05-06线性代数补考试卷A

合集下载

线性代数试题A及答案

线性代数试题A及答案

线性代数试题(A )一、选择题:(每小题3分,共18分)2、2、A 、B 均为n 阶方阵,则以下表达正确的是__ _ (A ) AB=BA (B ) AB=0,则A=0或B=0 (C ) ()111---=B A AB (D ) ()T T TA B AB =3、设矩阵A 的秩是r , 则(A )A 中没有等于零的1-r 阶子式 (B )A 中至少有一个r 阶子式不等于零 (C )A 中有不等于零的1+r 阶子式 (D )A 中没有等于零的r 阶子式4、已知 )3,2,1(=a )31,21,1(=b ,且b a T A = 则4A =(A ) 27÷÷÷÷÷÷øöççççççèæ1233321231211(B )÷÷÷÷÷÷øöççççççèæ1233321231211 (C )9 (D) 81 5、设A 是可逆矩阵,*A 是A 的伴随矩阵,则*-=A A A A 1)( *-=A A B 1)( *--=A AA C 11)( 11)()(-*-=A A D6、与对角矩阵D = úúúûùêêêëé211 相似的矩阵是 (A) úúúûùêêêëé100020101. (B) úúúûùêêêëé200110001. (C) úúúûùêêêëé200010011. (D) úúúûùêêêëé-111021001 二、填空题:(每小题4分,共20分)1、设A , B 为三阶矩阵, 2=A ,41=B , 则12-)(BA = 2、行列式8040703362205010的值为 3、设A 是n 阶方阵,若3-=n A R )(,则0=AX 的基础解系所含向量的个数为4、k= 时,向量)5,,1(k =b 能由向量)1,1,2(),2,3,1(21-=a -=a 线性表出。

《线性代数》模拟试卷(A)卷

《线性代数》模拟试卷(A)卷

厦门大学网络教育2008-2009学年第一学期《线性代数》模拟试卷( A )卷一、单项选择题(每小题3分,共24分).1. 若111221226a a a a =,则121122212020021a a a a --的值为( ). A .12; B. -12; C. 18; D. 0. 2. 设A B 、为同阶方阵,则下面各项正确的是( ).A.若0AB =, 则0A =或0B =;B.若0AB =,则0A =或0B =;C.22()()A B A B A B -=-+;D.若A B 、均可逆,则111()AB A B ---=.3. 若方程组12312302403690x t x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的基础解系含有两个解向量,则 t =( ). A .2; B .4; C .6; D .8.4. 已知方程组A x b =对应的齐次方程组为0Ax =,则下列命题正确的是( ).A .若0Ax =只有零解,则Ax b =一定有唯一解;B .若0Ax =有非零解,则Ax b =一定有无穷解;C .若Ax b =有无穷解,则0Ax =一定有非零解;D .若Ax b =有无穷解,则0Ax =一定只有零解.5. 设12, u u 是非齐次线性方程组Ax b =的两个解,则以下结论正确的是( ).A .12u u +是Ax b =的解;B .12u u -是Ax b =的解;C .1ku 是Ax b =的解(1k ≠);D .12u u -是0Ax =的解. 6. 设123,,a a a 线性相关,则以下结论正确的是( ).A .12,a a 一定线性相关;B .13,a a 一定线性相关;C .12,a a 一定线性无关;D .存在不全为零的数123,,k k k ,使得1122330k a k a k a ++=.7. 若20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与200010001B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似,则x =( ). A .-1; B .0; C .1; D .2.8. 二次型f(x 1,x 2,x 3)=32232221x x 12x 3x 3x +++是( ).A. 正定的;B. 半正定的;C. 负定的;D. 不定的.二、填空题(每小题4分,共24分)1. 设802020301A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,*A 为A 的伴随矩阵,则*A =_________. 2. 非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是_________.3. 设方程组123131232 1 2 53(8)8x x x x x x x a x ++=⎧⎪+=⎨⎪+++=⎩,当a 取__________时,方程组无解.4. 设向量组1(1,3,)a k =-,2(1,0,0)a =,3(1,3,2)a =-线性相关,则k =_________.5. 二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=为正定二次型,则t 的取值范围是_____________.6. 3阶方阵A 的特征值分别为1,-2,3,则21()A -的特征值为_________.三、计算题(共38分).1. (10分) 计算行列式 3112513420111533D ---=---.2. (10分) 求123221343A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵1A -.3. (10分)求向量组)11,9,5,8(),2,1,1,3(),10,7,1,1(),1,1,1,2(4321=--=-==αααα的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.4. (8分)已知111131111A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求A 的特征值. 四、证明题(每小题7分,共14分).1. 设列矩阵12(,,,)T n X x x x = 满足1T X X =,E 为n 阶单位阵,2T H E XX =-,证明: H 是对称阵,且T HH E =.2. 证明二次型22256444f x y z xy xz =---++是负定的.答案:一.1.A 1211121112111112222122212221212220220(1)22122021a a aa a a a a a a a a a a a a =-=-==--2. B 由矩阵的理论可得选项B3. C 基础解系含有两个解向量3()2()1r A r A ⇒-=⇒=,12312324006369000A t t ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,6t =时,()1r A =4. C 当()()r A r A =时,Ax b =有解5. D 1212()2A u u Au Au b b b +=+=+=,因此12u u +不是Ax b =的解, 下面的选项类似讨论6. D 由线性相关的定义可得选项D7. B 相似矩阵具有相同的特征值8.D f 的矩阵是100036063A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A 的各阶主子式为:1110a =>,103003=>,10003613366270063A ==⋅⋅-⋅=-<,因此f 为不定的 二.1.16 8022016124301A ==-=, 33***416A A A E A AA A ====⇒=2. n A r =)( 由方程组解的理论可得3. 0 方程组无解可得()(,)r A r A b ≠11211121112110120111011153880223001a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--⎣⎦⎣⎦⎣⎦,(,)3r A b =,当0a =时,()2r A =。

2005级线性代数考试试题及答案

2005级线性代数考试试题及答案

2005级线性代数考试试题院系_____________________;学号__________________;姓名___________________一、单项选择题(每小题2分,共40分)。

1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=6 35 24 1C ,6 5 43 2 1B ,4 32 1A ,则下列矩阵运算无意义的是 【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2–E =0,其中E 是n 阶单位矩阵,则必有【 】A. A=A -1B.A=-EC. A=ED. det(A)=1 3.设A 为3阶方阵,且行列式det(A)=21,则det(-2A)= 【 】 A.4 B.-4 C.-1 D.14.设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是 【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】A.03221= b b a aB.02121≠ b b a a C. 332211b a b a b a == D.02131= b b a a9.方程组⎪⎩⎪⎨⎧=++=++=++ax x x x x x x x x 32132132123 3 12 12 有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=210. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则 【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量 13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni i n aa a a C. },,2,1,|),,,{(21n i z a a a a i n =∈ D. }1|),,,{(121∑==n i inaa a a14. F 3的两个子空间V 1={(x 1,x 2,x 3)|2x 1-x 2+x 3=0}, V 2={(x 1,x 2,x 3)|x 1+x 3=0}, 则子空间V 1 V 2的维数为【 】A. 二维B. 一维C. 三维D. 零维15. 设M n (R)是R 上全体n 阶矩阵的集合,定义)(,det )(R M A A A n ∈=σ,则σ是M n (R)到R 的 【 】A. 一一映射B. 满射C. 一一对应D. 既不是满射又不是一一对应15. 令),,(321x x x =ξ是R 3的任意向量,则下列映射中是R 3的线性变换的是 【 】A.0,)(≠+=ααξξσ B. )0,,2()(32321x x x x x +++=ξτC. ),,()(32221x x x p =ξ D. )0,cos ,(cos )(21x x w =ξ 17.下列矩阵中为正交矩阵的是 【 】A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151C. ⎥⎦⎤⎢⎣⎡1 01- 1D. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2 2 12- 1 21 2- 23118.若2阶方阵A 相似于矩阵⎥⎦⎤⎢⎣⎡=3- 20 1B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【 】A. ⎥⎦⎤⎢⎣⎡4 10 1B. ⎥⎦⎤⎢⎣⎡4- 1 0 1-C. ⎥⎦⎤⎢⎣⎡4 2-0 0D. ⎥⎦⎤⎢⎣⎡4- 2-0 1-19.二次型32212132122),,(x x x x x x x x f ++=的秩等于【 】A .0 B.1 C.2 D.320.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。

(完整版)线性代数测试试卷及答案

(完整版)线性代数测试试卷及答案

线性代数(A 卷)一﹑选择题(每小题3分,共15分)1。

设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A )AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D )A B B A +=+2。

如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C ) n s - (D) 以上答案都不正确 3。

如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4。

设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么( )(A) 2331A ⎛⎫=⎪-⎝⎭ (B) 2241A ⎛⎫= ⎪-⎝⎭ (C) 2121A ⎛⎫= ⎪-⎝⎭(D) 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则( ) (A ) A 的行向量组和列向量组均线性相关 (B )A 的行向量组线性相关,列向量组线性无关 (C ) A 的行向量组和列向量组均线性无关 (D )A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2。

设100210341A -⎛⎫⎪=- ⎪⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5。

设A 为正交矩阵,则A = ;6。

设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7。

线性代数考试(A)参考答案及评释学习资料

线性代数考试(A)参考答案及评释学习资料

线性代数考试(A)参考答案及评释华南农业大学期末考试试卷(A 卷)2005学年第一学期 考试科目:线性代数 考试类型:闭卷 考试时间:120分钟学号 姓名 年级专业这是题文 这是参考答案 填空题.(每小题3分,共30分)1.若行列式D 各行元素之和等于0,则该行列式等于0. 各行加到第一行上去, 则第一行全为零P98奇数阶实反对称阵的行列式为零P64定理2.7非齐次线性方程组有解的充要条件 41141222222n n n --**⎛⎫===⋅= ⎪⎝⎭A A A重要关系*=AA A E ( P34定理1.9); 1n -*=A A(p44题1.18)5.设()()1,1,5,3,9,2,3,5,TTαβ=--=---则α与β的距离为9.()8,3,2,29-===αβ由正交矩阵的定义T =A A E 立即得到1T -=A A 且1T ===A A A A E若λ是A 的特征值, 则1λ是1-A 的特征值, 因为()110x x x x λλ-=≠⇒=A A x . 参考P87定理4.4: ()ϕA 的特征值是()ϕλ.8.如果()222123123121323,,2246f x x x x x tx x x x x x x =+++++是正定的,则t 的取值范围是5t >.11212323t ⎛⎫⎪= ⎪ ⎪⎝⎭A 1231121110,10,123501223t t ∆=>∆==>∆==-> p100定理5.6由2=AA 推出()()22-+=-A E A E EEnglish!二、单选题(每题3分,共15分)1.n 元齐次线性方程组0,AX =秩()(),R A r r n =<则有基础解系且基础解系 含( D )个解向量.(A )n (B )r (C )r n - (D )n r - P62 line 5: 基础解系含n r -个解向量2. 设四阶方阵A 的秩为2,则其伴随矩阵A *的秩为( D )(A )1 (B )2 (C )3 (D )0.A的余子式(3阶子式)全为零.*A是零矩阵.3. 设A是n阶方阵,满足2A E=,则( B )(A)A的行列式为1 (B),-+不同时可逆.A E A E=(D)A的特征值全是1 (C)A的伴随矩阵*A A2000或.A E A E A E A E A E=⇒+-=⇒+=-=4. 设n阶方阵,,A B C满足ABC E=,其中E是n阶单位阵,则必有( C )(A)ACB E== (D) BAC E= (C) BCA E= (B) CBA E()()A E.p7性质1.2, p35定理1.10=⇒=A BC E BC或者141231234142332,3,4333411111111111111110000111111000101111101111100010000010001001000100010000101001000000i r r i c c c c r r r r r r r r x x x x x x x x x x x xxxxx x x x x-=+++-+-↔↔-------+---==----+-----====.2.给定向量组()()121,1,1,1,1,1,1,1,TTαα==--()32,1,2,1Tα=, ()41,1,1,1,Tα=--求1234,,,αααα的一个最大无关组和向量组的秩.()213141434212341121112111110212,,,112100021111021011211121021202120002000200020000r r r r r r r r r r A αααα---+-⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪==−−−→ ⎪⎪--⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪------⎪ ⎪−−−→−−−→ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭可见()1234,,,3R αααα=,124,,ααα是一个最大无关组。

线性代数考试试卷

线性代数考试试卷

线性代数考试试卷一.单选题:(2510)''⨯=1.设A 、B 为同阶方阵,下列等式中恒正确的是( )A. AB=BAB ()111---+=+B A B A C. B A B A +=+D. ()T T T B A B A +=+2.设A 为3阶方阵,且已知22A -=,则|A |=( )A .1-B .14-C .41D .13..设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛--500043200101,则A 中( )A .所有2阶子式都不为零B .所有2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零4.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( )A .3B .1-C .1D .3-5.线性方程组12233121x x x x x x αα-=⎧⎪-=⎨⎪-=⎩有解的充分必要条件是α=( )A 、1-B 、13C 、13- D 、1 二、填空题(4520)''⨯=1.行列式122305403--中元素3的代数余子式是 . 2.设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-=21031231B A ,,则 BA AB -= ;3.设⎪⎪⎪⎭⎫ ⎝⎛--=A 200012011,则=A -1 ;4.若向量组T T T t t )1,0,0(,)0,2,1(,)0,1,1(2321+==+=ααα线性相关,则t = .5. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 ;三、计算题)(06601'=⨯'1.计算行列式的值12342341=34124123D2.设⎪⎪⎪⎭⎫ ⎝⎛---=433312120A ,⎪⎪⎭⎫ ⎝⎛-=132321B ,求X 使B XA =. 3.求齐次线性方程组⎪⎩⎪⎨⎧=+--=+--=-+-02200432143214321x x x x x x x x x x x x 的基础解系.4.求向量组T T T T )1,2,2,2(,)1,1,3,2(,)1,1,2,3(,)1,3,2,1(4321-==-=-=αααα的秩和一个最大线性无关组,并把不属于最大无关组的向量用最大无关组线性表示.5. 设三阶矩阵A 的特征值为1,0,1321-===λλλ,对应的特征向量为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=212,122,221321p p p ,求A .6. 判断二次型312123222132144465),,(x x x x x x x x x x f ++---=的正定性.四、证明题)(01'若21αα,是n 阶矩阵A 属于不同特征值21λλ,的特征向量,证明21αα+不是A 的特征向量.。

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A卷

全校各专业《线性代数》课程试卷及答案A 卷试卷 A 考试方式 闭卷 考试时间(120分钟)一、选择题(本题共4小题,每小题4分,满分16分。

每小题给出的四个选项中,只有一项符合题目要求) 1、设A ,B 为n 阶方阵,满足等式0=AB,则必有( ) (A)0=A 或0=B ; (B)0=+B A ; (C )0=A 或0=B ; (D)0=+B A 。

2、A 和B 均为n 阶矩阵,且222()2A B A AB B +=++,则必有( ) (A) A E =; (B)B E =; (C ) A B =. (D) AB BA =。

3、设A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是( )(A) A 的列向量线性无关; (B) A 的列向量线性相关; (C ) A 的行向量线性无关; (D) A 的行向量线性相关. 4、 n 阶矩阵A 为奇异矩阵的充要条件是( ) (A) A 的秩小于n ; (B) 0A ≠;(C) A 的特征值都等于零; (D) A 的特征值都不等于零; 二、填空题(本题共4小题,每题4分,满分16分)5、若4阶矩阵A 的行列式5A =-,A *是A 的伴随矩阵,则*A = 。

6、A 为n n ⨯阶矩阵,且220A A E --=,则1(2)A E -+= 。

7、已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+43121232121321x x x a a 无解,则a = 。

8、二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,则t 的取值范围是 。

三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式1111111111111111x x D y y+-=+-10、计算n 阶行列式121212333n n n n x x x x x x D x x x ++=+四、证明题(本题共2小题,每小题8分,满分16分。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

05-06第2学期线性代数A试题A

05-06第2学期线性代数A试题A

浙 江 科 技 学 院2005-2006学年第二学期《线性代数A 》期末考试A 卷1、设1112223332a b c a b c a b c =,则111112222233333232323a b b c c a b b c c a b b c c ++++=++ . 2、设2=λ为A 的特征值,则行列式2|32|-+A A E = . 3、6阶行列式中下列项142331425665a a a a a a 的符号是 . 4、向量T T T (1,1,0),(0,1,1),(1,1,1)αβγ===是3R 的一个基, 则T (3,4,3)ξ=在该基下的坐标为 .5、已知4阶行列式D 的第二行元素分别为1、2、3、4,与它们对应的 余子式依次为4、3、2、1,则D =___________________. 二、选择题(每小题4分,共20分)1、二次型2221231213235224f x x x t x x x x x x =+++-+满足条件( )时才是正定的(A )0t > (B )11t -<< (C ) 405t -<< (D )25t <<2、设A 为 n 阶矩阵,且A A E O 223--=,则A E 1()--=( )(A )A E 4()- (B )A E 1()4- (C )E 12± (D )不能确定一.填空题(每小题4分,共20分)3、已知()m n R A r ⨯=,若n 元齐次线性方程组0AX =有非零解,则( ) (A )r m < (B )m n ≥ (C )r n < (D ) m r ≥4、设有向量组(I )12,,,m ααα 及(II ) 1212,,,,,,,m s αααβββ , 则( )(A )若(I )线性相关,则(II )线性相关 (B )若(II )线性相关,则(I )线性相关 (C )若(I )线性无关,则(II )线性无关 (D )即使(II )线性无关,(I )也未必线性无关5、设12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则112,()A ααα+线性无关的充分必要条件是( )(A )10λ≠ (B )20λ≠ (C )10λ= (D )20λ= 三、解答题(本题共48分)1、(7分)设三阶方阵,A B 满足2--=A B A B E ,其中E 为三阶单位矩阵,若101020201A ⎛⎫⎪= ⎪ ⎪-⎝⎭, 求||B .3、(9分)解线性方程组243638510516x y z wx y z wx y z w-+-=⎧⎪+--=⎨⎪++-=⎩.(解用向量形式表示)4、(7分)解矩阵方程 211010212111010X -⎛⎫⎛⎫⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭.5、(6分)求向量组12(2,1,3,1),(1,1,3,1),αα=-=--34(4,5,3,1),(1,5,3,1)αα=-=-生成的向量空间的维数及一个基.6、(13分)已知二次型212322f x x x =+,求一正交变换x P y =, 把f 化为标准型.四、证明题(本题共12分)1、(6分)设A 为三阶方阵,其特征值为1,0,4-,又已知2A B E +=, 证明B 的特征值为3,2,2λ=-.2、(6分)已知()()()1232,1,3,1,0,1,2,5,1ααα=-=-=--- (1)证明123,,ααα是3R 的一个基;(2)写出从单位坐标向量组123,,εεε到基123,,ααα的过渡矩阵.。

线性代数考题及答案A

线性代数考题及答案A

2005级线性代数考试试题院系_____________________;学号__________________;姓名___________________一、单项选择题(每小题2分,共40分)。

1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=6 35 24 1C ,6 5 43 2 1B ,4 32 1A ,则下列矩阵运算无意义的是 【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2–E =0,其中E 是n 阶单位矩阵,则必有【 】A. A=A -1B.A=-EC. A=ED.det(A)=1 3.设A 为3阶方阵,且行列式det(A)=21,则det(-2A)= 【 】 A.4 B.-4 C.-1 D.14.设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是 【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++0332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】 A.03221= b b a a B.02121≠ b b a a C.332211b a b a b a == D. 02131= b b a a9.方程组⎪⎩⎪⎨⎧=++=++=++ax x x x x x x x x 32132132123 3 12 12 有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=210. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则 【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量 13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni i n aa a a C. },,2,1,|),,,{(21n i z a a a a i n =∈ D. }1|),,,{(121∑==n i inaa a a14. F 3的两个子空间V 1={(x 1,x 2,x 3)|2x 1-x 2+x 3=0}, V 2={(x 1,x 2,x 3)|x 1+x 3=0}, 则子空间V 1 V 2的维数为【 】A. 二维B. 一维C. 三维D. 零维15. 设M n (R)是R 上全体n 阶矩阵的集合,定义)(,det )(R M A A A n ∈=σ,则σ是M n (R)到R 的 【 】A. 一一映射B. 满射C. 一一对应D. 既不是满射又不是一一对应15. 令),,(321x x x =ξ是R 3的任意向量,则下列映射中是R 3的线性变换的是 【 】A. 0,)(≠+=ααξξσB.)0,,2()(32321x x x x x +++=ξτC. ),,()(32221x x x p =ξ D. )0,cos ,(cos )(21x x w =ξ17.下列矩阵中为正交矩阵的是 【 】A. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151C. ⎥⎦⎤⎢⎣⎡1 01- 1D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2 2 12- 1 212- 23118.若2阶方阵A 相似于矩阵⎥⎦⎤⎢⎣⎡=3- 20 1B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【 】A. ⎥⎦⎤⎢⎣⎡4 10 1B. ⎥⎦⎤⎢⎣⎡4- 1 0 1-C. ⎥⎦⎤⎢⎣⎡4 2-0 0D. ⎥⎦⎤⎢⎣⎡4- 2-01-19.二次型32212132122),,(x x x x x x x x f ++=的秩等于【 】A .0 B.1 C.2 D.320.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。

答案05-06(第一学期)线性代数期末试卷(A)

答案05-06(第一学期)线性代数期末试卷(A)
得分
评阅人
已知实矩阵 满足条件:
(1) 其中 是 的代数余子式;
(2) .
证明:
(A)都不是零向量
(B)任意两个向量的分量不成比例
(C)至少有一个向量不可由其余向量线性表示
(D)每一个向量均不由其余向量线性表示
3、 均为 阶方阵,下列各式中成立的是( )
(A) (B)
(C)设 ,则 (D)若 ,则 或
4、设 阶方阵 的秩 ,则在 的 个行向量中( )
(A)必有 个行向量线性无关(B)任意 个行向量均可构成最大无关组
南昌大学2005~2006学年第一学期期末考试试卷
试卷编号:254( A )卷
课程名称:线性代数适用班级:2004级本科(理工)
姓名:学号:班级:专业:
学院:系别:考试日期:2006年1月13日
题号










总分
累分人签名
题分
100
得分
一、填空题(每空3分,共15分)
得分
评阅人
1、 .
2、设 若 则 .
(C)任意 个行向量均线性无关(D)任一行向量均可由其它 个行向量线性表示
5、 阶方阵 可与对角矩阵 相似的充分必要条件是( )
(A) 有 个线性无关的特征向量(B) 有 个不同的特征值
(C) 的 个列向量线性无关(D) 有 个非零的特征值
三、计算题(每小题9分,共63分)
得分
评阅人
1、设 为4阶方阵, 求
2、计算 阶行列式
3、已知向量组
(1)求 的一个最大无关组。
(2)将其余向量用此最大无关组线性表示.
解:

(完整版)线性代数试题套卷及答案

(完整版)线性代数试题套卷及答案

(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。

2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A) 40; (B) 16-; (C) 3-; (D) 40-。

3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。

4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解; (B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。

5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则√√(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。

二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量. 则λ= ,a = ,b = 。

线性代数试卷A

线性代数试卷A

A ,()T T T AB A B =, B , ()T T T A B A B +=+C , 111()AB A B ---=,D , 111()A B A B ---+=+4.若A 是n 阶正定矩阵,*A 是A 的伴随矩阵,则以下命题哪一个不成立:A ,矩阵T A 为正定矩阵,B ,矩阵*A 为正定矩阵C ,矩阵1A -为正定矩阵,D ,以上都不对5.如果n (n>1)阶矩阵M 的行列式不为0,那么以下命题哪一个不成立:A , M 的行向量有一部分线性相关,B ,M 可以仅用初等列变换化为单位矩阵;C , M 可表示为初等矩阵的乘积,D ,以M 为系数矩阵的线性方程组仅有零解三、判断下面的命题是否正确(每小题4分,共12分)(二学分的只需要给出判断,三学分的要求说明正确的理由或举出不正确的反例)(1) 已知A,B 是n 阶矩阵。

如果rank (A )=rank (B ),那么对于任意的n 阶矩阵C, rank (AC )=rank (BC )。

(2) 如果一个矩阵的行向量组线性无关,列向量组也线性无关,那么它是可逆的。

(3) 如果一个实对称矩阵A 的特征值皆大于0,那么它是正定的。

四、解下列各题(每小题7分共14分)1.设向量β与111101313A⎛⎫⎪= ⎪⎪⎝⎭的行向量都是正交的。

将β扩充为R3的一个正交基.2. 设n阶方阵111111-1-11-11-11-1-11A⎛⎫⎪⎪=⎪⎪⎝⎭,计算P(2(2),1)AP(3(3),2)。

五. 求矩阵220144480233211A-⎛⎫⎪=--⎪⎪--⎝⎭前两个行向量的夹角以及A的列向量组的一个最大无关组。

(8分)六.证明题(8分)设A是n阶矩阵,*A是A的伴随矩阵。

如果A不可逆,证明*A的秩小于或等于1。

七.(6分)设A=1a2b c⎛⎫⎪⎪⎝⎭是一个2阶的正交矩阵,行列式等于1.求实数a,b,c。

八、(12分)用正交变换化下列二次型为标准型,并写出该正交变换所对应的矩阵。

线性代数A,B试卷及答案

线性代数A,B试卷及答案

(试卷A )一、填空题(本题总计 20 分,每小题 2 分)1. 排列6573412的逆序数是.2.函数中的系数是.()f x =21112x x x x x---3x 3.设三阶方阵A 的行列式,则=A/33A =*1()A -.4.n 元齐次线性方程组AX=0有非零解的充要条件是.5.设向量,=正交,则(1,2,1)Tα=--β⎪⎪⎪⎭⎫⎝⎛-22λλ=.6.三阶方阵A 的特征值为1,,2,则1-A =.7.设,则.1121021003A --⎛⎫⎪=- ⎪⎪⎝⎭_________A *=8.设为的矩阵,已知它的秩为4,则以为系A 86⨯A 数矩阵的齐次线性方程组的解空间维数为_____________.9.设A 为n 阶方阵,且 2则A =1*1()3A A --+=.10.已知相似于,则20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭12B y -⎛⎫⎪=⎪ ⎪⎝⎭=x ,.=y 二、选择题(本题总计 10 分,每小题 2 分)1.设n 阶矩阵A 的行列式等于,则等于D A -5.(A) (B)-5 (C) 5(D)(5)nD -D D 1(5)n D--2. 阶方阵与对角矩阵相似的充分必要条件是.n A (A) 矩阵有个线性无关的特征向量A n (B) 矩阵有个特征值A n (C) 矩阵的行列式A 0A ≠ (D) 矩阵的特征方程没有重根A 3.A 为矩阵,则非齐次线性方程组有唯一m n ⨯AX b =解的充要条件是 .(A) (B)(,)R A b m <()R A m <(C) (D)()(,)R A R A b n ==()(,)R A R A b n =<4.设向量组A 能由向量组B 线性表示,则( )(A). (B).)()(A R B R ≤)()(A R B R <(C). (D).)()(A R B R =)()(A R B R ≥5. 向量组线性相关且秩为r ,则 .12,,,s ααα(A)(B)(C)r s =r s <r s >(D) s r≤三、计算题(本题总计 60 分,每小题 10 分)1. 计算n阶行列式:.22221 =D 22222 2232221222-n n 22222.已知矩阵方程,求矩阵,其中.AX A X =+X 220213010A ⎛⎫⎪= ⎪ ⎪⎝⎭3. 设阶方阵满足,证明可逆,并n A 0422=--E A A3A E -求.1(3)A E --4.求下列非齐次线性方程组的通解及所对应的齐次线性方程组的基础解系:1234123412342342323883295234x x x x x x x x x x x x x x x +++=⎧⎪-++=⎪⎨-+--=-⎪⎪--=-⎩5.求下列向量组的秩和一个最大无关组,并将其余向量用最大无关组线性表示.123421234,1,3,5.2012αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6.已知二次型:,323121232221321844552),,(x x x x x x x x x x x x f --+++= 用正交变换化为标准形,并求出其正交),,(321x xx f 变换矩阵Q .四、证明题(本题总计 10 分,每小题 10 分)设,,, ,且向量组11ba =212b a a =+ 12r r b a a a =+++ 线性无关,证明向量组线性无关.r a a a ,,,21 r b b b ,,,21 (答案二)一、填空题(本题总计 20 分,每小题2 分)1. 172. -23.4.5.6.-27.或13A ()R A n <2λ=-116A -8. 29、10、12110216003-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦21n)(-2,0-==y x 二、选择题(本题总计 10 分,每小题 2 分)1. A 2. A3.C4.D5. B三、计算题(本题总计 60 分,每小题 10分)1、解: ------D),,4,3(2n i r r i =-00021 00022 001223022-n 20022-n 4分-------7分122r r -00001 00022 -00122 -3022--n20022--n---------10分(此题的)!2(2)2()3(21)2(1--=-⨯-⨯⨯⨯⨯-⨯=n n n 方法不唯一,可以酌情给分。

线性代数试题A答案

线性代数试题A答案

东莞理工学院本科试卷A 卷答案2005 -2006 学年第一学期开课单位: 数学教研室 ,考试形式:闭卷,允许带 入场科目:_线性代数 _班级: 0 姓名: 学号:一.填空题每小题3分,共15分1.()013121221110⎛⎫ ⎪-=- ⎪⎝⎭()15202. 若n 阶方阵A 的秩 r n <, 则A = 0 .3.设0=x A ,A 是5阶方阵,且=)(A R 3, 则基础解系中含 2 个解向量.4.若3阶矩阵A 的特征值为2,2,3,则=A 12 .5.设21,λλ是对称阵A 的两个不同的特征值,21,p p 是对应的特征向量,则=],[21p p0 . 二.选择题每小题3分,共15分1.若A 为3阶方阵,且2=A ,则2A -= C . A.-4 B.4 C.-16 D.162.设B A ,为n 阶方阵,满足等式O AB =,则必有 B .A.O A =或O B = B.0=A 或0=B C. O B A =+ D.0=+B A3.设n 元线性方程组b x A=,且n b A R A R ==),()( ,则该方程组 BA.有无穷多解 B.有唯一解 C.无解 D.不确定 4.设P 为正交矩阵,则P 的列向量 AA .组成单位正交向量组 B. 都是单位向量 C. 两两正交 D. 必含零向量 5.若二次型()f '=x x Ax 为正定, 则对应系数矩阵A 的特征值 AA.都大于0; B.都大于等于0; C.可能正也可能负 D.都小于0三.8分计算行列式2111121111211112D =的值. 解.21234314211111111111121112110100555112111210010111211120001r r D r r r r r r r r -=+++-=-. 3分 5分四.8分设⎪⎪⎭⎫⎝⎛=100210321A ,求1-A .解:⎪⎪⎪⎭⎫ ⎝⎛=100 010 001 100210321) (E A ⎪⎪⎪⎭⎫ ⎝⎛---100 010 021 100210101221r r 4分1323100 121010 0122001 001r r r r -⎛⎫+ ⎪- ⎪-⎝⎭. ⎪⎪⎪⎭⎫ ⎝⎛--=-1002101211A 或用伴随矩阵7分 8分五.8分求齐次线性方程组⎪⎩⎪⎨⎧=+--=-+-=+--03203 0 432143214321x x x x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫ ⎝⎛------=321131111111A ⎪⎪⎪⎭⎫ ⎝⎛----→210042001111⎪⎪⎪⎭⎫⎝⎛---→000021001111 ⎪⎪⎪⎭⎫ ⎝⎛---→000021001011,4分通解方程组⎩⎨⎧=-=--02043421x x x x x ,基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111ξ ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=12012ξ ,7分通解为2211ξξk k +,21,k k 为任意常数.8分六.8分已知向量⎪⎪⎪⎭⎫ ⎝⎛=32111α ,⎪⎪⎪⎭⎫ ⎝⎛-=11112α ,⎪⎪⎪⎭⎫ ⎝⎛=53313α ,求向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示.解:()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==513312311111,,321ααα A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→220110220111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→000000110111⎪⎪⎪⎪⎪⎭⎫⎝⎛-→000000110201 5分极大无关组21,αα ,且2132ααα-=.8分七.10分讨论λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=+++2321321321)1( )1(0)1( λλλλλx x x x x x x x x1 有唯一解;2 无解;3 有无穷多解.解:法1 )3(1111111112+-=+++=λλλλλA 2分(1) 当0≠λ且3-≠λ时,有0≠A ,方程组有惟一解; 4分2当3-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=93 0 112121211A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→600033300211,3)(2)(=<=A R A R ,所以无解; 6分3当0=λ时,⎥⎥⎦⎤⎢⎢⎣⎡→000000000111A , 1)()(==A R A R ,方程组有无穷多解.法2 ⎪⎪⎪⎭⎫ ⎝⎛--+→⎪⎪⎪⎭⎫ ⎝⎛+++=220001111111110111λλλλλλλλλλλλA ⎪⎪⎪⎭⎫⎝⎛+---+→2)2(000111λλλλλλλλ⎪⎪⎪⎭⎫ ⎝⎛++--+→)1()3(0000111λλλλλλλλ 10分 八.8分用配方法将二次型31232221321422),,(x x x x x x x x f +--=化为标准形,并求可逆的线性变换.解:232223312132162)44(),,(x x x x x x x x x f --++=232223162)2(x x x x --+=,4分令⎪⎩⎪⎨⎧==+=33223112x y x y x x y ,即⎪⎩⎪⎨⎧==-=3322311 2y x y x y y x , 所以 ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100010201y y y x x x , 变换矩阵,100010201⎪⎪⎪⎭⎫ ⎝⎛-=C .01≠=C 标准形23222162y y y f --= .8分九.10分求矩阵⎪⎪⎪⎭⎫ ⎝⎛=400032020A 的特征值与最大特征值所对应的特征向量.解:)1()4(2+--=-λλλE A ,特征值.1,4321-===λλλ 4分当421==λλ时,解0)4(=-x E A 得⎪⎪⎪⎭⎫ ⎝⎛=0211ξ ,⎪⎪⎪⎭⎫ ⎝⎛=1002ξ ,A 的对应于421==λλ的全体特征向量为2221ξξη k k +=, 0(2221≠+k k . 10分十.每小题5分,共10分1. 设向量组321,,ααα线性无关,讨论向量组 112123,,αααααα+++的线性相关性.解:令112123123()()0,k k k αααααα+++++= 即 123123233()()0k k k k k k ααα+++++=因为321,,ααα 线性无关,所以有123223 000k k k k k k ++=⎧⎪+=⎨⎪=⎩, 3分由于方程组只有零解,故112123,,αααααα+++线性无关;5分2. 设A 为满足等式O E A A =+-232的矩阵,证明A 可逆,并求1A -.解:O E A A =+-2321(3)2(3)2A A E E A A E E -⇒-=-⇒⋅-= 3分 所以A 可逆,且11(3)2AE A -=- 5分。

上海交通大学2005至2006第二学期线代数A卷期末考试试题及答案

上海交通大学2005至2006第二学期线代数A卷期末考试试题及答案

上海交通大学2005至2006第二学期线代数A卷期末考试试题及答案线性代数试卷(A卷) 2006-06-21姓名学号得分题号一二三四总分得分一单项选择题(每题3分,共18分)1.已知矩阵,,且,则a. 当时,必有秩;b. 当时,必有秩;c. 当时,必有秩;d. 当时,必有秩。

2.已知为3维列向量组,行列式,,则行列式a. -6;b. 6;c. -18;d. 18。

3. 设线性空间中向量组线性无关,则的下列生成子空间中,维数为3的生成子空间是a. L;b. L;c. L;d. L。

4.设为维列向量组,矩阵,下列选项中正确的是a. 若线性相关,则线性无关;b. 若线性相关,则线性相关;c. 若线性无关,则线性无关;d. 若线性无关,则线性相关。

5. 设为非零实矩阵,,是行列式中元素的代数余子式,则矩阵必为a. 不可逆矩阵;b. 对称矩阵;c. 正交矩阵;d. 正定矩阵。

6.设为阶非奇异矩阵,为的伴随矩阵,则a. ;b. ;c. ;d. 。

二填空题(每题3分,共18分)1. 设3阶方阵有特征值,则的相似对角阵为;2. 设,,其中是非齐次线性方程组的解,为矩阵,且, 则线性方程组的通解为;3. 设实对称矩阵满足,则二次型经正交变换可化为标准形;4.已知矩阵满足,且,则行列式;5.设4阶矩阵满足行列式,,,则其伴随矩阵必有一个特征值为;6.已知4阶矩阵的秩,则齐次线性方程组的基础解系含个线性无关的解向量。

二计算题(每题8分,共48分)1.已知阶矩阵且满足方程,其中,求矩阵。

2. 已知非齐次线性方程组,其系数矩阵的秩试求:常数的值,以及该方程组的通解。

3. 求正交变换,将实二次型化为标准型,并写出正交变换。

4. 设为4阶方阵,其中是4维列向量,且线性无关,。

已知向量,试求线性方程组的通解。

5. 已知是3维线性空间的一个基,且,,。

(1)求由基到基的过渡矩阵;(2)设向量,求在基下的坐标6. 设列向量是矩阵的对应特征值的一个特征向量.(1)求常数;(2)试问:矩阵能否相似于对角矩阵?为什么?四证明题(每题8分,共16分)1. 已知矩阵为阶正定矩阵,证明:(1)矩阵的特征值都大于零;(2)若,则为正定矩阵。

2005-2006第二学期线性代数

2005-2006第二学期线性代数

安徽大学20 05 -20 06 学年第 二 学期 《线性代数》期末考试试卷(A 卷)(时间120分钟)年级 院系专业 姓名 学号 座位号一、选择题(每小题3分,共30分)1..排列542316的逆序数τ(542316)=( )A .7B .6C .8D .92.设A 是3阶方阵,且|A|=2,则|2A|=( ) A .4B .-4C .16D .123设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--121011322,则A 的伴随矩阵A*=( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----461351341B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----461351341C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----433654111D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----4336541114.A,B 是n 阶方阵,,则下列结论中错误..的是( ) A .TTTA B AB =)( B .kk k B A AB =)( C .kllk A A =)(D .B A AB =5.设A,B,C 为n 阶方阵,则下列结论正确的是( ) A .AB=AC 则B=CB .AB=0,则A=0或B=0C .AB=E,则A,B 可逆。

D .AB=BA7.设α1、α2是非齐次线性方程组Ax=b 的解,β是对应齐次方程组Ax=0的解,则Ax=b必有一个解是( ) A .21α+αB .21α-αC .21α+α+βD .213231α+α+β 8.设齐次线性方程组Ax=0的基础解系含有一个解向量,当A 是3阶方阵时,( ) A .r(A)=0 B .r(A)=1 C .r(A)=2D .r(A)=39.下列矩阵可逆的是( )A .⎪⎪⎪⎭⎫⎝⎛100010000B .⎪⎪⎪⎭⎫ ⎝⎛-011110101C . ⎪⎪⎪⎭⎫ ⎝⎛011101111 D .⎪⎪⎪⎭⎫⎝⎛11102201110.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛+=132121111λA 的秩为2则=λ( )。

A .2B .1C .0D .-1二.填空题(每空3分,共30分)1. ()(),4023,5321-=-=βα则.23βα-= 。

2005级线性代数考试试题

2005级线性代数考试试题

2005级线性代数考试试题院系_____________________;学号__________________;姓名___________________一、单项选择题(每小题2分,共40分)。

1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=6 35 24 1C ,6 5 43 2 1B ,4 32 1A ,则下列矩阵运算无意义的是 【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2–E =0,其中E 是n 阶单位矩阵,则必有【 】A. A=A -1B.A=-EC. A=ED.det(A)=1 3.设A 为3阶方阵,且行列式det(A)=21,则det(-2A)= 【 】 A.4 B.-4 C.-1 D.14.设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它两个行向量的线性组合D. 任意一个行向量都是其它两个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是 【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】A.03221= b b a aB.02121≠ b b a aC. 332211b a b a b a == D. 02131= b b a a9.方程组⎪⎩⎪⎨⎧=++=++=++ax x x x x x x x x 32132132123 3 12 12 有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=210. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则 【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量 13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni i n aa a a C. },,2,1,|),,,{(21n i z a a a a i n =∈ D. }1|),,,{(121∑==n i inaa a a14. F 3的两个子空间V 1={(x 1,x 2,x 3)|2x 1-x 2+x 3=0}, V 2={(x 1,x 2,x 3)|x 1+x 3=0}, 则子空间V 1 V 2的维数为【 】A. 二维B. 一维C. 三维D. 零维15. 设M n (R)是R 上全体n 阶矩阵的集合,定义)(,det )(R M A A A n ∈=σ,则σ是M n (R)到R 的 【 】A. 一一映射B. 满射C. 一一对应D. 既不是满射又不是一一对应15. 令),,(321x x x =ξ是R 3的任意向量,则下列映射中是R 3的线性变换的是 【 】A. 0,)(≠+=ααξξσB.)0,,2()(32321x x x x x +++=ξτC. ),,()(32221x x x p =ξ D. )0,cos ,(cos )(21x x w =ξ17.下列矩阵中为正交矩阵的是 【 】A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151C. ⎥⎦⎤⎢⎣⎡1 01- 1D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2 2 12- 1 212- 23118.若2阶方阵A 相似于矩阵⎥⎦⎤⎢⎣⎡=3- 20 1B ,E 为2阶单位矩阵,则方阵E –A 必相似于矩阵【 】A. ⎥⎦⎤⎢⎣⎡4 10 1B. ⎥⎦⎤⎢⎣⎡4- 1 0 1-C. ⎥⎦⎤⎢⎣⎡4 2-0 0D. ⎥⎦⎤⎢⎣⎡4- 2-01-19.二次型32212132122),,(x x x x x x x x f ++=的秩等于【 】A .0 B.1 C.2 D.320.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南理工大学 2005-2006 学年第 二 学期
《线性代数》补考试卷(B 卷)
考试方式:闭卷 本试卷考试分数占学生总评成绩的 80 %
一、填空题(本大题共8小题,每小题4分,共32分)
1. 排列23154的逆序数是 。

2.已知向量组()()()1231,2,1,2,5,3,1,3,4T
T
T
ααα=-==,则
123324ααα-+= 。

3.设A 为三阶方阵,若已知12
A =,则2A -= 。

4.设()121113C ⎛⎫ ⎪= ⎪ ⎪⎝⎭
,则R (C )= 。

(R (C )为矩阵C 的秩) 5.设A 满足220A A E --=,则()
1
A E --= 。

6. 设3512⎛⎫A = ⎪⎝⎭
,则1
-A = 。

7. 已知12
020002A k k ⎛⎫ ⎪= ⎪ ⎪-⎝⎭
为正定矩阵,则实数k 取值范围为为 。

8. 若四阶方阵A 与B 相似,方阵A 的特征值为
,5
1
,41,31,21则行列式=--E B 1_________.
二、选择题(本大题共5小题,每题3分,共15分。

每题
的4个选项中只有一个正确的,选出填入题后括号内)
1.设n 元齐次线性方程组AX =0,()R A r =有非零解的充要条件是( )
(A) r n = (B) r n < (C) r n ≥ (D) r n > 2.若向量αβγ,,线性无关,αβδ,,线性相关,则 ( ) (A)α必可由βγδ,,线性表示 (B)β必不可由 αγδ,,线性表示 (C)δ必可由αβγ,,线性表示 (D )δ必不可由αβγ,,线性表示
3.设A 、B 均为n 阶方阵,下列成立的是 ( ) (A) AB BA = (B) AB BA = (C) ()T
T
T
AB =A B (D) ()
1
11A B A B ---+=+
4. 设A 、B 均为n 阶方阵,且A 与B 相似,则( ).
(A) E A E B λλ-=- (B) A 与B 有相同的特征值和特征向量 (C) A 与B 都相似于一个对角阵 (D) A 与B 的行列式相同。

5. 设A 为m n ⨯矩阵,C 是n 阶可逆矩阵,R()r A =,矩阵C B =A ,
1R()r B =,则( )
(A) r > 1r (B) r < 1r (C) r = 1r (D) r 与 1r 的关系依C 而定
三、 简答题(本大题共6小题,共53分)
1. 求行列式的值(6分) D=1
1
1
1
111111111111
---
2. (7分)设,101020100,001020101⎥⎥⎥

⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B A 已知,X A B AX
+=-
求X.
3. (6分)设x xx E H T ,2-=为n 维列向量,又,1=x x T 证明: (1) H 为对称矩阵;(2)H 为正交矩阵
4.(12分)对于线性方程组⎪⎩⎪
⎨⎧-=++-=++-=++2
23321
321321x x x x x x x x x λλλλ, 讨论λ取
何值时,方程组无解,有唯一解和无穷多解,并在有多解
情况下写出通解。

5.(10分)求向量组
(),4,2,1,11T -=α(),2,1,3,02T =α(),14,7,0,33T
=α()T 0,2,2,14--=α的一
个极大线性无关组,并把其他向量用该极大线性无关组表
出。

6.(12)已知二次型
21232221321)1(22)1()1(),,(x x a x x a x a x x x f ++++-+-=的秩为2,
(1)求a 的值; (2) 求正交变换Py x =把二次型),,(321x x x f 化成标准型 (3) 求方程0),,(321=x x x f 的解。

相关文档
最新文档