.在△ABC中,AB=AC,DE∥BC。
正确的结论是()。
A。
AD=AE B。
DE=EC C。
∠ADE=∠C D。
DB=EC2.在△ABC中,AB=AC,∠A=30°,AB的垂直平分线交AC于点E,垂足为点D,连接BE。
求∠XXX的度数。
A。
30° B。
45° C。
60° D。
75°3.在△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE。
若△XXX的周长为24,则BC的长为。
A。
18 B。
14 C。
12 D。
64.等边△ABO在平面直角坐标系内的位置如图所示,已知△ABO的边长为6,则点A的坐标为。
A。
(-3,3) B。
(3,-3) C。
(-3,3) D。
(-3,-3)5.在Rt△ABC中,∠C=90°,∠A-∠B=70°。
求∠A的度数。
A。
80° B。
70° C。
60° D。
50°6.在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD。
求∠A的度数。
A。
30° B。
36° C。
45° D。
70°7.将两个大小、形状完全相同的△ABC和△A'B'C'拼在一起,其中点A'与点A重合,点C'落在边AB上,连接B'C。
若∠ACB=∠A'C'B'=90°,AC=BC=3,则B'C的长为。
A。
3 B。
6 C。
3 D。
88.已知等腰三角形腰长是10,底边长是16.求这个等腰三角形的面积。
9.在等边△ABC中,点D为BC边上的点,DE⊥XXX于E,DF⊥XXX于F。
求∠EDF的度数。
10.在等边三角形ABC中,BD平分∠XXX于点D,过点D作DE⊥BC于E,且EC=1.求BC的长。
11.有一个内角为60°的等腰三角形,腰长为6cm。
八年级数学下册《三角形的证明》练习题及答案(北师大版)
八年级数学下册《三角形的证明》练习题及答案(北师大版)班级:___________姓名:___________考号:___________一、选择题1.等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°2.到三角形三边的距离相等的点是( )A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条角平分线的交点D.不存在这个点3.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误..的是( )A.①B.②C.③D.④4.如图,过等边△ABC的顶点A作射线,若∠1=20°,则∠2的度数是( )A.100°B.80°C.60°D.40°5.在△ABC中,∠A=90°,∠B=2∠C,则∠C的度数为 ( )A.30°B.45°C.60°D.30°或60°6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么在下列各条件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是( )A.3.5B.4.2C.5.8D.78.以下叙述中不正确的是( )A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等9.如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC于D,OH⊥BC 于H,若∠BAC=60°,OH=3cm,OA长为( )cm.A.6B.5C.4D.310.如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M.以下结论:①△BCD是等腰三角形;②射线CD是△ACB的角平分线;③△BCD的周长C=AB+BC;△BCD④△ADM≌△BCD.正确的有( )A.①②B.①③C.②③D.③④二、填空题11.如图,在Rt△ABC中,∠B的度数是________度.12.如图,已知∠C=∠D=90°,请你添加一个适当的条件:____________,使得△ACB≌△BDA.=7,DE=2,AB=4,则AC长13.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC是 .14.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.15.如图,在△ABC中,DE是AC的垂直平分线,△ABD的周长为13,△ABC的周长为19,则AE=____________16.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④BC2=4S.四边形AEDF其中正确结论是(填序号).三、作图题17.如图,已知∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.四、解答题18.如图所示,在Rt△ABC中,∠ACB=90°,∠A=∠BCD,判断△ACD的形状,并说明理由.19.如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.20.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.21.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.22.如图,已知点D是等边三角形ABC的边BC延长线上的一点,∠EBC=∠DAC,CE∥AB. 求证:△CDE是等边三角形.23.已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)如图1,求证:CD⊥AB;(2)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点.①如图2,若∠B=34°,求∠A′CB的度数;②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).24.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA 逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.参考答案1.D2.C.3.C.4.A5.A6.B.7.D8.C.9.A.10.B11.答案为:25.12.答案为:AD=CD;(答案不唯一).13.答案为:3.14.答案为:40°15.答案为:316.答案为:①②④.17.解:∵点P到∠ABC两边的距离相等∴点P在∠ABC的平分线上;∵线段BD为等腰△PBD的底边∴PB=PD∴点P在线段BD的垂直平分线上∴点P是∠ABC的平分线与线段BD的垂直平分线的交点,如图所示:18.解:△ACD 是直角三角形.理由:∵∠ACB=90°∴∠ACD+∠BCD=90°.又∵∠A=∠BCD∴∠ACD+∠A=90°∴△ACD 是直角三角形.19.证明:∵CA 平分∠BCD ,AE ⊥BC ,AF ⊥CD∴AE=AF.在Rt △ABE 和Rt △ADF 中∵⎩⎨⎧AB =AD ,AE =AF ,∴△ABE ≌△ADF(HL).20.证明:(1)∵DE ⊥AB ,DF ⊥AC∴∠E =∠DFC =90°∴在Rt △BED 和Rt △CFD 中BD =CD ,BE =CF.∴Rt △BED ≌Rt △CFD(HL)∴DE =DF∵DE ⊥AB ,DF ⊥AC∴AD 平分∠BAC ;(2)解:∵Rt △BED ≌Rt △CFD∴AE =AF ,CF =BE =4∵AC =20∴AE=AF=20﹣4=16∴AB=AE﹣BE=16﹣4=12.21.证明:∵EF垂直平分AD∴AF=DF,∠ADF=∠DAF∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD又∵AD平分∠BAC∴∠BAD=∠CAD∴∠B=∠CAF.22.证明:∵∠ABE+∠CBE=60°,∠CAD+∠ADC=60°,∠EBC=∠DAC ∴∠ABE=∠ADC.又CE∥AB∴∠BEC=∠ABE.∴∠BEC=∠ADC.又BC=AC,∠EBC=∠DAC∴△BCE≌△ACD.∴CE=CD,∠BCE=∠ACD,即∠ECD=∠ACB=60°.∴△CDE是等边三角形.23.(1)证明:∵∠ACB=90°∴∠ACD+∠BCD=90°.∵∠ACD=∠B,∴∠B+∠BCD=90°∴∠BDC=90°,∴CD⊥AB.(2)解:①当∠B=34°时,∵∠ACD=∠B∴∠ACD=34°.由(1)知,∠BCD+∠B=90°∴∠BCD=56°.由折叠知∠A′CD=∠ACD=34°∴∠A′CB=∠BCD-∠A′CD=56°-34°=22°.②当∠B=n°时,同①的方法得∠A′CD=n°∠BCD=90°-n°∴∠A′CB=∠BCD-∠A′CD=90°-n°-n°=90°-2n°.24.解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE理由:∵∠C=40°∴∠DEC+∠EDC=140°又∵∠ADE=40°∴∠ADB+∠EDC=140°∴∠ADB=∠DEC又∵AB=DC=2∴△ABD≌△DCE(AAS)(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形理由:∵∠BDA=110°时∴∠ADC=70°∵∠C=40°∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°∴∠DAC=∠AED∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时∴∠ADC=100°∵∠C=40°∴∠DAC=40°∴∠DAC=∠ADE∴△ADE的形状是等腰三角形.。
北师大版数学八年级下册第三章图形的平移与旋转 测试题及答案
故选B.
【点睛】
熟练掌握旋转的性质是确定旋转中心的关键所在.
11.D
【解析】
根据平移的性质——对应边平行且相等(或者共线),对应点的连线平行且相等(或者共线),易得四个结论全部正确.故选D.
12.D
【解析】
【分析】
先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.
评卷人
得分
三、解答题
21.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(0,0),B(3,3),C(4,1).
(1)画出△ABC及△ABC绕点A逆时针旋转90°后得到的△AB1C1;
(2)分别写出B1和C1的坐标.
22.如图,已知A(-1,0),B(1,1),把线段AB平移,使点B移动到点D(3,4)处,这时点A移动到点C处.
4.在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保持不变,则所得图形在原图形的基础上( )
A.向左平移了3个单位B.向下平移了3个单位
C.向上平移了3个单位D.向右平移了3个单位
5.下列图形中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
6.如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是()
9.A
【解析】
∠AOC就是旋转角,根据等边三角形的性质,即可求解.
解:旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°.
故选A.
本题主要考查了旋转的性质,正确理解旋转角是解题的关键.
10.B
【解析】
【分析】
此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.
北师大版数学八年级下册解答题专题训练50题-含答案
北师大版数学八年级下册解答题专题训练50题含答案一、解答题1.计算:(1)计算:0201710)2(1)3+--(2)化简求值()(699)33a a a a a a ++÷+--,其中3=a 。
2.已知:如图,//,AD CB AD CB =.求证:ABC CDA △△≌.【答案】证明见解析【分析】先利用//,AD CB 证明,DAC BCA ∠=∠再结合,,AD BC AC CA ==从而可得结论.【详解】解: //,AD CB,DAC BCA ∴∠=∠,,AD CB AC CA ==∴ ABC CDA △△≌【点睛】本题考查的是三角形全等的判定与性质,掌握“两边及其夹角相等的两个三角形全等”是解题的关键.3.解不等式:5125132463x x x x . 【答案】x >-2 【分析】利用不等式的基本性质,即可求得原不等式的解集.【详解】解:去分母得6(5x +1)-3(x -2)>2(5x -1)+4(x -3)去括号得30x +6-3x +6>10x -2+4x -12移项得30x -3x -10x -4x >-2-12-6-6合并同类项,得13x >-26系数化为1,得x >-2【点睛】此题主要考察不等式的解法.4.解不等式组:4261139x x x x >-⎧⎪-+⎨≤⎪⎩,并把解集在数轴上表示出来.①不等式组的解集为-3<x ≤2,在数轴上表示不等式组的解集为: . 5.如图,五边形ABCDE 的内角都相等;(1)尺规作图:过点D 作DF AB ⊥交AB 于点F ,在图中画出DF (保留作图痕迹,不写画法);(2)求CDF ∠的度数.【答案】(1)见解析(2)54︒【分析】(1)利用尺规根据要求作出图形即可,(2)根据垂直的性质和四边形的内角和为360︒,即可求解.【详解】(1)解:如图所示,DF 即为所求作的线段(2)由已知,108C B ∠=∠=︒,且90DFB ∠=︒①四边形DFBC 的内角和为360°①54CDF ∠=︒【点睛】本题考查了尺规作图,垂直的性质和四边形的内角和为360︒,解题的关键是掌握尺规作图的方法.6.如图,在□ABCD 中,点E 是AB 边的中点,(1)仅用一把无刻度.....的直尺画出CD边的中点F;(2)在(1)的条件下,求证:EF=B C.即F 点满足要求.(2)证明:在(1)中已证明有:四边形ADFE 是平行四边形,①AD =EF ,①AD =BC ,①EF =BC ,结论得证.【点睛】本题主要考查了基本作图,平行四边形的判定与性质、中位线的判定与性质等知识,掌握平行四边形的性质是解答本题的关键.注意作图只能用无刻度直尺,并非尺规作图.7.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两个格点,如果点C 也是图形中的格点........,且ABC 为等腰三角形,请你在如下63⨯的网格中找到所有符合条件的点C (可以用1C ,2C ……表示),并画出所有三角形.【答案】见解析 【分析】当AB AC =,CB CA =和BA BC =时,在网格中找出点C 即可.【详解】如图所示:【点睛】本题考查作等腰三角形,掌握等腰三角形两边相等是解题的关键. 8.甲、乙两同学从家到学校的距离之比是10:7,甲同学的家与学校的距离为5400米,甲同学乘公交车去学校、乙同学骑自行车去学校.已知公交车速度是乙同学骑自行车速度的2倍,甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到3分钟. (1)求乙同学的家与学校的距离为多少米?(2)求公交车的速度.)甲、乙两同学从家到学校的距离之比是9.先化简,再求值:2222221211x x x x xx x x x⎛⎫+--÷⎪--++⎝⎭,其中2x=.10.一个多边形的内角和等于它的外角和,则这个多边形的边数是多少? 【答案】4【分析】设多边形的边数为n ,根据题意得出方程(n-2)×180°=360°,求出即可.【详解】解:设多边形的边数为n ,则(n-2)×180°=360°,解得:n=4,①这个多边形的边数是4.【点睛】本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.11.在Rt ABC 中,90C ∠=︒,BD 平分ABC ∠交AC 于点D ,DE 垂直平分线段AB .(1)求A ∠;(2)若2cm DE =,4cm BD =,求AC 的长. )BD 平分12DBE ABC =∠DE 垂直平分线段ABAD BD DE AB ∴=⊥∴∠=∠DAE DBE∴∠=∠=∠DAE DBE DCB∠+∠+∠=︒DAE DBE DCB90∴∠=︒;DAE30(2)DE垂直平分线段AB,∴=⊥AD BD DE AB∴∠=∠=︒90BED C∠BD平分ABC∴=DE DC∴=+=+=+=.AC AD DC BD DE426cm【点睛】本题考查角平分线性质、线段的垂直平分线性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.12.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出①ABC三个顶点的坐标;(2)画出①ABC向右平移6个单位,再向下平移2个单位后的图形①A1B1C1;(3)求①ABC的面积.【答案】(1)A(﹣1,8),B(-5,3),C(0,6);(2)见解析;(3)6.5【分析】(1)直接利用已知坐标系得出各点坐标即可;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)利用①ABC所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)A(﹣1,8),B(-5,3),C(0,6);(2)如图所示:①A1B1C1即为所求;13.如图,,BD CE 是ABC 的两条高,它们交于O 点.(1)1∠和2∠的大小关系如何?并说明理由;(2)若50,70A ABC ∠=︒∠=︒,求3∠和4∠的度数.【答案】(1)12∠=∠,理由见解析(2)320,4130∠=︒∠=︒【分析】(1)根据,BD CE 是ABC 的两条高,故190,290A A ∠+∠=︒∠+∠=︒,即可; (2)根据50,70A ABC ∠=︒∠=︒,利用三角形的内角和得出60ACB ∠=︒,利用CE 是ABC 的高得出29040A ∠=︒-∠=︒,故3220ACB ∠=∠-∠=︒,再利用四边形ADOE 的内角和为360︒求得4∠的度数.【详解】(1)解:①,BD CE 是ABC 的两条高,①190,290A A ∠+∠=︒∠+∠=︒,①12∠=∠;(2)解:①50,70A ABC ∠=︒∠=︒,①60ACB ∠=︒,①CE 是ABC 的高,①29040A ∠=︒-∠=︒,故3220ACB ∠=∠-∠=︒,在四边形ADOE 中4360A ADO AEO ∠+∠+∠+∠=︒,①4360909050130∠=︒-︒-︒-︒=︒.【点睛】本题主要考查了三角形内角和定理,多边形内角和定理,熟练掌握三角形内角和定理,多边形内角和定理是解题的关键.14.阅读理解,并解答问题:观察发现:如图1是一块正方形瓷砖,分析发现这块瓷砖上的图案是按图2所示的过程设计的,其中虚线所在的直线是正方形的对称轴.问题解决:用四块如图1所示的正方形瓷砖按下列要求拼成一个新的大正方形,并在图3和图4中各画一种拼法.(1)图3中所画拼图拼成的图案是轴对称图形,但不是中心对称图形;(2)图4中所画拼图拼成的图案既是轴对称图形,又是中心对称图形.【答案】(1)见解析(2)见解析【分析】(1)按照轴对称的意义得出答案即可;(2)按照轴对称的定义和中心对称的定义设计,所设计的图案既是中心对称图形,又是轴对称图形.【详解】(1)解:(1)参考图案,如图所示:(2)(2)参考图案,如图所示:【点睛】本题考查利用轴对称或中心对称设计图案,关键是理解轴对称和中心对称的定义. 15.计算:(1)(2x ﹣y )2+2x (2y ﹣x )+(x ﹣y )(x +y ) (2)2112222x x x x⎛⎫-÷ ⎪+-+⎝⎭. 16.(1)解分式方程:2133193x x x +=--.(2)解不等式组:()32451132x x x x ⎧-≤-⎪⎨--+<⎪-⎩,并把它的解集在数轴上表示出来..17.观察下列等式:111122=-⨯,①1112323=-⨯,① 1113434=-⨯,①1114545=-⨯,①1115656=-⨯,①…… (1)请按上述规律写出第2021个算式,然后把一共2021个算式两边分别相加并计算出等式右边;(2)根据第(1)小题计算,总结规律并填空:()11111223341n n ++++=⨯⨯⨯+________;(3)根据发现的规律,在小于60的正整数中,求出8个数,使得它们的倒数和等于130,42,56,8【分析】(1)规律为分母为两个自然数的乘积,分子是分母乘式中乘数与被乘数的差,其结果为连续的两个自然数的倒数的差,根据规律写出算式即可; (2)根据(1)中的结论计算即可;12021++⨯1142021++-(14n n +++111n n ++-+ 1111133478+-++-+115667+⨯⨯1142568++=,20,30,【点睛】本题考查了规律探索问题,有理数的加减混合运算,分式的计算,找到规律18.如图,ABC 是等边三角形,D 是AC 的中点,连接BD ,延长BC 至E ,使CE CD =,连接DE .(1)E ∠等于多少度?(2)说明DB 与DE 相等的理由. 【答案】(1)30︒ (2)理由见解析【分析】(1)先根据等边三角形的性质得出60ACB ∠=︒,由CE CD =可知E EDC ∠=∠,再根据三角形外角的性质即可得出结论;(2)根据等边三角形三线合一的性质得出30ABD CBD ∠=∠=︒,在由在同一三角形中等角对等边的性质即可得出结论. (1)解:①ABC 是等边三角形, ①60ACB ∠=︒, ①CE CD =, ①E EDC ∠=∠, ①ACB E EDC ∠=∠+∠, ①30E ∠=︒. (2) 理由如下:①ABC 是等边三角形, ①AB CB =,60ABC ∠=︒, ①D 是AC 的中点, ①30ABD CBD ∠=∠=︒, ①30E ∠=︒, ①E DBC ∠=∠, ①DB DE =.【点睛】本题考查的是等边三角形的性质,三角形外角的性质,等腰三角形的性质.熟知等腰三角形三线合一的性质是解答此题的关键.19.一次知识竞赛共有20道选择题,每答一题对得10分,答错或不答都扣5分,小明得分要超过95分,小明至少要答对多少道题? 【答案】见解析【分析】设小明答对x 道题,则小明答错(20﹣x )道题,根据规则:答对一题得10分,则小明得了10x 分;答错或不答都扣5分,则小明扣了5(20﹣x ).列式求解即可.【详解】解:小明答对x 道题,则小明答错(20﹣x )道题, 根据题意,得:10x ﹣5(20﹣x )>95, 解得:x >13, ①x 为整数,①x 的最小整数为14,答:小明至少要答对14道题.【点睛】本题考查了一元一次不等式的应用,正确表示不等关系是解题关键. 20.如图所示,在ABC 中,8AC =,12AB =;(1)下列操作中,直线MN 是______的垂直平分线,作直线MN 的正确顺序应该是______.(填序号) ①过点M ,N 作直线.①分别以B ,C 为圆心,大于12BC 的同样长为半径作弧,两弧分别交于点M ,N .①则直线MN 就是线段______的垂直平分线.(2)若直线MN 交AB 于点D ,交BC 于点E ,连接CD ,则ADC △的周长为______.21.如图,在直角坐标系中,()()()1,51,04,3A B C ---,,.(1)若把ABC 向下平移2个单位,再向右平移5个单位得到'''A B C ∆,画出平移后的图形''A B C ∆',并写出C '的坐标; (2)求''A B C ∆'的面积.122.如图,在ABC 中,90,8,6,C AC BC DE ∠=︒==是ABD △的边AB 上的高,E 为垂足且AD BD ==△的形状,并说明理由.(1)试判断ABD(2)求DE的长.在ABC中,22+=BC()2+=45是直角三角形;的边AB上的高,123.某市在精准扶贫活动中,因地制宜指导农民调整种植结构,增加种植效益.2018年李大伯家在工作队的帮助下,计划种植马铃薯和蔬菜共15亩,预计每亩的投入与产出如下表:(1)如果这15亩地的纯收入要达到54900元,需种植马铃薯和蔬菜各多少亩?(2)如果总投入不超过16000元,则最多种植蔬菜多少亩?该情况下15亩地的纯收入是多少?【答案】(1)需种植马铃薯11亩,需种植蔬菜4亩;(2)最多种植蔬菜5亩,该情况下15亩地的纯收入是55500元.【分析】(1)设需种植马铃薯x 亩,需种植蔬菜y 亩,根据等量关系:一共15亩地;这15亩地的纯收入要达到54900元;列出关于x 和y 的二元一次方程组,解出即可; (2)设种植马铃薯a 亩,则需种植蔬菜(15﹣a )亩,根据“总投入不超过16000元”,列出关于a 的一元一次不等式,解出即可.【详解】解:(1)设需种植马铃薯x 亩,需种植蔬菜y 亩,依题意有()()15450010005300120054900x y x y +=⎧⎨-+-=⎩, 解得114x y =⎧⎨=⎩.故需种植马铃薯11亩,需种植蔬菜4亩;(2)设种植马铃薯a 亩,则需种植蔬菜(15﹣a )亩,依题意有 1000a+1200(15﹣a )≤16000, 解得a≥10, 15﹣10=5(亩),(4500﹣1000)×10+(5300﹣1200)×5 =35000+20500 =55500(元).答:最多种植蔬菜5亩,该情况下15亩地的纯收入是55500元.【点睛】本题考查二元一次方程组的应用及一元一次不等式的应用,根据数量关系列出方程组和不等式是解决本题的关键.24.在等腰ABC 中,AB AC =,8BC =,100BAC ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,4=AD ,点E 是AB 的中点,连接DE .(1)求B ∠的度数; (2)求三角形BDE 的面积. 【答案】(1)45°;(2)4【分析】(1)根据等腰三角形的两个底角相等和三角形的内角和定理就可求解;25.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在线段OA,OC上,且OB OD=,12∠=∠,AE=CF.≌;(1)证明;BEO DFO(2)证明:四边形ABCD是平行四边形.【答案】(1)过程见解析(2)过程见解析【分析】对于(1),根据“ASA”证明即可;对于(2),先根据全等三角形的对应边相等得OE=OF,再结合AE=CF,根据对角线互相平分的四边形是平行四边形得出答案.(1)①①1=①2,OB=OD,①BOE=①DOF,①①BOE①①DOF(ASA);(2)①①BOE①①DOF,①OE=OF.①AE=CF ,①AE+OE=CF+OF , 即AO=CO . ①OB=OD ,①四边形ABCD 是平行四边形.【点睛】本题主要考查了全等三角形的性质和判定,平行四边形的判定等,灵活选择判定定理是解题的关键.26.(1)计算: ()2-3.14π;(2)求x 的值:3(21)80x --=27.如图,点E ,F 在BC 上,BF =EC ,AF 交DE 于点G ,GE =GF ,①A =①D . 求证:CD =AB .【答案】见详解【分析】由等腰三角形的性质得出①GFB =①GEC ,证明①ABF ①①DCE (AAS )即可.【详解】①GE =GF ,①①GEF =①GFE ,①①A =①D ,BF =EC ,①①ABF ①①DCE (AAS ),①CD =AB .【点睛】本题考查了全等三角形的判定与性质、等边对等角的知识,熟练掌握全等三角形的判定方法是解答本题的关键.28.先阅读下列材料,再解答下列问题:材料分析:因式分解:2()2()1x y x y ++++.解:将“x y +”看成整体,设x y m +=,则原式2221(1)m m m =++=+.再将x y m +=代入,得原式2(1)x y =++.实践探索:上述解题用到的是数学中常用的一种思想方法——“整体思想”,请你结合上述解题思路,自己完成下列题目:(1)因式分解:212()()x y x y --+-;(2)因式分解:225(1)10(1)1a a ---+. 【答案】(1)(1﹣x +y )2(2)(5a ﹣6)2【分析】(1)将x y -看成整体,令x y a -=代入原式即可求解;(2)将1a - 看成整体,令1a m -=代入原式即可求解.【详解】(1)设x ﹣y =a ,则原式=1﹣2a +a 2=(1﹣a )2,将x ﹣y =a 代入,得原式=(1﹣x +y )2;(2)设a ﹣1=m ,则原式=25m 2﹣10m +1=(5m ﹣1)2,将a ﹣1=m 代入,得原式=(5a ﹣6)2.【点睛】本题考查了整体代入的思想,运用完全平方公式因式分解,整体代入是解题的关键.29.如图,在ABC 中,90ACB ∠=︒,CA CB =,点P 在线段AB ,作射线CP()045ACP ︒<∠<︒,将射线CP 绕点C 逆时针旋转45︒,得到射线CQ ,过点A 作AD CP ⊥于点D ,交CQ 于点E ,连接BE .(1)依题意补全图形;(2)用等式表示线段AD ,DE ,BE 之间的数量关系,并证明.【答案】(1)补全图形见详解;(2)线段AD ,DE ,BE 之间的数量关系为:BE 2=(2DE )2+(DE -AD )2, 【分析】(1)根据作图语句,即可补全图形:(2)线段AD ,DE ,BE 之间的数量关系为:BE 2=(2DE )2+(AD -DE )2,将①ACE 顺时针旋转90°得到①BCG ,连结GE ,证得点D 在EG 上,再得到①AEC =①BGC =①CEG =45°,可求①EGB =90°,在Rt △EGB 中,由勾股定理222BE EG BG =+,BG =AE =AD -DE ,GE =ED +DG =2DE ,可证()()2222B DE D E DE A =+-.【详解】解:(1)根据作图语句,补全图形如下:(2)线段AD ,DE ,BE 之间的数量关系为:BE 2=(2DE )2+(AD -DE )2,证明如下,将△ACE 顺时针旋转90°得到△BCG ,连结GE ,则△ACE ①△BCG ,AE =BG ,CE =CG ,①AEC =①BGC ,①AD ①CP ,①ECD =45°,①①CED =90°-45°=45°,①CD =ED ,①CE =CG ,①ECG =90°,①①CEG =①CGE =45°,①点D 在EG 上,①①AEC =①BGC =①CEG =45°,①①EGB =①CGB +①CGE =45°+45°=90°,在Rt ①EGB 中,由勾股定理222BE EG BG =+,①CE =CG ,AD CP ⊥,①ED=DG ,①BG =AE = DE -AD ,GE =ED +DG =2DE ,①()()2222B DE D E DE A =+-.【点睛】本题考查作图,等腰直角三角形旋转,三角形全等变换,直角三角形的判定,勾股定理,等腰三角形性质,掌握尺规作图方法,等腰直角三角形性质,三角形全等变换,直角三角形的判定方法,勾股定理应用,等腰三角形性质是解题关键. 30.(1)因式分解2218mx m -(2)对于任何实数,规定一种新运算abad bc c d =-,如121524345=⨯-⨯=-.当2230x x +-=时,按照这个运算求212221x x x x +--的值.【答案】(1)2(3)(3)m x x +-;(2)5【分析】(1)先提公因式,在利用平方差公式即可解答;(2)把已知方程移项得223x x +=,在按新运算公式得到关于x 的多项式31.22869(1)1m m m m m m-+--÷++32.ABC 在方格中的位置如图所示.()1请在方格纸上建立平面直角坐标系,使得A 、B 两点的坐标分别为()2,1A -、()1,4B -.并求出C 点的坐标;()2作出ABC 关于横轴对称的①A 1B 1C 1,再作出ABC 以坐标原点为旋转中心、旋转180后的222A B C ,并写出1C ,2C 两点的坐标.【答案】()1坐标系如图所示,()3,3C -; ()1112A BC ,222A B C 如图所示,()13,3C ,()23,3C -.【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C 点坐标;(2)由轴对称性画①A 1B 1C 1,由关于原点中心对称性画①A 2B 2C 2,可确定写出C 1,C 2两点的坐标.【详解】(1)坐标系如图所示,C (3,﹣3);(2)①A 1B 1C 1,①A 2B 2C 2如图所示,C 1(3,3),C 2(﹣3,3).【点睛】本题考查了坐标系的确定方法,轴对称、中心对称的画图.关键是根据题意,建立坐标系.33.某地为某校师生交通方便,在通往该学校原道路的一段全长为336米的旧路上进行整修铺设柏油路面,铺设120米后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原来增加20%,结果共用30天完成这一任务.求后来每天铺设路面的长度.则后来每天铺设:()10120%12⨯+=(米)答:后来每天铺设路面的长度为12米.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.34.如果我们定义:“到三角形的两个顶点距离相等的点,叫做此三角形的开心点.”那么:(1)如图1,观察并思考,①ABC 的开心点有 个(2)如图2,CD 为等边三角形ABC 的高,开心点P 在高CD 上,且PD=,则①APB 的度数为(3)已知①ABC 为直角三角形,斜边BC=5,AB=3,开心点P 在AC 边上,试探究PA 的长.835.(1(1+.(2)计算:(.(3)先化简,再求值:21211a a a a ÷-+-,其中1a =.36.如图,①ABC中,①BAC=90°,AB=AC,AD①BC,垂足是D,AE平分①BAD,交BC于点E.在①ABC外有一点F,使F A①AE,FC①BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME①BC;①DE=DN.【答案】(1)证明见解析;(2)①证明见解析;①证明见解析.【分析】(1)通过角的转换和等腰直角三角形的性质,得到①BAE=①CAF和①B=①FCA,从而ASA证明△ABF①①ACF,根据全等三角形对应边相等得到结论.(2)①过E点作EG①AB于点G,通过证明EG是BM的垂直平分线就易得出结论;①通过证明Rt△AMC①Rt△EMC和△ADE①①CDN来证明结论.【详解】解:(1)如图,①①BAC=90°,F A①AE,①①1+①EAC=90°,①2+①EAC=90°,①①1=①2,又①AB=AC,①①B=①ACB=45°,①FC①BC,①①FCA=90°-①ACB=45°,①①B=①FCA,①①ABE①①ACF(ASA),①BE=CF.(2)①如图,过E点作EG①AB于点G,①①B=45°,①①CBE是等腰直角三角形,①BG=EG,①3=45°,AE平分①BAD,,GE DE∴=①BM=2DE,①BM=2BG,即点G是BM的中点①EG是BM的垂直平分线,①①4=①3=45°①①MEB=①4+①3=90°,①ME①BC①①AD①BC,①ME①AD,①①5=①6①①1=①5,①①1=①6,①AM=EM①MC=MC,①Rt△AMC①Rt△EMC(HL).①①7=①8①①BAC=90°,AB=AC,①①ACB=45°,①BAD=①CAD=45°①①5=①7=22.5°,AD=CD.①①ADE=①CDN=90°,①①ADE①①CDN(ASA),①DE=DN.37.如图,△ACB为等腰三角形,①ABC=90°,点P在线段BC上(不与B,C重合),以AP为腰长作等腰直角△P AQ,①P AQ=90°,QE①AB于E.(1)求证:△P AB①①AQE;(2)连接CQ交AB于M,若PC=2PB,求PCMB的值;【答案】(1)见解析;(2)2【分析】(1)根据题目中的信息可以得到AQ=AP,①QEA与①ABP之间的关系,①QAE与①APB之间的关系,从而可以解答本题;(2)由第一问中的两个三角形全等,可以得到各边之间的关系,然后根据题目中的信息找到PC与MB的关系,从而可以解答本题.【详解】(1)证明:①①ACB为等腰三角形,①ABC=90°,点P在线段BC上(不与B,C重合),以AP为腰长作等腰直角①PAQ,QE①AB于E.38.如图,在△ABC中,AB=AC,CE平分①ACB交AB于点D,点D在AC的垂直平分线上,过点E作EF①BC交CB的延长线于点F,CE=AC,BC=AD.(1)求证:①BEC=①BAC;(2)求①CAE的度数;(3)若BF=3,求BD的长.又DA=DC,①BC=DA=DC=AE,①△ADE①△CBD,①DE=DB,①①DEB=①DBE,①①DEB+①DBE=①CDB=72°,①①DEB=①DBE=36°,①①BEC=①BAC=36°;(2)解:由(1)知①CAE=72°,①①CAE的度数为72°;(3)解:过点C作CG①BD于点G,①①BCD=①BEC=36°,①BE=BC,①①FBE=①BCD+①BEC=72°=①CBG,①△FBE①△GBC,①BG=BF=3,①CB=CD,且CG①BD,①BG=GD,①BD=6,①BD的长为6.【点睛】本题考查了等腰三角形的判定和性质,线段垂直平分线的性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.39.如图,在平行四边形ABCD中,①C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)若CD=2,求BD的长.40.已知,如图1,在ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:ADE BFE≌;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点∥,交DF于点K.求证:HC=2AK.H,连接HC,过点A作AK HC【答案】(1)见解析(2)见解析【分析】(1)根据平行四边形的性质得到AD∥BC,得到①ADE=①BFE,①A=①FBE,利用AAS定理证明即可;(2)取FH中点N,连接BN,利用AAS证明AEK BEN△≌△,然后根据全等三角形的性质、三角形中位线定理证明.(1)证明:①四边形ABCD是平行四边形,①AD∥BC,AD=BC,①①ADE=①BFE,①A=①FBE,又AE=BE,①ADE BFE≌(AAS);①ADE BFE ≌,AD =BF =AD =BC ,BN =12HC ,BN ∥HC AK HC ∥,BN ∥AK ,①①AKE =①BNE ,①KAE 41.计算:x y y x +-+y x y --2x y y x --42.(1)化简:221132111a a a a a +÷+++-+. (2)解方程:33122x x x-+=--. 【答案】(1)2;(2)1x =【分析】(1)将除法变成乘法,分子分母能因式分解的进行因式分解,约分后根据分式的加法法则进行计算即可;(2)分式方程去分母转化为整式方程,求出整式方程的解,检验后即可得到分式方程的解.43.如图,ABC ∆中,90︒∠=C ,DE AB ⊥于E ,F 在AC 上,且BE FC =,BD FD =,求证:AD 是BAC ∠的平分线.【答案】见解析.【分析】利用“HL”可证明Rt①CDF①Rt①EDB ,得到DC =DE ,然后根据角平行线的判定定理可得AD 是①BAC 的平分线.【详解】证明:在Rt①CDF 和Rt①EDB 中,BD FD BE FC⎧⎨=⎩=, ①Rt①CDF①Rt①EDB ,①DC =DE ,①DC①AC ,DE①AB ,①AD 是①BAC 的平分线.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.也考查了角平分线的判定定理.44.分解因式(1)3312x x -(2)()241x x -- 【答案】(1)3(12)(12)x x x -+;(2)(x−2)2.【分析】(1)先提取公因式3x ,再根据平方差公式进行二次分解即可求得答案; (2)先去括号,再根据完全平方公式进行分解即可.【详解】(1)原式=3x(1−4x 2)=3x(1−2x)(1+2x)(2)原式=x 2−4x+4=(x−2)2.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则. 45.如图,OC 平分①AOB,OA=OB, PD①AC 于点D,PE①BC 于点E ,求证:PD = PE.【答案】详见解析.【分析】根据OC 平分①AOB ,得到①AOC =①BOC ,证得△AOC ① △BOC ,根据全等三角形的性质得到①ACO =①BCO ,根据角平分线的性质即可得到结论.【详解】①OC 平分①AOB ,①①AOC =①BOC .在△AOC 和△BOC 中,①OC =OC ,①AOC =①BOC ,OA =OB ,①△AOC ① △BOC (SAS) ,①①ACO =①BCO .又∵PD ①AC ,PE ①BC ,①PD = PE .【点睛】本题考查了全等三角形的判定和性质,角平分线的定义和性质,熟练掌握全等三角形的判定定理是解题的关键.46.如图,在一块边长为a 米的正方形空地的四角均留出一块边长为b (b <2a )米的正方形修建花坛,其余的地方种植草坪.利用因式分解计算当a =13.2,b =3.4时,草坪的面积.【答案】(a 2-4b 2)平方米,128平方米【详解】试题分析:由正方形面积减去四个小正方形面积求出剩余的面积,将a 与b的值代入计算即可求出值.试题解析:根据题意得:剩余部分的面积为(a 2-4b 2)平方米,当a =13.2,b =3.4时,(a 2-4b 2)=( a +2b )( a -2b )=(13.2+6.8)×( 13.2-6.8)=128平方米.【点睛】本题主要考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.47.如图,平行四边形ABCD 中,AC 为对角线.(1)用尺规完成以下基本作图:过点B 、D 分别作AC 的垂线交AC 于点E 、F ;(不写作法,保留作图痕迹)(2)在(1)题所作图形中,求证:四边形BFDE 是平行四边形.请完成如下填空: 证明:①AB DC ∥,AB DC =. ①BAE ∠= ① .①BE AC ⊥,DF AC ⊥,①90BEA ∠=︒= ① ,①BEA DFC ≌,①BE = ① ,①90BEF DFE ∠∠==︒,① ① DF ∥,①四边形BFDE 是平行四边形. 【答案】(1)见解析(2)①DCF ∠;①DFC ∠;①DF ;①BE【分析】(1)利用作垂线的方法,即可作出图形;(2)根据平行四边形的性质,先证明BEA DFC ≌,得到BE DF =,然后结合BE DF ∥,即可得到结论成立.(1)解:如图所示(2) 证明:①AB DC ∥,AB DC =.①BAE DCF ∠=∠.①BE AC ⊥,DF AC ⊥,①90BEA DFC ∠=︒=∠,①BEA DFC ≌,①BE DF =,①90BEF DFE ∠∠==︒,①BE DF ∥,①四边形BFDE 是平行四边形.故答案为:①DCF ∠①DFC ∠①DF ①BE .【点睛】本题考查了复杂作图——作垂线,平行四边形的判定和性质,平行线的判定和性质,解题的关键是掌握所学的知识,正确的作出图形.48.(1)已知方程=的解为x=2,求a 的值.(2)先化简(1﹣)÷,再将(1)中a 的值代入求它的值.49.如图,已知,DE AC BF AC ⊥⊥,垂足分别是//E F AE CF DC AB =,,,.(1)证明:DE BF =.(2)连接,DF BE ,猜想DF 与BE 的关系?并证明你的猜想的正确性. 【答案】(1)证明见解析;(2)DF=BE ,DF①BE ,证明见解析.【分析】(1)求出AF=CE ,①AFB=①DEC=90°,根据平行线的性质得出①DCE=①BAF ,根据ASA 推出①AFB①①CED 即可;(2)根据平行四边形的判定得出四边形是平行四边形,再根据平行四边形的性质得出即可.【详解】(1)证明:①AE=CF ,①AE+EF=CF+EF ,①AF=CE ,①DE①AC ,BF①AC ,①①AFB=①DEC=90°,①DC①AB ,①①DCE=①BAF ,在①AFB 和①CED 中BAF DCE AF CEAFB DEC ∠∠⎧⎪⎨⎪∠∠⎩=== ①①AFB①①CED ,①DE=EF ;(2)DF=BE ,DF①BE ,证明:①DE①AC ,BF①AC ,①DE①BF ,①DE=BF ,①四边形DEBF 是平行四边形,①DF=BE ,DF①BE .【点睛】本题考查了全等三角形的性质和判定,平行线的性质,平行四边形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.50.请用圆规和直尺作出①O,使圆心O在AC边上,且①O与AB,BC两边都相切.【答案】详见解析【分析】先作①ABC的平分线交AC于O,再过点O作OH①BC于H,然后以O点为圆心,OH为半径作圆即可.【详解】如图,①O为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.试卷第41页,共41页。
最新北师大版八年级数学下册第一章测试题及答案
北师八(下)第一章有理数1.1-1.3水平测试题河北饶阳县第二中学 郭杏好 053900一、选择题(每题3分,共24分)1.绝对值小于3的非负整数有( )A .1,2B .0,1C .0,1,2D .0,1,2,32.有理数a 、b 在数轴上的位置如图所示,在下列各式中对a 、b 之间的关系表达不正确的是( )A .b -a >0B .ab >0C .c -b <c -aD .ab 11 3.下列判断中,正确的个数为( )①若-a >b >0,则ab <0②若ab >0,则a >0,b >0③若a >b ,c ≠0,则ac >bc④若a >b ,c ≠0,则ac 2>bc 2⑤若a >b ,c ≠0,则-a -c <-b -cA .2B .3C .4D .54.不等式-4≤x <2的所有整数解的和是( )A .-4B .-6C .-8D .-95.若不等式(a +1)x <a +1的解集为x <1,那么a 必须满足( )A .a <0B .a ≤-1C .a >-1D .a <-16.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A .x <2B .x >-2C .当a >0时,x <2D .当a >0时,x <2;当a <0时,x >27.不等式3(x -2)≤x +4的非负整数解有几个( )A .4B .5C .6D .无数个8.下列说法错误的是( )A .-3x >9的解集为x <-3B .不等式2x >-1的整数解有无数多个C .-2是不等式3x <-4的解D .不等式x >-5的负整数解有无数多个二、填空题(每题3分,共24分)9.已知a >0,b <0,且a +b <0,将a ,-b ,-|a |,-|b |用“<”号按从小到大的顺序连接起来是 .10.已知|x -5|=5-x ,则x 的取值范围是 .11.若a <b ,则-3a +1________-3b +1.12.若a >b ,c ≤0,则ac ________bc .13.若ba b a --||=-1,则a -b ________0. 14.大于________的每一个数都是不等式5x >15的解. 15.如果不等式(a -3)x <b 的解集是x <3-a b ,那么a 的取值范围是________. 16.方程x +2m =4(x +m )+1的解为非负数,则m 的取值应为________.三、解答题(3小题,共30分)17、(10分)已知不等式2x -1>x 与ax -6>5x 同解,试求a 的值. 18、(10分)爱心援助:小明和小刚在学习时,遇到以下两题,被难住了,请你伸出援助之手……(1)不等式a (x -1)>x +1-2a 的解集是x <-1,请确定a 是怎样的值.(2)如果不等式4x -3a >-1与不等式2(x -1)+3>5的解集相同,请确定a 的值.19. (10分)已知方程组⎩⎨⎧-=+=-k y x k y x 5132的解x 与y 的和为负数,求k 的取值范围. 四、综合探索题:(22分)20、(10分)小宁一家10点10分离家赶11点整的火车去某地旅游,他们家离火车站10千米.他们先以3千米/时的速度走了5分钟到达汽车站,然后乘公共汽车去火车站.公共汽车每小时至少走多少千米他们才能不误当次火车?21、(12分)某校校长带领该校市级“三好学生”外出旅游,甲旅行社说:如果买一张全票则其余学生可享受半价优惠.乙旅行社说:包括校长在内全部按票价的6折优惠(即按全价的60%收费).已知全票价为240元.(1)设学生人数为x ,甲、乙旅行社收费分别用y 甲、y 乙表示,分别写出y 甲、y 乙与x 的函数关系式.(2)当学生是多少时,两家旅行社收费相同?(3)当x >4时,选择哪家旅行社较合算?五、备选题:22. 一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成多少土方?23. 不等式的解集中是否一定有无限多个数?不等式|x|≤0、x2<0的解集是什么?不等式x2>0和x2+4>0的解集分别又是什么?24.请写出满足下列条件的一个不等式(1)0是这个不等式的一个解.(2)-2,-1,0,1都是不等式的解.(3)0不是这个不等式的解.(4)与x ≤-1的解集相同的不等式.(5)不等式的整数解只有-1,0,1,2.参考答案:一、1.C 2.D 3.B 4.D(提示:满足-4≤x <2的整数解有-4,-3,-2,-1,0,1,切勿漏解或多解 5.C 6.D(提示:因a 的符号未知,因此应用不等式的哪条性质不定,故需分类讨论) 7. C(提示:非负整数包括正整数和零) 8. D(提示:x >-5的负整数解有-4,-3,-2,-1)二、9.-|b |<-|a |<a <-b 10.x ≤5 11.> 12.≤(提示:勿丢c=0) 13.<(提示:由于a-b 在分母上,故a-b ≠0) 14.3 15.a >3(提示:因为在解的过程中不等号的方向没变,由不等式的性质2可知,a-3>0,故a>3) 16.m ≤-21 三、17、218、(1)解:不等式a (x -1)>x +1-2a 可变形为ax -a >x +1-2a (a -1)x >1-a∵ 原不等式的解集为x <-1 ∴ a -1<0,即a <1(2)解:解2(x -1)+3>5得:x >2解不等式4x -3a >-1得:x >413-a ∵ 以上两个不等式的解集相同∴413-a =2,解得a =3 19. k >31(提示:注意观察方程组的结构特点,让两个方程巧相加,可使运算简便) 20.设公共汽车速度为x 千米/时 根据题意得:3×6045605+x ≥10 解得:x ≥13,所以公共汽车每小时至少行13千米.21.解:(1)y 甲=240+240x ·50%,即y 甲=240+120xy 乙=240(x +1)·60%,即y 乙=144x +144(2)若y 甲=y 乙,则240+120x =144x +144解得:x =4(3)y 甲-y 乙=240+120x -(144x +144)=-24x +96当x >4时,-24x +96<0,即y 甲<y 乙这时选择甲旅行社较合算22. 8023.不等式的解集中不一定有无数多个数.|x|≤0的解集是x =0,x2<0无解.x2>0的解集为x >0或x <0,x2+4>0的解集为一切实数.24. (1)x >-1(或x ≥0,x >-2等都可以)(2)x <2(或x ≤1,x ≥-2,x >-5等均可)(3)x >1(或x <-1等均可=(4)2x ≤-2(或x +1≤0,2x +2≤0等均可)(5)-1≤x ≤2(或-1.5<x <2.1等)。
新北师大版八年级数学下册各章测试题附答案(全册)
第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。
北师大版八年级数学下册《1.4角平分线》同步练习(含答案)
北师大版八年级数学下册 1.4 角平分线 同步练习一、单选题(共 10 题;共 20 分)1.如图,OP 平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为 A,B。
下列结论中不一定成立的是( )A.PA=PBB.PO 平分∠AOBC.OA=OBD.AB 垂直平分 OP )2.如图, AB∥CD,AP, CP 分别平分∠BAC 和∠ACD, PE⊥AC 于点 E, 且 PE=3cm, 则 AB 与 CD 之间的距离为(A.3 cmB.6 cmC.9 cmD.无法确定3.如图,以∠AOB 的顶点 O 为圆心,适当长为半径画弧,交 OA 于点 C,交 OB 于点 D,再分别以点 C,D 为圆 心,大于 CD 的长为半径画弧,两弧在∠AOB 内部交于点 E,作射线 OE,连接 CD,以下说法错误的是( )A. △ OCD 是等腰三角形 C. CD 垂直平分 OEB. 点 E 到 OA,OB 的距离相等 D. 证明射线 OE 是角平分线的依据是 SSS4.如图,在△ ABC 中,∠ABC 和∠ACB 的平分线相交于点 G,过点 G 作 EF∥BC 交 AB 于 E, 交 AC 于 F, 过点 G 作 GD⊥AC 于 D,下列四个结论:①EF=BE+CF;②∠BGC=90+ AE+AF=n,则△∠A;③点 G 到△ ABC 各边的距离相等;④设 GD=m,=mn.其中正确的结论有()A.1 个B.2 个C.3 个D.4 个5.如图,在△ ABC 中,∠BAC 和∠ABC 的平分线相交于点 O,过点 O 作 EF∥AB 交 BC 于 F,交 AC 于 E,过点 O 作 OD⊥BC 于 D,下列四个结论:① ∠AOB=90°+∠②AE+BF=EF;③当∠C=90°时,E,F 分别是 AC,BC 的中点;④若 OD=a,CE+CF=2b, ) C. ①②④ D. ①③④则 S△ CEF=ab 其中正确的是( A. ①② 则可供选择的地点有( )B. ③④6.如图,直线 l1 , l2 , l3 表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,A.四处B.三处C.两处D.一处7.如图,△ ABC 的三边 AB、BC、CA 长分别是 20、30、40,其三条角平分线将△ ABC 分为三个三角形,则 S△ ABO ︰S△ BCO︰S△ CAO 等于( )A. 1︰1︰1 则 DQ 的最小值( )B. 1︰2︰3C. 2︰3︰4D. 3︰4︰58.如图,在 Rt△ ABC 中,∠C=90°,∠ABC 的平分线 BD 交 AC 于点 D,若 CD=3,点 Q 是线段 AB 上的一个动点,A. 5B. 4C. 3D. 29.∠AOB 的平分线上一点 P 到 OA 的距离为 4,Q 是 OB 上任一点,则( ) B. PQ>4 D. PQ<4A. PQ≥4C. PQ≤410.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平 分线.如图:一把直尺压住射线 OB,另一把直尺压住射线 OA 并且与第一把直尺交于点 P,小明说:“射线 OP就是∠BOA 的角平分线.”他这样做的依据是()A. 角的内部到角的两边的距离相等的点在角的平分线上 C. 三角形三条角平分线的交点到三条边的距离相等B. 角平分线上的点到这个角两边的距离相等D. 以上均不正确二、填空题(共 6 题;共 8 分)11.如图,要在河流的南边,公路的左侧 M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流 与公路交叉 A 处的距离为 1cm(指图上距离),则图中工厂的位置应在________.12.如图,△ ABC 中,∠ACB=90°,CD⊥AB 于 D,AE 是∠BAC 的平分线,点 E 到 AB 的距离等于 3cm,则 CF=________cm.13.如图,在 Rt△ ABC 中,∠C=90°,AD 是△ ABC 的角平分线,若 CD=4,AC=12,BC=9,则 S△ ABD =________.14.如图, △ ABC 中, ∠A=100°, BI、 CI 分别平分∠ABC, ∠ACB, CM 分别平分∠ABC, 则∠BIC=________, 若 BM、 ∠ACB 的外角平分线,则∠M=________.15.如图,已知相交直线 AB 和 CD 及另一直线 MN,如果要在 MN 上找出与 AB,CD 距离相等的点,则这样的点 至少有________个,最多有________个.16.如图,在△ ABC 中,∠ABC 的平分线与∠ACD 的平分线交于点 A1 , ∠A1BC 的平分线与∠A1CD 的平分线 交于点 A2 , 依此类推….已知∠A=α,则∠An 的度数为________(用含 n、α 的代数式表示).三、解答题(共 6 题;共 55 分)17.如图,直线 l 及 A、B 两点(保留作图痕迹,不写作法)。
八年级数学北师大版下册课时练第3章《简单的图案设计》(含答案解析)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第3单元图形的平移与旋转简单的图案设计一、选择题(共10小题)1.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A.B.C.D.2.下列图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区设立纪念3.如图是经典微信表情,下列选项是由该图经过旋转得到的是()A.B.C.D.4.将图中所示的图案以圆心为中心,旋转180°后得到的图案是()A.B.C.D.5.在玩俄罗斯方块游戏时,底部已有的图形如图所示,接下去出现如下哪个形状时,通过旋转变换后能与已有图形拼成一个中心对称图形()A.B.C.D.6.平面直角坐标系xOy中,点P(a,b)经过某种变换后得到的对应点为P′(a+1,b﹣1).已知A,B,C是不共线的三个点,它们经过这种变换后,得到的对应点分别为A′,B′,C′.若△ABC的面积为S1,△A′B′C′的面积为S2,则用等式表示S1与S2的关系为()A.S1=S2B.S1=S2C.S1=2S2D.S1=4S27.点A(2,1)经过某种图形变换后得到点B(﹣1,2),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°8.如图,把平面直角坐标系xOy中的△ABC经过一定的变换得到△A′B′C′,若△ABC内有一点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(a+2,﹣b)D.(﹣a﹣2,﹣b)9.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行10.据悉,浙江理工大学艺术与设计学院王晓林老师的地铁标志设计作品成功中标.它以地铁隧道为主体造型元素,充分体现了杭州地铁“安全、快捷、顺畅、方便、舒适”的特点.该图主要运用了()的数学变换原理.A.平移、对称变换B.对称、旋转变换C.相似、平移变换D.旋转、相似变换二、填空题(共5小题)11.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转所组成,这四次旋转中,旋转角度最小是度.12.图4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.13.如图是3×4正方形网格,其中已有5各小方格涂上阴影,若再选取标有①,②,③,④中的一个小方格涂上阴影,使图中所有涂上阴影的小方格组成一个中心对称图形,则该小方格是.(填序号)14.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:.15.以图(1)(以O为圆心,半径为1的半圆作为“基本图形”,分别经历如下变换不能得到图(2)的有①只要向右平移1个单位;②先以直线AB为对称轴进行翻折,再向右平移1个单位;③先绕着点O旋转180°,再向右平移1个单位;④绕着OB的中点旋转180°即可.三、解答题(共6小题)16.如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影).(1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴;(2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可);(3)图③中,添加一块小正方形,使之成为中心对称图形,且不是轴对称图形.17.小金鱼在坐标系中的位置如图所示,将小金鱼身上的A、B、C、D、E、F 的横坐标都乘以﹣1,纵坐标也都乘以﹣1,小金鱼跑到哪里去了?请在图上画出来.18.作图题(1)如图,平移方格纸中的图形,使点A平移到点A′处,画出平移后的图形.(2)分析图中,①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.19.如图,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在图(1),图(2),图(3)中分别画出满足以下各要求的图形.(用阴影表示)(1)使得图形既是轴对称图形,又是中心对称图形.(2)使得图形成为轴对称图形,而不是中心对称图形;(3)使得图形成为中心对称图形,而不是轴对称图形.20.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离为个单位长度;点A的对应点为;(2)△AOC与△BOD关于直线对称,则对称轴是;点A的对应点为;(3)△AOC绕原点O顺时针旋转可以得到△DOB,则旋转角度是度,点A与其对应点之间的距离为个单位长度.21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),B的坐标为(2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O 顺时针旋转得到△DOB,则旋转角度可以是度.(2)连接AD,交OC于点E,求∠AEO的度数.参考答案一、选择题(共10小题)1.A2.C3.C4.C5.D6.D7.C8.D9.B10.B二、填空题(共5小题)11.72°.12..13.④.14.向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.15.①.三、解答题(共6小题)16.解:(1)如图①所示(2)如图②所示(3)如图③所示17.解:画出点O关于原点的中心对称图形.18.解:(1)平移规律为:向右平移4个单位,向上平移2个单位;所作图形如下:.(2)补全图形如下:.19.解:如图所示;20.解:(1)△AOC沿x轴向右平移得到△OBD,则平移的距离为2个单位长度;点A的对应点为点O;(2)△AOC与△BOD关于直线对称,则对称轴是y轴;点A的对应点为点B;(3)△AOC绕原点O顺时针旋转可以得到△DOB,则旋转角度是120度,点A与其对应点之间的距离为2个单位长度.故答案为2,点O,y轴,点B,120,2.21.解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.故答案为:2;y轴;120.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE⊥AD,∴∠AEO=90°.10/10。