中考数学复习 观察归纳型问题测试题
浙教版初中数学初三62中考冲刺:观察、归纳型问题(基础)
中考冲刺:观察、归纳型问题(基础)一、选择题1. 用边长为1的正方形覆盖3×3的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是( )A.2 B.4 C.5 D.62.求1+2+22+23+...+22012的值,可令S=1+2+22+23+...+22012,则2S=2+22+23+24+...+22013,因此,2S-S=22013-1.仿照以上推理,计算出1+5+52+53+ (52012)值为( )A.52012-1 B.52013-1 C. D.3.(2016•冷水江市三模)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0) B.(2017,1) C.(2017,﹣1) D.(2018,0)二、填空题4.(2015•盘锦四模)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是______.5.(2016•天门)如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为______.6. 如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n 的面积为S n,则S n=___________.(用含n的式子表示)三、解答题7.观察下列等式:……请解答下列问题:(1)按以上规律列出第5个等式:a5=______=______;(2)用含有n的代数式表示第n个等式:a n=______=______(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.8. 如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n.(1)将方程组1的解填入表中.(2)请依据方程组和它的解的变化规律,将方程组n和它的解直接填入表中;9. 如图所示,是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图①倒置后与原图拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为….>2.【答案】C;【解析】设S=1+5+52+53+…+52 012,则5S=5+52+53+54+…+52 013.因此,5S-S=52 013-1,S=.3.【答案】B;【解析】以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2017=504×4+1,∴第2017秒时,点P的坐标为(2017,1).二、填空题4.【答案】(22016,0).【解析】∵∠OBC=90°,OB=1,BC=,∵将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,∴OC1=2OC=2×2=4=22,OC2=2OC1=2×4=8=23,OC3=2OC2=2×8=16=24,…,OC n=2n+1,∴OC2015=22016,∵2015÷6=335…5,∴点C2015与点C5在同一射线上,在x轴正半轴,坐标为(22016,0).故答案为:(22016,0).5.【答案】45.【解析】观察,发现规律:A2(2,),A4(,﹣),A6(2,2),A8(,﹣),…,∴A4n+2(2,n+),A4n+4(,﹣)(n为自然数),∵100=4×24+4,∴A100的坐标为(,﹣).故答案为:(,﹣).6.【答案】.【解析】∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n 分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.三、解答题7.【答案与解析】解:根据观察知,答案分别为:=个数,(4)可以将它剪成六个小正方形,八个小正方形,如图。
中考数学复习专题一观察归纳与猜想题含答案
学习好资料 欢迎下载专题一 观察、归纳与猜想题专题解法探究特点:观察、归纳与猜想题的特点是问题的结论或条件不直接给出,而常常是给出一列数、一列等式或一列图形的一部分,然后让考生通过观察、分析、概括、推理、猜想等一系列活动,逐步确定需要求的结论.解决这类问题的一般思路是通过对所给的具体结论进行全面、细致的观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以运用.类型:观察、归纳与猜想题的主要类型有数字猜想型,数式规律型,图象变化猜想型,坐标变化型.热点知识:考查的知识有数与式的运算,平面直角坐标系,三角形、特殊四边形,几何变换,图形的组合等知识.解题策略:根据已有的图象与文字提供的信息或解题模式,进行适当的正向迁移和归纳推理,并通过计算或证明解决实际问题.知识归类探究1) 数字猜想型例1 某校生物教师李老师在实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,请你推测第n 组应该取种子数是__________粒.【解析】 本题实质是求数列3,5,7,9,…的排列规律,观察可知这组数是首项为3的一组奇数,故可猜想其规律为2n +1.【答案】 2n +1【思路点拨】 找出数列→观察数列→找出规律2) 数式规律型例2 观察下列计算:11×2=1-12,12×3=12-13,13×4=13-14,14×5=14-15,…,从计算结果中找出规律,利用规律计算11×2+12×3+13×4+14×5+…+12 012×2 013=__________. 【解析】 原式=(1-12)+(12-13)+(13-14)+(14-15)+…+(12 012-12 013)=1-12+12-13+13-14+14-15+…+12 012-12 013=1-12 013=2 0122 013.【答案】2 0122 013【思路点拨】通过题目所给规律,将所给出式子各项进行拆分,再计算.3)图形排列规律型例3搭建如图①的一顶帐篷需要17钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要__________根钢管.【解析】观察图形①可知搭建一顶帐篷要钢管17根,由②可知多串一顶多需11根,所以串n顶就需要[17+11(n-1)]根,所以串7顶帐篷需要钢管17+11×(7-1)=83根.【答案】83【思路点拨】观察每多一顶帐篷时需要的钢管增加的根数→发现规律→列出代数式→结果4)坐标变化型例4如图,矩形BCDE的各边分别平行于x轴和y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边做环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2 012次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)【解析】由题意知,甲乙第一次相遇时在点(-1,1),第二次相遇在点(-1,-1),第三次相遇在点(2,0),……以此类推,可知甲乙两物体每相遇三次是一个循环,因为2 012÷3的余数为2,所以第2 012次相遇地点的坐标为(-1,-1).故选D.【答案】D【思路点拨】 先分别找出前几次相遇时的坐标 →发现规律→计算→结果专题跟踪训练1. 观察下面几组数:1,3,5,7,9,11,13,15,……2,5,8,11,14,17,20,23,……7,13,19,25,31,37,43,49,……这三组数具有共同的特点.现在有上述特点的一组数,第一个数是3,第三个数是11,则其第n 个数为()A . 8n -5B . n 2+2C . 4n -1D . 2n 2-4n +52. 已知整数a 1、a 2、a 3、a 4…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|…依次类推,则a 2 012的值为()A . -1 005B . -1 006C . -1 007D . -2 0123. 一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A . 3B . 4C . 5D . 64. 一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒移动一个单位,那么第35秒时质点所在位置的坐标是()A . (4,0)B . (5,0)C . (0,5)D . (5,5)5. 某数学活动小组的20位同学站成一列做报数游戏,规律是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1),……这样得到的20个数的积为________. 6. 一个自然数的立方,可以“分裂”成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9;43=13+15+17+19;….若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是________.7. 如图,连接在一起的两个正方形的边长都为1 cm ,一个微型机器人由点A 开始按ABCDEFGA …的顺序沿正方形循环移动.①第一次到达G 点时移动了________cm ;②当微型机器人移动了2 012 cm 时,它停在________点.8. “数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…98+99+100=5 050.我们可以将高斯的做法归纳如下:令S =1+2+3+…+98+99+100, ①S =100+99+98+…+3+2+1.②①+②得2S =101×100所以S =101×100÷2=5 050请类比以上做法,回答下列问题:若n 为正整数,3+5+7+…+(2n +1)=168,则n =________.9. 观察数:根据表中数的排列规律,则B+D=________.10. 如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形,……如此下去,若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n=______.11. 如图,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒……照这样的规律继续摆下去,第n个图形需要________根小棒(用含n的代数式表示).12. 如图,直线y=3x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径交x轴于点A3,…,按此做法进行下去,点A5的坐标为________.13. 用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2 013颗黑色棋子?请说明理由.14. 如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC 为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1……依次类推.(2)求第1个平行四边形OBB1C、第2个平行四边形A1B1C1C和第6个平行四边形的面积.参考答案1. C2. B3. C4. B5. 216. 417. 7E8. 129. 2310. (2)n -111. 4n -112. (16,0) 13. 解:(1)第5个图形有18颗黑色棋子.(2)解法1:设第n 个图形有2 013颗黑色棋子,由题意,得3(n +1)=2 013解得n =670,∴第670个图形有2 013颗黑色棋子.解法2:2 013-33=670,∴第670个图形有2 013颗黑色棋子. 14. 解:(1)在Rt △ABC 中,BC =AC 2-AB 2=202-122=16,∴S 矩形ABCD =AB ·BC =12×16=192.(2)∵矩形ABCD 的对角线相交于点O ,∴S 矩形ABCD =4S △OBC . ∵四边形OBB 1C 是平行四边形,∴OB ∥CB 1,OC ∥BB 1, ∴∠OBC =∠B 1CB ,∠OCB =∠B 1BC .又∵BC =CB ,∴△OBC ≌△B 1CB ,∴S ▱OBB 1C =2S △OBC =12S 矩形ABCD =96. 同理,S 四边形A 1B 1C 1C =12S ▱OBB 1C =12×96=48. 第6个平行四边形的面积为126S 矩形ABCD =3.。
2023届安徽省中考复习专题3观察猜想数学规律与探索解答题30题专项提分计划解析版
2023届安徽省中考复习专题3观察猜想数学规律与探索解答题30题专项提分计划1.(2023年安徽省宿州市萧县一模数学试题)观察下图中用小黑点摆成的三角形,并根据图中规律回答相关问题.(1)第4个图形对应的等式为______.(2)若第n个图形对应的黑点总数为66个,求n的值.2.(2022年安徽省芜湖市九年级毕业暨升学模拟考试(二)数学试题)观察下列等式:第1个等式:222=211´+;第2个等式:333=322´+;第3个等式:444=433´+;第4个等式:555=544´+;......根据上述规律解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n 个等式(用含n 的式子表示,n 是正整数),并证明.3.(2022年安徽省合肥市瑶海区中考三模(统考)数学试题)我们把图1称为基本图形,显然在这个基本图形中能找到6个矩形,将此基本图形不断复制并向上平移,使得相邻两个基本图形的边重合,这样得到图2、图3、……;(1)观察图3并完成相应填空:1×(1+2+3)=6;(1+2)×(1+2+3)=18; ×(1+2+3)=(2)根据以上的规律猜想,图n 中共有 个矩形(用含n 的代数式表示);(3)在一个由n 行n 列的矩形组成的图形中,一共有100个矩形,求n 的值;【答案】(1)()123;36.++(2)()31.n n +(3)4.【分析】(1)直接利用图形中矩形个数进而得出数据变化规律即可得出答案.(2)直接利用(1)中变化规律得出答案.4.(2022年安徽省宿州市第十一中学九年级中考数学六摸试题)观察下列等式:第1个等式:251 133 -=,第2个等式:261 284 -=,第3个等式:271 3155 -=,……按照以上规律,解决下列问题:(1)写出第4个等式:_________;(2)写出你猜想的第n个等式:_________,并给出证明.【点睛】本题主要考查了规律类题探究,分式加减运算,明确题意,准确得到规律是解题的关键.5.(2022年安徽省滁州市来安县中考二模数学试题)观察下列等式:第1个等式:223111221222=-´´´´;第2个等式:3234112322232=-´´´´;第3个等式:4345113423242=-´´´´;第4个等式:5456114524252=-´´´´;第5个等式:6567115625262=-´´´´;……按上述规律,回答以下问题:(1)写出第6个等式:_______________________________________________;(2)写出你猜想的第n 个等式:_____________________________________(用含n 的等式表示),并证明.6.(2022年安徽省宣城市宣州区九年级中考第二次模拟考试数学试题)观察下列各式:第1个等式:211133=-´.第2个等式:2112424=-´.第3个等式:2113535=-´.……根据你发现的规律解答下列问题:(1)第4个等式为:______.(2)写出你猜想的第n 个等式:______(用含n 的等式表示),并证明.故答案为:()21122n n n n =-++.【点睛】本题考查了分式的规律探究,有理数的加减运算,解决本题的关键在于推导一般性规律.7.(2022年安徽省安庆市九年级毕业班中考模拟数学试题)观察下列等式:第2个等式:2727-=´;第3个等式:131310310-=´;第4个等式:131413413-=´;…根据你观察到的规律,解决下列问题:(1)请写出第5个等式:_________;(2)请写出第n 个等式________(用含n 的等式表示),并证明.8.(2022年安徽省合肥市庐阳区一模数学试题)观察以下等式:第1个等式:1111122+-=,第3个等式:56330+-=,第4个等式:1111 78456+-=,……按照以上规律,解决下列问题:(1)写出第5个等式:______________________;(2)写出你猜想的第n个等式:____________(用含n的等式表示),并证明.9.(2022年安徽省合肥市一六八中学中考一模数学试题)用同样规格的黑白两种颜色的正方形.按如图的方式拼图,请根据图中的信息完成下列的问题:(1)在图②中用了块白色正方形,在图③中用了__块白色正方形(2)按如图的规律维续铺下去,那么第n个图形要用_ 块白色正方形;(3)如果有足够多的黑色正方形,能不能恰好用完2021块白色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形;如果不能,说明你的理由.【答案】(1)8;11(2)(3n +2)(3)能恰好用完2021块白色正方形,第673个图形【分析】(1)观察如图可直接得出答案;(2)认真观察题目中给出的图形,结合问题(1),通过分析,即可找到规律,得出答案;(3)根据问题(2)中总结的规律,列出算式3n +2=2021,如果结果是整数,则能够拼出具有以上规律的图形,否则,不能.【详解】(1)解:根据题意得:图①中用了白色正方形的块数为5=3×1+2,图②中用了白色正方形块数为8=3×2+2,图③中用了白色正方形块数为11=3×3+2,故答案为:8;11(2)解:由(1)得:第n 个图形用了(3n +2)块,故答案为:(3n +2)(3)解:能恰好用完2021块白色正方形,理由如下:假设第n 块恰好用完2021块白色正方形,根据题意得:3n +2=2021,解得:n =673,∴能恰好用完2021块白色正方形,它是第673个图形.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律:第n 个图形要用(3n +2)块白色正方形,利用规律解决问题是解题的关键.10.(2021年安徽省合肥市蜀山区中考一模(统考)数学试卷)观察以下等式:第1个等式:122(1)3311´+=-;第2个等式:422(1)3422´+=-;第3个等式:722(1)3533´+=-;第4个等式:1022(1)3644´+=-;……;按照以上规律,解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n 个等式:(用含n 的等式表示),并证明11.(2022年安徽省安庆市五校联考中考一模数学试题)观察以下等式:第1个等式:1111=1322æö´+-ç÷èø,第2个等式:2111=1433æö´+-ç÷èø,第3个等式:3111=1544æö´+-ç÷èø,第4个等式:4111=1655æö´+-ç÷èø,……,按照以上规律,解决下列问题:(1)写出第5个等式: ;(2)写出你猜想的第()1n -个()2n ³等式:______(用含n 的等式表示,并证明).12.(2022年安徽省合肥市第四十五中学中考三模数学试题)先阅读、观察、理解,再解答后面的问题:第1个等式:()1121230123´=´´-´´()11233=´´第2个等式:()()11122312301223412333´+´=´´-´´+´´-´´()11230122341233=´´-´´+´´-´´()12343=´´第3个等式:()()()111122334123013234123345234333´+´+´=´´-´´+´´-´´+´´-´´()11230132341233452343=´´-´´+´´-´´+´´-´´()13453=´´(1)依此规律,猜想:()1223341n n ´+´+´+++=L ________(直接写出最后结果);(2)依据上述规律计算:1011111212132930´+´+´++´L .13.(2022年安徽省合肥市高新区中考二模数学试题)观察下列等式:1223113221´=´;2335225332´=´;3669339663´=´;…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数和三位数的数字之间具有相同规律,我们称这类等式为“数字对称式”.(1)根据上述规律填空,使式子成为“数字对称式”:52×______=______×25;______×187=781×______.(2)设“数字对称式”左边两位数的十位上数字为a ,个位上数字为b ,且29a b £+£,请用a 、b 表示“数字对称式”(只写出等式,不需证明).【答案】(1)275,572;71,17(2)()()()()10100101001010a b b a b a a a b b b a ++++=++++⎡⎤⎡⎤⎣⎦⎣⎦【分析】(1)根据题意可得三位数中间的数等于两数的和,根据这一规律然后进行填空,从而得出答案;(2)根据题意得出一般性的规律,然后根据多项式的计算法则进行说明理由.(1)根据题意:52×275=572×25;71×187=781×17;故答案为:275,572,71,17;(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).证明如下:∵左边两位数的十位数字为a,个位数字为b,∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,∴左边=(10a+b)×[100b+10(a+b)+a]=(10a+b)(100b+10a+10b+a)=(10a+b)(110b+11a)=11(10a+b)(10b+a),右边=[100a+10(a+b)+b]×(10b+a)=(100a+10a+10b+b)(10b+a)=(110a+11b)(10b+a)=11(10a+b)(10b+a),∴左边=右边.∴“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).【点睛】本题是对数字变化规律的考查,同时考查了列代数式,去括号,整式的加减运算,因式分解的应用,根据已知信息,掌握利用左边的两位数的十位数字与个位数字变化得到其它的三个数是解题的关键.14.(2022年安徽省合肥市寿春中学三模数学试题)观察下列等式:第1个等式:22 4233´=+;第2个等式:33 9388´=+;第3个等式:44 1641515´=+;第4个等式:55 2552424´=+…按照以上规律,解决下列问题:(1)请写出第5个等式________;(2)请写出第n个等式,并证明.15.(2022年安徽省马鞍山市第七中学、第八中学二模联考数学试题)观察下图:下列每一副图都是由一些单位长度均为1的黑方格和白方格按一定的规律组成(下面所有方格均指的单位为1的小方格)(1)根据规律,第4个图中共有_______个方格,其中黑方格_______块.(2)第n个图形中,白方格共有_______个(用n表示,n为正整数)(3)有没有可能黑方格比白方格恰好少2022个,如果有,求出是第几个图形;如果没有,请说明理由.【答案】(1)45;1216.(2022年安徽省C20教育联盟九年级第三次学业水平检测数学试题)观察以下等式:第1个等式:22111´-=第2个等式:23222´-=第3个等式:24333´-=第4个等式:25444´-=第5个等式:26555´-=……按照以上规律,解决下列问题:(1)写出第6个等式:_______________;(2)写出你猜想的第n 个等式:___________________(用含n 的等式表示),并证明.【答案】(1)27666´-=(2)2(1)n n n n +´-=,证明见解析【分析】(1)根据规律直接写出第五个等式即可;(2)归纳规律写出第n 个等式,检验等式左边等于等式右边恒等,可证明式子成立.【详解】(1)27666´-=(2)2(1)n n n n+´-=证明:∵左边2(1)n n n =+´-22n n n =+-n=∵右边n=∴左边=右边∴等式成立.【点睛】本题主要考查数字的变化规律,总结出等式左边的变化规律是解本题的关键.17.(2022年安徽省安庆市中考二模数学试题)(规律探究)如下图,是由若干个边长为1的小正三角形组成的图形,第(2)个图比第(1)个图多一层,第(3)个图比第(2)个图多一层,依次类推.(1)第(9)个图中阴影三角形的个数为 ;非阴影三角形的个数为 .(2)第n 个图形中,阴影部分的面积与非阴影部分的面积比是441∶43,求n .(3)能否将某一个图形中的所有小三角形重新拼接成一个菱形,如果能,请指出是第几个图形,如果不能说明理由.【答案】(1)100 ,21(2)2018.(2022年安徽省蚌埠中考二模数学试卷 )观察以下等式:第1个等式:222022+=;第2个等式:222345+=;第3个等式:2228610+=;第4个等式:22215817+=;第5个等式:222241026+=……按照以上规律,解决下列问题:(1)第6个等式是____________;(2)写出你猜想的第n 个等式:____________(用含n 的等式表示),并证明.【答案】(1)222351237+=(2)()()222221(2)1n n n -+=+,证明见解析【分析】(1)由前几个中等式的特点直接得出第6个式子即可;(2)根据前几个式子的规律即可猜想第n 个等式,再证明等式的左边等于右边即可.【详解】(1)解:根据前面几个等式的规律可得第6个等式为:2222(61)(26)(61)-+´=+,即222351237+=.故答案:222351237+=(2)解:猜想的第n 个等式是()()222221(2)1n n n -+=+,理由是:∵左边=()2221(2)n n -+=()224214n n n -++=422214n n n -++=4221n n ++=222()21n n ++=22(1)n +=右边,∴ ()()222221(2)1n n n -+=+,即等式成立.【点睛】此题主要考查了数字的运算规律,理解题意并找出数字之间的运算规律是解题的关键.19.(2022年安徽省城名校中考最后三模(一)数学试题)观察以下等式:第1个等式:2214223411-æö´-=ç÷-èø;第2个等式:2424224422-æö´-=ç÷-èø;第3个等式:2634225433-æö´-=ç÷-èø;第4个等式:2844226444-æö´-=ç÷-èø;第5个等式:21054227455-æö´-=ç÷-èø;……按照以上规律,解决下列问题:(1)写出第6个等式:___________;(2)写出你猜想的第n 个等式:__________(用含n 的等式表示),并证明.20.(2022年安徽省合肥市瑶海区中考二模数学试题)观察以下等式:第1个等式:732(23333´-=-;第2个等式:1332(2)3755´-=-;第3个等式:1932(2)31177´-=-;第4个等式:2532(231599´-=-;……;按照以上规律,解答下列问题:(1)写出第5个等式: ;(2)写出你猜想的第n 个等式:(用含n 的等式表示),并证明.21.(2022年安徽省全椒县中考第二次模拟考试数学试题)观察下列等式:第1个等式:1411=332æö-¸ç÷èø;第2个等式:1921=483æö-¸ç÷èø;第3个等式:11631=5154æö-¸ç÷èø;第4个等式:12541=6245æö-¸ç÷èø;第5个等式:13651=7356æö-¸ç÷èø;……按照以上规律,解决下列问题:(1)写出第6个等式:___________;(2)写出你猜想的第n个等式_________(用含n的等式表示),并证明.22.(2022年安徽省合肥市庐阳区九年级阶段调研二模数学试题)已知:当n为自然数时,11223(1)(1)(1)3n n n n n´+´++-´=+-L,观察下列等式:第1个:21=1第2个:22+++´12=1(11)2++´=1212=(1+2)+1´2第3个:222++++´++´123=1(11)2(12)3++´++´=1212323+++´+´=(123)(1223)(1)依此规律,填空:2222L L++++=++´++´+++-n n n1231(11)2(12)3[1(1)]=++´++´+++-´Ln n n1212323(1)=+(______________)[________________________]=+1=´6(2)运用以上结论,计算:2222L.++++12320=23.(2022年安徽省宣城市三县四校中考联盟考试试题)用同样大小的两种不同颜色(白色.灰色)的正方形纸片,按如图方式拼成长方形.[观察思考]第(1)个图形中有212=´张正方形纸片;第(2)个图形中有2(12)623´+==´张正方形纸片;第(3)个图形中有2(123)1234´++==´张正方形纸片;第(4)个图形中有2(1234)2045´+++==´张正方形纸片;……以此类推(1)[规律总结]第(5)个图形中有__________张正方形纸片(直接写出结果).(2)根据上面的发现我们可以猜想:123n ++++=L __________.(用含n 的代数式表示)(3)[问题解决]根据你的发现计算:101102103200++++L .24.(2022年安徽省淮北市九年级中考模拟一数学试题)观察下列等式:第1个等式:11111(15415a ==´-´,第2个等式:21111()59459a ==´-´,第3个等式:31111(9134913a ==´-´,…请解答下列问题:(1)按以上规律列出第5个等式:5a =________= ________.(2)用含有n 的代数式表示第n 个等式:(n 为正整数);n a =________________________=________________________.(3)求1232022a a a a ++++L 的值.25.(2022年安徽省合肥市瑶海区育英学校中考二模数学试题)观察下列图形中小黑点个数与等式的关系,按照其图形与等式的规律,解答下列问题:=第1个等式:1221+=+=第2个等式:4682+=+=第3个等式:912183+=+=第4个等式:1620324+=+(1)写出第5个等式:________.(2)写出你猜想的第n 个等式:________(用含n 的等式表示).(3)若第n 组图形中左右两边各有210个小黑点,求n .【答案】(1)2530505+=+(2)()2212n n n n n++=+26.(安徽省六安市舒城县仁峰实验学校2021-2022学年九年级下学期第一次月考数学试题(一模))观察以下等式:第1个等式:1112 12111 +=´´-;第2个等式:1112 22423+=´´-;第3个等式:1112 32935+=´´-;第4个等式:1112 421647+=´´-;第5个等式:1112 522559+=´´-;……按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.27.(安徽省六安市汇文中学2021-2022学年九年级下学期第一次月考(一模)数学试题)将黑色圆点按如图所示的规律进行排列,已知图1中有5个黑色圆点;图2中有12个黑色圆点;图3中有22个黑色圆点;图4中有35个黑色圆点;……。
2019中考数学创新题型复习之观察归纳型练习题
2019中考数学创新题型复习之观察归纳型练习题1.数学问题:计算+++…+ (其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,……;……第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式: +++…+=1-.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,……;……第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式: +++…+=1-,两边同除以2,得+++…+=-.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:________,所以, +++…+=________.拓广应用:计算+++…+.2.点O在直线AB上,点A1,A2,A3,…在射线OA上,点B1,B2,B3,…在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为________秒.3.如图,在平面直角坐标系xOy中,已知直线l:y=-x-1,双曲线y=.在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2.请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,….记点A n的横坐标为a n,若a1=2,则a2=________,a2 013=________;若要将上述操作无限次地进行下去,则a1不能取的值是________.4.在平面直角坐标系xOy中,对于点P(x,y),我们把点P'(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为________,点A2 014的坐标为________;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为________.5.将正方形图1做如下操作:第1次:分别连结各边中点,如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割,如图3,得到9个正方形……,以此类推,根据以上操作,若要得到2 013个正方形,则需要操作的次数是( )A.502B.503C.504D.5056.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需要火柴的根数为( )A.156B.157C.158D.1597.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,……按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为( )A. B. C. D.8.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去……,经过第2 015次操作后得到的折痕D2 014E2 014到BC的距离记为h2 015.若h1=1,则h2 015的值为( )A. B. C.1- D.2-9.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=( )A.14B.15C.16D.17。
专题03 观察规律归纳型—2023年中考数学必考特色题型讲练(河南专用)(原卷版)
专题03观察规律归纳型选题介绍本题型在河南省近十年的中招试卷中考了3次,分别为2022年第9题,2019年第10题,2016年第8题。
该题一般为选择题型,分值3分。
本题计算量大,难度系数中等,得分率较低。
本题属于代数范畴,考察知识分为两类,一、数字或字母规律,探索型问题;二、几何图形中规律探索型问题。
通过观察、归纳、类比等活动获得数学猜想,并能对所做出的猜想进行验证,能进行一些简单的严密的逻辑论证,并有条理的表达自己的证明。
根据已有的图像与文字提供的信息,按照以下思维过程解体:①从特殊情况入手,探索发现规律,②综合归纳猜想,得出结论,③验证结论。
真题展现2022年河南中招填空题第9题9.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P,将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(3,-1)B.(-1,-3)C.(−3,-1)D.(1,3)2019年河南中招填空题第10题10.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)2018年河南中招填空题第8题8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)模拟演练1.如图,在平面直角坐标系中,边长为1的正方形111OA B C 的两边在坐标轴上,以它的对角线1OB 为边作正方形122OB B C ,再以正方形122OB B C 的对角线2OB 为边作正方形233OB B C ,以此类推⋯、则正方形201920202020OB B C 的顶点2020B 的坐标是()A .1010(2,0)B .(0,10102)C .1010(0,2)-D .1010(2-,0)2.如图在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒23π个单位长度,则2019秒时,点P 的坐标是()A .(2017,0)B .3)C .(2018,0)D .(2019,3)-3.如图,在平面直角坐标系中,()()2,0,1,0A B -,以点A 为圆心,OA 长为半径作圆,交x 轴正半轴于点C ,点D 为A 上一动点,连接BD ,以BD 为边,在直线BD 的上方作正方形BDEF ,若点D 从点O 出发,按顺时针方向以每秒2π个单位长度的速度在A 上运动,则第2022秒结束时,点F 的坐标为()A.()1,3B.(C.3,32⎛⎫ ⎪⎝⎭D.32⎛ ⎝4.如图所示,在OBC 中,顶点()0,0O ,()2,2B -,()2,2C .将OBC 与正方形ABCD 组成的图形绕点O 逆时针旋转,每次旋转90°,则第2023次旋转结束时,点A 的坐标为()A.(6,2)B.(﹣2,6)C.(6,﹣2)D.(6,﹣2)5.如图,小圆O 的半径为1,111A B C ∆,222A B C ∆,333A B C ∆,…,n n n A B C ∆依次为同心圆O 的内接正三角形和外切正三角形,由弦11A C 和弧11A C 围成的弓形面积记为1S ,由弦22A C 和弧22A C 围成的弓形面积记为2S ,…,以此下去,由弦n n A C 和弧n n A C 围成的弓形面积记为n S ,其中2020S 的面积为__________.6.如图所示,正方形ABCD 的边长为2,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2S ……按照此规律继续下去,则2021S 的值为()A .201712⎛⎫ ⎪⎝⎭B .201812⎛⎫ ⎪⎝⎭C .201912⎛⎫ ⎪⎝⎭D .202012⎛⎫ ⎪⎝⎭7.如图,在平面直角坐标系xOy 中,已知点A 的坐标是(0,2),以OA 为边在右侧作等边三角形1OAA ,过点1A 作x 轴的垂线,垂足为点1O ,以11O A 为边在右侧作等边三角形112O A A ,再过点2A 作x 轴的垂线,垂足为点2O ,以22O A 为边在右侧作等边三角形223O A A ……按此规律继续作下去,得到等边三角形202020202021O A A ,则点2021A 的纵坐标为()A .201812⎛⎫ ⎪⎝⎭B .201912⎛⎫ ⎪⎝⎭C .202012⎛⎫ ⎪⎝⎭D .202112⎛⎫ ⎪⎝⎭8.在平面直角坐标系中,已知点1A ,将点()11,1A 向上平移1个单位,再向右平移2个单位,得到点2A ;将点2A 向上平移2个单位,再向右平移4个单位,得到点3A ;将点3A 向上平移4个单位,再向右平移8个单位,得到点4A ⋅⋅⋅⋅⋅⋅,按照这个规律,则点2022A 的横坐标是()A .20222B .202221-C .20212D .202121-9.如下图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是()A .(2019,1)B .(2019,0)C .(2019,2)D .(2019,0)10.如图,在平面直角坐标系中,动点A 从点()100A ,出发,由1A 跳动至点()202A ,,依次跳动至点()321A -,,点()420A ,,点()522A ,…根据这个规律,则点2022A 的坐标是()A .(1348,-1)B .(1348,2)C .(674,-1)D .(674,2)。
中考数学复习 观察归纳型问题测试题
中考数学复习观察归纳型问题测试题简介:这类题型能培养学生的观察力和分析力,在多次往年中考中都涉及这方面题型,本人为了学生能应付各届中考,我出了部分的题型。
例子:1、(07日照)把正整数1,2,3,4,5……,按如图1规律排列:12,34,5,6,78,9,10,11,12,13,14,15…………图1按此规律,可知道第n行有个正整数。
分析:先观察,找出n与正整数的个数的关系过程:当第1行时,正整数的个数是1当第2行时,正整数的个数是2当第3行时,正整数的个数是4当第4行时,正整数的个数是8,依次类推从中可知它的关系有可能是指数函数关系,y=a^n(y为正整数的个数)则a=2,结合排列,指数应该为(n-1)第n行有2^(n-1)个正整数。
悟题:其实很多规律题与函数有关,结合函数一解即可。
2、(07某某)观察下列各式:1^3=1^21^3+2^3=3^21^3+2^3+3^3=6^21^3+2^3+3^3+4^3=10^2……猜想:1^3+2^3+3^3+……+10^3=。
分析:由以上的规律可以发现,1^3+2^3+3^3+4^3+……+n3=[n(n+1)/2]^2过程:代入得55×55悟题:解规律题时候要求个通用的公式,然后代入求,则方便极了!呵呵~!~!不信你试试,不行的找我。
(错题别乱我)实践训练:1、(07某某)如图2,图①,图②,图③,……是用围棋棋子的一列具有一定规律的“山”字中,第n个棋子个数是。
图①图②图③2、将正整数按下图所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是。
1 第一排2 3 第二排4 5 6 第三排7 8 9 10 第四排……3、(07某某)将一个正方形如下图方式分成n个全等矩形,上、下横排两个,中间竖排若干个,则n的值为()A、12 B、10 C、8 D、64、(07某某)如下图所示,平面内有公共端点的六条射线OA、OB、OC、OD、OE、OF,从射线OA开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7……。
中考数学冲刺复习专题训练4观察归纳型问题
观察、归纳型问题自主学习观察、归纳型问题是用代数式把一列变化着的数、式或图形的规律表示出来的问题.解决这类问题主要是通过分析与研究提供的“变化片断”——一些连续的特殊情况,归纳概括出整个变化过程所体现的规律,并用代数式将其表示出来.思考操作要点:1.认真观察、分析所提供的一系列特殊对象,从每个特殊对象与其位次的对应关系上找共同的规律.2.研究相邻两项之间的相关性.例2如图,用火柴棍拼成一排正方形图形,如果图形中含有1、2、3或4 个正方形,分别需要多少根火柴棍?如果图形中含有n个正方形,需要多少根火柴棍?中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒【答案】B 【解析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CA A′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C ,∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°,∴∠B =∠A′B′C =65°.故选B .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.2.若一个圆锥的底面半径为3cm ,母线长为5cm ,则这个圆锥的全面积为( )A .15πcm 2B .24πcm 2C .39πcm 2D .48πcm 2 【答案】B【解析】试题分析:底面积是:9πcm 1,底面周长是6πcm,则侧面积是:12×6π×5=15πcm 1. 则这个圆锥的全面积为:9π+15π=14πcm 1.故选B .考点:圆锥的计算.3.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A.20°B.35°C.15°D.45°【答案】A【解析】根据∠ABD=35°就可以求出AD的度数,再根据180=,可以求出AB,因此就可以求得BD︒∠的度数,从而求得∠DBCABC【详解】解:∵∠ABD=35°,∴的度数都是70°,∵BD为直径,∴的度数是180°﹣70°=110°,∵点A为弧BDC的中点,∴的度数也是110°,∴的度数是110°+110°﹣180°=40°,∴∠DBC==20°,故选:A.【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.4.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.8【答案】C【解析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DE BC EF=,即123EF =,解得EF=6,故选C.5.已知抛物线y=ax2+bx+c与反比例函数y= bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.【答案】B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: ∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0. 6.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形【答案】D【解析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.7.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A.B.C.D.【答案】B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.8.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°【答案】A【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.9.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【答案】A【解析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.二、填空题(本题包括8个小题)11.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O 方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.【答案】231.【解析】据题意求得A0A1=4,A0A1=23,A0A3=1,A0A4=23,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019与A3重合,即可得到结论.【详解】解:如图,∵⊙O的半径=1,由题意得,A0A1=4,A0A1=23A0A3=1,A0A4=23A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此规律A1019与A3重合,∴A0A1019=A0A3=1,故答案为23,1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.12.抛物线y=(x﹣2)2﹣3的顶点坐标是____.【答案】(2,﹣3)【解析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.13.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.【答案】四丈五尺【解析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴x15=1.50.5,解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.14.计算1x x +﹣11x +的结果为_____. 【答案】11x x -+. 【解析】根据同分母分式加减运算法则化简即可.【详解】原式=11x x -+, 故答案为11x x -+. 【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键.15.使分式的值为0,这时x=_____. 【答案】1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法16.在矩形ABCD 中,AB=4, BC=3, 点P 在AB 上.若将△DAP 沿DP 折叠,使点A 落在矩形对角线上的处,则AP 的长为__________. 【答案】32或94【解析】①点A 落在矩形对角线BD 上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P ,∠A=∠PA′D=90°,∴BA′=2,设AP=x ,则BP=4﹣x ,∵BP 2=BA′2+PA′2,∴(4﹣x )2=x 2+22,解得:x=32,∴AP=32; ②点A 落在矩形对角线AC 上,如图2,根据折叠的性质可知DP ⊥AC ,∴△DAP ∽△ABC ,∴AD AB AP BC=,∴AP=AD BC AB =334⨯=94. 故答案为32或94.17.如图,在Rt AOB ∆中,42OA OB ==.O 的半径为2,点P 是AB 边上的动点,过点P 作O 的一条切线PQ (点Q 为切点),则线段PQ 长的最小值为______.【答案】23【解析】连接OQ ,根据勾股定理知222PQ OP OQ =-,可得当OP AB ⊥时,即线段PQ 最短,然后由勾股定理即可求得答案.【详解】连接OQ .∵PQ 是O 的切线,∴OQ PQ ⊥;∴222PQ OP OQ =-,∴当PO AB ⊥时,线段OP 最短,∴PQ 的长最短,∵在Rt AOB ∆中,42OA OB ==∴28AB OA ==, ∴4OA OB OP AB ⋅==, ∴2223PQ OP OQ =-=故答案为:23.【点睛】本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到PO AB时,线段PQ最短是关键.18.如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.【答案】6【解析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=12AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=12AB,由AP2-PB2=48 ,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积=12CD·PD可得.【详解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB ,∴AD=BD=CD=12 AB,∵AP2-PB2=48 ,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48, ∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面积=12CD·PD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一三、解答题(本题包括8个小题)19.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.【答案】(1)答案见解析;(2)13.【解析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.20.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H 分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)【答案】(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12 BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.21.如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.求证:∠BAC=∠AED;在边AC取一点F,如果∠AFE=∠D,求证:AD AF BC AC.【答案】见解析【解析】(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得AD DEBC AC=,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴AB BC AE AD=,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,AD DE BC AC=,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴AD AF BC AC=.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?【答案】(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴当x=34时,w有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p 元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p 随x 的增大而减小,∴当x=25时,p 有最小值544元.即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.考点:二次函数的应用.23.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角30α=︒,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角60β=︒,求树高AB(结果保留根号).【答案】6+332【解析】如下图,过点C 作CF ⊥AB 于点F ,设AB 长为x ,则易得AF=x-4,在Rt △ACF 中利用∠α的正切函数可由AF 把CF 表达出来,在Rt △ABE 中,利用∠β的正切函数可由AB 把BE 表达出来,这样结合BD=CF ,DE=BD-BE 即可列出关于x 的方程,解方程求得x 的值即可得到AB 的长.【详解】解:如图,过点C 作CF ⊥AB ,垂足为F ,设AB=x ,则AF=x-4,∵在Rt △ACF 中,tan ∠α=AF CF , ∴CF=4tan30x -︒=BD , 同理,Rt △ABE 中,BE=tan60x ︒, ∵BD-BE=DE ,∴4tan30x -︒-tan60x ︒=3, 解得x=6+332. 答:树高AB 为(6+332)米 . 【点睛】作出如图所示的辅助线,利用三角函数把CF 和BE 分别用含x 的式子表达出来是解答本题的关键. 24.如图,平面直角坐标系中,直线AB :13y x b =-+交y 轴于点A(0,1),交x 轴于点B .直线x=1交AB 于点D ,交x 轴于点E ,P 是直线x=1上一动点,且在点D 的上方,设P(1,n).求直线AB 的解析式和点B 的坐标;求△ABP 的面积(用含n 的代数式表示);当S △ABP =2时,以PB 为边在第一象限作等腰直角三角形BPC ,求出点C 的坐标.【答案】 (1) AB 的解析式是y=-13x+1.点B (3,0).(2)32n-1;(3) (3,4)或(5,2)或(3,2). 【解析】试题分析:(1)把A 的坐标代入直线AB 的解析式,即可求得b 的值,然后在解析式中,令y=0,求得x 的值,即可求得B 的坐标;(2)过点A 作AM ⊥PD ,垂足为M ,求得AM 的长,即可求得△BPD 和△PAB 的面积,二者的和即可求得;(3)当S △ABP=2时,32n-1=2,解得n=2,则∠OBP=45°,然后分A 、B 、P 分别是直角顶点求解. 试题解析:(1)∵y=-13x+b 经过A (0,1), ∴b=1,∴直线AB 的解析式是y=-13x+1.当y=0时,0=-13x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-13x+1=23,P在点D的上方,∴PD=n-23,S△APD=12PD•AM=12×1×(n-23)=12n-13由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=12PD×2=n-23,∴S△PAB=S△APD+S△BPD=12n-13+n-23=32n-1;(3)当S△ABP=2时,32n-1=2,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC ,∴△CNP ≌△BEP ,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C (3,4).第2种情况,如图2∠PBC=90°,BP=BC ,过点C 作CF ⊥x 轴于点F .∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP ,∴△CBF ≌△PBE .∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C (5,2).第3种情况,如图3,∠PCB=90°,CP=EB ,∴∠CPB=∠EBP=45°,在△PCB 和△PEB 中,{CP EBCPB EBP BP BP=∠=∠=∴△PCB ≌△PEB (SAS ),∴PC=CB=PE=EB=2,∴C (3,2).∴以PB 为边在第一象限作等腰直角三角形BPC ,点C 的坐标是(3,4)或(5,2)或(3,2). 考点:一次函数综合题.25.已知关于x 的方程()22210x k x k --+=有两个实数根12,x x .求k 的取值范围;若12121x x x x +=-,求k 的值;【答案】(1)12k ≤;(2)k =-3 【解析】(1)依题意得△≥0,即[-2(k -1)]2-4k 2≥0;(2)依题意x 1+x 2=2(k -1),x 1·x 2=k 2 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1·x 2-1,即2(k -1)=k 2-1;②当x 1+x 2<0时,则有x 1+x 2=-(x 1·x 2-1),即2(k -1)=-(k 2-1); 【详解】解:(1)依题意得△≥0,即[-2(k -1)]2-4k 2≥0 解得12k ≤ (2)依题意x 1+x 2=2(k -1),x 1·x 2=k 2 以下分两种情况讨论:①当x 1+x 2≥0时,则有x 1+x 2=x 1·x 2-1,即2(k -1)=k 2-1解得k 1=k 2=1 ∵12k ≤ ∴k 1=k 2=1不合题意,舍去②当x 1+x 2<0时,则有x 1+x 2=-(x 1·x 2-1),即2(k -1)=-(k 2-1)解得k 1=1,k 2=-3 ∵12k ≤ ∴k =-3综合①、②可知k =-3【点睛】一元二次方程根与系数关系,根判别式.26. 某品牌牛奶供应商提供A ,B ,C ,D 四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?【答案】(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 【答案】D 【解析】根据分式的基本性质,x ,y 的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍,A 、23233x x x y x y++≠--,错误; B 、22629y y x x ≠,错误; C 、3322542273y y x x ≠,错误; D 、()()22221829y y x y x y --=,正确;故选D .【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.2.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.3.某商品价格为a元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.0.96a元B.0.972a元C.1.08a元D.a元【答案】B【解析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.【详解】第一次降价后的价格为a×(1-10%)=0.9a 元,第二次降价后的价格为0.9a×(1-10%)=0.81a 元,∴提价20%的价格为0.81a×(1+20%)=0.972a 元,故选B .【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.4.如图,已知正五边形 ABCDE 内接于O ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒【答案】C 【解析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB = ∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒故选:C .【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.5.不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是( )A.B.C.D.【答案】C【解析】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.6.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°【答案】C【解析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.7.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.8.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米【答案】C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;。
初中数学观察试题及答案
初中数学观察试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是等腰三角形的判定条件?A. 两边相等B. 三边相等C. 三角相等D. 两角相等答案:A2. 一个数的平方根是它本身的数是:A. 0B. 1C. -1D. 0和1答案:D3. 一个数的绝对值是它本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或0D. 可以是负数或0答案:C4. 一个数的相反数是:A. 它的平方B. 它的倒数C. 它的绝对值D. 它的负数答案:D5. 以下哪个是二次方程的解?A. x = 2B. x = 3C. x = -1D. x = 1/2答案:C6. 一个数的立方根是它本身,那么这个数可能是:A. 0B. 1C. -1D. 所有选项答案:D7. 一个数的因数的个数是:A. 有限的B. 无限的C. 只有一个D. 没有答案:A8. 以下哪个选项是圆的周长公式?A. C = 2πrB. C = πrC. C = 2rD. C = r答案:A9. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 0答案:C10. 以下哪个选项是圆的面积公式?A. A = πr^2B. A = 2πrC. A = r^2D. A = πr答案:A二、填空题(每题2分,共20分)1. 一个数的平方是16,这个数是______。
答案:±42. 一个数的绝对值是5,这个数是______。
答案:±53. 一个数的立方是-8,这个数是______。
答案:-24. 一个数的倒数是1/3,这个数是______。
答案:35. 一个数的相反数是-5,这个数是______。
答案:56. 一个数的平方根是4,这个数是______。
答案:167. 一个数的立方根是2,这个数是______。
答案:88. 一个数的因数有1和它本身,这个数是______。
答案:1或它本身9. 圆的直径是14,那么它的周长是______。
中考数学复习第八章专题拓展8.1观察归纳型(讲解部分)检测
题型二㊀ 几何图形中的规律探索题
规律.
㊀ ㊀ 图形规律问题主要是观察图形的组成㊁ 拆分等过程中的特 点,分析其联系和区别,用相应的式子描述图形的变化所反映的 的菱形按照一定规律所组成的, 其中第 ① 个图形中一共有 3 个 菱形,第 ② 个图形中一共有 7 个菱形, 第 ③ 个图形中一共有 13 个菱形, ,按此规律排列下去,第⑨个图形中菱形的个数为 (㊀ ㊀ ) 例 1㊀ ( 2017 重庆 A 卷,10,4 分) 下列图形都是由同样大小
第 2 个等式: 第 3 个等式: 第 4 个等式:
第 5 个等式:
1 4 1 4 + + ˑ = 1, 5 6 5 6
正奇数:1,3,5,7,9,11, 1,8,27,64,125, (2)1,4,9,16,25,36,
正偶数:2,4,6,8,10,12,
1ˑ2,2ˑ3,3ˑ4,4ˑ5,5ˑ6,
,第 n 个数式为 n( n +1) . n( n +1) ( nȡ1) ; (3) 正整数和:1+2+3+4+ + n = 2 2 正奇数和:1+3+5+7+ +2n -1 = n ( nȡ1) ; 正偶数和:2+4+6+8+ +2n = n( n +1) ( nȡ1) .
n -1
1 例 1㊀ ( 2018 四川成都,23,4 分) 已知 a >0,S 1 = , S 2 = - S 1 a
证明:左边 =
右边.
n +1+ n( n -1) +( n -1) n2 +n n( n +1) = = = 1= n( n +1) n( n +1) n( n +1)
n
n -1
1. ( 2018 云南,10,4 分 ) 按一定规律排列的单项式: a, - a 2 , a 3 , 1. A. a n - a 4 ,a 5 ,- a 6 , ,第 n 个单项式是 B.- a n
§8.1 观察归纳型(试题部分).pptx
∴点A2 018的横坐标为
2
=2 . 2
0 2
1
8
1
1008
2=62 2 1 2=4.
11.(2016湖南衡阳,18,3分)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4 个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.
现有n条直线最多可将平面分成56个部分,则n的值为
点A4,过点A4作y轴的垂线交l2于点A5,……依次进行下去,则点A2 018的横坐标为
.
答案 21 008
解析
A1
1
,
,A12 2( 1,1),A3(-2,1),A4(-2,-2),A5(4,-2),A6(4,4),
∵2 018÷4=504……2,∴A2 018在射线OA2上,又A2的横坐标为20=1,A6的横坐标为
类推,an表示第n个数(n是正整数).已知a1=1,4an=(an+1-1)2-(an-1)2,则a2 = 018
.
答案 4 035
解析 ∵4an=(an+1-1)2-(an-1)2, ∴(an+1-1)2=(an-1)2+4an=(an+1)2, ∵a1,a2,a3,…是一列正整数, ∴an+1-1=an+1,∴an+1=an+2, ∵a1=1,∴a2=3,a3=5,a4=7,a5=9, ……, ∴an=2n-1, ∴a2 018=4 035.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/132021/9/132021/9/132021/9/139/13/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月13日星期一2021/9/132021/9/132021/9/13 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/132021/9/132021/9/139/13/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/132021/9/13September 13, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/132021/9/132021/9/132021/9/13
中考数学复习第八章专题拓展8.1观察归纳型(试卷部分)
2 017 2 017
2 019
∴点B2 018的纵坐标为32 . 019
解题关键(guānjiàn) 从图形中判断出∠AOC=30°,∠BOC=60°,进而判断出B1C1=3BC是关键.
12/9/2021
第十二页,共二十六页。
7.(2016广西南宁,18,3分)观察下列(xiàliè)等式:
第1层 1+2=3
解析 如图,分别(fēnbié)延长BA、B1A1交x轴于点C、C1,
∵A( ,1)3 ,B( ,3), 3
∴AB⊥x轴,tan∠AOC= ,
3
tan∠BOC= ,
3
∴∠AOC=30°,∠3 BOC=60°,
∴∠AOB=30°,OB=2OC,
∵BA1⊥BA,
∴BA1∥x轴,
∴∠BA1A=∠AOC=30°, ∴∠BA1A=∠AOB,
0时,“·”的个数为10×11+1=111,故答案为111.
12/9/2021
第十七页,共二十六页。
11.(2014江苏扬州,18,3分)设a1,a2,…,a2 014是从1,0,-1这三个数中取值的一列(yī liè)数,若a1+a2+…+a2 = 014
69,(a1+1)2+(a2+1)2+…+(a2 014+1)2=4 001,则a1,a2,…,a2 014中0的个数是
12/9/2021
中考数学(shùxué) (福建专用)
第八章 专题拓展
8.1 观察(guānchá)归纳型
第一页,共二十六页。
专好题题(zh精uānt练í)检测
一、选择题 1.(2018重庆(zhònɡ qìnɡ),4,4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②
中考数学冲刺复习专题训练4观察归纳型问题
观察、归纳型问题自主学习观察、归纳型问题是用代数式把一列变化着的数、式或图形的规律表示出来的问题.解决这类问题主要是通过分析与研究提供的“变化片断”——一些连续的特殊情况,归纳概括出整个变化过程所体现的规律,并用代数式将其表示出来.思考操作要点:1.认真观察、分析所提供的一系列特殊对象,从每个特殊对象与其位次的对应关系上找共同的规律.2.研究相邻两项之间的相关性.例2如图,用火柴棍拼成一排正方形图形,如果图形中含有1、2、3或4 个正方形,分别需要多少根火柴棍?如果图形中含有n个正方形,需要多少根火柴棍?2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.55B.255C.12D.22.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2B.m=2 C.m=–2 D.m≠23.估计7+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间4.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°5.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C.D.6.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确7.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )A.1 B.2 C.3 D.48.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.10.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为12,则PD+PE+PF=()A .12B .8C .4D .311.下列现象,能说明“线动成面”的是( ) A .天空划过一道流星B .汽车雨刷在挡风玻璃上刷出的痕迹C .抛出一块小石子,石子在空中飞行的路线D .旋转一扇门,门在空中运动的痕迹 12.估计19273⨯-的运算结果应在哪个两个连续自然数之间( ) A .﹣2和﹣1B .﹣3和﹣2C .﹣4和﹣3D .﹣5和﹣4二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x=-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________.14.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.15.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件_____.16.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为 .17.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为_____.18.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.20.(6分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.21.(6分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.22.(8分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.23.(8分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x 1+5x+6,翻开纸片③是3x 1﹣x ﹣1.解答下列问题求纸片①上的代数式;若x 是方程1x =﹣x ﹣9的解,求纸片①上代数式的值.24.(10分)解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.25.(10分)如图,BC 是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD 的顶端D 处有一探射灯,射出的边缘光线DA 和DB 与水平路面AB 所成的夹角∠DAN 和∠DBN 分别是37°和60°(图中的点A 、B 、C 、D 、M 、N 均在同一平面内,CM ∥AN ).求灯杆CD 的高度;求AB 的长度(结果精确到0.1米).(参考数据:3=1.1.sin37°≈060,co s37°≈0.80,tan37°≈0.75)26.(12分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率. 27.(12分)如图,一次函数y =kx+b 的图象与反比例函数y =mx的图象交于A (﹣2,1),B (1,n )两点.求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cosB=525BDAB==.故选A.2.D【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.故选D3.B【解析】分析:直接利用27<3,进而得出答案.详解:∵273,∴37+1<4,故选B.7的取值范围是解题关键.4.C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC 【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.5.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.6.D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM =2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=,∴PM=.故③正确.综上,故选:D.【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.7.B【解析】【分析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【详解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,ACD CBEADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE−CD=3−1=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.8.D【解析】【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【详解】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选D.【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.9.A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.10.C【解析】【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【详解】延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=13×12=4,故选C.【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.11.B【解析】【分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体. 12.C【解析】﹣,然后根据二次根式的估算,由3<4可知﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.32- 213- 2【解析】【分析】根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可.【详解】y1=32 -,y2=−1312-+=2,y3=−112+=13-,y4=−1113-+=32-,…,∴每3次计算为一个循环组依次循环,∵2006÷3=668余2,∴y2006为第669循环组的第2次计算,与y2的值相同,∴y2006=2,故答案为32-;2;13-;2.【点睛】本题考查反比例函数的定义,解题的关键是多运算找规律. 14.20000【解析】试题分析:1000÷10200=20000(条).考点:用样本估计总体.15.AC=BD.【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.试题解析:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=12AC;同理EF∥AC且EF=12AC,同理可得EH=12 BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.考点:1.菱形的性质;2.三角形中位线定理.16.1【解析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案为1.考点:代数式求值.17.912,55⎛⎫- ⎪⎝⎭【解析】【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO =1x ,则NC 1=4x ,OC 1=1,则(1x )2+(4x )2=9,解得:x =±35(负数舍去), 则NO =95,NC 1=125, 故点C 的对应点C 1的坐标为:(﹣95,125). 故答案为(﹣95,125). 【点睛】 此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键.18.10或1【解析】【分析】分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【详解】如图,作半径OD AB ⊥于C ,连接OB ,由垂径定理得:BC =12AB=12×60=30cm , 在Rt OBC V 中,22OC 503040cm -=,当水位上升到圆心以下时 水面宽80cm 时,则22OC'504030cm =-=,水面上升的高度为:403010cm -=;当水位上升到圆心以上时,水面上升的高度为:403070cm +=,综上可得,水面上升的高度为30cm 或1cm ,故答案为:10或1.【点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】【分析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=. ∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1. 【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 20.(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根; (2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1. ∴∴另一根是2;(2)∵, ∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根21.2.7米.【解析】【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】在Rt △ACB 中,∵∠ACB =90°,BC =0.7米,AC =2.2米,∴AB 2=0.72+2.22=6.1.在Rt △A′BD 中,∵∠A′DB =90°,A′D =1.5米,BD 2+A′D 2=A′B′2,∴BD 2+1.52=6.1,∴BD 2=2.∵BD >0,∴BD =2米.∴CD =BC+BD =0.7+2=2.7米.答:小巷的宽度CD 为2.7米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22.今年妹妹6岁,哥哥10岁.【解析】【详解】试题分析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据两个孩子的对话,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.试题解析:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,根据题意得:()()16322342x y x y +=⎧⎨+++=+⎩ 解得:610x y =⎧⎨=⎩.答:今年妹妹6岁,哥哥10岁.考点:二元一次方程组的应用.23.(1)7x1+4x+4;(1)55.【解析】【分析】(1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1﹣x﹣1)即可求得纸片①上的代数式;(1)先解方程1x=﹣x﹣9,再代入纸片①的代数式即可求解.【详解】解:(1)纸片①上的代数式为:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入纸片①上的代数式得7x1+4x+4=7×(-3)²+4×(-3)+4=63-11+4=55即纸片①上代数式的值为55.【点睛】本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.24.﹣1≤x<1.【解析】【分析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x <1.不等式组的解集在数轴上表示如下:25.(1)10米;(2)11.4米【解析】【分析】(1)延长DC 交AN 于H .只要证明BC=CD 即可;(2)在Rt △BCH 中,求出BH 、CH ,在 Rt △ADH 中求出AH 即可解决问题.【详解】(1)如图,延长DC 交AN 于H ,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt △BCH 中,CH=12BC=5,BH=53≈8.65, ∴DH=15,在Rt △ADH 中,AH=tan 37DH ≈150.75=20, ∴AB=AH ﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.26. (1);(2)【解析】【分析】1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.27.(1)y=2x,y=−x−1;(2)x<−2或0<x<1【解析】【分析】(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.【详解】(1)∵A(−2,1)在反比例函数y=m x 的图象上, ∴1=2m -,解得m=−2. ∴反比例函数解析式为y=2x-, ∵B(1,n)在反比例函数上,∴n=−2,∴B 的坐标(1,−2), 把A(−2,1),B(1,−2)代入y=kx+b 得122k b k b=-+⎧⎨-=+⎩ 解得:11k b =-⎧⎨=-⎩∴一次函数的解析式为y=−x−1;(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.。
中考数学总复习冲刺专题 :观察、归纳型问题(基础)(含答案)
中考冲刺:观察、归纳型问题(基础)一、选择题1. 用边长为1的正方形覆盖3×3的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是( )A.2 B.4 C.5 D.62.求1+2+22+23+...+22012的值,可令S=1+2+22+23+...+22012,则2S=2+22+23+24+...+22013,因此,2S-S=22013-1.仿照以上推理,计算出1+5+52+53+ (52012)值为( )A.52012-1 B.52013-1 C. D.3.(2016•冷水江市三模)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0) B.(2017,1) C.(2017,﹣1) D.(2018,0)二、填空题4.(2015•盘锦四模)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是______.5.(2016•天门)如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为______.6. 如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n 的面积为S n,则S n=___________.(用含n的式子表示)三、解答题7.观察下列等式:……请解答下列问题:(1)按以上规律列出第5个等式:a5=______=______;(2)用含有n的代数式表示第n个等式:a n=______=______(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.8. 如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n.(1)将方程组1的解填入表中.(2)请依据方程组和它的解的变化规律,将方程组n和它的解直接填入表中;9. 如图所示,是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图①倒置后与原图拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为….如果图①中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图③的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边的这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中都按图④的方式填上一串连续的整数-23,-22,-21,…,求图④中所有圆圈中各数的绝对值之和.10. (余杭区期中)如图,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.(1)填表次数 1 2 3 4 5个数 4 7 ______ ______ ______(2)如果剪了n次,共剪出多少个小正方形?(3)能否经过若干次分割后共得到2014片纸片?若能,请直接写出相应的次数,若不能,请说明理由.(4)若将所给的正方形纸片剪成若干个小正方形(其大小可以不一样),那么你认为可以将它剪成六个小正方形吗?八个小正方形呢?如果可以,请在下图中画出剪割线的示意图;如果不可以,请简单说明理由.答案与解析【答案与解析】一、选择题1.【答案】D;【解析】6个,把边长为1的小正方形的对角线与3乘3网格中的中间正方形任意边重合(其中小正方形的对角线中点与3乘3网格中的中间正方形边上的中点重合),因为对角线的长为>1,所以这时有6个正方形网格被覆盖.2.【答案】C;【解析】设S=1+5+52+53+…+52 012,则5S=5+52+53+54+…+52 013.因此,5S-S=52 013-1,S=.3.【答案】B;【解析】以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2017=504×4+1,∴第2017秒时,点P的坐标为(2017,1).二、填空题4.【答案】(22016,0).【解析】∵∠OBC=90°,OB=1,BC=,∵将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,∴OC1=2OC=2×2=4=22,OC2=2OC1=2×4=8=23,OC3=2OC2=2×8=16=24,…,OC n=2n+1,∴OC2015=22016,∵2015÷6=335…5,∴点C2015与点C5在同一射线上,在x轴正半轴,坐标为(22016,0).故答案为:(22016,0).5.【答案】45.【解析】观察,发现规律:A2(2,),A4(,﹣),A6(2,2),A8(,﹣),…,∴A4n+2(2,n+),A4n+4(,﹣)(n为自然数),∵100=4×24+4,∴A100的坐标为(,﹣).故答案为:(,﹣).6.【答案】.【解析】∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n 分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.三、解答题7.【答案与解析】解:根据观察知,答案分别为:8.【答案与解析】显然该方程组不符合(2)中的规律.9.【答案与解析】解:(1)67.(2)图④中所有圆圈中共有1+2+3+…+12=个数,其中23个负数,1个0,54个正数,∴图④中所有圆圈中各数的绝对值之和=|-23|+|-22|+…+|-1|+0+1+2+…+54=(1+2+3+...+23)+(1+2+3+ (54)=276+1485=1761.10.【答案与解析】解:(1)答案如下:次数 1 2 3 4 5个数 4 7 10 13 16(2)如果剪了n次,共剪出4+3(n﹣1)=3n+1个小正方形;(3)3n+1=2014解得n=671,经过671次分割后共得到2014片纸片;(4)可以将它剪成六个小正方形,八个小正方形,如图。
2014年中考数学复习专题一-观察、归纳与猜想题(含答案)
专题一 观察、归纳与猜想题专题解法探究特点:观察、归纳与猜想题的特点是问题的结论或条件不直接给出,而常常是给出一列数、一列等式或一列图形的一部分,然后让考生通过观察、分析、概括、推理、猜想等一系列活动,逐步确定需要求的结论.解决这类问题的一般思路是通过对所给的具体结论进行全面、细致的观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以运用.类型:观察、归纳与猜想题的主要类型有数字猜想型,数式规律型,图象变化猜想型,坐标变化型.热点知识:考查的知识有数与式的运算,平面直角坐标系,三角形、特殊四边形,几何变换,图形的组合等知识.解题策略:根据已有的图象与文字提供的信息或解题模式,进行适当的正向迁移和归纳推理,并通过计算或证明解决实际问题.知识归类探究1) 数字猜想型例1 某校生物教师李老师在实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,请你推测第n 组应该取种子数是__________粒.【解析】 本题实质是求数列3,5,7,9,…的排列规律,观察可知这组数是首项为3的一组奇数,故可猜想其规律为2n +1.【答案】 2n +1【思路点拨】 找出数列→观察数列→找出规律2) 数式规律型例2 观察下列计算:11×2=1-12 ,12×3=12-13,13×4=13-14,14×5=14-15,…,从计算结果中找出规律,利用规律计算11×2+12×3+13×4+14×5+…+12 012×2 013=__________. 【解析】 原式=(1-12)+(12-13)+(13-14)+(14-15)+…+(12 012-12 013)=1-12+12-13+13-14+14-15+…+12 012-12 013=1-12 013=2 0122 013.【答案】2 0122 013【思路点拨】通过题目所给规律,将所给出式子各项进行拆分,再计算.3)图形排列规律型例3搭建如图①的一顶帐篷需要17钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要__________根钢管.【解析】观察图形①可知搭建一顶帐篷要钢管17根,由②可知多串一顶多需11根,所以串n顶就需要[17+11(n-1)]根,所以串7顶帐篷需要钢管17+11×(7-1)=83根.【答案】83【思路点拨】观察每多一顶帐篷时需要的钢管增加的根数→发现规律→列出代数式→结果4)坐标变化型例4如图,矩形BCDE的各边分别平行于x轴和y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边做环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2 012次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)【解析】由题意知,甲乙第一次相遇时在点(-1,1),第二次相遇在点(-1,-1),第三次相遇在点(2,0),……以此类推,可知甲乙两物体每相遇三次是一个循环,因为2 012÷3的余数为2,所以第2 012次相遇地点的坐标为(-1,-1).故选D.【答案】D【思路点拨】 先分别找出前几次相遇时的坐标→发现规律→计算→结果专题跟踪训练1. 观察下面几组数:1,3,5,7,9,11,13,15,……2,5,8,11,14,17,20,23,……7,13,19,25,31,37,43,49,……这三组数具有共同的特点.现在有上述特点的一组数,第一个数是3,第三个数是11,则其第n 个数为( )A . 8n -5B . n 2+2C . 4n -1D . 2n 2-4n +52. 已知整数a 1、a 2、a 3、a 4…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|…依次类推,则a 2 012的值为( )A . -1 005B . -1 006C . -1 007D . -2 0123. 一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是( )A . 3B . 4C . 5D . 64. 一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒移动一个单位,那么第35秒时质点所在位置的坐标是( )A . (4,0)B . (5,0)C . (0,5)D . (5,5)5. 某数学活动小组的20位同学站成一列做报数游戏,规律是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1),……这样得到的20个数的积为________. 6. 一个自然数的立方,可以“分裂”成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9;43=13+15+17+19;….若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是________.7. 如图,连接在一起的两个正方形的边长都为1 cm ,一个微型机器人由点A 开始按ABCDEFGA …的顺序沿正方形循环移动.①第一次到达G 点时移动了________cm ;②当微型机器人移动了2 012 cm 时,它停在________点.8. “数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…98+99+100=5 050.我们可以将高斯的做法归纳如下: 令S =1+2+3+…+98+99+100, ①S =100+99+98+…+3+2+1. ②①+②得2S =101×100所以S =101×100÷2=5 050请类比以上做法,回答下列问题:若n 为正整数,3+5+7+…+(2n +1)=168,则n =________.9. 观察数:根据表中数的排列规律,则B+D=________.10. 如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形,……如此下去,若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,a n,则a n=______.11. 如图,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒……照这样的规律继续摆下去,第n个图形需要________根小棒(用含n的代数式表示).12. 如图,直线y=3x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径交x轴于点A3,…,按此做法进行下去,点A5的坐标为________.13. 用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2 013颗黑色棋子?请说明理由.14. 如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC 为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1……依次类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C、第2个平行四边形A1B1C1C和第6个平行四边形的面积.====Word 行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集 参考答案1. C2. B3. C4. B5. 216. 417. 7 E8. 129. 23 10. (2)n -1 11. 4n -1 12. (16,0)13. 解:(1)第5个图形有18颗黑色棋子.(2)解法1:设第n 个图形有2 013颗黑色棋子,由题意,得3(n +1)=2 013解得n =670,∴第670个图形有2 013颗黑色棋子.解法2:2 013-33=670,∴第670个图形有2 013颗黑色棋子. 14. 解:(1)在Rt △ABC 中,BC =AC 2-AB 2=202-122=16,∴S 矩形ABCD =AB ·BC =12×16=192.(2)∵矩形ABCD 的对角线相交于点O ,∴S 矩形ABCD =4S △OBC . ∵四边形OBB 1C 是平行四边形,∴OB ∥CB 1,OC ∥BB 1, ∴∠OBC =∠B 1CB ,∠OCB =∠B 1BC .又∵BC =CB ,∴△OBC ≌△B 1CB ,∴S ▱OBB 1C =2S △OBC =12S 矩形ABCD =96. 同理,S 四边形A 1B 1C 1C =12S ▱OBB 1C =12×96=48. 第6个平行四边形的面积为126S 矩形ABCD =3.。
中考数学冲刺复习专题训练4观察、归纳型问题试题
观察、归纳型问题
单位:乙州丁厂七市润芝学校
时间:2022年4月12日
创编者:阳芡明
自主学习
观察、归纳型问题是用代数式把一列变化着的数、式或者图形的规律表示出
来的问题.
解决这类问题主要是通过分析与研究提供的“变化片断〞——一些连续的
特殊情况,归纳概括出整个变化过程所表达的规律,并用代数式将其表示出来.
考虑操作要点:
1.认真观察、分析所提供的一系列特殊对象,从每个特殊对象与其位次的
对应关系上找一共同的规律.
2.研究相邻两项之间的相关性.
例2如图,用火柴棍拼成一排正方形图形,假如图形中含有1、2、3或者4 个正方形,分别需要多少根火柴棍?假如图形中含有n个正方形,需要多
少根火柴棍?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习观察归纳型问题测试题
简介:这类题型能培养学生的观察力和分析力,在多次往年中考中都涉及这方面题型,
本人为了学生能应付各届中考,我出了部分的题型。
例子:1、(07日照)把正整数1,2,3,4,5……,按如图1规律排列:
1
2,3
4,5,6,7
8,9,10,11,12,13,14,15
…………
图1
按此规律,可知道第n行有个正整数。
分析:先观察,找出n与正整数的个数的关系
过程:当第1行时,正整数的个数是1
当第2行时,正整数的个数是2
当第3行时,正整数的个数是4
当第4行时,正整数的个数是8,依次类推
从中可知它的关系有可能是指数函数关系,y=a^n(y为正整数的个数)
则a=2,结合排列,指数应该为(n-1)
第n行有2^(n-1)个正整数。
悟题:其实很多规律题与函数有关,结合函数一解即可。
2、(07常德)观察下列各式:
1^3=1^2
1^3+2^3=3^2
1^3+2^3+3^3=6^2
1^3+2^3+3^3+4^3=10^2
……
猜想:1^3+2^3+3^3+……+10^3= 。
分析:由以上的规律可以发现,
1^3+2^3+3^3+4^3+……+n3=[n(n+1)/2]^2
过程:代入得55×55
悟题:解规律题时候要求个通用的公式,然后代入求,则方便极了!呵呵~!~!不信你试试,不行的找我。
(错题别乱我)
实践训练:
1、(07泰安)如图2,图①,图②,图③,……是用围棋棋子的一列具有一定规律的“山”字中,第n个棋子个数是。
6
5、(07乌鲁木齐)观察下面一组按规律排列的书:—1,2,—3,4,—5,6,—7,8……,则第2006个数是()
A、—2006
B、2006
C、—2007
D、2007
6、(07遵义)如下图是2007年5月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()
日一二三四五六
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
A、27
B、36
C、40
D、54
7、(06陕西)观察下列等式:
(1+2)^2—4×1=1^2+4
(2+2)^2—4×2=2^2+4
(3+2)^2—4×3=3^2+4
……
则第n个等式可以表示为。
8、(06广西“信利杯”)如果“*”是对于1和0的新运算符号,且规定:
1*1=0,0*1=1,1*0=1,0*0=0
那么下列运算中正确的是()
A、(1*1)*0=1
B、(1*1)*1=0
C、(1*0)*1=0
D、(0*1)*1=1
9、(06常德)下图是一个有规律排列的数表,请用含n的代数式(n为正整数)表示数表中第
n 行第n 列的数: 。
第4第3第2第
1
65×75=70^2—5^2
83×97=90^2—7^2
请你把发现的规律用字母表示出来:m ×n= 。
参考答案
1、因为图1是7个,图2是12个,图3是17个……
依次类推,构造一次函数易于解出。
2、n(n—1)/2+m,乃是通式
(7,2)则实数为23
3、C
4、(1)17÷6=2……5,由OA为1,则OE为5,在射线OE上(2)n÷6=a……m(n为正整数)
当m=1时,在OA
当m=2时,在OB
当m=3时,在OC
……以此类推
(3)2007÷6=334 (3)
所以在OC
5、B
6、C,因为要n+n+7+n+14才可以
则3n+21=3(n+7)
所以和为一定是3的倍数
所以选C
7、(n+2)^2—4n=n^2+4
8、C
9、n^2—n+1
10、a^2—b^2=(a+b)(a—b)
11、因为b=10,a=b^2—1,得a=99
所以a+b=109
12、[(m+n)/2]^2—[(m—n)/2]^2。