2016年河南省三门峡市中考数学一模试卷和解析PDF版
2016河南中招数学试题及解析答案解析
2015年河南省中招考试数学试题及答案解析一、选择题(每小题3分,共24分) 1.下列各数中最大的数是( )C.πD.-8【答案】:A【解析】:根据有理数的定义,很容易得到最大的数是5,选A 。
2.如图所示的几何体的俯视图是( )【答案】:B【解析】:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,找到从上面看所得到的图形即可,选B 。
3.据统计,2014年我国高新产品出口总额达40570亿元,将数据40570亿用科学记数法表示为( )A.4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×1012【答案】:D【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数。
确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。
当原数绝对值>1时,n 是正数; 当原数的绝对值<1时,n 是负数。
将40570亿用科学记数法表示4.0570×1012元,选D 。
4.如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=1250,则∠4的度数为( )a cC DB A 正面第2题A.550B.600 C .700 D.750【答案】:A【解析】:本题考查了三线八角,因为∠1=∠2,所以a∥b,又∠3=1250,∠3与∠4互补,则∠4的度数为550。
选A。
5.不等式组x503x1+≥⎧⎨-⎩>的解集在数轴上表示为()GURUILIND CB A【答案】:C【解析】:本题考查了不等式组的解集,有①得x≥-5,有②得x<2,这里注意空心和实心;所以选C。
6.小王参加某企业招聘测试,他的笔试,面试,技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【答案】:D【解析】:本题主要考察加权平均数的计算方法,(85×2+80×3+90×5)÷(2+3+5)=86分,所以选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD 的平分线AG ,交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A.4B.6C.8D.10【答案】:C【解析】:本题主要考察平行四边形和等腰三角形三线合一定理。
2016届九年级中考一模数学试题(扫描版)
(2)问题 1: 3 . 9
………………8 分
问题 2:0 < r < 1 . ………………7 分 6
学校:
班级:
教师:
科目:
得分:
2015-2016 年初三数学一模参考答案
一、选择题(本题共 30 分,每小题 3 分)
题号 1
2
3
4
5
6
7
8
9
10
答案 B
D
C
C
D
C
A
A
B
B
二、填空题(本题共 18 分,每小题 3 分)
题号
11
12
答案
b(a 1)2
5
13
2 x 1 x 1 x x 33 327
22.(1) 证明:∵ 四边形 ABCD为矩形,
∴ AC BD , AB ∥ DC .
∵ AC ∥ BE ,
∴ 四边形 ABEC 为平行四边形. ………………………2 分
∴ AC BE .
∴ BD BE . ………………………3 分
A
D
(2) 解:过点 O 作 OF ⊥ CD 于点 F .
∵ 四边形 ABCD为矩形, ∴ BCD 90 .
在 Rt△ AFE 中,
∵ AE 3, 3 30,
∴ AF 3 3 . 2
………………………5 分
25. (1) 45;………………………2 分 (2) 21;………………………3 分 (3) 2.4 (1 20%) 2.88 .
2015 年中国内地动画电影市场票房收入前 5 名的票房成绩统计表
思路如下:
a. 由 G 为 CF 中点画出图形,如图 2 所示. b. 与②同理,可得 BD=CF, BC CG , BC CG ;
河南省2016年中考模拟数学试卷(一)含答案
河南省2016年中考模拟数学试卷(一)含答案河南省2016年中考模拟数学试卷一一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()A。
3-2 B。
21 C。
- D。
22.以下是我市著名企事业(___、心连心化肥、___、___)的徽标或者商标,其中既是轴对称图形又是中心对称图形的是()AB。
CD3.2014年巴西世界杯在南美洲国家巴西境内12座城市中的12座球场内举行,本届世界杯的冠军将获得3500万美元的奖励,将3500万用科学记数法表示为()A。
3.5×106 B。
3.5×107 C。
35×106 D。
0.35×1084.下列各式计算正确的是()A)3-2=1 (B)a6÷a2=a3 (C)x2+x3=x5 (D)(-x2)3=-x65.用6个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A。
B。
C。
D。
6.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A。
8,6 B。
8,5 C。
52,52 D。
52,537.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4 cm,如果点C是OB上一个动点,则PC的最小值为()A)2 (B)23 (C)4 (D)438.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是()。
A.(2011,0)B.(2011,2)C.(2011,1)D.(2010,0)二、填空题(每小题3分,共21分)9.计算:(2+π)-2|1-sin30°|+()=-1.10.如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4).将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是()。
河南省三门峡市中考数学一模试卷
河南省三门峡市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2014·宁波) 下列各数中,既不是正数也不是负数的是()A . 0B . ﹣1C .D . 22. (2分)(2019·连云港) 一个几何体的侧面展开图如图所示,则该几何体的底面是()A .B .C .D .3. (2分)(2016·河池) 要调查河池市中学生了解禁毒知识的情况,下列调查方式最适合的是()A . 在某中学抽取200名女生B . 在某中学抽取200名男生C . 在某中学抽取200名学生D . 在河池市中学生中随机抽取200名学生4. (2分) (2019七上·大连期末) 如图,有理数在数轴上的对应点分别是,若互为相反数,则()A . 小于0B . 等于0C . 大于0D . 不确定5. (2分)如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的()A . 1倍B . 2倍C . 3倍D . 4倍6. (2分)已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,E是⊙C 上的一动点,则△ABE面积的最大值为()A .B .C .D .二、填空题 (共7题;共10分)7. (1分)(2018·扬州) 有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是________.8. (1分)(2016·上海) 如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是________.9. (1分)(2020·西乡塘模拟) 若一组数据4,,8,7,5的平均数是6,则这组数据的中位数是________.10. (2分) (2016九上·平南期中) 半径为5的圆中有两条弦长分别为6,8的平行弦,这两条弦之间的距离是________.11. (1分)(2018·黄梅模拟) 用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为________cm2(精确到1cm2).12. (2分) (2017九上·深圳月考) 如图,点A是双曲线y=- 在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线上运动,则k的值为________。
2016年河南省中考数学试题 (解析版)
2016年河南省普通高中招生考试试卷数 学注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上. 2.答卷前请将密封线内的项目填写清楚.题号一二三 总分1~89~15 16 17 18 19 20 21 22 23 分数一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1.(2016·河南)31-的相反数是【 】 (A )31-(B )31 (C )3-(D )3【答案】B. 【解析】试题分析:根据相反数的定义可得31-的相反数是31,故答案选B.考点:相反数.2.(2016·河南)某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为【 】 (A )7105.9-⨯ (B )8105.9-⨯(C )71095.0-⨯(D )51095-⨯【答案】A.考点:科学记数法.3.(2016·河南)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是【 】【答案】C. 【解析】试题分析:观察可得,只有选项C 的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.4.(2016·河南)下列计算正确的是【 】 (A )228=- (B )()632=-(C )22423a a a =- (D )()523a a =-【答案】A.考点:二次根式的运算;乘方的运算;积的乘方. 5.(2016·河南)如图,过反比例函数)0(>=x xky 的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为【 】 (A )2(B )3(C )4(D )5【答案】C. 【解析】试题分析:观察图象可得,k >0,已知S △AOB =2,根据反比例函数k 的几何意义可得k=4,故答案选C. 考点:反比例函数k 的几何意义.6.(2016·河南)如图,在△ABC 中,∠ACB=90°,AC=8,AB=10. DE 垂直平分AC 交AB 于点E ,则DE 的长为【 】 (A )6(B )5(C )4(D )3【答案】D.考点:勾股定理;三角形的中位线定理.7.(2016·河南)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择【】(A)甲(B)乙(C)丙(D)丁【答案】A.【解析】试题分析:在平均数一样的情况下,方差越小,数据的波动越小,由此可得应该选择甲,故答案选A.考点:方差.8.(2016·河南)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为【】(A)(1,-1)(B)(-1,-1)(C)(2,0)(D)(0,-2)【答案】B.考点:规律探究题.二、填空题(每小题3分,共21分)9.(2016·河南)计算:._________8)2(30=--【答案】-1. 【解析】试题分析:原式=1-2=-1. 考点:实数的运算.10. (2016·河南)如图,在□ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数是_________.【答案】110°. 【解析】试题分析:由平行四边形的性质可得AB ∥CD ,所以∠1=∠3=20°,根据三角形外角的性质可得∠2=∠3+∠ABE=20°+90°=110°.考点:平行四边形的性质;三角形外角的性质.11.(2016·河南)若关于x 的一元二次方程032=-+k x x 有两个不相等的实数根,则k 的取值范围__________________. 【答案】k >49-. 【解析】试题分析:已知一元二次方程032=-+k x x 有两个不相等的实数根,由此可得△=9+4k >0,解得k >49-. 考点:根的判别式.12.(2016·河南)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是_________. 【答案】41.考点:概率.13.(2016·河南)已知A (0,3),B (2,3)是抛物线c bx x y ++-=2上两点,该抛物线的顶点坐标是_________. 【答案】(1,4). 【解析】试题分析:把A (0,3),B (2,3)代入抛物线c bx x y ++-=2可得b=2,c=3,所以322++-=x x y =4)12+--x (,即可得该抛物线的顶点坐标是(1,4). 考点:抛物线的顶点.14.(2016·河南)如图,在扇形AOB 中,∠AOB=90°,以点A 为圆心,OA 的长为半径作⌒OC 交⌒AB 于点C. 若OA=2,则阴影部分的面积为___________.【答案】33π-.考点:扇形的面积.15.(2016·河南)如图,已知AD∥BC,AB⊥BC,AB=3. 点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N. 当点B′为线段MN的三等分点时,BE的长为__________________.【答案】223或553.考点:矩形的性质;勾股定理;折叠的性质.三、解答题(本大题共8个小题,满分75分)16. (8分)(2016·河南)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。
2016年河南中考数学真题卷含答案解析
2016年河南省普通高中招生考试数学试题(含答案全解全析)(满分:120分时间:100分钟)第Ⅰ卷(选择题,共24分)一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.-13的相反数是( )A.-13B.13C.-3D.32.某种细胞的直径是0.000 000 95米,将0.000 000 95用科学记数法表示为( )A.9.5×10-7B.9.5×10-8C.0.95×10-7D.95×10-83.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )4.下列计算正确的是( )A.√8-√2=√2B.(-3)2=6C.3a4-2a2=a2D.(-a3)2=a55.如图,过反比例函数y=kx(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为( )A.2B.3C.4D.56.如图,在△ABC中,∠ACB=90°,AC=8,AB=10.DE垂直平分AC交AB于点E,则DE的长为( )A.6B.5C.4D.37.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数185 180 185 180(cm)方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙C.丙D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )A.(1,-1)B.(-1,-1)C.(√2,0)D.(0,-√2)第Ⅱ卷(非选择题,共96分)二、填空题(每小题3分,共21分)3= .9.计算:(-2)0-√810.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.11.若关于x的一元二次方程x2+3x-k=0有两个不相等的实数根,则k的取值范围是.12.在“阳光体育”活动时间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在同一组的概率是.13.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是.14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作OC⏜交AB⏜于点C.若OA=2,则阴影部分的面积为.15.如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B 落在点B'处,过点B'作AD的垂线,分别交AD,BC于点M,N.当点B'为线段MN的三等分点时,BE的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(xx2+x -1)÷x2-1x2+2x+1,其中x的值从不等式组{-x≤1,2x-1<4的整数解中选取.17.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5 6406 430 6 520 6 7987 3258 430 8 215 7 453 7 446 6 7547 638 6 834 7 326 6 830 8 6488 753 9 450 9 865 7 290 7 850对这20个数据按组距1 000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A 5 500≤x<6 500 2B 6 500≤x<7 500 10C 7 500≤x<8 500 mD 8 500≤x<9 500 3E 9 500≤x<10 500 n请根据以上信息解答下列问题:(1)填空:m= ,n= ;(2)补全频数分布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7 500步的人数.18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作☉O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°.升旗时,国旗上端悬挂在距地面2.25米处.若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(10分)某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …-3 -52-2 -1 0 1 2523 …y … 3 54m -1 0 -1 0543 …其中,m= ;(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2-2|x|=0有个实数根;②方程x2-2|x|=2有个实数根;③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是.22.(10分)(1)发现如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b 的式子表示).图1(2)应用点A 为线段BC 外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC 为边,作等边三角形ABD 和等边三角形ACE,连接CD,BE.①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.图2(3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM 长的最大值及此时点P 的坐标.23.(11分)如图1,直线y=-43x+n 交x 轴于点A,交y 轴于点C(0,4),抛物线y=23x 2+bx+c 经过点A,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD,过点B 作BD ⊥PD 于点D,连接PB,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD'P',且旋转角∠PBP'=∠OAC,当点P的对应点P'落在点P的坐标.坐标轴上时,请直接写出····图1答案全解全析:一、选择题1.B 绝对值相同,符号不同的两个数互为相反数.故选B.2.A 原数用科学记数法表示为9.5×10-7.故选A.3.C 选项C中几何体的主视图和左视图均为 .故选C.4.A A项,√8-√2=2√2-√2=√2;B项,(-3)2=9;C项,3a4与2a2不是同类项,不能合并;D项,(-a3)2=a6.故选A.k=2,所以k=4.故选C.5.C 由题意得k>0,S△AOB=126.D 在△ABC中,∠ACB=90°,∵DE垂直平分AC,∴AD=DC,DE∥BC,∴E为AB的中点,∴DE=1BC,2BC=3.故选D.∵BC=√AB2-AC2=6,∴DE=127.A 甲和丙的成绩好,甲的方差小于丙的方差,因为方差越小,发挥越稳定,所以应选择甲.故选A.8.B 由题意知菱形每8秒旋转一周,60秒旋转7周余4秒,4秒旋转180°,即旋转60秒后得到的图形与原图形关于原点成中心对称,因为B(2,2),所以D(1,1),D关于原点对称的点的坐标为(-1,-1).故选B.评析本题考查旋转的概念,菱形的性质,中心对称的坐标变换,属中等难度题.二、填空题9.答案-1解析原式=1-2=-1.10.答案110°(或110)解析在▱ABCD中,AB∥CD,所以∠BAC=∠1=20°.又因为BE⊥AB,所以∠ABE=90°,故∠2=∠BAC+∠ABE=20°+90°=110°.11.答案k>-94解析根据题意得Δ=b2-4ac=9+4k>0,所以k>-9.412.答案 14解析 设4个组分别是1,2,3,4,画树状图如下.共有16种等可能的结果,其中小明和小亮同学被分在同一组的情况有4种,所以小明和小亮同学被分在同一组的概率P=416=14. 13.答案 (1,4)解析 把A(0,3),B(2,3)分别代入y=-x 2+bx+c 中,得{3=c ,3=-4+2b +c ,解得{c =3,b =2,∴抛物线的解析式为y=-x 2+2x+3. ∴y=-(x 2-2x+1)+4=-(x-1)2+4,∴该抛物线的顶点坐标为(1,4).14.答案 √3-π3解析 连接OC,AC,则OC=OA=AC,所以△OAC 为等边三角形,所以∠COA=∠CAO=60°,因为 ∠AOB=90°,所以∠BOC=30°,所以S 阴影=S 扇形BOC +S △OAC -S 扇形OAC =30π×4360+√3×224-60π×4360=13π+√3-2π3=√3-π3. 评析 本题考查扇形、等边三角形面积的计算,分割法是求阴影部分面积的常见方法.15.答案 3√22或3√55解析 ∵AD ∥BC,AB ⊥BC,MN ⊥AD,∴四边形ABNM 为矩形,∴MN=AB=3,∵B'为线段MN 的三等分点,∴B'M=1或2,∵∠AB'E=∠ABC=90°,∴∠AB'M+∠EB'N=90°.∵∠EB'N+∠B'EN=90°,∴∠AB'M=∠B'EN.又∵∠AMB'=∠ENB'=90°,∴△AMB'∽△B'NE,∴AB 'AM =B 'E B 'N ,设B'E=BE=x. ①当B'M=1时,B'N=2,在Rt △AMB'中,AM=√B 'A 2-B 'M 2=√32-12=2√2,所以2√2=x 2,即x=3√22; ②当B'M=2时,B'N=1,在Rt △AMB'中,AM=√B 'A 2-B 'M 2=√32-22=√5,所以√5=x 1,即x=3√55. 综上所述,BE 的长为3√22或3√55. 评析 本题考查轴对称,矩形的判定和性质,相似三角形的判定与性质,勾股定理等知识,题目的计算量略大,属中档题.三、解答题16.解析 原式=-x 2x (x+1)÷(x+1)(x -1)(x+1)2(3分)=-x x+1·x+1x -1=-xx -1.(5分)解{-x ≤1,2x -1<4得-1≤x<52,∴不等式组的整数解为-1,0,1,2.(7分) 若使分式有意义,只能取x=2,∴原式=-22-1=-2.(8分)17.解析 (1)4;1.(2分)(2)按人数为4和1正确补全直方图(图略).(4分)(3)B.(6分)(4)120×4+3+120=48(人).所以该团队一天行走步数不少于7 500步的人数约为48人.(9分)18.解析 (1)证明:在Rt △ABC 中,∠ABC=90°,点M 是AC 的中点,∴MA=MB.∴∠A=∠MBA.(2分)∵四边形ABED 是圆内接四边形,∴∠ADE+∠ABE=180°.又∵∠ADE+∠MDE=180°,∴∠MDE=∠MBA.同理可证:∠MED=∠A.(4分)∴∠MDE=∠MED,∴MD=ME.(5分)(2)①2.(7分)②60°(或60).(9分)19.解析 过点C 作CD ⊥AB,垂足为D,则DB=9.(1分)在Rt △CBD 中,∠BCD=45°,∴CD=DBtan45°=9.(3分)在Rt △ACD 中,∠ACD=37°,∴AD=CD ·tan 37°≈9×0.75=6.75.(6分)∴AB=AD+DB=6.75+9=15.75.(7分)(15.75-2.25)÷45=0.3(米/秒).∴国旗应以约0.3米/秒的速度匀速上升.(9分)20.解析 (1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元.(1分)依题意得{x +3y =26,3x +2y =29.解得{x =5,y =7.(3分) 所以一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元.(4分)(2)设购进A 型节能灯m 只,总费用为w 元.依题意得w=5m+7(50-m)=-2m+350.(5分)∵-2<0,∴当m 取最大值时,w 有最小值.(6分)又∵m ≤3(50-m),∴m ≤37.5.而m为正整数,∴当m=37时,w最小=-2×37+350=276.(8分)此时50-m=50-37=13.所以最省钱的购买方案是购进37只A型节能灯,13只B型节能灯.(9分)评析本题考查二元一次方程组的应用,一次函数在方案设计中的应用,属中档题.21.解析(1)0.(2)正确补全图象(图略).(3)可从函数的最值,增减性,图象的对称性等方面阐述.答案不唯一,合理即可.(4)①3;3.②2.③-1<a<0.(注:本题不累计给分,除(3)中每条性质为2分外,其他每空1分)评析本题考查了函数图象的画法,根据函数解析式探究函数的图象和性质,以及函数与方程的关系.题目难度适中,设计新颖独特,也对学生研究性学习的能力作了考查.22.解析(1)CB延长线上;a+b.(2分)(2)①DC=BE.理由如下:∵△ABD和△ACE为等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB.(5分)∴△CAD≌△EAB.∴DC=BE.(6分)②BE长的最大值是4.(8分)(3)AM的最大值为3+2√2,点P的坐标为(2-√2,√2).(10分)【提示】如图a,构造△BNP≌△MAP,则NB=AM.由(1)知,当点N在BA的延长线上时,NB有最大值(如图b).易得AN=2√2,∴AM=NB=3+2√2.过点P作PE⊥x轴于E,PE=AE=√2,∴P(2-√2,√2).评析 本题属类比探究题,主要考查三角形的全等,等边三角形的性质.23.解析 (1)由直线y=-43x+n 过点C(0,4),得n=4,∴直线的解析式为y=-43x+4. 当y=0时,0=-43x+4,解得x=3,∴A(3,0).(1分) ∵抛物线y=23x 2+bx+c 经过点A(3,0),B(0,-2), ∴{0=23×32+3b +c ,-2=c .∴{b =-43,c =-2.∴抛物线的解析式为y=23x 2-43x-2.(3分) (2)∵点P 的横坐标为m,∴P (m ,23m 2-43m -2),D(m,-2).(4分)若△BDP 为等腰直角三角形,则PD=BD.①当点P 在直线BD 上方时,PD=23m 2-43m. (i)若点P 在y 轴左侧,则m<0,BD=-m.∴23m 2-43m=-m,∴m 1=0(舍去),m 2=12(舍去).(5分)(ii)若点P 在y 轴右侧,则m>0,BD=m,∴23m 2-43m=m,∴m 3=0(舍去),m 4=72.(6分)②当点P 在直线BD 下方时,m>0,BD=m,PD=-23m 2+43m.∴-23m 2+43m=m,∴m 5=0(舍去),m 6=12.(7分)综上,m=72或12.即当△BDP 为等腰直角三角形时,PD 的长为72或12.(8分)(3)P 1(-√5,4√5+43),P 2(√5,-4√5+43),P 3(258,1132).(11分)【提示】∵∠PBP'=∠OAC,OA=3,OC=4,∴AC=5,sin ∠PBP'=45,cos ∠PBP'=35.①当点P'落在x 轴上时,过点D'作D'N ⊥x 轴,垂足为N,交BD 于点M,∠DBD'=∠ND'P'=∠PBP'. 如图a,ND'-MD'=2,即35(23m 2-43m)-(-45m)=2.图a如图b,ND'+MD'=2,即35(23m 2-43m)+45m=2.解得m=±√5.∴P 1(-√5,4√5+43),P 2(√5,-4√5+43);图b②当点P'落在y 轴上时,如图c,过点D'作D'M ⊥x 轴,交BD 于点M,过点P'作P'N ⊥y 轴,交MD'的延长线于点N,∠DBD'=∠ND'P'=∠PBP'.∵P'N=BM,∴45(23m 2-43m)=35m,解得m=0(舍去)或m=258.∴P 3(258,1132).图c评析本题考查了用待定系数法求二次函数解析式,用点的坐标差值表示线段的长度,动点与定点所构成的不定三角形的旋转等知识.分类讨论在本题中连续应用,而题目结论较多,容易丢解,造成丢分.本题为二次函数的综合题,属难题.。
河南省三门峡市九年级下学期数学期中考试试卷(一模)
河南省三门峡市九年级下学期数学期中考试试卷(一模)姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) 4的倒数是()A .B .C .D .2. (2分)(2016·丹东) 下列计算结果正确的是()A . a8÷a4=a2B . a2•a3=a6C . (a3)2=a6D . (﹣2a2)3=8a63. (2分)下面有4个汽车标志图案,其中是轴对称图形的是()A . ①②③B . ①③④C . ①②④D . ②③④4. (2分)(2019·泉州模拟) 一个几何体的三视图如图所示,则这个几何体是()A .B .C .D .5. (2分)在数轴上任取一个比﹣5大比7小的实数a对应的点,则取到的点对应的实数a满足|a|>2的概率为()A .B .C .D .6. (2分) (2016八下·饶平期末) 某同学使用计算器求15个数的平均数时,错将其中一个数据15输入为45,那么由此求得的平均数与实际平均数的差是()A . 2B . 3C . ﹣2D . ﹣37. (2分)点P1(x1 , y1),点P2(x2 , y2)是一次函数y =-4x+3 图象上的两个点,且 x1<x2 ,则y1与y2的大小关系是()。
A . y1>y2B . y1>y2>0C . y1<y2D . y1=y28. (2分)(2017·贵港) 如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是()A . 40B . 30C . 20D . 10二、填空题 (共10题;共15分)9. (1分)一个n边形的内角和为1080°,则n=________ .10. (1分) (2020七上·东台期末) 年至月份,东台黄海森林公园入园人数约为人,数字用科学记数法可以表示为________.11. (1分)(2018·常州) 计算:|﹣3|﹣1=________.12. (1分)使代数式有意义的x的取值范围是________.13. (1分) (2016七上·兴化期中) 已知a2+3a=1,则代数式2a2+6a﹣1的值为________.14. (2分)(2017·定远模拟) 如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有下列结论:①FC=HE;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .其中正确的是________.(把所有正确结论的序号都选上)15. (5分)(2018·无锡模拟) 已知双曲线经过点(-2,3),那么k的值等于________.16. (1分) (2018七上·宿州期末) 已知一个扇形的圆心角为45°,扇形所在圆的半径为4cm,则这个扇形的面积为________.17. (1分)(2018·威海) 如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y= x于点B1 .过B1点作B1A2∥y轴,交直线y=2x于点A2 ,以O为圆心,以OA2长为半径画弧,交直线y= x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3 ,以点O为圆心,以OA3长为半径画弧,交直线y= x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4 ,以点O为圆心,以OA4长为半径画弧,交直线y= x于点B4 ,…按照如此规律进行下去,点B2018的坐标为________.18. (1分)(2018·扬州) 如图,已知的半径为2,内接于,,则________.三、解答题 (共10题;共71分)19. (10分)(2017·徐州) 计算:(1)(﹣2)2﹣()﹣1+20170(2)(1+ )÷ .20. (10分)用适当的方法解下列方程:(1)(x+1)2﹣9=0(2) x2﹣2x=3(3) 2(x﹣1)2=3x﹣3.(4) 3x2+4x﹣1=0.21. (6分) (2017八下·邗江期中) 一只不透明的袋子中有2个红球,3个绿球和5个白球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.(1)会有哪些可能的结果?(2)任意摸一个球是绿球的概率是多少?22. (11分) (2019九下·润州期中) 某校八(1)班同学为了解2018年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:(1)本次调查采用的调查方式是________(填“普查”或“抽样调查”),样本容量是________;(2)补全频数分布直方图:(3)若将月均用水量的频数绘成扇形统计图,则月均用水量“ ”的圆心角度数是________;(4)若该小区有5000户家庭,求该小区月均用水量超过的家庭大约有多少户?23. (5分)一位很有名望的木工师傅,招收了两名徒弟.一天,师傅有事外出,两徒弟就自己在家练习用两块四边形的废料各做了一扇矩形式的门,完事之后,两人都说对方的门不是矩形,而自己的是矩形.甲的理由是:“我用直尺量这个门的两条对角线,发现它们的长度相等,所以我这个四边形门就是矩形.”乙的理由是:“我用角尺量我的门任意三个角,发现它们都是直角.所以我这个四边形门就是矩形.”根据他们的对话,你能肯定谁的门一定是矩形.24. (5分)(2017·邹平模拟) 列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.25. (10分)(2017·溧水模拟) 【问题探究】已知:如图①所示,∠MPN的顶点为P,⊙O的圆心O从顶点P出发,沿着PN方向平移.(1)如图②所示,当⊙O分别与射线PM,PN相交于A、B、C、D四个点,连接AC、BD,可以证得△PAC∽△________,从而可以得到:PA•P B=P C•P D.(2)如图③所示,当⊙O与射线PM相切于点A,与射线PN相交于C、D两个点.求证:PA2=PC•PD.(3)【简单应用】如图④所示,(2)中条件不变,经过点P的另一条射线与⊙O相交于E、F两点.利用上述(1),(2)两问的结论,直接写出线段PA与PE、PF之间的数量关系________;当PA=4 ,EF=2,则PE=________.(4)【拓展延伸】如图⑤所示,在以O为圆心的两个同心圆中,A、B是大⊙O上的任意两点,经过A、B 两点作线段,分别交小⊙O于C、E、D、F四个点.求证:AC•AE=BD•BF.(友情提醒:可直接运用本题上面所得到的相关结论)26. (2分)(2019·海州模拟) 如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为________,点B到墙面的距离为________cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据: =1.41, =1.73)27. (2分)(2017·越秀模拟) 综合与探究:如图,抛物线y= x2﹣ x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.28. (10分) (2016九上·中山期末) 如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)填空:m的值为________;(2)求S关于x的函数关系式,并写出x的取值范围;(3)请直接写出△PCQ为等腰三角形时x的值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共15分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共71分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、22-3、22-4、23-1、24-1、25-1、25-2、25-3、25-4、26-1、26-2、27-1、28-1、28-2、28-3、。
河南省三门峡市中考数学一模试卷
径长为
.
15.(3 分)如图,在 Rt△ABC 中,∠ACB=90°,AB=5,AC=3,点 D 是 BC 上一动点,
连结 AD,将△ACD 沿 AD 折叠,点 C 落在点 C′,连结 C′D 交 AB 于点 E,连结 BC′.当
△BC′D 是直角三角形时,DE 的长为Βιβλιοθήκη .第3页(共8页)
三、解答题(共 8 个小题,满分 75 分) 16.(8 分)先化简,再求值:(
B.3.0067×105
C.3.0067×104
D.30.067×104
3.(3 分)如图是婴儿车的平面示意图,其中 AB∥CD,∠1=120°,∠3=40°,那么∠2
的度数为( )
A.80°
B.90°
C.100°
D.102°
4.(3 分)小明因流感在医院观察,要掌握他在一周内的体温是否稳定,则医生需了解小明
A.2
B.
C.
D.
9.(3 分)如图所示,⊙O 是以坐标原点 O 为圆心,4 为半径的圆,点 P 的坐标为( , ),
弦 AB 经过点 P,则图中阴影部分面积的最小值等于( )
A.2π﹣4
B.4π﹣8
C.
D.
10.(3 分)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当 ﹣1≤x≤3 时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当 0<x1< x2 时,y1<y2,其中正确的是( )
形.
22.(10 分)在△ABC 中,∠BAC=90°,AB=AC,点 D 为直线 BC 上一动点(点 D 不与
B、C 重合),以 AD 为边在 AD 的右侧作正方形 ADEF,连接 CF.
三门峡市初三中考数学一模模拟试卷【含答案】
三门峡市初三中考数学一模模拟试卷【含答案】一、选择题(本大题共12小題,每小题3分,共36分)每小题都给出标号为(A ),(B ),(C ).(D )的四个选项,其中只有一个是正确的,请考生用2B 铅笔在答题卡上将选定的答案标号涂属.1.(3分)2-的绝对值是( )A .2B .2-C .12D .12- 2.(3分)某8种食品所含的热量值分别为:120,184,122,119,126,119,118,124,则这组数据的众数和中位数分别是( )A .134,120B .119,120C .119,121D .119,1223.(3分)若几何体的三视图如图所示,则该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱4.(3分)计算223()a a 的结果是( )A .7aB .10aC .8aD .12a5.(3分)若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒6.(3分)若关于x 的一元二次方程240x x m +-=有两个实数根,则实数m 的取值范围是( )A .4m -…B .4m -…C .4m …D .4m …7.(3分)在平面直角坐标系xOy 中,若一次函数1(0)y kx k =-≠的图象经过点P ,且y 的值随x 值的增大而减少,则点P 的坐标可以为( )A .(2,1)B .(2,1)-C .(2,1)--D .(2,1)-8.(3分)《卖油翁》中写道:“(翁)乃取葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见卖油翁的技艺之高超若铜钱直径4cm ,中闻有边长为1cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油滴恰好落入孔中的概率是( )A .2πB .1πC .12πD .14π9.(3分)如图,BC 是O 的直径,AB 是O 的弦,PA ,PC 均是O 的切线,若40B ∠=︒,则P ∠的度数是( )A .80︒B .90︒C .100︒D .120︒10.(3分)如图,在菱形ABCD 中,点E ,F 分别是AB ,AC 的中点,连接EF ,若4EF =,则菱形ABCD 的周长为( )A .16B .20C .24D .3211.(3分)如图,点A ,B 在函数1(0y x x =>的图象上,点C ,D 在函数(0,0)k y k x x=>>的图象上,////AD BC y 轴,若点A ,B 的横坐标分别为1和2,32ABCD S =四边形,则k 的值为( )A .32B .2C .3D .412.(3分)如图,在正方形ABCD 中,点O 是对角线AC 的中点,P 是线段AO 上的动点(不与点A ,O 重合),PE PB ⊥交CD 于点E ,PF CD ⊥于点F ,则对于下列结论:①PE PB =;②DF BF =;③PC PA CE -=④PA CE PC CF=,其中错误结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共6小题,每小题3分,共18分)13.(3在实数范围内的值存在,则实数x 的取值范围是 . 14.(3分)化简:1(1)(1)1m m---的结果是 . 15.(3分)一个整数52800⋯用科学记数法表示为105.2810⨯,则原数中“0”的个数为 .16.(3分)如图,在ABC ∆中,DE 是AC 边的垂直平分线,且分别与BC ,AC 交于点D 和E ,若65B ∠=︒,30C ∠=︒,则BAD ∠= ︒.17.(3分)如图,在33⨯的方格纸中,每个小方格都是边长为1的正方形,O ,A ,B 都是格点,若图中扇形AOB 恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为 .18.(3分)如图,在ABC ∆中,5AB AC ==,6BC =,若P 是BC 边上任意一点,且满足APM ABC ∠=∠,PM 与AC 边的交点为M ,则线段AM 的最小值是 .三、解答题(本大题共9小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(5分)计算:20190(1)(2sin 60π---+︒20.(5分)求满足不等式组()3210131322x x x x --<⋯⋯⎧⎪⎨--⋯⋯⎪⎩①②…的所有整数解 21.(5分)尺规作图(保留作图痕迹,不写作法和证明)如图,已知:ABC ∆,90ACB ∠=︒,求作:O ,使圆心O 在AC 边上,且O 与AB ,BC 均相切.22.(6分)如图,反比例函数(0)k y k x=≠的图象与正比例函数2y x =-交于(1,)A m -和B 两点,点C 在第三象限内,AC x ⊥轴,BC AB ⊥.(1)求k 的值及点B 的坐标;(2)求cos C 的值.23.(8分)学校今年组织学生参加志愿者活动,活动分为甲、乙、丙三组图和扇形统计图反映了学生参加活动的报名情况,请你根据图中的信息,解答下列问题:(1)若在参加活动的学生中随机抽取一名学生,则抽到乙组学生的概率是 .(2)今年参加志愿者共 人,并把条形统计图补充完整;(3)学校两年前参加志愿者的总人数是810人,若这两年的年增增长率相同,求这个年增长率.(精确到1%)24.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A ,B 两种花木共100棵绿化操场,其中A 花木每棵50元,B 花木每棵100元.(1)若购进A ,B 两种花木刚好用去8000元,则购买了A ,B 两种花木各多少棵?(2)如果购买B 花木的数量不少于A 花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.25.(8分)如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且ACB DCE ∠=∠.(1)判断直线CE 与O 的位置关系,并证明你的结论;(2)若tan 2ACB ∠=,2BC =,求O 的半径.26.(11分)已知抛物线m ;2y ax bx c =++与x 轴交于(2,0)A -,(6,0)B 两点,与y 轴交于点(0,6)C ,其对称轴n 与x 轴交于点F .(1)求抛物线m 的表达式;(2)如图1,若动点P 在对称轴n 上,当PAC ∆的周长最小时,求点P 的坐标;(3)如图2,设点C 关于对称轴n 的对称点为D ,M 是线段OC 上的一个动点若DMC MEO ∆∆∽,求直线DM 的表达.27.(10分)已知,在Rt ABC∆中,90A∠=︒,点D在BC边上,点E在AB边上,12 BDE C∠=∠,过点B作BF DE⊥交DE的延长线于点F.(1)如图1,当AB AC=时:①EBF∠的度数为;②求证:2DE BF=.(2)如图2,当AB kAC=时,求BFDE的值(用含k的式子表示).参考答案与试题解析一、选择题(本大题共12小題,每小题3分,共36分)每小题都给出标号为(A),(B),(C).(D)的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂属.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2-的绝对值是2,即|2|2-=.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.【分析】根据众数和中位数的概念求解即可.【解答】解:在这8个数中,119出现了2次,出现的次数最多,∴众数是119;把这组数据按照从小到大的顺序排列为:118,119,119,中学数学一模模拟试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中只有一项符合题目要求,请将正确选项前的字母代号填在答题卡相应位置上)1.8的立方根等于()A.2 B.-2 C.±2 D.2.下列运算中,结果正确的是()A.a4+a4=a8 B.a3•a2=a5C.a8÷a2=a4 D.(-2a2)3=-6a63x的取值范围是()A.x>13B.x>−13C.x≥13D.x≥−134.如图,由5个完全相同的小正方体组合成的几何体,它的俯视图为()A.B.C.D.5.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.如图,正方形ABCD的顶点A、D分别在x轴、y轴的正半轴上,若反比例函数y=kx(x>0)的图象经过另外两个顶点B、C,且点B(6,n),(0<n<6),则k的值为()A.18 B.12 C.6 D.2二、填空题(本大题共10小题,每小题3分,共30分.请将答案直接写在答题卡相应位置上)7.- 12的倒数是.8.0.0002019用科学记数法可表示为.9.分解因式:a2b-b3=10.一元二次方程x2-2x=0的两根分别为x1和x2,则x1x211.一个多边形的内角和与外角和之差为720°,则这个多边形的边数为.12.已知抛物线y=ax2+bx+c(a>0)的对称轴是直线x=2,且经过点P(3,1),则a+b+c的值为 .13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 .14.已知点C 为线段AB 的黄金分割点,且AC >BC ,若P 点为线段AB 上的任意一点,则P 点出现在线段AC 上的概率为 .15.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为 .16.如图,平面直角坐标系中,点A (0,-2),B (-1,0),C (-5,0),点D 从点B 出发,沿x 轴负方向运动到点C ,E 为AD 上方一点,若在运动过程中始终保持△AED ~△AOB ,则点E 运动的路径长为三、解答题(本大题共11小题,共102分.请在答题卡指定位置作答,解答时应写出必要的文字说明、演算步骤或推理过程)17.计算:2011)4sin 603-︒⎛⎫+- ⎪⎝⎭ 18.解不等式组:212(3)33x x x +⎧⎨+->⎩…. 19.先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足方程x 2-2x-3=0. 20.如图,在△ABC 中,∠BAC=90°,AD ⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于P ,Q 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的基础上,过点P 画PE ∥AC 交BC 边于E ,联结EQ ,则四边形APEQ是什么特殊四边形?证明你的结论.21.将分别标有数字3,6,9的三张形状、大小均相同的卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求抽到数字恰好为6的概率;(2)随机地抽取张作为十位上的数字(不放回),再抽取一张作为个位上的数字,通过列表或画树状图求所组成的两位数恰好是“69”的概率.22.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒种后△DPQ 的面积为31cm2?23.在争创全国文明城市活动中,某校开展了为期一周的“新时代文明实践”活动,为了解情况,学生会随机调查了部分学生在这次活动中“宣传文明礼仪”的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B;1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x <3,制作成两幅不完整的统计图(如图)请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有900名学生,估计该校在这次活动中“宣传文明礼仪”的时间不少于2小时的学生有多少人?24.共享单车为大众出行提供了方便,图1为单车实物图,图2为单车示意图,AB与地面平行,点A、B、D共线,点D、F、G共线,坐垫C可沿射线BE方向调节.已知,∠ABE=70°,∠EAB=45°,车轮半径为0.3m,BE=0.4m.小明体验后觉得当坐垫C离地面高度为0.9m时骑着比较舒适,求此时CE的长.(结果精确到1cm)参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,2≈1.4125.如图,AB,CD是圆O的直径,AE是圆O的弦,且AE∥CD,过点C的圆O切线与EA的延长线交于点P,连接AC.(1)求证:AC平分∠BAP;(2)求证:PC2=PA•PE;(3)若AE-AP=PC=4,求圆O的半径.26.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)27.如图,抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),交y轴于点C,顶点是D.(1)求抛物线的表达式和顶点D的坐标;(2)在x轴上取点F,在抛物线上取点E,使以点C、D、E、F为顶点的四边形是平行四边形,求点E的坐标;(3)将此抛物线沿着过点(0,2)且垂直于y轴的直线翻折,E为所得新抛物线x轴上方一动点,过E作x轴的垂线,交x轴于G,交直线l:y=-12x-1于点F,以EF为直径作圆在直线l上截得弦MN,求弦MN长度的最大值.参考答案与试题解析1.【分析】利用立方根定义计算即可求出值.【解答】解:8的立方根是2,故选:A.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.2.【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为a4+a4=2a4,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为a8÷a2=a8-2=a6,故本选项错误;D、应为(-2a2)3=(-2)3•(a2)3=-8a6,故本选项错误.故选:B.【点评】本题考查同底数幂的乘法法则,同底数幂的除法法则,积的乘方的性质,熟练掌握运算法则是解题的关键.3.【分析】根据二次根式的性质,被开方数大于或等于0,解不等式即可.【解答】解:根据题意得:3x-1≥0,解得x≥13.故选:C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.4.【分析】根据从上面看得到的图象是俯视图,可得答案.【解答】解:俯视图如选项D所示,故选:D.【点评】本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.5.【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°-32°=58°,故选:A.【点评】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.6.【分析】过B作BE⊥x轴于E,FC⊥y轴于点F.可以证明△AOD≌△BEA,则可以利用n表示出A,D的坐标,即可利用n表示出C的坐标,根据C,B满足函数解析式,即可求得n的值.进而求得k的值.【解答】解:过D作BE⊥x轴于E,CF⊥y轴于点F,∴∠BEA=90°,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∴∠DAO+∠BAE=90°,∠BAE+∠ABE=90°,∴∠ABE=∠DAO,又∵AB=AD,∴△ADO≌△BAE(AAS).同理,△ADO≌△DCF.∴OA=BE=n,OD=AE=OE-OA=6-n,则A点的坐标是(n,0),D的坐标是(0,6-n).∴C的坐标是(6-n,6).由反比例函数k的性质得到:6(6-n)=6n,所以n=3.则B点坐标为(6,3),所以k=6×3=18.故选:A.【点评】本题考查了正方形的性质与反比例函数的综合应用,体现了数形结合的思想.7.分析】乘积是1的两数互为倒数.【解答】解:-12的倒数是-2.故答案为:-2.【点评】本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键.8.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0002019=2.019×10-4.故答案为:2.019×10-4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=b(a2-b2)=b(a+b)(a-b),故答案为:b(a+b)(a-b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10.【分析】根据根与系数的关系可得出x1x2=0,此题得解.【解答】解:∵x2-2x=0的两根分别为x1和x2,∴x1x2=0,故答案为:0.【点评】本题考查了根与系数的关系,牢记两根之积等于ca是解题的关键.11.【分析】先求出多边形的内角和,再根据多边形的内角和公式求出边数即可.【解答】解:∵一个多边形的内角和与外角和之差为720°,多边形的外角和是360°,∴这个多边形的内角和为720°+360°=1080°,设多边形的边数为n,则(n-2)×180°=1080°,解得:n=8,即多边形的边数为8,故答案为:8.【点评】本题考查了多边形的内角和外角,能列出关于n的方程是即此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°,多边形的外角和等于360°.12.【分析】由二次函数的对称性可知P点关于对称轴对称的点为(1,1),故当x=1时可求得y值为1,即可求得答案.【解答】解:∵抛物线y=ax2+bx+c(a>0)的对称轴是直线x=2,∴P(3,1)对称点坐标为(1,1),∴当x=1时,y=1,即a+b+c=1,故答案为1.【点评】本题主要考查二次函数的性质,利用二次函数的对称性求得点(1,1)在其图象上是解题的关键.13. 【分析】易得扇形的弧长,除以2π即为圆锥的底面半径.【解答】解:扇形的弧长=1206180π⨯ =4π, ∴圆锥的底面半径为4π÷2π=2.故答案为:2.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.16. 【分析】如图,连接OE .首先说明点E 在射线OE 上运动(∠EOD 是定值),当点D 与C 重合时,求出OE 的长即可.【解答】解:如图,连接OE .∵∠AED=∠AOD=90°,∴A ,O ,E ,D 四点共圆,∴∠EOC=∠EAD=定值,∴点E 在射线OE 上运动,∠EOC 是定值.∵tan ∠EOD=tan ∠OAB=12, ∴可以假设E (-2m ,m ),当点D 与C 重合时,225229AC =+=,∵AE=2EC ,∴EC=2914555=,∴(-2m+5)2+m 2=295, 解得m=85或125(舍弃), ∴E (-165,85), ∴点E 的运动轨迹=OE 的长=5, 故答案为85. 【点评】本题考查轨迹,坐标与图形性质,相似三角形的性质,锐角三角函数等知识,解题的关键是正确寻找点的运动轨迹,属于中考常考题型.17. 【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 【分析】首先解每个不等式,两个不等式的公共部分就是不等式组的解集.【解答】解:()212333x x +≥⋯+-⋯⎧⎨⎩①>②,解①得:x≥-1,解②得:x <3.则不等式组的解集是:-1≤x <3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.19. 【分析】根据分式的运算法则即可求出答案.【解答】解:原式=1(2)211x x x x x x x -+⋅-+-+ =1x x x -+ =21x x +; 当x 2-2x-3=0时,解得:x=3或x=-1(不合题意,舍去)当x=3时,原式=94;【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.【分析】(1)利用尺规作出∠ABC的角平分线即可.(2)利用全等三角形的性质证明PA=PE,再证明AP=AQ,即可解决问题.【解答】解:(1)如图,射线BQ即为所求.(2)结论:四边形APEQ是菱形.理由:∵AD⊥BC,∴∠ADB=90°,∵∠BAC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠C=90°,∴∠BAD=∠C,∵PE∥AC,∴∠PEB=∠C,∠BAP=∠BEP,∵BP=BP,∠ABP=∠EBP,∴△ABP≌△EBP(AAS),∴PA=PE,∵∠AQP=∠QBC+∠C,∠APQ=∠ABP+∠BAP,∴∠APQ=∠AQP,∴AP=AQ,∴PE=AQ,∵PE∥AQ,∴四边形APEQ是平行四边形,∵AP=AQ,∴四边形APEQ是菱形.【点评】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】(1)让6的个数除以数的总数即为所求的概率;(2)列举出所有情况,看所组成的两位数恰好是“69”的情况数占总情况数的多少即可.【解答】解:(1)∵卡片共有3张,有3,6,9,6有一张,∴抽到数字恰好为6的概率P(6)=13;(2)画树状图:由树状图可知,所有等可能的结果共有6种,其中两位数恰好是69有1种.∴P(69)=16.【点评】此题主要考查了列树状图解决概率问题;找到所组成的两位数恰好是“69”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.22.【分析】设运动x秒钟后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,利用分割图形求面积法结合△DPQ的面积为31cm2,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设运动x秒钟后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,S△DPQ=S矩形ABCD-S△ADP-S△CDQ-S△BPQ,=AB•BC-12AD•AP-12CD•CQ-12BP•BQ,=6×12-12×12x-12×6(12-2x)-12(6-x)•2x,=x2-6x+36=31,解得:x1=1,x2=5.答:运动1秒或5秒后△DPQ的面积为31cm2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.【分析】(1)根据D组的频数和所占的百分比,可以求得本次调查的学生的人数;(2)根据(1)中的结果和统统计图中的数据可以分别求得B 和C 组的人数,从而可以将频数分布直方图补充完整;(3)根据统计图中的数据可以求得该校在这次活动中“宣传文明礼仪”的时间不少于2小时的学生有多少人.【解答】解:(1)学生会随机调查了:10÷20%=50名学生,故答案为:50;(2)C 组有:50×40%=20(名),则B 组有:50-3-20-10-4=13(名),补全的频数分布直方图如右图所示;(3)900×10450=252(人), 答:该校在这次活动中“宣传文明礼仪”的时间不少于2小时的学生有252人.【点评】本题考查频数(率)分布直方图、用样本估计总体、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.24. 【分析】过点C 作CN ⊥AB ,交AB 于M ,通过构建直角三角形解答即可.【解答】解:过点C 作CN ⊥AB ,交AB 于M ,交地面于N由题意可知MN=0.3m ,当CN=0.9m 时,CM=0.6m ,Rt △BCM 中,∠ABE=70°,sin ∠ABE=sin70°=CM CB ≈0.94, BC≈0.638,CE=BC-BE=0.638-0.4=0.238≈0.24m=24cm.【点评】本题主要考查了解直角三角形的应用,正确构建直角三角形是解答本题的关键.25.【分析】(1)OA=OC,则∠OCA=∠OAC,CD∥AP,则∠OCA=∠PAC,即可求解;(2)证明△PAC∽△PCE,即可求解;(3)利用△PAC∽△CAB、PC2=AC2-PA2,AC2=AB2-BC2,即可求解.【解答】解:(1)∵OA=OC,∴∠OCA=∠OAC,∵CD∥AP,∴∠OCA=∠PAC,∴∠OAC=∠PAC,∴AC平分∠BAP;(2)连接AD,∵CD为圆的直径,∴∠CAD=90°,∴∠DCA+∠D=90°,∵CD∥PA,∴∠DCA=∠PAC,又∠PAC+∠PCA=90°,∴∠PAC=∠D=∠E,∴△PAC∽△PCE,∴PA PC PC PE,∴PC2=PA•PE;(3)AE=AP+PC=AP+4,由(2)得16=PA(PA+PA+4),PA2+2PA-8=0,解得,PA=2,连接BC,∵CP是切线,则∠PCA=∠CBA,Rt△PAC∽Rt△CAB,AP AC PCAC AB BC==,而PC2=AC2-PA2,AC2=AB2-BC2,其中PA=2,解得:AB=10,则圆O的半径为5.【点评】此题属于圆的综合题,涉及了三角形相似、勾股定理运用的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.26.【分析】(1)如图1,过E作EF⊥AB于F,根据等腰三角形的性质得到∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,推出四边形EFBD是矩形,得到EF=BD,推出△AEF 是等腰直角三角形,根据等腰直角三角形的性质得到结论;(2)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=30°,根据相似三角形的判定和性质即可得到结论;(3)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=β,根据相似三角形的性质得到BC ACDC CE=,即B C D CA C E C=,根据角的和差得到∠ACE=∠BCD,求得△ACE∽△BCD,证得AE ACBD BC=,过点B作BF⊥AC于点F,则AC=2CF,根据相似三角形的性质即可得到结论.(1)如图1,过E作EF⊥AB于F,∵BA=BC ,DE=DC ,∠ACB=∠ECD=45°, ∴∠A=∠C=∠DEC=45°, ∴∠B=∠EDC=90°, ∴四边形EFBD 是矩形, ∴EF=BD , ∴EF ∥BC ,∴△AEF 是等腰直角三角形,∴2BD EFAE AE==, (2)此过程中AEBD的大小有变化,由题意知,△ABC 和△EDC 都是等腰三角形, ∴∠ACB=∠CAB=∠ECD=∠CED=30°, ∴△ABC ∽△EDC ,中学数学一模模拟试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中只有一项符合题目要求,请将正确选项前的字母代号填在答题卡相应位置上)1.8的立方根等于( )A .2B .-2C .±2D .2.下列运算中,结果正确的是( ) A .a4+a4=a8 B .a3•a2=a5 C .a8÷a2=a4D .(-2a2)3=-6a63x 的取值范围是( ) A .x >13B .x >−13C .x≥13D .x≥−134.如图,由5个完全相同的小正方体组合成的几何体,它的俯视图为( )A.B.C.D.5.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.如图,正方形ABCD的顶点A、D分别在x轴、y轴的正半轴上,若反比例函数y=kx(x>0)的图象经过另外两个顶点B、C,且点B(6,n),(0<n<6),则k的值为()A.18 B.12 C.6 D.2二、填空题(本大题共10小题,每小题3分,共30分.请将答案直接写在答题卡相应位置上)7.- 12的倒数是.8.0.0002019用科学记数法可表示为.9.分解因式:a2b-b3=10.一元二次方程x2-2x=0的两根分别为x1和x2,则x1x211.一个多边形的内角和与外角和之差为720°,则这个多边形的边数为.12.已知抛物线y=ax2+bx+c(a>0)的对称轴是直线x=2,且经过点P(3,1),则a+b+c的值为 .13.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 .14.已知点C 为线段AB 的黄金分割点,且AC >BC ,若P 点为线段AB 上的任意一点,则P 点出现在线段AC 上的概率为 .15.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为 .16.如图,平面直角坐标系中,点A (0,-2),B (-1,0),C (-5,0),点D 从点B 出发,沿x 轴负方向运动到点C ,E 为AD 上方一点,若在运动过程中始终保持△AED ~△AOB ,则点E 运动的路径长为三、解答题(本大题共11小题,共102分.请在答题卡指定位置作答,解答时应写出必要的文字说明、演算步骤或推理过程)17.计算:2011)4sin 603-︒⎛⎫+- ⎪⎝⎭18.解不等式组:212(3)33x x x +⎧⎨+->⎩….19.先化简,再求值:2311221x xx x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足方程x 2-2x-3=0. 20.如图,在△ABC 中,∠BAC=90°,AD ⊥BC ,垂足为D .(1)求作∠ABC 的平分线,分别交AD ,AC 于P ,Q 两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的基础上,过点P 画PE ∥AC 交BC 边于E ,联结EQ ,则四边形APEQ是什么特殊四边形?证明你的结论.21.将分别标有数字3,6,9的三张形状、大小均相同的卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求抽到数字恰好为6的概率;(2)随机地抽取张作为十位上的数字(不放回),再抽取一张作为个位上的数字,通过列表或画树状图求所组成的两位数恰好是“69”的概率.22.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒种后△DPQ 的面积为31cm2?23.在争创全国文明城市活动中,某校开展了为期一周的“新时代文明实践”活动,为了解情况,学生会随机调查了部分学生在这次活动中“宣传文明礼仪”的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B;1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x <3,制作成两幅不完整的统计图(如图)请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有900名学生,估计该校在这次活动中“宣传文明礼仪”的时间不少于2小时的学生有多少人?24.共享单车为大众出行提供了方便,图1为单车实物图,图2为单车示意图,AB与地面平行,点A、B、D共线,点D、F、G共线,坐垫C可沿射线BE方向调节.已知,∠ABE=70°,∠EAB=45°,车轮半径为0.3m,BE=0.4m.小明体验后觉得当坐垫C离地面高度为0.9m时骑着比较舒适,求此时CE的长.(结果精确到1cm)参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,2≈1.4125.如图,AB,CD是圆O的直径,AE是圆O的弦,且AE∥CD,过点C的圆O切线与EA的延长线交于点P,连接AC.(1)求证:AC平分∠BAP;(2)求证:PC2=PA•PE;(3)若AE-AP=PC=4,求圆O的半径.26.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)27.如图,抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),交y轴于点C,顶点是D.(1)求抛物线的表达式和顶点D的坐标;(2)在x轴上取点F,在抛物线上取点E,使以点C、D、E、F为顶点的四边形是平行四边形,求点E的坐标;(3)将此抛物线沿着过点(0,2)且垂直于y轴的直线翻折,E为所得新抛物线x轴上方一动点,过E作x轴的垂线,交x轴于G,交直线l:y=-12x-1于点F,以EF为直径作圆在直线l上截得弦MN,求弦MN长度的最大值.参考答案与试题解析1.【分析】利用立方根定义计算即可求出值.【解答】解:8的立方根是2,故选:A.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.2.【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为a4+a4=2a4,故本选项错误;。
河南省三门峡市中考数学一模试卷
河南省三门峡市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·福田模拟) ﹣2的倒数是()A . ﹣B . ﹣2C .D . 22. (2分)(2016·赤峰) 中国的领水面积约为370000km2 ,其中南海的领水面积约占我国领水面积的,用科学记数法表示中国南海的领水面积是()A . 37×105km2B . 37×104km2C . 0.85×105km2D . 1.85×105km23. (2分)下列命题中,正确的是()A . 圆只有一条对称轴B . 圆的对称轴不止一条,但只有有限条C . 圆有无数条对称轴,每条直径都是它的对称轴D . 圆有无数条对称轴,经过圆心的每条直线都是它的对称轴4. (2分) (2019七下·成都期中) 下列计算正确是()A . a2+a3=a5B . a2•a3=a6C . (a2)3=a6D . (ab)2=ab25. (2分)下列说法正确的是()A . 一个游戏的中奖概率是0.1,则做10次这样的游戏一定会中奖;B . 一组数据6,8,7,8,8,9,10的众数和中位数都是8;C . 为了解全国中学生的心理健康情况,应该采用普查的方式;D . 甲组数据方差,乙组数据方差,则乙组数据比甲组数据稳定.6. (2分)化简 - 的结果是()A . m+3B . m-3C .D .7. (2分)一个均匀的立方体骰子六个面上标有数1,2,3,4,5,6,若以连续掷两次骰子得到的数m,n 作为点P的坐标,则点P落在反比例函数y=图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是()A .B .C .D .8. (2分)九(1)班同学毕业的时候,每人都必须与其他任何一位同学合照一张双人照,全班共照相片780张,则九(1)班的人数是()A . 39B . 40C . 50D . 609. (2分)命题“关于x的一元二次方程x2+bx+1=0,必有实数解.”是假命题.则在下列选项中,可以作为反例的是()A . b=﹣3B . b=﹣2C . b=﹣1D . b=210. (2分)(2017·金华) 对于二次函数y=−(x−1)2+2的图象与性质,下列说法正确的是()A . 对称轴是直线x=1,最小值是2B . 对称轴是直线x=1,最大值是2C . 对称轴是直线x=−1,最小值是2D . 对称轴是直线x=−1,最大值是211. (2分)在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC、BC为直径画半圆,则图中阴影部分的面积为()A . 10π﹣8B . 10π﹣16C . 10πD . 5π12. (2分)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB与扇形A101B1是相似扇形,且半径OA:O1A1=k(k为不等于0的常数).那么下面四个结论:①∠AOB=∠A101B1;②△AOB∽△A101B1;③=k;④扇形AOB与扇形A101B1的面积之比为k2 .成立的个数为()A . 1个B . 2个C . 3个D . 4个二、填空题 (共4题;共5分)13. (2分) (2018八上·宁城期末) 请写出一个多项式(最多三项),使它能先“提公因式”,再“运用公式”来分解因式.你编写的多项式是:________,分解因式的结果是________.14. (1分)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为________.15. (1分) (2020八上·西安期末) 如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE=________。
河南省三门峡市中考数学一模考试试卷
河南省三门峡市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·嵊州期末) ﹣2016的倒数是()A . 2016B . -2016C .D .2. (2分)下面的三个图形是某几何体的三种视图,则该几何体是()A . 正方体B . 圆柱体C . 圆锥体D . 球体3. (2分)(2017·徐州模拟) 地球的平均半径约为637100米,该数字用科学记数法可表示为()A . 6371×103B . 0.6371×107C . 6.371×105D . 6.371×1064. (2分)(2019·黄冈模拟) 如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为()A . 50°B . 60°C . 70°5. (2分)下列计算正确的是()A . (a+b)2=a2+b2B . (﹣2a)3=﹣6a3C . (a2b)3=a5b2D . (﹣a)6÷(﹣a)2=a46. (2分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF 是等腰直角三角形;③2S四边形AEPF=S△ABC;④BE+CF=EF.上述结论中始终正确的有()A . 4个B . 3个C . 2个D . 1个7. (2分)分式方程的解为()A . 1B . 2C . 3D . 48. (2分) (2018九上·武昌期中) 如图,在⊙O中,圆心角∠AOB=120°,P为弧AB上一点,则∠APB度数是()A . 100°B . 110°C . 120°9. (2分)已知圆锥的母线长和底面圆的直径均是10㎝,则这个圆锥的侧面积是()A . 50πcm2B . 75πcm2C . 100πcm2D . 150πcm210. (2分)如图,已知抛物线y=-x2+px+q的对称轴为x=﹣3,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,1).要在坐标轴上找一点P,使得△PMN的周长最小,则点P的坐标为()A . (0,2)B . (,0)C . (0,2)或(,0)D . 以上都不正确二、填空题 (共4题;共4分)11. (1分) (2019七下·夏邑期中) ﹣1的相反数是________,的绝对值是________,的平方根是________.12. (1分)(2018·伊春) 在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是________.13. (1分)(2017·昌乐模拟) 分解因式:9﹣a2=________.14. (1分) (2019八上·海州期中) 如图,若△RtABC≌Rt△ADE,且∠B=60°,则∠E=________°三、计算题 (共2题;共15分)15. (10分)计算:2sin60°+|﹣2|+.16. (5分) (2019八下·黄冈月考) 已知x=﹣2,y= +2,求:(1) x2y+xy2;(2) + 的值.四、综合题 (共12题;共83分)17. (11分)(2020·云南模拟) 省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m=________%,这次共抽取________名学生进行调查;并补全条形图________;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?18. (2分)周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)19. (10分)(2019·淄博模拟) 如图,顶点为的抛物线与轴交于,两点,与轴交于点.(1)求这条抛物线对应的函数表达式;(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点,满足,过作轴于点,设的内心为,试求的最小值.20. (15分)(2017·大庆模拟) 如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1 , y1),B(x2 , y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 ,所以A,B两点间的距离为:AB=我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2 ,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2 .(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为________.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使∠POA=30°,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明:AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.21. (1分)若x1=﹣3是关于x的方程x2+kx﹣3=0的一个根,x2是另一个根,则x1+x2=________ .22. (1分)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为________.23. (1分)(2017·贵港) 如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.24. (1分) (2019九上·南关期末) 如图,在Rt△ABC中,∠ACB=90°,AC=16,BC=12,点D、E分别为边AB、BC中点,点P从点A出发,沿射线AB方向以每秒5个单位长度的速度向点B运动,到点B停止.当点P不与点A重合时,过点P作PQ∥AC ,且点Q在直线AB左侧,AP=PQ ,过点Q作QM⊥AB交射线AB于点M .设点P运动的时间为t(秒)(1)用含t的代数式表示线段DM的长度;(2)求当点Q落在BC边上时t的值;(3)设△PQM与△DEB重叠部分图形的面积为S(平方单位),当△PQM与△DEB有重叠且重叠部分图形是三角形时,求S与t的函数关系式;(4)当经过点C和△PQM中一个顶点的直线平分△PQM的内角时,直接写出此时t的值.25. (1分)(2018·湖州模拟) 如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数和在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.26. (10分) (2017九上·邯郸期末) 某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24.(1)若利润为21万元,求n的值.(2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?27. (15分)如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于点D,连接DC,DA,OA,OC,四边形OADC为平行四边形.(1)求证:△BOC≌△CDA;(2)若AB=2,求阴影部分的面积.28. (15分)(2017·安次模拟) 如图,已知抛物线y=x2﹣2bx﹣3(b为常数,b<0).(1)抛物线y=x2﹣2bx﹣3总经过一定点,定点坐标为________;(2)抛物线的对称轴为直线x=________(用含b的代数式表示),位于y轴的________侧.(3)思考:若点P(﹣2,﹣1)在抛物线y=x2﹣2bx﹣3上,抛物线与反比例函数y= (k>0,x>0)的图象在第一象限内交点的横坐标为a,且满足2<a<3,试确定k的取值范围.(4)探究:设点A是抛物线上一点,且点A的横坐标为m,以点A为顶点做边长为1的正方形ABCD,AB⊥x轴,点C在点A的右下方,若抛物线与CD边相交于点P(不与D点重合且不在y轴上),点P的纵坐标为﹣3,求b与m之间的函数关系式.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、计算题 (共2题;共15分)15-1、16-1、16-2、四、综合题 (共12题;共83分)17-1、17-2、17-3、18-1、19-1、19-2、20-1、20-2、21-1、22-1、23-1、24-1、24-2、24-3、24-4、25-1、26-1、26-2、26-3、27-1、27-2、28-1、28-2、28-3、28-4、。
三门峡市九年级毕业班数学第一次调研测试卷
三门峡市九年级毕业班数学第一次调研测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2016·徐州) 对下图的对称性表述,正确的是()A . 轴对称图形B . 中心对称图形C . 既是轴对称图形又是中心对称图形D . 既不是轴对称图形又不是中心对称图形2. (2分)下列式子中无意义的是()A .B .C .D .3. (2分) 2008年9月27日16时41分至7时许,宇航员翟志刚在太空进行了19分35秒的舱外活动中,飞行了9 165 000米,成为中国“飞得最高、走得最快”的人.将9 165 000米用科学记数法(保留两位有效数字)记为()A . 92×105米B . 9.2×106米C . 9.17×106米D . 9.165×106米4. (2分)如果当x=-2时,代数式ax5+bx3+cx-5的值是-7,那么x=2时,该代数式的值是()A . -7B . -5C . -3D . -15. (2分)下列说法错误的是()A . 李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是B . 一组数据6,8,7,8,8,9,10的众数和中位数都是8C . 对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D . 一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是6. (2分)函数(m是常数)的图像与x轴的交点个数为()A . 0个B . 1个C . 2个D . 1个或2个二、填空题 (共9题;共10分)7. (1分) (2018九上·拱墅期末) 计算:cos245°-tan30°sin60°=________.8. (1分)计算:﹣x(2x﹣3y+1)=________.9. (1分) (2020七上·武城期末) 若式子2x2+ax-y+b-(2bx2-3x+5y-1)的值不含x2和x,则2a+b的值为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年河南省三门峡市中考数学一模试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)﹣1的倒数为()A .﹣1 B.1﹣C .+1 D .﹣﹣12.(3分)三淅高速2015年建成通车,三门峡到南阳全长291.6千米,将291.6千米用科学记数法表示为()A.2.916×106米B.2.916×105米C.29.16×105米D.2.916×104米3.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A .B .C .D .4.(3分)菱形的边长是10,一条对角线长是12,则此菱形的另一条对角线是()A.10 B.24 C.8 D.165.(3分)下列计算正确的是()A.a+2a=3a2B.a•a2=a3C.(2a)2=2a2D.(﹣a2)3=a66.(3分)为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:45689月用水量(吨)户数25431则这15户家庭的月用水量的众数与中位数分别为()A.9、6 B.6、6 C.5、6 D.5、57.(3分)如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.3 C.2 D.18.(3分)如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现()A.3次 B.4次 C.5次 D.6次二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)﹣a的相反数是.10.(3分)如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=5,=,则EC=.11.(3分)分解因式:2a2﹣8=.12.(3分)二次函数y=x2﹣2x的图象的对称轴是直线.13.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.14.(3分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,若把直角三角形绕边AB所在直线旋转一周,则所得几何体的表面积为.15.(3分)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n 为整数),则A′N=.三、解答题(本大题共8个小题,共75分)16.(8分)先化简,再求值:÷(x﹣),其中x=﹣2.17.(9分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.18.(9分)为迎接河南省第30届青少年科技创新大赛,某中学向七年级学生征集科幻画作品,李老师从七年级12个班中随机抽取了A、B、C、D四个班,对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图(如图)(1)李老师所调查的4个班征集到作品共件,其中B班征集到作品,请把图补充完整;(2)李老师所调查的四个班平均每个班征集到作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要抽两人去参加学校总结表彰座谈会,用树状图或列表法求出恰好抽中一男一女的概率.19.(5分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.(结果保留π)20.(7分)如图,在平面直角坐标系中,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求k的值;(2)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.21.(7分)小华和小丽两人玩数字游戏,先由小丽心中任意想一个数字记为x,再由小华猜小丽刚才想的数字,把小华猜的数字记为y,且他们想和猜的数字只能在1,2,3,4这四个数中.(1)请用树状图或列表法表示了他们想和猜的所有情况;(2)如果他们想和猜的数相同,则称他们“心灵相通”.求他们“心灵相通”的概率;(3)如果他们想和猜的数字满足|x﹣y|≤1,则称他们“心有灵犀”.求他们“心有灵犀”的概率.22.(10分)如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)23.(11分)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.2016年河南省三门峡市中考数学一模试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)﹣1的倒数为()A.﹣1 B.1﹣C.+1 D.﹣﹣1【解答】解:∵,∴的倒数为:.故选:C.2.(3分)三淅高速2015年建成通车,三门峡到南阳全长291.6千米,将291.6千米用科学记数法表示为()A.2.916×106米B.2.916×105米C.29.16×105米D.2.916×104米【解答】解:将291.6千米用科学记数法表示为2.916×105米,故选:B.3.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.4.(3分)菱形的边长是10,一条对角线长是12,则此菱形的另一条对角线是()A.10 B.24 C.8 D.16【解答】解:∵菱形对角线互相垂直平分,∴菱形的边长和两条对角线的一半构成直角三角形.∴根据勾股定理可得,菱形另一条对角线=.故选D.5.(3分)下列计算正确的是()A.a+2a=3a2B.a•a2=a3C.(2a)2=2a2D.(﹣a2)3=a6【解答】解:A、a+2a=3a,故本选项错误;B、a•a2=a3,故本选项正确;C、(2a)2=4a2,故本选项错误;D、(﹣a2)3=﹣a6,故本选项错误.故选B.6.(3分)为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:45689月用水量(吨)户数25431则这15户家庭的月用水量的众数与中位数分别为()A.9、6 B.6、6 C.5、6 D.5、5【解答】解:数据5出现的次数最多,为众数;数据6处在第8位,中间位置,所以本题这组数据的中位数是6.故选C.7.(3分)如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.3 C.2 D.1【解答】解:∵△A′DE△ADE翻折而成,∴AE=A′E,∵A′为CE的中点,∴AE=A′E=CE,∴AE=AC,=,∵∠C=90°,DE⊥AC,∴DE∥BC,∴△ADE∽△ABC,∴==,=,解得DE=1.故选D.8.(3分)如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现()A.3次 B.4次 C.5次 D.6次【解答】解:如图,∵⊙O的半径为1,正方形ABCD的对角线长为6,OA=4,∴⊙O与正方形ABCD的边AB、AD只有一个公共点的情况各有1次,与边BC、CD只有一个公共点的情况各有1次.∴在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现4次.故选B.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)﹣a的相反数是a.【解答】解:﹣a的相反数是a,故答案为:a.10.(3分)如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=5,=,则EC=2.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BE0∽△DAO,∴,∵AD=5,∴BE=3,∴CE=5﹣3=2,故答案为:2.11.(3分)分解因式:2a2﹣8=2(a+2)(a﹣2).【解答】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).12.(3分)二次函数y=x2﹣2x的图象的对称轴是直线x=1.【解答】解:∵y=x2﹣2x,∴y=(x﹣1)2﹣1,∴二次函数的图象对称轴为x=1.故答案为x=1.13.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.14.(3分)如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,若把直角三角形绕边AB所在直线旋转一周,则所得几何体的表面积为.【解答】解:∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==5,设AB边上的高为h,则×5h=×3×4,解得:h=,∴所得两个圆锥底面半径为,∴几何体的表面积=×2π××4+×2π××3=π.则所得几何体的表面积为.15.(3分)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.【解答】解:∵将纸片的一角沿过点B的直线折叠,A落在MN上,落点记为A′,∴A′B=AB=1,∵AB∥MN,M是AD边上距D点最近的n等分点,∴MD=NC=,∴BN=BC﹣NC=1﹣=,在Rt△A′BN中,根据勾股定理得,A′N2=A′B2﹣BN2=12﹣()2=,所以,A′N==.故答案为:.三、解答题(本大题共8个小题,共75分)16.(8分)先化简,再求值:÷(x﹣),其中x=﹣2.【解答】解:原式=÷=(x﹣2)•=.当x=﹣2时,原式==.17.(9分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.【解答】(1)证明:连接OA,∵OA=OD,∴∠1=∠2.∵DA平分∠BDE,∴∠2=∠3.∴∠1=∠3.∴OA∥DE.∴∠OAE=∠4,∵AE⊥CD,∴∠4=90°.∴∠OAE=90°,即OA⊥AE.又∵点A在⊙O上,∴AE是⊙O的切线.(2)解:∵BD是⊙O的直径,∴∠BAD=90°.∵∠5=90°,∴∠BAD=∠5.又∵∠2=∠3,∴△BAD∽△AED.∴,∵BA=4,AE=2,∴BD=2AD.在Rt△BAD中,根据勾股定理,得BD=.∴⊙O半径为.18.(9分)为迎接河南省第30届青少年科技创新大赛,某中学向七年级学生征集科幻画作品,李老师从七年级12个班中随机抽取了A、B、C、D四个班,对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图(如图)(1)李老师所调查的4个班征集到作品共12件,其中B班征集到作品3,请把图补充完整;(2)李老师所调查的四个班平均每个班征集到作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要抽两人去参加学校总结表彰座谈会,用树状图或列表法求出恰好抽中一男一女的概率.【解答】解:(1)根据题意得:调查的4个班征集到作品数为:5÷=12(件),B班作品的件数为:12﹣2﹣5﹣2=3(件),补图如下:故答案为:12;3;(2)王老师所调查的四个班平均每个班征集作品是:12÷4=3(件),全校共征集到的作品:3×12=36(件);(3)画树状图得:∵共有20种等可能的结果,恰好抽中一男一女的有12种情况,∴恰好抽中一男一女的概率为:=.19.(5分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.(结果保留π)【解答】解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.20.(7分)如图,在平面直角坐标系中,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求k的值;(2)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.【解答】解:(1)在Rt△ACD中,CD=2,AD=,∴AC==1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),∴k=3×1=3;(2)点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y=的图象上.21.(7分)小华和小丽两人玩数字游戏,先由小丽心中任意想一个数字记为x,再由小华猜小丽刚才想的数字,把小华猜的数字记为y,且他们想和猜的数字只能在1,2,3,4这四个数中.(1)请用树状图或列表法表示了他们想和猜的所有情况;(2)如果他们想和猜的数相同,则称他们“心灵相通”.求他们“心灵相通”的概率;(3)如果他们想和猜的数字满足|x﹣y|≤1,则称他们“心有灵犀”.求他们“心有灵犀”的概率.【解答】解:(1)列表法如下:1111222233334444想数1234123412341234猜数(2)根据(1)得所以可能的情况有16中,想和猜的数相同的情况有4种,∴P(心灵相通);(3)根据(1)得所以可能的情况有16中,数字满足|x﹣y|≤1的情况有10种,∴P(心有灵犀)=.22.(10分)如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)【解答】(1)证明:如图(1),∵AE是∠BAD的平分线,∴∠BAF=∠DAF,∵在平行四边形ABCD中,∴AB∥DF,AD∥BC,∴∠BAF=∠F,∠DAF=∠CEF,∴∠F=∠DAF=∠CEF,∴CE=FC;(2)解:四边形ABFC是矩形,理由:如图(2),∵∠B=60°,AD∥BC,∴∠BAD=120°,∵∠BAF=∠DAF,∴∠BAF=60°,则△ABE是等边三角形,可得AB=BE=AE,∠BEA=∠AFC=60°,∵BC=2AB,∴AE=BE=EC,∴△ABC是直角三角形,∠BAC=90°,在△ABE和△FCE中∵,∴△ABE≌△FCE(ASA),∴AB=FC,又∵AB∥FC,∴四边形ABFC是平行四边形,再由∠BAC=90°,故四边形ABFC是矩形.23.(11分)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.【解答】方法一:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.方法二:(1)略.(2)∵y=(x﹣4)(x+1),∴A(﹣1,0),B(4,0).C(0,﹣2),∴K AC==﹣2,K BC==,∴K AC×K BC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).(3)过点M作x轴的垂线交BC′于H,∵B(4,0),C(0,﹣2),∴l BC:y=x﹣2,设H(t,t﹣2),M(t,t2﹣t﹣2),∴S=×(H Y﹣M Y)(B X﹣C X)=×(t﹣2﹣t2+t+2)(4﹣0)=﹣t2+4t,△MBC∴当t=2时,S有最大值4,∴M(2,﹣3).。