数据挖掘课后习题资料
数据挖掘第三版第二章课后习题答案
1.1什么是数据挖掘?(a)它是一种广告宣传吗?(d)它是一种从数据库、统计学、机器学和模式识别发展而来的技术的简单转换或应用吗?(c)我们提出一种观点,说数据挖掘是数据库进化的结果,你认为数据挖掘也是机器学习研究进化的结果吗?你能结合该学科的发展历史提出这一观点吗?针对统计学和模式知识领域做相同的事(d)当把数据挖掘看做知识点发现过程时,描述数据挖掘所涉及的步骤答:数据挖掘比较简单的定义是:数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们所不知道的、但又是潜在有用信息和知识的过程。
数据挖掘不是一种广告宣传,而是由于大量数据的可用性以及把这些数据变为有用的信息的迫切需要,使得数据挖掘变得更加有必要。
因此,数据挖掘可以被看作是信息技术的自然演变的结果。
数据挖掘不是一种从数据库、统计学和机器学习发展的技术的简单转换,而是来自多学科,例如数据库技术、统计学,机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成。
数据库技术开始于数据收集和数据库创建机制的发展,导致了用于数据管理的有效机制,包括数据存储和检索,查询和事务处理的发展。
提供查询和事务处理的大量的数据库系统最终自然地导致了对数据分析和理解的需要。
因此,出于这种必要性,数据挖掘开始了其发展。
当把数据挖掘看作知识发现过程时,涉及步骤如下:数据清理,一个删除或消除噪声和不一致的数据的过程;数据集成,多种数据源可以组合在一起;数据选择,从数据库中提取与分析任务相关的数据;数据变换,数据变换或同意成适合挖掘的形式,如通过汇总或聚集操作;数据挖掘,基本步骤,使用智能方法提取数据模式;模式评估,根据某种兴趣度度量,识别表示知识的真正有趣的模式;知识表示,使用可视化和知识表示技术,向用户提供挖掘的知识1.3定义下列数据挖掘功能:特征化、区分、关联和相关性分析、分类、回归、聚类、离群点分析。
(完整版)数据挖掘概念课后习题答案
(b)(b)由基本方体[student,course,semester,instructor]开始,为列出BigUniversity每个学生的CS课程的平均成绩,应当使用哪些特殊的OLAP操作。
(c)如果每维有5层(包括all),如“student<major<status<university<all”, 该立方体包含多少方体?
合,因为它是松散耦合和 紧密耦合的折中。
第2章数据预处理
2.2假设给定的数据集的值已经分组为区间。区间和对应的频率如下。
年龄
频率
1~5
200
5~15
450
15~20
300
20~50
1500
50~80
700
80~110
44
计算数据的近似中位数值。
2.4假定用于分析的数据包含属性age。数据元组的age值(以递增序)是:13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70。
(a)画出一个等宽为10的等宽直方图;
(b)为如下每种抽样技术勾画例子:SRSWOR,SRSWR,聚类抽样,分层抽样。使用大小为5的样本和层“青年”,“中年”和“老年”。
解答:
(b)为如下每种抽样技术勾画例子:SRSWOR,SRSWR,聚类抽样,分层
抽样。使用大小为5的样本和层“青年”,“中年”和“老年”。 元组:
用箱深度为3的分箱均值光滑对以上数据进行光滑需要以下步骤:
�步骤1:对数据排序。(因为数据已被排序,所以此时不需要该步骤。)
�步骤2:将数据划分到大小为3的等频箱中。
数据仓库与数据挖掘教程(第2版)课后习题答案 第二章
数据仓库与数据挖掘教程(第2版)课后习题答案第二章1. 什么是数据仓库?它与传统数据库有什么不同?答:数据仓库是一个面向主题、集成、稳定、可学习的数据集合,用于支持企业决策制定和决策支持系统。
与传统数据库相比,数据仓库更注重数据的整合和大数据的处理能力,以支持更高级别的数据分析和决策。
2. 什么是元数据?有哪些类型?答:元数据指描述数据仓库中数据的数据,用于描述数据的含义、格式、内容、质量、来源、使用和存储等方面的信息。
元数据有三种类型:技术元数据、业务元数据和操作元数据。
3. 数据仓库的架构有哪些组成部分?请简述各组成部分的作用。
答:数据仓库的架构主要包括数据源、数据抽取、清理和转换、存储和管理、元数据管理、查询和分析等几个组成部分。
- 数据源:指数据仓库的数据来源,可以是事务处理系统、外部数据源、第三方提供商等。
- 数据抽取、清理和转换:将数据从各种不同的来源抽取出来并转化为简单、标准的格式,以便进行加工和分析。
- 存储和管理:将经过抽取、转换和清洗后的数据存储在数据仓库中并进行管理,查找、更新和删除等操作。
- 元数据管理:对数据仓库中的元数据进行管理,并将其存储在元数据存储库中。
- 查询和分析:通过各种查询和分析工具来进行数据挖掘、分析和报告。
4. 请列出数据仓库中的三种主要数据类型。
答:数据仓库中的三种主要数据类型包括事实数据、维度数据和元数据。
5. 请列出数据仓库的三种不同的操作类型。
答:数据仓库的三种不同的操作类型包括基础操作、加工操作和查询操作。
6. 数据挖掘的定义是什么?答:数据挖掘是一种通过分析大量数据来发现有意义模式、趋势和关联的过程。
它是既包含统计学、机器学习和数据库技术的交叉学科,又包含更广泛的知识和业务领域。
7. 请列出数据挖掘中的四个主要任务。
答:数据挖掘中的四个主要任务包括描述性数据挖掘、预测性数据挖掘、关联数据挖掘和分类和聚类。
8. 数据仓库中经常使用OLAP分析方式,您了解OLAP是什么吗?答: OLAP是一种面向主题的数据分析方式,可以帮助用户对快速变化的数据进行多维分析和决策支持。
数据挖掘课后答案
5
0 1Sample
Min Outlier Max Outlier
Q2
2) Suppose that the data for analysis includes the attribute grade. The grade values for the data tuples are:
4, 5, 9, 11, 12, 13, 13, 13, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20
4, 5, 9, 11, 12, 13, 13, 13, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20
Q2
(d) Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data? • The first quartile (corresponding to the 25th percentile) of the data is: 12. The third quartile (corresponding to the 75th percentile) of the data is: 17.
Min Outlier Max Outlier
Boxplot Example 2
35 30 25 20 15 10
Min=2 Q1=3 Median=7 Q3=13 Max=30 Terminate whiskers at the most extreme observation within 1.5×IQR of the quartiles Q1- 1.5×IQR=-12 Q2+1.5×IQR=28
数据挖掘习题及解答-完美版
Data Mining Take Home Exam学号: xxxx 姓名: xxx 1. (20分)考虑下表的数据集。
(1)计算整个数据集的Gini 指标值。
(2)计算属性性别的Gini 指标值(3)计算使用多路划分属性车型的Gini 指标值 (4)计算使用多路划分属性衬衣尺码的Gini 指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么? 解:(1) Gini=1-(10/20)^2-(10/20)^2=0.5 (2)Gini=[{1-(6/10)^2-(4/10)^2}*1/2]*2=0.48 (3)Gini={1-(1/4)^2-(3/4)^2}*4/20+{1-(8/8)^2-(0/8)^2}*8/20+{1-(1/8)^2-(7/8)^2}*8/2 0=26/160=0.1625(4)Gini={1-(3/5)^2-(2/5)^2}*5/20+{1-(3/7)^2-(4/7)^2}*7/20+[{1-(2/4)^2-(2/4)^2}*4/ 20]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。
2. (20分)考虑下表中的购物篮事务数据集。
(1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。
(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
(3)将每个顾客ID作为一个购物篮,重复(1)。
应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。
(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。
(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。
数据挖掘课后习题
(实验项目) DBLP数据集包括100万篇发表在计算机科学会议和杂志上的论文项。
在这些项中,很多作者都有合著关系。
(a) 提出一种方法,挖掘密切相关的(即,经常一起合写文章)合著者关系。
解决问题的大致过程:1.DBLP数据集是一个XML文件,先对XML文件解析,得到一个超过1G的TXT文件,处理文件数据格式,并截取前20000行数据,格式如下图:2.使用FP-Tree算法,设置支持度为3,得到的满足条件的频繁项集如下图:说明:以上结果只是一部分,由于数据集很庞大,限于篇幅,不便全部展示。
(b) 根据挖掘结果和本章讨论的模式评估度量,讨论哪种度量可能比其他度量更令人信服地揭示紧密合作模式。
关于作者A(Dimitris Papadias)和作者B(Yufei Tao)的2×2的相依表(显示期望值)Yufei Tao 非(Yufei Tao)和Dimitris Papadias 26(0.0045) 60(86) 86非(Dimitris Papadias) 59(84.9955) 1609994(1609968) 1610053 和85 1610054 16101391. 使用提升度的相关分析P({A}) = 86/1610139 = 5.28e -5P({B}) = 85/1610139 = 5.28e -5P({A,B}) = 26/1610139 = 1.61e -5提升度为P({A,B})/(P({A})×P({B}) )=1.61e -5/(5.28e -5×5.28e -5)=57752. 使用χ2进行相关分析χ2 = (26-0.0045)2/0.0045 + (60-86)2/86 + (59-84.9955)2/84.9955 + (1609994-1609968)2/1609968 = 1502383. 全置信度P(A|B) = 26/85 = 0.306P(B|A) = 26/86 = 0.302all_conf(A,B) = min{P(A|B),P(B|A)} = 0.3024. 最大置信度max_conf(A,B) = max{P(A|B),P(B|A)} = 0.3065. KulczynskiKulc(A,B) = 1/2 *(P(A|B)+P(B|A)) = 0.3046.余弦Cosine(A,B) = P(A|B)×P(B|A) = 0.304比较6种模式评估度量:上述6种模式评估中,提升度和χ2的计算受零事务的影响很大,在上面的例子中,AB表示零事务的个数。
数据挖掘 习题及参考答案
①电信行业中利用数据挖掘技术进行客户行为分析,包含客户通话记录、通话时间、所 开通的服务等,据此进行客户群体划分以及客户流失性分析。
②天文领域中利用决策树等数据挖掘方法对上百万天体数据进行分类与分析,帮助天文 学家发现其他未知星体。
③制造业中应用数据挖掘技术进行零部件故障诊断、资源优化、生产过程分析等。
第 4 页 共 27 页
(b)对于数据平滑,其它方法有: (1)回归:可以用一个函数(如回归函数)拟合数据来光滑数据; (2)聚类:可以通过聚类检测离群点,将类似的值组织成群或簇。直观地,落在簇集合 之外的值视为离群点。
2.6 使用习题 2.5 给出的 age 数据,回答以下问题: (a) 使用 min-max 规范化,将 age 值 35 转换到[0.0,1.0]区间。 (b) 使用 z-score 规范化转换 age 值 35,其中,age 的标准偏差为 12.94 年。 (c) 使用小数定标规范化转换 age 值 35。 (d) 指出对于给定的数据,你愿意使用哪种方法。陈述你的理由。
回归来建模,或使用时间序列分析。 (7) 是,需要建立正常心率行为模型,并预警非正常心率行为。这属于数据挖掘领域
的异常检测。若有正常和非正常心率行为样本,则可以看作一个分类问题。 (8) 是,需要建立与地震活动相关的不同波形的模型,并预警波形活动。属于数据挖
掘领域的分类。 (9) 不是,属于信号处理。
1.6 根据你的观察,描述一个可能的知识类型,它需要由数据挖掘方法发现,但本章未列出。 它需要一种不同于本章列举的数据挖掘技术吗?
答:建立一个局部的周期性作为一种新的知识类型,只要经过一段时间的偏移量在时间序列 中重复发生,那么在这个知识类型中的模式是局部周期性的。需要一种新的数据挖掘技 术解决这类问题。
数据挖掘习题及解答-完美版
Data Mining Take Home Exam学号: xxxx 姓名: xxx(1)计算整个数据集的Gini指标值。
(2)计算属性性别的Gini指标值(3)计算使用多路划分属性车型的Gini指标值(4)计算使用多路划分属性衬衣尺码的Gini指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么?(3)=26/160=0.1625]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。
2. ((1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。
(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
(3)将每个顾客ID作为一个购物篮,重复(1)。
应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。
(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。
(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。
(3)同理可得:{e}的支持度为4/5=0.8,{b,d}的支持度为5/5=1,{b,d,e}的支持度为4/5=0.8。
(4)c[{b,d}→{e}]=5/4=1.25,c[{e}→{b,d}]=4/5=0.8。
3. (20分)以下是多元回归分析的部分R输出结果。
> ls1=lm(y~x1+x2)> anova(ls1)Df Sum Sq Mean Sq F value Pr(>F)x1 1 10021.2 10021.2 62.038 0.0001007 ***x2 1 4030.9 4030.9 24.954 0.0015735 **Residuals 7 1130.7 161.5> ls2<-lm(y~x2+x1)> anova(ls2)Df Sum Sq Mean Sq F value Pr(>F)x2 1 3363.4 3363.4 20.822 0.002595 **x1 1 10688.7 10688.7 66.170 8.193e-05 ***Residuals 7 1130.7 161.5(1)用F检验来检验以下假设(α = 0.05)H0: β1 = 0H a: β1≠ 0计算检验统计量;是否拒绝零假设,为什么?(2)用F检验来检验以下假设(α = 0.05)H0: β2 = 0H a: β2≠ 0计算检验统计量;是否拒绝零假设,为什么?(3)用F检验来检验以下假设(α = 0.05)H0: β1 = β2 = 0H a: β1和β2 并不都等于零计算检验统计量;是否拒绝零假设,为什么?解:(1)根据第一个输出结果F=62.083>F(2,7)=4.74,p<0.05,所以可以拒绝原假设,即得到不等于0。
完整word版数据挖掘课后答案
第一章6.1 数据特征化是目标类数据的一般特性或特征的汇总。
(1)岁、有工5040—元以上的顾客特征的汇总描述是:年龄在例如,在某商店花费1000 作和很好的信誉等级。
数据区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比)(2 较。
由可与低平均分数的学生的一般特点进行比较。
例如,高平均分数的学生的一般特点,%的学生是大四的计算机科学专业75此产生的可能是一个相当普遍的描述,如平均分高达的学生则不是。
的学生,而平均分低于65% )关联和相关分析是指在给定的频繁项集中寻找相关联的规则。
(3”X,)=>拥有(X 例如,一个数据挖掘系统可能会发现这样的规则:专业(,“计算机科学”是一个变量,代表一个学生,该规,其中Xconfidence = 98%]%,个人电脑“)[support= 12的置信度或可信性表示,如果一个学生是属于计算机科学专业的,则拥有个人则表明,98%显示属于计算机科学专的支持度意味着所研究的所有事务的12%98%。
12%电脑的可能性是业的学生都会拥有个人电脑。
(4)分类和预测的不同之处在于前者是构建了一个模型(或函数),描述和区分数据类或概念,而后者则建立了一个模型来预测一些丢失或不可用的数据,而且往往是数值,数据集的预测。
它们的相似之处是它们都是为预测工具:分类是用于预测的数据和预测对象的类标签,预测通常用于预测缺失值的数值数据。
例如:某银行需要根据顾客的基本特征将顾客的信誉度区分为优良中差几个类别,此时用到的则是分类;当研究某只股票的价格走势时,会根据股票的历史价格来预测股票的未来价格,此时用到的则是预测。
(5)聚类分析数据对象是根据最大化类内部的相似性、最小化类之间的相似性的原则进行聚类和分组。
聚类还便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。
例如:世界上有很多种鸟,我们可以根据鸟之间的相似性,聚集成n类,其中n可以认为规定。
数据挖掘习题及解答-完美版
Data Mining Take Home Exam学号: xxxx 姓名: xxx(1)计算整个数据集的Gini指标值。
(2)计算属性性别的Gini指标值(3)计算使用多路划分属性车型的Gini指标值(4)计算使用多路划分属性衬衣尺码的Gini指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么?^2}*1/2]*2=0.48(3)—(8/8)^2-(0/8)^2}*8/20+{1—(1/8)^2—(7/8)^2}*8/20=26/160=0。
16254/7)^2}*7/20+[{1—(2/4)^2—(2/4)^2}*4/20]*2=8/25+6/35=0。
4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0。
1625最小,即使用车型属性更好。
2。
((1)将每个事务ID视为一个购物篮,计算项集{e},{b,d}和{b,d,e}的支持度。
(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度.(3)将每个顾客ID作为一个购物篮,重复(1)。
应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0). (4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。
答:(1)由上表计数可得{e}的支持度为8/10=0。
8;{b,d}的支持度为2/10=0。
2;{b,d,e}的支持度为2/10=0。
2。
(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。
(3)同理可得:{e}的支持度为4/5=0.8,{b,d}的支持度为5/5=1,{b,d,e}的支持度为4/5=0.8。
(4)c[{b,d}→{e}]=5/4=1.25,c[{e}→{b,d}]=4/5=0。
8。
3. (20分)以下是多元回归分析的部分R输出结果。
> ls1=lm(y~x1+x2)〉anova(ls1)Df Sum Sq Mean Sq F value Pr(〉F)x1 1 10021.2 10021.2 62。
数据挖掘习题2
数据挖掘习题2数据挖掘习题1、数据库有5个事务。
设min_sup=60%,min_conf=80%。
TID 购买的商品T100 {M,O,N,K,E,Y}T200 {D,O,N,K,E,Y}T300 {M,A,K,E}T400 {M,U,C,K,Y}T500 {C,O,O,K,I,E} (a)分别使⽤Apriori和FP增长算法找出所有频繁项集。
⽐较两种挖掘过程的效率。
(b)列举所有与下⾯的元规则匹配的强关联规则(给出⽀持度s和置信度c),其中,X是代表顾客的变量,是2、下表由雇员数据库的训练数据组成。
数据已泛化。
例如,age“31…35”表⽰年龄在31~35之间。
对于给定的⾏,count表⽰department,status,age和salary在该⾏具有给定值的元组数。
department status age salary count46K...50K 30 sales senior 31 (35)26K...30K 40 sales junior 26 (30)31K...35K 40 sales junior 31 (35)systems junior 21…25 46K…50K 20systems senior 31…35 66K…70K 5systems junior 26…30 46K…50K 3systems senior 41…45 66K…70K 3marketing senior 36…40 46K…50K 10marketing junior 31…35 41K…45K 4secretary senior 46…50 36K…40K 4secretary junior 26…30 26K…30K 6 设status是类标号属性。
(a)如何修改基本决策树算法,以便考虑每个⼴义数据元组(即每⼀⾏)的count?(b)使⽤修改过的算法,构造给定数据的决策树。
3、假设数据挖掘的任务是将如下的⼋个点(⽤(x,y)代表位置)聚类为三个簇。
数据挖掘 课后习题
© 李春权 数据挖掘
哈尔滨医科大学
生物信息科学与技术学院 2012
‹#›
当数据有一些离群点时,采用均值和标准差进行数据标准 化受离群点影响大。这时可用_中位点 和__绝对标准差 代 替。
对象之间相似度和相异度测量方法主要有哪些?
n
1
明可夫斯基距离 d(x, y) (| xk yk |r )r ,当r=1时,该距离称为
SMC = (f11 + f00)/(f01 + f10 + f11 + f00) = (10+60) / (10+20+10+60) = 0.7
J = (f11) / (f01 + f10 + f11)
= 10 / (10 + 20 + 10) = 0.25
© 李春权 数据挖掘
哈尔滨医科大学
生物信息科学与技术学院 2012
的候选项集时,访问了Hash树的哪些叶节点? (b)使用(a)中访问的叶节点确定事务{1,3,4,5,8}包含
的候选项集。
习题
习题
3. 将Apriori算法用于下表所示的数据集,最小支持 度为30%.
习题
3. (a)画出数据集的项集格。并用以下字母标记格中 的每个节点。N:不是候选项集;F:频繁项集; I:经支持度计数后,发现是非频繁的候选项集。 (b)频繁项集的百分比是多少? (c)Apriori算法的剪枝率是多少? (d)假警告率是多少?(假警告率指经过支持度计 算后被发现是非频繁的候选项集所占的百分比。)
习题
2. 对于下面给定的每个序列w=<e1, e2, …ei, ei+1,… elast>,确定它们是否是序列 <{1,2,3}{2,4}{2,4,5}{3,5}{6}>的子序列,时限约 束为:mingap=0; maxgap=3; maxspan=5; ws=1; w=<{1}{2}{3}> w=<{1,2,3,4}{5,6}> w=<{2,4}{2,4}{6}> w=<{1}{2,4}{6}> w=<{1,2}{3,4}{5,6}>
数据挖掘导论课后习题答案
数据挖掘导论课后习题答案数据挖掘导论课后习题答案数据挖掘是一门涉及统计学、机器学习和数据库技术的跨学科领域,旨在从大量的数据中发现有价值的信息和模式。
在这门课程中,学生将学习数据挖掘的基本概念、方法和技术,并通过习题的解答来加深对这些概念的理解和应用。
下面是一些常见的数据挖掘导论课后习题及其答案,供学生参考。
1. 什么是数据挖掘?数据挖掘的目标是什么?答:数据挖掘是从大量的数据中提取出有用的信息和模式的过程。
其目标是发现隐藏在数据背后的知识和规律,以便支持决策和预测。
2. 数据挖掘的主要任务有哪些?答:数据挖掘的主要任务包括分类、聚类、关联规则挖掘、异常检测和预测等。
分类是将数据分为不同的类别;聚类是将数据分为相似的群组;关联规则挖掘是发现数据中的关联关系;异常检测是识别与其他数据不同的异常数据;预测是根据已有的数据来预测未来的趋势。
3. 数据挖掘的过程包括哪些步骤?答:数据挖掘的过程一般包括问题定义、数据收集、数据预处理、特征选择、模型建立、模型评估和结果解释等步骤。
问题定义是明确挖掘的目标和需求;数据收集是获取相关数据;数据预处理是对数据进行清洗、集成、转换和规约;特征选择是选择对挖掘任务有用的特征;模型建立是选择合适的模型并进行训练;模型评估是评估模型的性能;结果解释是对挖掘结果进行解释和应用。
4. 什么是分类算法?常见的分类算法有哪些?答:分类算法是将数据分为不同类别的算法。
常见的分类算法包括决策树、朴素贝叶斯、支持向量机和神经网络等。
决策树通过构建树状结构来进行分类;朴素贝叶斯基于贝叶斯定理进行分类;支持向量机通过寻找最优超平面进行分类;神经网络模拟人脑神经元的工作原理进行分类。
5. 什么是聚类算法?常见的聚类算法有哪些?答:聚类算法是将数据分为相似群组的算法。
常见的聚类算法包括K均值聚类、层次聚类和DBSCAN等。
K均值聚类通过将数据分为K个簇来进行聚类;层次聚类通过构建树状结构来进行聚类;DBSCAN基于密度的聚类算法,将高密度区域看作簇。
大数据分析与挖掘课后习题参考答案
题;
数据集成:负责解决不同数据源的数据匹配问题、数值冲突问题和冗余问
题;
数据变换:将原始数据转换为适合数据挖掘的形式。包括数据的汇总、聚
集、概化、规范化,同时可能需要对属性进行重构;
数据归约:负责搜小数据的取值范围,使其更适合数据挖掘算法的需要。
bucketedData = bucketizer.transform(dataFrame)
bucketedData.show()
7
(1)简单随机抽样:从总体 N 个单位里抽出 n 个单位作为样本(可以重
复抽样,也可以不重复抽样),最常用的抽样方式,参数估计和假设检
验主要依据的就是简单随机样本;
(2)系统抽样:将总体中的所有单位(抽样单位)按一定顺序排列,在规
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import MaxAbsScaler
from pyspark.ml.feature import MinMaxScaler
sc=SparkContext('local')
spark=SQLContext(sc)
每次扫描题表 3-1 中的数据库后得到的所有频繁项集。在频繁项集的基础上,
产生所有的强关联规则。
题表 3-1
TID
商品
A,B,C,
1
D,E
2
A,B,D,E
3
B,C,D
4
C,D,E
5
A,C,E
6
A,B,D
某商店统计了上个季度 10000 笔交易记录,给出如题表 3-2 所示的统计信息:
数据挖掘部分课后习题
数据挖掘部分课后习题1、数据清理、数据集成、数据变换、数据规约各自的目的是什么?有哪些常用方法?数据清理的目的:去掉噪声和无关数据,用其例程通过填写空缺的值,平滑噪声数据,识别,删除孤立点,并解决不一致来清理数据。
常用的方法:处理空缺值;可用以下方法:忽略该记录、去掉属性、手工填写空缺值、使用默认值、使用属性平均值、使用同类样本平均值、预测最可能的值。
噪声数据的处理:噪声数据是一个测量变量中的随机错误或偏差。
可用以下方法:分箱:按箱平均值平滑,按箱中值平滑,按箱边界平滑等;聚类:聚类将相似的值组织成群或类,落在群或类外的值就是孤立点,也就是噪声数据;回归,让数据适合一个函数(如回归函数)来平滑数据。
数据集成的目的:将多个数据源中的数据结合起来存放在一个一致的数据存储中.。
常用的方法:模式集成:主要是实体识别问题,利用元数据(关于数据的数据),这可以避免模式集成中的错误。
数据变换的目的:把原始数据转换成为适合数据挖掘的形式。
常用的方法:用平滑消除噪声数据聚类来对数据进行汇总数据概化使用高层次概念替换低层次“原始”数据来进行概念分层规范化将属性数据按比例缩放,使之落入一个小的特定区间属性构造(特征构造)来帮助提高精度和对高维数据结构的理解。
数据归约的目的:用产生数据的归约表示,使数据的范围减小,减少数据量。
常用的方法:数据立方聚集维归约数据压缩数值归约离散化和概念分层等2、对数据挖掘的数据为什么要进行预处理?数据挖掘过程模型是为应用数据挖掘技术提供一种系统化的技术实施方法。
围绕数据挖掘过程需要涉及:问题的理解、数据的理解、收集和准备、建立数据挖掘模型、评价所建的模型、应用所建的模型等。
数据预处理是从大量的数据属性中提取出对目标有重要影响的属性来降低原始数据的维数,或者是处理一些不好的数据,从而改善实例数据的质量和提高数据挖掘的速度现实世界的数据是“肮脏的”,很容易受噪声数据,空缺数据和不一致数据的侵扰,所以在用数据挖掘系统对数据进行挖掘时,必须对数据进行预处理,去掉含噪声,空缺的,和不一致的数据。
数据挖掘概念与技术原书第3版第一章课后习题
习题什么是数据挖掘在你的回答中,强调以下问题:(a)它是又一种广告宣传吗(b)它是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用吗(c)我们提出了一种观点,说数据挖掘是数据库技术进化的结果。
你认为数据挖掘也是机器学习研究进化的结果吗你能基于该学科的发展历史提出这一观点吗针对统计学和模式识别领域,做相同的事。
(d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。
答:简单地说,数据挖掘其实就是从大量的数据中发现有用的信息,它是从大量数据中挖掘有趣模式和知识的过程。
数据挖掘不是一种广告宣传,而是身处在信息时代数据如此庞大的今天,我们对由海量的数据转化为有用信息的迫切需要,所以它是信息技术自然进化的结果,而不是一种广告宣传。
数据挖掘也不是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用,它涉及到了很多领域的技术,比如统计学、机器学习、模式识别、数据库和数据仓库、信息检索、可视化、神经网络、高性能计算、算法以及许多应用领域的大量技术。
数据挖掘起始于20世纪下半叶,是在当时多个学科发展的基础上发展起来的。
随着数据库技术的发展应用,数据的积累不断膨胀,导致简单的查询和统计已经无法满足企业的商业需求,所以急需一种新型的技术去获取有用的信息,当时计算机领域的人工智能也取得了巨大进展,进入了机器学习的阶段,人们就将两者结合起来,用数据库管理系统存储数据,用计算机分析数据,这两者的结合就促就以这一门新兴的学科,所以数据挖掘不是机器学习研究进化的结果,而是结合了机器学。
数据挖掘的步骤包括:(1)数据收集;(2)数据清洗、脱敏;(3)数据存储;(4)数据分析;(5)数据可视化。
数据仓库与数据库有何不同他们有哪相似之处答:数据库是按照数据结构来组织、存储和管理数据的仓库,它是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。
数据挖掘概念与技术原书第3版(范明、孟小峰绎)第一章课后习题
数据挖掘概念与技术原书第3版(范明、孟小峰绎)第一章课后习题-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII1.9习题1.1 什么是数据挖掘?在你的回答中,强调以下问题:(a)它是又一种广告宣传吗?(b)它是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用吗?(c)我们提出了一种观点,说数据挖掘是数据库技术进化的结果。
你认为数据挖掘也是机器学习研究进化的结果吗你能基于该学科的发展历史提出这一观点吗针对统计学和模式识别领域,做相同的事。
(d)当把数据挖掘看做知识发现过程时,描述数据挖掘所涉及的步骤。
答:简单地说,数据挖掘其实就是从大量的数据中发现有用的信息,它是从大量数据中挖掘有趣模式和知识的过程。
数据挖掘不是一种广告宣传,而是身处在信息时代数据如此庞大的今天,我们对由海量的数据转化为有用信息的迫切需要,所以它是信息技术自然进化的结果,而不是一种广告宣传。
数据挖掘也不是一种从数据库、统计学、机器学习和模式识别发展而来的技术的简单转换或应用,它涉及到了很多领域的技术,比如统计学、机器学习、模式识别、数据库和数据仓库、信息检索、可视化、神经网络、高性能计算、算法以及许多应用领域的大量技术。
数据挖掘起始于20世纪下半叶,是在当时多个学科发展的基础上发展起来的。
随着数据库技术的发展应用,数据的积累不断膨胀,导致简单的查询和统计已经无法满足企业的商业需求,所以急需一种新型的技术去获取有用的信息,当时计算机领域的人工智能也取得了巨大进展,进入了机器学习的阶段,人们就将两者结合起来,用数据库管理系统存储数据,用计算机分析数据,这两者的结合就促就以这一门新兴的学科,所以数据挖掘不是机器学习研究进化的结果,而是结合了机器学。
数据挖掘的步骤包括:(1)数据收集;(2)数据清洗、脱敏;(3)数据存储;(4)数据分析;(5)数据可视化。
1.2数据仓库与数据库有何不同他们有哪相似之处答:数据库是按照数据结构来组织、存储和管理数据的仓库,它是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。
数据挖掘 第三章 课后习题答案
1、分类技术在很多领域都有应用,例如可以通过客户分类构造一个分类模型来对银行贷款进行风险评估;当前的市场营销中很重要的一个特点是强调客户细分。
客户类别分析的功能也在于此,采用数据挖掘中的分类技术,可以将客户分成不同的类别,比如呼叫中心设计时可以分为:呼叫频繁的客户、偶然大量呼叫的客户、稳定呼叫的客户、其他,帮助呼叫中心寻找出这些不同种类客户之间的特征,这样的分类模型可以让用户了解不同行为类别客户的分布特征;其他分类应用如文献检索和搜索引擎中的自动文本分类技术;安全领域有基于分类技术的入侵检测等等。
机器学习、专家系统、统计学和神经网络等领域的研究人员已经提出了许多具体的分类预测方法。
又如:信用卡核准过程,信用卡公司根据信誉程度,将一组持卡人记录为良好、一般和较差三类,且把类别标记赋给每个记录,如:“信誉良好的客户是那些收入在5万元以上,年龄在40-50岁之间的人士”。
2、决策树是一种倒立的树结构,它由内部节点、叶子节点和边组成。
其中最上面的一个节点叫根节点。
构造一棵决策树需要一个训练集,一些例子组成,每个例子用一些属性(或特征)和一个类别标记来描述。
构造决策树的目的是找出属性和类别间的关系,一旦这种关系找出,就能用它来预测将来未知类别的记录的类别。
这种具有预测功能的系统叫决策树分类器。
构造出的决策树有二叉树和多叉树,二叉树的内部节点一般表示为一个逻辑判断,如形式为(ai = vi )的逻辑判断,其中ai 是属性,vi 是该属性的某个属性值;树的边是逻辑判断的分支结果。
多叉树(如ID3)的内部节点是属性,边是该属性的所有取值,有几个属性值,就有几条边。
树的叶子节点都是类别标记。
构造一个决策树分类器通常分为两步:树的生成和剪枝。
其中树的生成是采用自上而下的递归方法。
以多叉树为例,它的构造思路是,如果训练例子集合中的所有例子是同类的,则将之作为叶子节点,节点内容即是该类别标记。
否则,根据某种策略选择一个属性,按照属性的各个取值,把例子集合划分为若干子集合,使得每个子集上的所有例子在该属性上具有同样的属性值。
数据挖掘第三版第八章课后习题答案
6.2(a)能确定项集A是否频繁,并且能确定项集A的支持度6.3(b)因为s包含s’,则项集s的频数小于或者等于s’的频数,所以项集s的任意非空子集s’的支持度至少与s的支持度一样大。
设任务相关的数据D是数据库事务的集合,|D|是 D 的事务量,由定义得:| |) (_sup)(supDs countportsport=.设s’是s的非空子集,由定义得:||)'(_sup)'(supDscountportsport=.由频繁项集的所有非空子集一定也是频繁的可知:support(s’) support(s)(d)因为d中的频繁项集都是来自d的所有分区之内的,所以在d中频繁的项集至少在d的一个分区中是频繁的。
6.6(a)Apriori算法最小支持度计数=3C1 C2 C3 C4 C5项集支持度计数项集支持度计数项集支持度计数项集支持度计数项集支持度{M} 3 {M} 3 {M,O} 1 {M,K} 3 {O,K,E} 3 {O} 4 {O} 4 {M,E} 2 {O,K} 3{N} 2 {K} 5 {M,K} 3 {O,E} 3{K} 5 {E} 4 {M,Y} 2 {K,E} 4{E} 4 {Y} 3 {O,E} 3 {K,Y} 3{Y} 3 {O,K} 3{D} 1 {O,Y} 2{A} 1 {K,E} 4{U} 1 {K,Y} 3{C} 2 {E,Y} 2{I} 1FP-growth树算法K 5E 4O 3M 3Y 3Null{}K:5E:4 M:1O:3 OM:1 OY:1M:1 OY:1Y:1项条件模式基条件FD模式产生的频繁模式Y {K,E,O,D:1}{K,E,O:1<K:3> {K,Y:3}}{K,M:1}<K:3> {K,M:3}M {K,E,,O:1}{K,E:1}{K:1}O {K,E:3} <K:3,E:3> {K,O:3}{E,O:3}{K,E,O:3}E {K:4} <K:4> {K,E:4}6.146.14(a)支持度=2000/5000*100%=40%>25%,置信度=2000/3000*100%=66.7%>50%则该关联规则是强规则(b)P(AUB)=40%P(A)p(B)=2500/5000*3000/5000*100%=30%P(AUB)> P(A)p(B)所以不是独立的,两者之间是正相关的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1 章数据仓库的概念与体系结构1. 面向主题的,相对稳定的。
2. 技术元数据,业务元数据。
3. 联机分析处理OLAP。
4. 切片(Slice),钻取(Drill-down 和Roll-up 等)。
5. 基于关系数据库。
6. 数据抽取,数据存储与管理。
7. 两层架构,独立型数据集市,依赖型数据集市和操作型数据存储,逻辑型数据集市和实时数据仓库。
8. 可更新的,当前值的。
9. 接近实时。
10. 以报表为主,以分析为主,以预测模型为主,以营运导向为主。
11. 答:数据仓库就是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,通常用于辅助决策支持。
数据仓库的特点包含以下几个方面:(1)面向主题。
操作型数据库的数据组织是面向事务处理任务,各个业务系统之间各自分离;而数据仓库中的数据是按照一定的主题域进行组织。
主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点领域,一个主题通常与多个操作型业务系统或外部档案数据相关。
(2)集成的。
面向事务处理的操作型数据库通常与某些特定的应用相关,数据库之间相互独立,并且往往是异构的。
而数据仓库中的数据是在对原有分散的数据库数据作抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企事业单位一致的全局信息。
也就是说存放在数据仓库中的数据应使用一致的命名规则、格式、编码结构和相关特性来定义。
(3)相对稳定的。
操作型数据库中的数据通常实时更新,数据根据需要及时发生变化。
数据仓库的数据主要供单位决策分析之用,对所涉及的数据操作主要是数据查询和加载,一旦某个数据加载到数据仓库以后,一般情况下将作为数据档案长期保存,几乎不再做修改和删除操作,也就是说针对数据仓库,通常有大量的查询操作及少量定期的加载(或刷新)操作。
(4)反映历史变化。
操作型数据库(OLTP)主要关心当前某一个时间段内的数据,而数据仓库中的数据通常包含较久远的历史数据,因此总是包括一个时间维,以便可以研究趋势和变化。
数据仓库系统通常记录了一个单位从过去某一时点(如开始启用数据仓库系统的时点)到目前的所有时期的信息,通过这些信息,可以对单位的发展历程和未来趋势做出定量分析和预测。
12. 答:(1)两层架构(Generic Two-Level Architecture)。
(2)独立型数据集市(Independent Data Mart)。
(3)依赖型数据集市和操作型数据存储(Dependent Data Mart and Operational Data Store)。
(4 )逻辑型数据集市和实时数据仓库(Logical Data Mart and Real-Time DataWarehouse)。
13. 答:数据仓库技术的发展包括数据抽取、存储管理、数据表现和方法论等方面。
在数据抽取方面,未来的技术发展将集中在系统集成化方面。
它将互连、转换、复制、调度、监控纳入标准化的统一管理,以适应数据仓库本身或数据源可能的变化,使系统更便于管理和维护。
在数据管理方面,未来的发展将使数据库厂商明确推出数据仓库引擎,作为数据仓库服务器产品与数据库服务器并驾齐驱。
在这一方面,带有决策支持扩展的并行关系数据库将最具发展潜力。
在数据表现方面,数理统计的算法和功能将普遍集成到联机分析产品中,并与Internet/Web 技术紧密结合。
按行业应用特征细化的数据仓库用户前端软件将成为产品作为数据仓库解决方案的一部分。
数据仓库实现过程的方法论将更加普及,将成为数据库设计的一个明确分支,成为管理信息系统设计的必备。
14. 答:(1)IBM 公司提供了一套基于可视化数据仓库的商业智能(BI)解决方案,包括:Visual Warehouse(VW)、Essbase/DB2 OLAP Server 5.0、IBM DB2 UDB,以及来自第三方的前端数据展现工具(如BO)和数据挖掘工具(如SAS)。
其中,VW 是一个功能很强的集成环境,既可用于数据仓库建模和元数据管理,又可用于数据抽取、转换、装载和调度。
Essbase/DB2 OLAP Server 支持“维”的定义和数据装载。
Essbase/DB2 OLAP Server 不是ROLAP(Relational OLAP)服务器,而是一个(ROLAP 和MOLAP)混合的HOLAP 服务器,在Essbase 完成数据装载后,数据存放在系统指定的DB2 UDB 数据库中。
它的前端数据展现工具可以选择Business Objects 的BO、Lotus 的Approach、Cognos 的Impromptu 或IBM 的Query Management Facility;多维分析工具支持Arbor Software 的Essbase 和IBM(与Arbor 联合开发)的DB2 OLAP 服务器;统计分析工具采用SAS 系统。
(2)Oracle 数据仓库解决方案主要包括Oracle Express 和Oracle Discoverer 两个部分。
Oracle Express 由四个工具组成:Oracle Express Server 是一个MOLAP(多维OLAP)服务器,它利用多维模型,存储和管理多维数据库或多维高速缓存,同时也能够访问多种关系数据库;Oracle Express Web Agent 通过CGI 或Web 插件支持基于Web 的动态多维数据展现;Oracle Express Objects 前端数据分析工具(目前仅支持Windows 平台)提供了图形化建模和假设分析功能,支持可视化开发和事件驱动编程技术,提供了兼容Visual Basic 语法的语言,支持OCX 和OLE;Oracle Express Analyzer 是通用的、面向最终用户的报告和分析工具(目前仅支持Windows 平台)。
Oracle Discoverer 即席查询工具是专门为最终用户设计的,分为最终用户版和管理员版。
在Oracle 数据仓库解决方案的实施过程中,通常把汇总数据存储在Express 多维数据库中,而将详细数据存储在Oracle 关系数据库中,当需要详细数据时,Express Server 通过构造SQL 语句访问关系数据库。
(3)Microsoft 将OLAP 功能集成到SQL Server 数据库中,其解决方案包括BI 平台、BI 终端工具、BI 门户和BI 应用四个部分,如图1.1。
①BI 平台是BI 解决方案的基础,包括ETL 平台SQL Server 2005 IntegrationService(SSIS)、数据仓库引擎SQL Server 2005 RDBMS 以及多维分析和数据挖掘引擎SQL Server 2005 Analysis Service、报表管理引擎SQL Server 2005 Reporting Service。
②BI 终端用户工具,用户通过终端用户工具和Analysis Service 中的OLAP 服务和数据挖掘服务进行交互来使用多维数据集和数据挖掘模型,终端用户通常可使用预定义报表、交互式多维分析、即席查询、数据可视化、数据挖掘等多种方法。
③BI 门户提供了各种不同用户访问BI 信息的统一入口。
BI 门户是一个数据的汇集地,集成了来自不同系统的相关信息。
用户可以制定个性化的个人门户,选择和自己相关性最强的数据,提高信息访问和使用的效率。
④BI 应用是建立在BI 平台、BI 终端用户工具和BI 统一门户这些公共技术手段之上的满足某个特定业务需求的应用,例如零售业务分析、企业项目管理组合分析等。
第2 章数据仓库的数据存储与处理1. 企业级数据仓库(EDW)。
2. 单一的,详细的。
3. 最初填充数据仓库。
4. 越高,越低,越多。
5. 提高,预处理,事实表。
6. 自然键(Natural Key),代理键(Surrogate Key)。
7. 星型模式。
8. 早期细节级,轻度综合级。
9. 答:简单地说,数据是从企业内外部的各业务处理系统(操作型数据)流向企业级数据仓库(EDW)或操作型数据存储区(ODS),在这个过程中,要根据企业(或其他组织)的数据模型和元数据库对数据进行调和处理,形成一个中间数据层,然后再根据分析需求,从调和数据层(EDW、ODS)将数据引入导出数据层,如形成满足各类分析需求的数据集市。
10. 答:数据的ETL 过程就是负责将操作型数据转换成调和数据的过程。
如上面的2.3.1 小节所述,这两种数据具有明显的区别,因此,数据调和是构建一个数据仓库中最难的和最具技术挑战性的部分。
在为企业级数据仓库填充数据的过程中,数据调和可分为两个阶段:一是企业级数据仓库(EDW)首次创建时的原始加载;二是接下来的定期修改,以保持EDW 的当前有效性和扩展性。
整个过程由四个步骤组成:抽取、清洗、转换、加载和索引。
事实上,这些步骤可以进行不同的组合,如,可以将数据抽取与清洗组合为一个过程,或者将清洗和转换组合在一起。
通常,在清洗过程中发现的拒绝数据信息会送回到源操作型业务系统中,然后将数据在源系统中加以处理,以便在以后重新抽取。
11. 答:在星模式中,事实表居中,多个维表呈辐射状分布于其四周,并与事实表连接。
位于星形中心的实体是事实表,是用户最关心的基本实体和查询活动的中心,为数据仓库的查询活动提供定量数据。
位于星模式四周的实体是维度实体,其作用是限制和过滤用户的查询结果,缩小访问X围。
每个维表都有自己的属性,维表和事实表通过关键字相关联。
12. 答:因为数据仓库或数据集市的数据总是历史的数据,需要时间维来区别。
第3 章数据仓库系统的设计与开发1. 在线分析处理(OLAP) 分析。
2. 信息包图法,维度,类别,度量。
3. 逻辑模型。
4. 事务事实,快照事实,线性项目事实。
5. 聚合。
6. 时间,区域。
7. 退化维。
8. 无变化,缓慢变化,剧烈变化。
9. 索引。
10. 反向规X化,引入冗余。
11. 答:信息包图法,也叫用户信息需求表,就是在一X平面表格上描述元素的多维性,其中的每一个维度用平面表格的一列表示,通常的维度如时间、地点、产品和顾客等;而细化本列的对象就是类别,例如时间维度的类别可以细化到年、月、日,甚至小时;平面表格的最后一行(代表超立方体中的单元格)即为指标度量值,例如,某年在某销售点的某类产品的实际销售额。
创建信息包图时需要确定最高层和最低层的信息需求,以便最终设计出包含各个层次需要的数据仓库。
总之,信息包图法是一种自上而下的数据建模方法,即从用户的观点开始设计(用户的观点是通过与用户交流得到的),站在管理者的角度把焦点集中在企业的一个或几个主题上,着重分析主题所涉及数据的多维特性,这种自上而下的方法几乎考虑了所有的信息源,以及这些信息源影响业务活动的方式。