Group Contribution Based Estimation of Pure Component Properties
范文2沪深300股指期货价格发现功能的实证研究
范文2沪深300股指期货价格发现功能的实证研究摘要股指期货是一种重要的衍生金融工具,它是以股票指数为标的物的期货合约。
双方交易的是一定期限后的股票指数价格水平,并通过现金结算差价来进行交割。
股指期货推出于1982年,推出之后迅速得到投资者青睐,并在2005年后成为全球成交量最大的期货品种。
股指期货得到如此追捧,要紧缘故在于其价格发觉、风险规避和资产配置的差不多功能,使其成为资本市场上不可或缺的投资工具。
股指期货三大功能的基础在于价格发觉,只有价格发觉功能充分发挥,股指期货的到期日价格无法成为现货到期日价格的无偏估量,股指期货的定价才是有效的,而基于股指期货定价的套期保值、套利行为及相关的资产配置才能实现。
中金所成立已五年有余,股指期货的推出也超过两年,然而股指期货在中国资本市场上的价格发觉功能却并没有得到实证的充分检验。
从逻辑上说,假如无法证明其价格发觉功能,那么股指期货关于中国资本市场的完善和促进就无从谈起。
因此,研究中国资本市场上股指期货的价格发觉功能是否存在,关于判定股指期货市场进展的合理性、关于判定中国资本市场的成熟程度,差不多上专门重要的。
因此,本文将以股指期货的进展和特点为起点,探讨股指期货价格发觉功能的内涵和理论基础;采纳沪深300指数期货合约的5分钟高频数据,运用平稳性检验、协整检验、格兰杰因果检验、脉冲响应函数及方差分解等多种方法,对股指期货的价格发觉功能、价格形成过程中股指期货发挥的作用进行实证研究。
实证研究得到了如下几个结论:第一,沪深300指数期货与沪深300指数之间存在长期稳固的协整关系;其次,在被考察的期货合约中,股指期货价格与现货价格之间都存在领先-滞后关系,期货价格领先5~15分钟左右,由此证明了沪深300指数期货的价格发觉功能;最后,在市场价格的形成过程中,股指期货的价格起到了主导作用,同时随着市场的完善,这种主导作用还在不断被强化。
关键词:股指期货,价格发觉,引导关系AbstractStock index futures are one of the most important investment tools in the global capital market. In the index future contract, the counterparties bet on the level of stock index in a certain period of time and settle the contract in cash at expiration. Stock index futures emerged in 1982, after which it has experienced a boost in trading volume. Since 2005, it has become the most popular future contract in the world.The reason why the stock index future is so popular can be explained by its 3 basic functions: price discovery, risk aversion and asset allocation, which has made it the irreplaceable investment tool in the market. The foundation of the 3 functions is price discovery; only when the price discovery is realized can the price of stock index future at expiration be the unbiased estimation of spot price and can the pricing of futures be efficient; therefore the hedging and arbitrage activities can be utilized based upon the efficient pricing of future contracts.The China Financial Futures Exchange (CFFE) has been founded for more than 5 years, while the CSI300 futures have been introduced for nearly 2 years. Yet the price discovery of CSI300 futures hasn’t been sufficiently verified. If the price discovery character of future contract hasn’t been proved, it would be arbitrary to assert that the stock index future has accelerated the development of Chinese capital market. Thus, the existence of price discovery character is vital to judge the impact of the introduction of stock index futures to the whole capital market.In order to achieve that, this paper will start with the basic concept of stock index futures. Later it will explore the theoretical foundations of price discovery character; then the 5-min intraday price series of CSI300 futures and the corresponding index will be used to run the empirical study of price discovery character of CSI300 futures and its contribution to the price formation in the market, while different statistical tests, such as stationary test, co-integration test, Granger causality test, impulse response function and variance decomposition, will be conducted to support the analysis.There’re several discoveries based on the empirical results. Firstly, there is a long-term and stable co-integration relationship between the CSI300 futures prices and the corresponding index prices. Secondly, in our sample future contracts, there’s alead-lag relationship between the future price and spot price, while the future price is 5~15 min ahead of spot price, which proves the existence of price discovery function of CSI300 futures. Lastly, we found that in the formation of market price, CSI300 futures dominate the whole process and their contribution has been intensified as time goes by.Key words: CSI300 futures, price discovery, lead-lag relationship1、绪论1.1 研究背景及意义股指期货是一种重要的衍生金融工具,它是以股票指数为标的物的期货合约。
计量经济学中英文词汇对照
cross-loading Cross-over design Cross-section analysis Cross-section survey
Cross-sectional
Crosstabs Cross-tabulation table Cube root Cumulative distribution function Cumulative probability Curvature Curvature Curve fit Curve fitting Curvilinear regression Curvilinear relation Cut-and-try method Cycle
Controlled experiments Conventional depth Convolution Corrected factor Corrected mean Correction coefficient Correctness Correlation coefficient Correlation index Correspondence Counting Counts Covariance Covariant Cox Regression Criteria for fitting Criteria of least squares Critical ratio Critical region Critical value
Cyclist DDD D test Data acquisition Data bank Data capacity Data deficiencies Data handling Data manipulation Data processing Data reduction Data set Data sources Data transformation Data validity Data-in Data-out Dead time Degree of freedom Degree of precision Degree of reliability Degression Density function Density of data points Dependent variable Dependent variable Depth Derivative matrix Derivative-free methods Design Determinacy Determinant Determinant Deviation Deviation from average Diagnostic plot Dichotomous variable Differential equation Direct standardization Discrete variable DISCRIMINANT Discriminant analysis Discriminant coefficient
合成甲苯_2_4_二氨基甲酸甲酯反应体系的热力学分析
收稿日期:2004-03-01作者简介:王桂荣(1963-),女,河北枣强人,副教授,博士,从事绿色化工工艺与化学反应工程研究。
联系人:王延吉,电话:(022)26564289,E -mail :yjwang @hebut .edu .cn 。
文章编号:1004-9533(2005)01-0008-06合成甲苯-2,4-二氨基甲酸甲酯反应体系的热力学分析王桂荣,赵新强,王延吉(河北工业大学化工学院,天津300130)摘要:由2,4-二氨基甲苯与碳酸二甲酯制备甲苯-2,4-二氨基甲酸甲酯为一复合反应体系。
本文用基团贡献法计算了该反应体系的反应热、吉布斯自由能变化、化学反应平衡常数。
对反应原料中甲醇的含量对甲苯-2,4-二氨基甲酸甲酯收率的影响进行了计算。
计算数据与文献值及试验结果比较,表明计算结果可靠,对实验室研究及工业生产都有重要的指导意义。
关键词:2,4-二氨基甲苯;甲苯-2,4-二氨基甲酸甲酯;平衡常数;热力学分析中图分类号:TQ013.2 文献标识码:AThermodynamic Analysis of Synthesis of Toluene -2,4-DicarbamateWANG Gui -rong ,ZHAO Xin -qiang ,W ANG Yan -ji(School of Chemical Engineering and Technol ogy ,Hebei Univers ity of Technology ,Tianjin 300130,China )A bstract :The synthesis of toluene -2,4-dicarba mate (TDC )from 2,4-diamino toluene and dimethyl carbonate is a complex reaction system .The reaction heat ,Gibbs free energy change and equilibrium c onstant of the reactions are calculated by methods of group c ontribution .The effect of methanol content in the ra w material on the yield of TDC is investigated .The comparison among the estimated data ,literature data and experimental data show that the results of estimation are reasonable ,and the results are ver y important for experimental research and scale -up of the process .Key words :2,4-dia mino -toluene ;toluene -2,4-dicarba mate ;equilibrium constant ;thermodynamic analysis 甲苯-2,4-二异氰酸酯(TDI )是重要的有机化工中间体,是制备聚氨酯的重要原料。
北京化工大学高等化热大作业-基团贡献法
浅谈基团贡献法引言不久前,我前往导师XXX的办公室,与他沟通交流学业上的问题。
谈话间,王老师提及的一种建立自由基聚合反应过程机理模型的方法──链节分析法[1],引起了我极大的兴趣。
这一方法可以对复杂的聚合反应过程进行准确的动态模拟,解决了以往须同时求解无限多个微分方程才能模拟聚合过程的难题。
通过这篇文献[1]我得知,对于高分子聚合物体系的热力学性质的处理,一直是建立聚合反应机理模型的难题之一。
此法[1]不再把组成和链长不同的无穷多的聚合物大分子作为组分,而是将流程模拟系统的组分中出现的C、E、A·、R·等基本单元,参考其相应的单体物性,从而得到大分子聚合物的各种热力学性质。
高分子的绝大部分热力学性质如密度ρ、比热容C p、焓H、摩尔体积V b、各种临界参数都能利用Joback基团贡献法,由基本单元的物性计算得到。
联想到化热课堂上与基团贡献法有关的似乎只有UNIFAC模型,因此我想对物性估算法中的基团贡献法展开讨论,描述各种不同的方法并加以简单的评价。
这便是本题目的来源。
第1章临界参数估算方法不论是通过自己对化工热力学的学习,还是通过对文献的查阅,都不难得出这样的结论:对纯物质而言,临界参数是最重要的物性参数之一。
其实,在所有的PVT关系中,无论是对应状态法还是状态方程法都与临界数据有关。
对应状态法已成为应用热力学的最基本法则[2],借助于对应状态法,物质的几乎所有的热力学参数和大量的传递参数可被预测,而对应状态法的使用又强烈地依赖于临界数据。
此外,涉及到临界现象的高压操作,如超临界萃取和石油钻井[2],也与临界参数密切相关。
总而言之,临界数据是化工设计和计算中不可缺少的重要数据。
临界参数如此重要,前人自然少不了花费巨大精力对其进行收集、整理和评定,但据我了解,所收集的临界数据大多局限于稳定物质的临界数据。
虽然近几年对不稳定物质临界参数测定方法的研究在开展着,并且也测定了一些不稳定物质的临界参数,但大部分的不稳定物质仍由于测定难度大而缺乏实测的临界数据。
TRIZ方法
7,29 34
29,4 15,35 6,35 1,15 28,10 9,14 38,34 36,37 36,37 29,4 1,39 15,7 2,18 24,35 37 7,2 35 34,28 9,14 35,40 17,15
35,10 35,8 19,14 19,14 2,14 13,14 8 -
TRIZ: 解决矛盾的创造性方法
产品早期策划的重要性
出错的比例 % 60 50 40 30 20 10
€成本/ 每个错误
100,-
€%
10,-,10 1,-
策划
生产
使用
策划
生产
使用
策划
生产
使用
[acc. to Pfeifer]
[acc. to Pfeifer] 产生的成本 成本原因
[acc. to VDI 2234]
35,28 40,29 30,2 14,18 14,15 18,4 1,7 4,35
13,4 17,10 8 4 28,10
1,14 13,14 39,37 15,14 15,7 35 28,26 35
26,7 9,39 1,7 4,17 29,30 34
29,30 19,30 10,15 5,34 11,2 3,15 4,34 35,2 36,28 29,4 13,39 40,14 1,18 10,15 35,36 36,37 40
一定存在某些通用的发明原理
物质和技术效应
20万件专利分析的结果 (up to 1985)
Altshuller 的40个问题解决原理(1)
分割 取出 局部质量 非对称 合并 普遍性 Nested Doll Matrjoschka 8. 减轻重量 9. 预想反行动 10. 预行动 1. 2. 3. 4. 5. 6. 7.
Aspen中NIST使用方法
NIST ThermoData EngineUse this dialog box to estimate pure component parameters using the NIST Thermo Data Engine (TDE), or retrieve binary parameters from NIST. If at least two components are defined, you can choose at the top to evaluate either pure properties or binary mixture properties.If you choose databank component(s) or one(s) which have already had their structural formula specified, you can click Evaluate Now to run TDE to estimate properties immediately.If you choose a user-defined component, you can click Enter Additional Data to open the User-Defined Component Wizard for that component. Once you have specified the structural formula and optional additional data, you will be able to run TDE from within the wizard.TDE takes a few minutes to run. When it finishes running, the TDE Pure Results or TDE Binary Results window will appear with the results of the estimation.See AlsoUsing the NIST Thermo Data Engine (TDE)User-Defined Component WizardUsing the NIST Thermo Data Engine (TDE)You can use the ThermoData Engine (TDE) from the National Institute of Standards and Technology (NIST) to estimate property parameters for any component or pair of components given one of the following for each component:∙CAS number∙Molecular structure. TDE can only use molecular structure saved in an MDL file (*.mol) or specified using the drawing tool in the User Defined Component Wizard. It cannot use molecular structurespecified by atom and connectivity.Note: Only MDL files of version V2000 are supported. The version V3000 files, sometimes called Extended MDL files, are not supported.TDE has a variety of group contribution methods available to estimate pure component property parameters based on molecular structure. Based on TDE's large database of experimental data, these methods have been rankedfor which data is available is To run TDE:1.Specify the component(s) on the Components | Specifications |Selection sheet.2.On the Home tab of the ribbon, in the Data Source group, click NIST.The NIST ThermoData Engine dialog box appears.3.Choose Pure or Binary mixture.4.Select the component from the list in the dialog box. For binarymixture properties select a component from the second list as well.5.If the CAS number or molecular structure is specified for eachcomponent, then the Evaluate Now button (for pure componentproperties) or Retrieve Data button (for binary mixture properties) is enabled. Click it to estimate property parameters.ORFor pure component parameters, if neither CAS number nor molecular structure is specified, click Enter Additional Data. The UserDefined Component Wizard appears, allowing you to specify themolecular structure and optionally other data about the component.You will be given the option to run TDE to estimate parameters after specifying data.The following data can be sent to TDE:∙Vapor pressure data∙Liquid density∙Ideal gas heat capacity∙Normal boiling point∙Molecular structure (if specified using a version V2000 MDL file or using the drawing tool in the User Defined Component Wizard) Note: TDE takes a couple minutes to run on a typical computer.6.When TDE is finished, the results will appear in the TDE Pure windowor the TDE Binary window.See AlsoAbout the NIST ThermoData Engine (TDE)User Defined Component WizardNIST TDE Data Evaluation MethodologyNIST TDE vs. NIST-TRC DatabankUsing TDE ResultsAbout the NIST ThermoData Engine (TDE)The ThermoData Engine (TDE) is a thermodynamic data correlation, evaluation, and prediction tool provided with Aspen Plus and Aspen Properties through a long-term collaboration agreement with the National Institute of Standards and Technology (NIST).The purpose of the ThermoData Engine software is to provide critically evaluated thermodynamic and transport property data based on the principles of dynamic data evaluation.Critical evaluation is based on:∙Published experimental data stored in a program database∙Predicted values based on molecular structure andcorresponding-states methods∙User supplied data, if anyThe primary focus of the current version is pure organic compounds comprised of the elements: C, H, N, O, F, Cl, Br, I, S, and P. The principles upon which the ThermoData Engine software are based are fully discussed in two articles.1,2 The first article describes the foundations of TDE while the second describes the extension of TDE for dynamicequation-of-state evaluation and online updating. Online updating is not available in Aspen Plus.ThermoData Engine is the first software fully implementing all major principles of the concept of dynamic data evaluation formulated at NIST Thermodynamic Research Center (TRC). This concept requires thedevelopment of large electronic databases capable of storing essentially all raw experimental data known to date with detailed descriptions of relevant metadata and uncertainties. The combination of these databases with expert software designed primarily to generate recommended data based on available raw experimental data and their uncertainties leads to the possibility of producing data compilations automatically to order, forming a dynamic data infrastructure. The NIST TRC SOURCE data archival system currently containing more than 3 million experimental data points is used in conjunction with ThermoData Engine as a comprehensive storage facility for experimental thermophysical and thermochemical property data. The SOURCE database is continually updated and is the source for the experimental database used with TDE.The ThermoData Engine software incorporates all major stages of the concept implementation, including data retrieval, grouping, normalization, sorting, consistency enforcement, fitting, and prediction. The ThermoData Engine emphasizes enforcement of consistency between related properties (including those obtained from predictions), and incorporates a large variety of models for fitting properties. Predicted values are provided using the following set of Prediction MethodsThe experimental database containing raw property data for a very large number of components (over 17,000 compounds) is included automatically with Aspen Plus/Aspen Properties. Results of the TDE evaluations –model parameters – can be saved to the Aspen Plus simulation and used in process calculations. Experimental data can also be saved to the simulation and used with the Aspen Plus Data Regression System, if needed, for example, to fit other property models, or to fit data over limited temperature ranges that correspond to the process conditions of interest.Note:AspenTech has provided the regression results for much of this data in the NIST-TRC databank. You can use this databank to gain most of the advantage of NIST without spending the time to run TDE dynamically. The models linked below (used in many property methods) provide access to these properties when the NIST-TRC databank is used. See NIST TDE vs. NIST-TRC Databank for more information.Note: NIST TDE is a complementary technology of the existing Property Estimation System of Aspen Plus. The two features work independently of each other and will co-exist. However, we anticipate that TDE will continue to be enhanced with additional raw data and new or improved estimation methods and will be used in preference to the Property Estimation System in the future.The Aspen Plus - TDE interface covers the following properties of pure molecular compounds. Most of them can be estimated for new compounds based on molecular structure, using the methods listed below. Where multiple methods are listed for a property, they are ranked for accuracy for each compound class based on the data in the experimental database, and the highest-ranked one for the given structure is automatically selected.Single-Valued PropertiesTemperature-Dependent PropertiesReferences1.ThermoData Engine (TDE): Software Implementation of the DynamicData Evaluation Concept, J. Chem. Inf. Model., 45 (4), 816 -838, 2005. /TDEarticle.pdf2.ThermoData Engine (TDE): Software Implementation of the DynamicData Evaluation Concept. 2. Equations of State on Demand and Dynamic Updates over the Web, J. Chem. Inf. Model., 47, 1713-1754, 2007./TDEarticle2.pdf3.K. G. Joback, R. C. Reid. Estimation of Pure-Component Propertiesfrom Group-Contributions. Chem. Eng. Comm. 1987, 57, 233-243.4.L. Constantinou, R. Gani. New Group-Contribution Method forEstimating Properties of Pure Compounds. AIChE J. 1994, 40,1697-1710.5.J. Marrero-Morejon, E. Pardillo-Fontdevila. Estimation of PureCompound Properties Using Group-Interaction Contributions. AIChE J. 1999, 45, 615-621.6.G. M. Wilson, L. V. Jasperson. Critical Constants T c, P c. EstimationBased on Zero, First, Second-Order Methods. AIChE Meeting, NewOrleans, LA, 1996.7. D. Ambrose, J. Walton. Vapor-Pressures up to TheirCritical-Temperatures of Normal Alkanes and Alkanols. Pure Appl.Chem. 1989, 61, 1395-1403.8.T. Yamada, R. D. Gunn. Saturated Liquid Molar Volumes. The RackettEquation. J. Chem. Eng. Data 1973, 18, 234-236.9.L. Riedel. Chem.-Ing.-Tech. 1954, 26, 259-264. As modified in: J.L. Hales, R. Townsend. J. Chem. Thermodyn. 1972, 4, 763-772.10.B. E. Poling, J. M. Prausnitz, J. P. O'Connell. The Properties ofGases and Liquids, 5th ed.; McGraw-Hill: New York, 2001.11.S. R. S. Sastri, K. K. Rao. A New Group Contribution Method forPredicting Viscosity of Organic Liquids. Chem. Eng. J. Bio. Eng.J. 1992, 50, 9-25.12.T. H. Chung, M. Ajlan, L. L. Lee, K. E. Starling, GeneralizedMultiparameter Correlation for Nonpolar and Polar FluidTransport-Properties. Ind. Eng. Chem. Res. 1988, 27, 671-679.13.B. E. Poling, J. M. Prausnitz, J. P. O'Connell. The properties ofGases and Liquids, 5th ed.; McGraw-Hill: New York, 2001 (page 9.9 for low-pressure gas and page 9.35 Lucas model for high-pressure).14.T. H. Chung, L. L. Lee, K. E. Starling. Applications of Kinetic GasTheories and Multiparameter Correlation for Prediction of Dilute Gas Viscosity and Thermal-Conductivity. Ind. Eng. Chem. Fund.1984, 23, 8-13.See AlsoNIST TDE vs. NIST-TRC DatabankUsing the NIST ThermoData EngineNIST TDE Data EvaluationNIST TDE Data Evaluation MethodologyThe NIST ThermoData Engine (TDE) uses dynamic data evaluation to determine the data to be used in regressing property parameters from the collected raw experimental data in NIST's database. The data evaluation is broken into several phases.The data are broken into four blocks:∙Phase diagram: triple point, critical temperature, phase boundary pressure∙Volumetric: critical density, saturated & single phase density, volumetric coefficients∙Energetic: energy differences, energy derivatives, speed of sound ∙Other: transport properties, surface tension, refractionThe blocks are first processed individually. The following thermodynamic consistency tests are performed within the phase diagram, volumetric, and energetic data:∙Vapor pressures of phases must be equal at triple points, and slope/enthalpy change must be consistent∙Condensed phase boundaries must converge to the triple point∙Gas and liquid saturation density curves must converge at the critical temperature∙First derivative of saturated density must trend toward infinity at the critical temperature∙Single-phase densities must converge to saturated densitiesThen, the vapor pressure, saturated density, and enthalpy of vaporization are checked for consistency, and the other data is processed.See AlsoAbout the NIST ThermoData Engine (TDE)NIST TDE vs. NIST-TRC DatabankIn addition to the raw property data available with NIST TDE, the Aspen Physical Property System includes the NIST-TRC databank, which contains parameters regressed with TDE for compounds for which a significant amount of data was available. NIST-TRC and associated property models available in Aspen Plus provide all that most users need to use property data from NIST in their simulations.NIST TDE provides additional capabilities for users who need them: ∙You can perform dynamic data evaluation using the raw property database delivered with Aspen Physical Property System.∙You can trace back to the original data sources.∙You can save the data into Aspen Plus to perform additional data regressions beyond those automated by TDE, such as fitting to a different property model or fitting data over a differenttemperature range which corresponds to the process conditions of interest.Note: The NIST-TRC databank is only available when using the Aspen Properties Enterprise Database. Starting in version V7.0, Aspen Plus and Aspen Properties are configured to use the enterprise database when installed.Using TDE ResultsPure component resultsOn the left side of the TDE Pure Results window under Properties for component ID is a list of the property parameters available, with All at the top. Selecting All displays a summary of the parameter results. For T-dependent parameters, a + is displayed; you can click this to open the display of the estimated values for each element of these parameters.Selecting any parameter displays details about that parameter on a multi-tab display, including any experimental data and estimated property values. In the display of experimental data, one column indicates which data points were used in regression and which were rejected as outliers.With the Experimental Data, Predicted Values, or Evaluated Results tab of any T-dependent parameter open, in the Home tab of the ribbon, in the Plot group, you can click Prop-T in the ribbon to generate a plot of that data vs. temperature. The plot displays all available experimental data and predicted values along with the curve of evaluated values.If you want to save this data as part of your simulation, you must click Save Parameters to save it on Parameters and Data forms. See Saving data to forms, below.Binary mixture resultsOn the left side of the TDE Binary Results window is a list of the property parameters available, with Data for ID(1) and ID(2)at the top. Clicking Data for ID(1) and ID(2) displays a summary of the parameter results. The retrieved parameters appear in a tree at the left; selecting categories in the tree displays a summary of the data available under that category. Selecting the individual numbered results displays the experimental data. Double-clicking a row in any of the summary views also displays its experimental data.With any experimental data set open, in the Home tab of the ribbon, the Plot group displays buttons for ways you can plot that data.If you want to save this data as part of your simulation, you must click Save Data to save it on Data forms. See Saving data to forms, below.Once you have saved some results to forms, you can click Data Regression to create a data regression case with this data. See NIST TDE Data Evaluation/Regression.Click the Consistency Test tab to run consistency tests on the VLE data. See NIST TDE VLE Consistency Test for details.Saving results to formsClick Save Parameters or Save Dava to save any of the pure component TDE results and most categories of pure component or binary experimental data in forms in your current Aspen Plus or Aspen Properties run. A dialog box appears, allowing you to select which parameters you want to save data for. For pure component experimental data, a checkbox (selected by default) lets you specify to save only accepted data; if this is selected then experimental data points which were rejected by TDE are not saved to forms. For binary data, a checkbox allows you to save both the data and its uncertainty. The data is saved to:∙Methods | Parameters | Pure Component| TDE-1 form (scalar parameter values)∙Methods | Parameters | Pure Component|Parameter Name forms (T-dependent parameter values)∙Data | Pure-Comp forms (pure component experimental data)∙Data | Mixture forms (binary experimental data)Note: TDE results are only saved if you use Save Data. Otherwise, they are discarded when you close the window. Values are saved in SI units. These are treated as user-entered parameters.See AlsoNIST TDE Data Evaluation。
统计学专业名词(中英对照)
统计学专业名词·中英对照我大学毕业已经多年,这些年来,越发感到外刊的重要性。
读懂外刊要有不错的英语功底,同时,还需要掌握一定的专业词汇。
掌握足够的专业词汇,在国内外期刊的阅读和写作中会游刃有余。
在此小结,按首字母顺序排列。
这些词汇的来源,一是专业书籍,二是网上查找,再一个是比较重要的期刊。
当然,这些仅是常用专业词汇的一部分,并且由于个人精力、文献查阅的限制,难免有不足和错误之处,希望读者批评指出。
Aabscissa 横坐标absence rate 缺勤率Absolute deviation 绝对离差Absolute number 绝对数absolute value 绝对值Absolute residuals 绝对残差accident error 偶然误差Acceleration array 加速度立体阵Acceleration in an arbitrary direction 任意方向上的加速度Acceleration normal 法向加速度Acceleration space dimension 加速度空间的维数Acceleration tangential 切向加速度Acceleration vector 加速度向量Acceptable hypothesis 可接受假设Accumulation 累积Accumulated frequency 累积频数Accuracy 准确度Actual frequency 实际频数Adaptive estimator 自适应估计量Addition 相加Addition theorem 加法定理Additive Noise 加性噪声Additivity 可加性Adjusted rate 调整率Adjusted value 校正值Admissible error 容许误差Aggregation 聚集性因子法Alpha factoring αAlternative hypothesis 备择假设Among groups 组间Amounts 总量Analysis of correlation 相关分析Analysis of covariance 协方差分析Analysis of data 分析资料Analysis Of Effects 效应分析Analysis Of Variance 方差分析Analysis of regression 回归分析Analysis of time series 时间序列分析Analysis of variance 方差分析Angular transformation 角转换ANOVA (analysis of variance)方差分析ANOVA Models 方差分析模型ANOVA table and eta 分组计算方差分析Arcing 弧/弧旋Arcsine transformation 反正弦变换Area 区域图Area under the curve 曲线面积AREG 评估从一个时间点到下一个时间点回归相关时的误差ARIMA 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper 算术格纸Arithmetic mean 算术平均数Arithmetic weighted mean 加权算术均数Arrhenius relation 艾恩尼斯关系Assessing fit 拟合的评估Associative laws 结合律Assumed mean 假定均数Asymmetric distribution 非对称分布Asymmetry coefficient 偏度系数Asymptotic bias 渐近偏倚Asymptotic efficiency 渐近效率Asymptotic variance 渐近方差Attributable risk 归因危险度Attribute data 属性资料Attribution 属性Autocorrelation 自相关Autocorrelation of residuals 残差的自相关Average 平均数Average confidence interval length 平均置信区间长度average deviation 平均差Average growth rate 平均增长率BBar chart/graph 条形图Base period 基期Bayes' theorem Bayes 定理Bell-shaped curve 钟形曲线Bernoulli distribution 伯努力分布Best-trim estimator 最好切尾估计量Bias 偏性Biometrics 生物统计学Binary logistic regression 二元逻辑斯蒂回归Binomial distribution 二项分布Bisquare 双平方Bivariate Correlate 二变量相关Bivariate normal distribution 双变量正态分布Bivariate normal population 双变量正态总体Biweight interval 双权区间Biweight M-estimator 双权M 估计量Block 区组/配伍组BMDP(Biomedical computer programs) BMDP 统计软件包Box plot 箱线图/箱尾图Breakdown bound 崩溃界/崩溃点CCanonical correlation 典型相关Caption 纵标目Cartogram 统计图Case fatality rate 病死率Case-control study 病例对照研究Categorical variable 分类变量Catenary 悬链线Cauchy distribution 柯西分布Cause-and-effect relationship 因果关系Cell 单元Censoring 终检census 普查Center of symmetry 对称中心Centering and scaling 中心化和定标Central tendency 集中趋势Central value 中心值CHAID -χ2 Automatic Interaction Detector 卡方自动交互检测Chance 机遇Chance error 随机误差Chance variable 随机变量Characteristic equation 特征方程Characteristic root 特征根Characteristic vector 特征向量Chebshev criterion of fit 拟合的切比雪夫准则Chernoff faces 切尔诺夫脸谱图chi-sguare(X2) test 卡方检验卡方检验/χ2 检验Choleskey decomposition 乔洛斯基分解Circle chart 圆图Class interval 组距Classification 分组、分类Class mid-value 组中值Class upper limit 组上限Classified variable 分类变量Cluster analysis 聚类分析Cluster sampling 整群抽样Code 代码Coded data 编码数据Coding 编码Coefficient of contingency 列联系数Coefficient of correlation 相关系数Coefficient of determination 决定系数Coefficient of multiple correlation 多重相关系数Coefficient of partial correlation 偏相关系数Coefficient of production-moment correlation 积差相关系数Coefficient of rank correlation 等级相关系数Coefficient of regression 回归系数Coefficient of skewness 偏度系数Coefficient of variation 变异系数Cohort study 队列研究Collection of data 资料收集Collinearity 共线性Column 列Column effect 列效应Column factor 列因素Combination pool 合并Combinative table 组合表Combined standard deviation 合并标准差Combined variance 合并方差Common factor 共性因子Common regression coefficient 公共回归系数Common value 共同值Common variance 公共方差Common variation 公共变异Communality variance 共性方差Comparability 可比性Comparison of bathes 批比较Comparison value 比较值Compartment model 分部模型Compassion 伸缩Complement of an event 补事件Complete association 完全正相关Complete dissociation 完全不相关Complete statistics 完备统计量Complete survey 全面调查Completely randomized design 完全随机化设计Composite event 联合事件Composite events 复合事件Concavity 凹性Conditional expectation 条件期望Conditional likelihood 条件似然Conditional probability 条件概率Conditionally linear 依条件线性Confidence interval 置信区间Confidence level 可信水平,置信水平Confidence limit 置信限Confidence lower limit 置信下限Confidence upper limit 置信上限Confirmatory Factor Analysis 验证性因子分析Confirmatory research 证实性实验研究Confounding factor 混杂因素Conjoint 联合分析Consistency 相合性Consistency check 一致性检验Consistent asymptotically normal estimate 相合渐近正态估计Consistent estimate 相合估计Constituent ratio 构成比,结构相对数Constrained nonlinear regression 受约束非线性回归Constraint 约束Contaminated distribution 污染分布Contaminated Gausssian 污染高斯分布Contaminated normal distribution 污染正态分布Contamination 污染Contamination model 污染模型Continuity 连续性Contingency table 列联表Contour 边界线Contribution rate 贡献率Control 对照质量控制图Control group 对照组Controlled experiments 对照实验Conventional depth 常规深度Convolution 卷积Coordinate 坐标Corrected factor 校正因子Corrected mean 校正均值Correction coefficient 校正系数Correction for continuity 连续性校正Correction for grouping 归组校正Correction number 校正数Correction value 校正值Correctness 正确性Correlation 相关,联系Correlation analysis 相关分析Correlation coefficient 相关系数Correlation 相关性Correlation index 相关指数Correspondence 对应Counting 计数Counts 计数/频数Covariance 协方差Covariant 共变Cox Regression Cox 回归Criteria for fitting 拟合准则Criteria of least squares 最小二乘准则Critical ratio 临界比Critical region 拒绝域Critical value 临界值Cross-over design 交叉设计Cross-section analysis 横断面分析Cross-section survey 横断面调查Crosstabs 交叉表Crosstabs 列联表分析Cross-tabulation table 复合表Cube root 立方根Cumulative distribution function 分布函数Cumulative frequency 累积频率Cumulative probability 累计概率Curvature 曲率/弯曲Curvature 曲率Curve Estimation 曲线拟合Curve fit 曲线拟和Curve fitting 曲线拟合Curvilinear regression 曲线回归Curvilinear relation 曲线关系Cut-and-try method 尝试法Cycle 周期Cyclist 周期性DD test D 检验data 资料Data acquisition 资料收集Data bank 数据库Data capacity 数据容量Data deficiencies 数据缺乏Data handling 数据处理Data manipulation 数据处理Data processing 数据处理Data reduction 数据缩减Data set 数据集Data sources 数据来源Data transformation 数据变换Data validity 数据有效性Data-in 数据输入Data-out 数据输出Dead time 停滞期Degree of freedom 自由度degree of confidence 可信度,置信度degree of dispersion 离散程度Degree of precision 精密度Degree of reliability 可靠性程度degree of variation 变异度Degression 递减Density function 密度函数Density of data points 数据点的密度Dependent variableDepth 深度Derivative matrix 导数矩阵Derivative-free methods 无导数方法Design 设计design of experiment 实验设计Determinacy 确定性Determinant 行列式Determinant 决定因素Deviation 离差Deviation from average 离均差diagnose accordance rate 诊断符合率Diagnostic plot 诊断图Dichotomous variable 二分变量Differential equation 微分方程Direct standardization 直接标准化法Direct Oblimin 斜交旋转Discrete variable 离散型变量DISCRIMINANT 判断Discriminant analysis 判别分析Discriminant coefficient 判别系数Discriminant function 判别值Dispersion 散布/分散度Disproportional 不成比例的Disproportionate sub-class numbers 不成比例次级组含量Distribution free 分布无关性/免分布Distribution shape 分布形状Distribution-free method 任意分布法Distributive laws 分配律Disturbance 随机扰动项Dose response curve 剂量反应曲线Double blind method 双盲法Double blind trial 双盲试验Double exponential distribution 双指数分布Double logarithmic 双对数Downward rank 降秩Dual-space plot 对偶空间图DUD 无导数方法Duncan's new multiple range method 新复极差法/Duncan 新法EError Bar 均值相关区间图Effect 实验效应Effective rate 有效率Eigenvalue 特征值Eigenvector 特征向量Ellipse 椭圆Empirical distribution 经验分布Empirical probability 经验概率单位Enumeration data 计数资料Equal sun-class number 相等次级组含量Equally likely 等可能Equation of linear regression 线性回归方程Equivariance 同变性Error 误差/错误Error of estimate 估计误差Error of replication 重复误差Error type I 第一类错误Error type II 第二类错误Estimand 被估量Estimated error mean squares 估计误差均方Estimated error sum of squares 估计误差平方和Euclidean distance 欧式距离Event 事件Exceptional data point 异常数据点Expectation plane 期望平面Expectation surface 期望曲面Expected values 期望值Experiment 实验Experiment design 实验设计Experiment error 实验误差Experimental group 实验组Experimental sampling 试验抽样Experimental unit 试验单位Explained variance (已说明方差)Explanatory variable 说明变量Exploratory data analysis 探索性数据分析Explore Summarize 探索-摘要Exponential curve 指数曲线Exponential growth 指数式增长EXSMOOTH 指数平滑方法Extended fit 扩充拟合Extra parameter 附加参数Extrapolation 外推法Extreme observation 末端观测值Extremes 极端值/极值FF distribution F 分布F test F 检验Factor 因素/因子Factor analysis 因子分析Factor Analysis 因子分析Factor score 因子得分Factorial 阶乘Factorial design 析因试验设计False negative 假阴性False negative error 假阴性错误Family of distributions 分布族Family of estimators 估计量族Fanning 扇面Fatality rate 病死率Field investigation 现场调查Field survey 现场调查Finite population 有限总体Finite-sample 有限样本First derivative 一阶导数First principal component 第一主成分First quartile 第一四分位数Fisher information 费雪信息量Fitted value 拟合值Fitting a curve 曲线拟合Fixed base 定基Fluctuation 随机起伏Forecast 预测Four fold table 四格表Fourth 四分点Fraction blow 左侧比率Fractional error 相对误差Frequency 频率Freguency distribution 频数分布Frequency polygon 频数多边图Frontier point 界限点Function relationship 泛函关系GGamma distribution 伽玛分布Gauss increment 高斯增量Gaussian distribution 高斯分布/正态分布Gauss-Newton increment 高斯-牛顿增量General census 全面普查Generalized least squares 综合最小平方法GENLOG (Generalized liner models) 广义线性模型Geometric mean 几何平均数Gini's mean difference 基尼均差GLM (General liner models) 通用线性模型Goodness of fit 拟和优度/配合度Gradient of determinant 行列式的梯度Graeco-Latin square 希腊拉丁方Grand mean 总均值Gross errors 重大错误Gross-error sensitivity 大错敏感度Group averages 分组平均Grouped data 分组资料Guessed mean 假定平均数HHalf-life 半衰期Hampel M-estimators 汉佩尔M 估计量Happenstance 偶然事件Harmonic mean 调和均数Hazard function 风险均数Hazard rate 风险率Heading 标目Heavy-tailed distribution 重尾分布Hessian array 海森立体阵Heterogeneity 不同质Heterogeneity of variance 方差不齐Hierarchical classification 组内分组Hierarchical clustering method 系统聚类法High-leverage point 高杠杆率点High-Low 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR 多维列联表的层次对数线性模型Hinge 折叶点Histogram 直方图Historical cohort study 历史性队列研究Holes 空洞HOMALS 多重响应分析Homogeneity of variance 方差齐性Homogeneity test 齐性检验Huber M-estimators 休伯M 估计量Hyperbola 双曲线Hypothesis testing 假设检验Hypothetical universe 假设总体IImage factoring 多元回归法Impossible event 不可能事件Independence 独立性Independent variable 自变量Index 指标/指数Indirect standardization 间接标准化法Individual 个体Inference band 推断带Infinite population 无限总体Infinitely great 无穷大Infinitely small 无穷小Influence curve 影响曲线Information capacity 信息容量Initial condition 初始条件Initial estimate 初始估计值Initial level 最初水平Interaction 交互作用Interaction terms 交互作用项Intercept 截距Interpolation 内插法Interquartile range 四分位距Interval estimation 区间估计Intervals of equal probability 等概率区间Intrinsic curvature 固有曲率Invariance 不变性Inverse matrix 逆矩阵Inverse probability 逆概率Inverse sine transformation 反正弦变换Iteration 迭代JJacobian determinant 雅可比行列式Joint distribution function 分布函数Joint probability 联合概率Joint probability distribution 联合概率分布KK-Means Cluster 逐步聚类分析K means method 逐步聚类法Kaplan-Meier 评估事件的时间长度Kaplan-Merier chart Kaplan-Merier 图Kendall's rank correlation Kendall 等级相关Kinetic 动力学Kolmogorov-Smirnove test 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test Kruskal 及Wallis 检验/多样本的秩和检验/H 检验Kurtosis 峰度LLack of fit 失拟Ladder of powers 幂阶梯Lag 滞后Large sample 大样本Large sample test 大样本检验Latin square 拉丁方Latin square design 拉丁方设计Leakage 泄漏Least favorable configuration 最不利构形Least favorable distribution 最不利分布Least significant difference 最小显著差法Least square method 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates 最小绝对残差估计Least-absolute-residuals fit 最小绝对残差拟合Least-absolute-residuals line 最小绝对残差线Legend 图例L-estimator L 估计量L-estimator of location 位置L 估计量L-estimator of scale 尺度L 估计量Level 水平Leveage Correction,杠杆率校正Life expectance 预期期望寿命Life table 寿命表Life table method 生命表法Light-tailed distribution 轻尾分布Likelihood function 似然函数Likelihood ratio 似然比line graph 线图Linear equation 线性方程Linear programming 线性规划Linear regression 直线回归Linear Regression 线性回归Linear trend 线性趋势Loading 载荷Location and scale equivariance 位置尺度同变性Location equivariance 位置同变性Location invariance 位置不变性Location scale family 位置尺度族Log rank test 时序检验Logarithmic curve 对数曲线Logarithmic normal distribution 对数正态分布Logarithmic scale 对数尺度Logarithmic transformation 对数变换Logic check 逻辑检查Logistic distribution 逻辑斯特分布Logit transformation Logit 转换LOGLINEAR 多维列联表通用模型Lognormal distribution 对数正态分布Lost function 损失函数Lower limit 下限Lowest-attained variance 最小可达方差LSD 最小显著差法的简称Lurking variable 潜在变量MMain effect 主效应Major heading 主辞标目Marginal density function 边缘密度函数Marginal probability 边缘概率Marginal probability distribution 边缘概率分布Matched data 配对资料Matched distribution 匹配过分布Matching of distribution 分布的匹配Matching of transformation 变换的匹配Mathematical expectation 数学期望Mathematical model 数学模型Maximum L-estimator 极大极小L 估计量Maximum likelihood method 最大似然法Mean 均数Mean squares between groups 组间均方Mean squares within group 组内均方Means (Compare means) 均值-均值比较Median 中位数Median effective dose 半数效量Median lethal dose 半数致死量Median polish 中位数平滑Median test 中位数检验Minimal sufficient statistic 最小充分统计量Minimum distance estimation 最小距离估计Minimum effective dose 最小有效量Minimum lethal dose 最小致死量Minimum variance estimator 最小方差估计量MINITAB 统计软件包Minor heading 宾词标目Missing data 缺失值Model specification 模型的确定Modeling Statistics 模型统计Models for outliers 离群值模型Modifying the model 模型的修正Modulus of continuity 连续性模Morbidity 发病率Most favorable configuration 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL) 多维尺度/多维标度Multinomial Logistic Regression 多项逻辑斯蒂回归Multiple comparison 多重比较Multiple correlation 复相关Multiple covariance 多元协方差Multiple linear regression 多元线性回归Multiple response 多重选项Multiple solutions 多解Multiplication theorem 乘法定理Multiresponse 多元响应Multi-stage sampling 多阶段抽样Multivariate T distribution 多元T 分布Mutual exclusive 互不相容Mutual independence 互相独立NNatural boundary 自然边界Natural dead 自然死亡Natural zero 自然零Negative correlation 负相关Negative linear correlation 负线性相关Negatively skewed 负偏Newman-Keuls method q 检验NK method q 检验No statistical significance 无统计意义Nominal variable 名义变量Nonconstancy of variability 变异的非定常性Nonlinear regression 非线性相关Nonparametric statistics 非参数统计Nonparametric test 非参数检验Nonparametric tests 非参数检验Normal deviate 正态离差Normal distribution 正态分布Normal equation 正规方程组Normal P-P 正态概率分布图Normal Q-Q 正态概率单位分布图Normal ranges 正常范围Normal value 正常值Normalization 归一化Nuisance parameter 多余参数/讨厌参数Null hypothesis 无效假设Numerical variable 数值变量OObjective function 目标函数Observation unit 观察单位Observed value 观察值One sided test 单侧检验One-way analysis of variance 单因素方差分析Oneway ANOVA 单因素方差分析Open sequential trial 开放型序贯设计Optrim 优切尾Optrim efficiency 优切尾效率Order statistics 顺序统计量Ordered categories 有序分类Ordinal logistic regression 序数逻辑斯蒂回归Ordinal variable 有序变量Orthogonal basis 正交基Orthogonal design 正交试验设计Orthogonality conditions 正交条件ORTHOPLAN 正交设计Outlier cutoffs 离群值截断点Outliers 极端值OVERALS 多组变量的非线性正规相关Overshoot 迭代过度PPaired design 配对设计Paired sample 配对样本Pairwise slopes 成对斜率Parabola 抛物线Parallel tests 平行试验Parameter 参数Parametric statistics 参数统计Parametric test 参数检验Pareto 直条构成线图(佩尔托图)Partial correlation 偏相关Partial regression 偏回归Partial sorting 偏排序Partials residuals 偏残差Pattern 模式PCA(主成分分析)Pearson curves 皮尔逊曲线Peeling 退层Percent bar graph 百分条形图Percentage 百分比Percentile 百分位数Percentile curves 百分位曲线Periodicity 周期性Permutation 排列P-estimator P 估计量Pie graph 构成图饼图Pitman estimator 皮特曼估计量Pivot 枢轴量Planar 平坦Planar assumption 平面的假设PLANCARDS 生成试验的计划卡PLS(偏最小二乘法)Point estimation 点估计Poisson distribution 泊松分布Polishing 平滑Polled standard deviation 合并标准差Polled variance 合并方差Polygon 多边图Polynomial 多项式Polynomial curve 多项式曲线Population 总体Population attributable risk 人群归因危险度Positive correlation 正相关Positively skewed 正偏Posterior distribution 后验分布Power of a test 检验效能Precision 精密度Predicted value 预测值Preliminary analysis 预备性分析Principal axis factoring 主轴因子法Principal component analysis 主成分分析Prior distribution 先验分布Prior probability 先验概率Probabilistic model 概率模型probability 概率Probability density 概率密度Product moment 乘积矩/协方差Profile trace 截面迹图Proportion 比/构成比Proportion allocation in stratified random sampling 按比例分层随机抽样Proportionate 成比例Proportionate sub-class numbers 成比例次级组含量Prospective study 前瞻性调查Proximities 亲近性Pseudo F test 近似 F 检验Pseudo model 近似模型Pseudosigma 伪标准差Purposive sampling 有目的抽样QQR decomposition QR 分解Quadratic approximation 二次近似Qualitative classification 属性分类Qualitative method 定性方法Quantile-quantile plot 分位数-分位数图/Q-Q 图Quantitative analysis 定量分析Quartile 四分位数Quick Cluster 快速聚类RRadix sort 基数排序Random allocation 随机化分组Random blocks design 随机区组设计Random event 随机事件Randomization 随机化Range 极差/全距Rank correlation 等级相关Rank sum test 秩和检验Rank test 秩检验Ranked data 等级资料Rate 比率Ratio 比例Raw data 原始资料Raw residual 原始残差Rayleigh's test 雷氏检验Rayleigh's Z 雷氏Z 值Reciprocal 倒数Reciprocal transformation 倒数变换Recording 记录Redescending estimators 回降估计量Reducing dimensions 降维Re-expression 重新表达Reference set 标准组Region of acceptance 接受域Regression coefficient 回归系数Regression sum of square 回归平方和Rejection point 拒绝点Relative dispersion 相对离散度Relative number 相对数Reliability 可靠性Reparametrization 重新设置参数Replication 重复Report Summaries 报告摘要Residual sum of square 剩余平方和residual variance (剩余方差)Resistance 耐抗性Resistant line 耐抗线Resistant technique 耐抗技术R-estimator of location 位置R 估计量R-estimator of scale 尺度R 估计量Retrospective study 回顾性调查Ridge trace 岭迹Ridit analysis Ridit 分析Rotation 旋转Rounding 舍入Row 行Row effects 行效应Row factor 行因素RXC table RXC 表SSample 样本Sample regression coefficient 样本回归系数Sample size 样本量Sample standard deviation 样本标准差Sampling error 抽样误差SAS(Statistical analysis system ) SAS 统计软件包Scale 尺度/量表Scatter diagram 散点图Schematic plot 示意图/简图Score test 计分检验Screening 筛检SEASON 季节分析Second derivative 二阶导数Second principal component 第二主成分SEM (Structural equation modeling) 结构化方程模型Semi-logarithmic graph 半对数图Semi-logarithmic paper 半对数格纸Sensitivity curve 敏感度曲线Sequential analysis 贯序分析Sequence 普通序列图Sequential data set 顺序数据集Sequential design 贯序设计Sequential method 贯序法Sequential test 贯序检验法Serial tests 系列试验Short-cut method 简捷法Sigmoid curve S 形曲线Sign function 正负号函数Sign test 符号检验Signed rank 符号秩Significant Level 显著水平Significance test 显著性检验Significant figure 有效数字Simple cluster sampling 简单整群抽样Simple correlation 简单相关Simple random sampling 简单随机抽样Simple regression 简单回归simple table 简单表Sine estimator 正弦估计量Single-valued estimate 单值估计Singular matrix 奇异矩阵Skewed distribution 偏斜分布Skewness 偏度Slash distribution 斜线分布Slope 斜率Smirnov test 斯米尔诺夫检验Source of variation 变异来源Spearman rank correlation 斯皮尔曼等级相关Specific factor 特殊因子Specific factor variance 特殊因子方差Spectra 频谱Spherical distribution 球型正态分布Spread 展布SPSS(Statistical package for the social science) SPSS 统计软件包Spurious correlation 假性相关Square root transformation 平方根变换Stabilizing variance 稳定方差Standard deviation 标准差Standard error 标准误Standard error of difference 差别的标准误Standard error of estimate 标准估计误差Standard error of rate 率的标准误Standard normal distribution 标准正态分布Standardization 标准化Starting value 起始值Statistic 统计量Statistical control 统计控制Statistical graph 统计图Statistical inference 统计推断Statistical table 统计表Steepest descent 最速下降法Stem and leaf display 茎叶图Step factor 步长因子Stepwise regression 逐步回归Storage 存Strata 层(复数)Stratified sampling 分层抽样Stratified sampling 分层抽样Strength 强度Stringency 严密性Structural relationship 结构关系Studentized residual 学生化残差/t 化残差Sub-class numbers 次级组含量Subdividing 分割Sufficient statistic 充分统计量Sum of products 积和Sum of squares 离差平方和Sum of squares about regression 回归平方和Sum of squares between groups 组间平方和Sum of squares of partial regression 偏回归平方和Sure event 必然事件Survey 调查Survival 生存分析Survival rate 生存率Suspended root gram 悬吊根图Symmetry 对称Systematic error 系统误差Systematic sampling 系统抽样TTags 标签Tail area 尾部面积Tail length 尾长Tail weight 尾重Tangent line 切线Target distribution 目标分布Taylor series 泰勒级数Test(检验)Test of linearity 线性检验Tendency of dispersion 离散趋势Testing of hypotheses 假设检验Theoretical frequency 理论频数Time series 时间序列Tolerance interval 容忍区间Tolerance lower limit 容忍下限Tolerance upper limit 容忍上限Torsion 扰率Total sum of square 总平方和Total variation 总变异Transformation 转换Treatment 处理Trend 趋势Trend of percentage 百分比趋势Trial 试验Trial and error method 试错法Tuning constant 细调常数Two sided test 双向检验Two-stage least squares 二阶最小平方Two-stage sampling 二阶段抽样Two-tailed test 双侧检验Two-way analysis of variance 双因素方差分析Two-way table 双向表Type I error 一类错误/α错误Type II error 二类错误/β错误UUMVU 方差一致最小无偏估计简称Unbiased estimate 无偏估计Unconstrained nonlinear regression 无约束非线性回归Unequal subclass number 不等次级组含量Ungrouped data 不分组资料Uniform coordinate 均匀坐标Uniform distribution 均匀分布Uniformly minimum variance unbiased estimate 方差一致最小无偏估计Unit 单元Unordered categories 无序分类Unweighted least squares 未加权最小平方法Upper limit 上限Upward rank 升秩VVague concept 模糊概念Validity 有效性VARCOMP (Variance component estimation) 方差元素估计Variability 变异性Variable 变量Variance 方差Variation 变异Varimax orthogonal rotation 方差最大正交旋转Volume of distribution 容积WW test W 检验Weibull distribution 威布尔分布Weight 权数Weighted Chi-square test 加权卡方检验/Cochran 检验Weighted linear regression method 加权直线回归Weighted mean 加权平均数Weighted mean square 加权平均方差Weighted sum of square 加权平方和Weighting coefficient 权重系数Weighting method 加权法W-estimation W 估计量W-estimation of location 位置W 估计量Width 宽度Wilcoxon paired test 威斯康星配对法/配对符号秩和检验Wild point 野点/狂点Wild value 野值/狂值Winsorized mean 缩尾均值Withdraw 失访X此组的词汇还没找到YYouden's index 尤登指数ZZ test Z 检验Zero correlation 零相关Z-transformation Z 变换。
关于教案的确切定义和内容
关于“教案”1999年版《辞海》下册第4177页对“教案”的定义:教案——教师以课时或课题为单位编制的教学具体方案。
上课的重要依据,保证教学质量的重要措施。
可分为课题计划和课时计划。
有时仅指课时计划,一般包括班级、学科名称、课时和教学目标、课的类型、课的进程(包括教学内容、教学方法、时间分配、作业题、师生活动设计)、教具等。
课程教学方案(简称教案)内容1.课程简介●课程名称:分离工程(Separation Processes)●课程类型:专业课●课程内容简介分离工程在化工生产中占有十分重要的地位,在提高生产过程的经济效益和产品质量中起举足轻重的作用。
对大型的石油工业和以化学反应为中心的石油化工生产过程,分离装置的费用占投资的50%—90%。
分离工程是化工类本科生在学习物理化学、化工原理及化工热力学的基础上开设的一门重要的课程。
研究和处理分离过程开发和设计中遇到的工程问题,包括适宜分离方法的选择,分离流程和操作条件的确定。
分离过程的实验研究方法和设计计算等。
有利于学生工程能力的培养。
●课时:32●学分:2●班级:化学工程与工艺、三年级●教材:Separation Process Principles, J.D. Seader, Ernest J. Henley, 化学工业出版社,北京,2002.●参考书:Chemical Engineering Volume 2, 5th Edition, J F Richardson, J H Harker, John Backhurst, Butterworth-Heinemann, Oxford, 2002《化工分离工程》,邓修,吴俊生主编,科学出版社,北京,2000●考核方式:闭卷考试●教师姓名:陈鸿雁2.教学大纲与教学进程●本讲教学内容章、节教学内容:见教学大纲(Separation Processes Syllabus)●教学日历:见教学日历和教学简历3.教学具体方案(每“两节课”为“一讲”,每讲填一张表)●本讲教学内容●本讲知识点、重点、难点●本讲教学方法与教学手段●本讲多媒体(或ppt)课件●本讲师生互动设计●本讲作业题●本讲与上一讲衔接,与下一讲的联系华东理工大学课堂教学方案设计表华东理工大学课堂教学方案设计表华东理工大学课堂教学方案设计表华东理工大学课堂教学方案设计表华东理工大学课堂教学方案设计表。
计量经济学英语词汇
计量经济学英语词汇Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差)Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显着差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显着差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图)Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式PCA(主成分分析)Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡PLS(偏最小二乘法)Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差) Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS 统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显着水平Significance test, 显着性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Unweighted least squares, 未加权最小平方法Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换Z-transformation, Z变换。
成本会计 英文术语
成本会计中英文术语非正常毁损Abnormal spoilage生产成本法Absorption costing账户分析法Account analysis method会计回报率Accounting rate of return权责发生制下会计回报率Accrual accounting rate of return作业Activity作业基础的预算管理Activity-based budgeting作业成本法Activity-based costing作业管理Activity-based management实际成本Actual cost实际成本法Actual costing调整分配率途径Adjusted allocation-rate approach允许的成本Allowable cost鉴定成本Appraisal costs拟构成本Artificial costs注意力导向Attention directing自治Autonomy平均成本Average cost平均等候时间Average waiting time反冲成本法Backflush costing平衡记分卡Balanced scorecard批次级成本Batch-level costs观念系统Belief systems标杆管理Benchmarking账面价值Book value瓶颈Bottleneck边界系统Boundary systems盈亏平衡点Breakeven point预算Budget预算成本Budgeted cost预算松弛Budgetary slack预算间接成本分配率Budgeted indirect-cost rate捆绑产品Bundled product业务功能成本Business function costs副产品Byproducts资本预算Capital budgeting储囤成本Carrying costs现金预算Cash budget 因果图Cause-and-effect diagram财务管理认证Certified in financial management注册管理会计师Certified management accountant财务总监Chief financial officer决定系数Coefficient of determination共谋定价Collusive pricing共同成本Common cost完整往复成本Complete reciprocated costs 合成单位Composite unit商讨会法Conference method遵循质量Conformance quality常数Constant固定毛利率NRV 法Constant gross-margin percentage NRV method约束条件Constraint滚动预算Continuous budget, rolling budget贡献收益表Contribution income statement边际贡献Contribution margin单位边际贡献Contribution margin per unit边际贡献率Contribution margin percentage边际贡献比例Contribution margin ratio控制Control控制图Control chart可控性Controllability可控成本Controllable cost主计长Controller加工成本Conversion costs成本Cost成本会计Cost accounting成本会计标准委员会Cost accounting standards board成本汇集Cost accumulation成本分配Cost allocation成本分配基础Cost-allocation base成本分配基础Cost-application base成本归集Cost assignment成本-收益权衡Cost-benefit approach成本中心Cost center成本动因Cost driver成本估计Cost estimation成本函数Cost function成本层级Cost hierarchy成本流入Cost incurrence成本领先Cost leadership成本管理Cost management成本对象Cost object资本成本Cost of capital产品制造成本Cost of goods manufactured 成本库Cost pool成本预测Cost predictions成本追溯Cost tracing质量成本Costs of quality, quality costs本量利分析Cost-volume-profit (CVP) analysis累计平均时间学习模型Cumulative average-time learning model当前成本Current cost客户成本层级Customer cost hierarchy客户生命周期成本Customer life-cycle costs 客户盈利分析Customer-profitability analysis 客户回应时间Customer-response time客户服务Customer service分权Decentralization决策模型Decision model决策表Decision table经营杠杆水平Degree of operating leverage 分母水平Denominator level生产数量差异Denominator-level variance, Output-level overhead variance,Production-volume variance因变量Dependent variable产品或服务设计Design of products, services, or processes设计质量Design quality设计锁定成本Designed-in costs, locked-in costs诊断控制系统Diagnostic control systems 差异成本Differential cost差异收入Differential revenue直接分配法Direct allocation method直接成本法Direct costing成本对象的直接成本Direct costs of a c ost object直接生产人工成本Direct manufacturing labor costs直接材料成本Direct material costs 直接材料存货Direct material inventory直接材料混合差异Direct material mix variance直接材料产量差异Direct material yield variance直接法Direct method折现率Discount rate现金流量折现法Discounted cash flow (DCF) methods酌量性成本Discretionary costs发送Distribution减少规模Downsizing向下需求旋转Downward demand spiral双重定价Dual pricing双成本分配率法Dual-rate cost-allocation method, dual-rate method倾销Dumping次优化决策制定Dysfunctional decision making, Incongruent decision making, suboptimal decision making经济订单数量Economic order quantity (EOQ)经济增加值Economic value added有效性Effectiveness效率Efficiency效率差异Efficiency variance, usage variance 努力Effort技术成本Engineered costs约当产量Equivalent units事项Event预期货币价值Expected monetary value, expected value经验曲线Experience curve外部失败成本External failure cost设施支持成本Facility-sustaining costs工厂间接费用Factory overhead costs有利差异Favorable variance反馈Feedback财务主管Finance director财务会计Financial accounting财务预算Financial budget财务计划模型Financial planning models产成品存货Finished goods inventory先进先出分步法First-in, first-out (FIFO)process-costing method固定成本Fixed cost固定间接费用弹性预算差异Fixed overhead flexible-budget variance固定间接费用耗费差异Fixed overhead spending variance弹性预算Flexible budget弹性预算差异Flexible-budget variance产品全部成本Full costs of the product目标一致性Goal congruence毛利率Gross margin percentage增长构成Growth component高低法High-low method同质的成本库Homogenous cost pool基本报酬率Hurdle rate混合成本核算系统Hybrid costing system 空置时间Idle time假设成本Imputed costs增量成本Incremental cost增量成本分配法Incremental cost-allocation method增量收入Incremental revenue增量收入分配法Incrementalrevenue-allocation method增量单位时间学习模型Incrementalunit-time learning model自变量Independent variable成本对象的间接成本Indirect costs of a c ost object间接成本分配率Indirect-cost rate间接制造成本Indirect manufacturing costs 工业工程法Industrial engineering method, Work-measurementmethod通货膨胀Inflation价格差异Input-price variance, price variance, rate variance内制Insourcing检验点Inspection point管理会计师协会Institute of Management Accountants交互式控制系统Interactive control systems 截距项Intercept中间产品Intermediate product内部失败成本Internal failure costs 内含报酬率法Internal rate-of-return (IRR) method产品存货成本Inventoriable costs存货管理Inventory management投资Investment投资中心Investment center批次Job分批成本记录Job-cost record, job-cost sheet 分批法Job-costing system联合成本Joint costs联产品Joint products即时制生产Just-in-time (JIT) production,lean production即时制采购Just-in-time (JIT) purchasing改进法预算Kaizen budgeting人工时间记录Labor-time record学习曲线Learning curve生命周期预算Life-cycle budgeting生命周期成本法Life-cycle costing业务管理Line management线形成本函数Linear cost function线性规划Linear programming主产品Main product自产/外购决策Make-or-buy decisions管理会计Management accounting例外管理Management by exception管理控制系统Management control system 制造单元Manufacturing cells生产周期时间Manufacturing cycle time, Manufacturing lead time分配的制造费用Manufacturing overhead allocated, Manufacturing overhead applied制造类企业Manufacturing-sector companies 安全边际Margin of safety市场营销Marketing市场分额差异Market-share variance市场规模差异Market-size variance全面预算Master budget全面预算生产能力利用Master-budget capacity utilization材料需求规划Materials requirements planning用料单Materials-requisition record商业类企业Merchandising-sector companies混合成本Mixed cost, semivariable cost道德风险Moral hazard动机Motivation多重共线性Multicollinearity多变量回归Multiple regression净利润Net income净现值法Net present value (NPV) method净可实现值法Net realizable value (NPV) method名义回报率Nominal rate of return非线性成本函数Nonlinear cost function非价值增加成本Nonvalue-added cost正常生产能力利用Normal capacity utilization正常成本法Normal costing正常毁损Normal spoilage目标函数Objective function准时表现On-time performance一次性特殊订单One-time-only special order 经营预算Operating budget营业部门Operating department营业利润Operating income经营杠杆Operating leverage经营Operation经营成本核算系统Operation-costing system 机会成本Opportunity cost资本机会成本Opportunity cost of capital 采购订单成本Ordering costs组织架构Organization structure结果Outcomes产出单位成本Output unit-level costs外部采购Outsourcing分配过多的间接成本Overabsorbed indirect costs, Overapplied indirect costs, overallocated indirect costs加班奖金Overtime premium帕累托图Pareto Diagram局部生产力Partial productivity回收期法Payback method最大负荷定价Peak-load pricing完全竞争市场Perfectly competitive market 期间成本Period costs实物计量法Physical measure method计划Planning 现实的生产能力Practical capacity掠夺性定价Predatory pricing预防成本Prevention costs转入成本Previous department costs, transferred-in costs价格折扣Price discount区别定价Price discrimination价格恢复构成Price-recovery component主要成本Prime costs预测报表Pro forma statements概率Probability概率分布Probability distribution问题解决Problem solving分步成本核算系统Process-costing system 产品Product产品成本Product cost产品成本互补Product-costcross-subsidization产品差异化Product differentiation产品生命周期Product life cycle产品组合决策Product mix decisions成本高计的产品Product overcosting产品支持成本Product-sustaining costs成本少计的产品Product undercosting生产Production生产部门Production department生产量水平Production-denominator level 生产力Productivity生产力构成Productivity component利润中心Profit center按比例分配Proration采购订单提前量Purchasing-order lead time 采购成本Purchasing costsPV 图PV graph定性因素Qualitative factors质量Quality定量因素Quantitative factors真实回报率Real rate of return交互分配法Reciprocal allocation method, reciprocal method业务流程再造Reengineering精练化成本系统Refined costing system回归分析Regression analysis相关成本Relevant costs相关范围Relevant range相关收入Relevant revenues再订购点Reorder point要求的回报率Required rate of return研发Research and development剩余收益Residual income剩余项Residual term责任会计Responsibility accounting责任中心Responsibility center投资报酬率Return on investment收入分配Revenue allocation收入中心Revenue center收入动因Revenue driver收入对象Revenue object收入Revenues返工Rework合适规模Rightsizing安全库存Safety stock销售组合Sales mix销售组合差异Sales mix variance销售数量差异Sales-quantity variance分离点销售价值法Sales value at splitoff method销售数额差异Sales-volume variance业务记录Scorekeeping废料Scrap销售价格差异Selling-price variance敏感性分析Sensitivity analysis可分离成本Separable costs阶梯法Sequential allocation method,step-down allocation method, step-down method顺序追溯Sequential tracing服务部门Service department, supporting department服务类企业Service-sector companies服务支持成本Service-sustaining costs 单变量回归Simple regression单一成本分配率法single-rate cost-allocation method, single-rate method斜率系数Slope coefficient原始凭证Source document设定分析Specification analysis分离点Splitoff point 毁损Spoilage人事管理Staff management单一个体成本分配法Stand-alonecost-allocation method单一个体收入分配法Stand-alone revenue-allocation method标准Standard标准成本Standard cost标准成本法Standard costing估计系数标准差Standard error of the estimation coefficient标准投入Standard input标准价格Standard price静态预算Static budget静态预算差异Static budget variance阶梯式成本函数Step cost function脱销成本Stockout costs战略成本管理Strategic cost management 战略Strategy沉没成本Sunk costs超级变动成本法Super-variable costing, throughput costing供应链Supply chain单位目标成本Target cost per unit单位目标营业利润Target operating income per unit目标价格Target price目标投资回报率Target rate of return on investment理论生产能力Theoretical capacity约束理论Theory of constraints物料贡献Throughput contribution时间动因Timedriver货币时间价值Time value of money全要素生产力Total factor productivity (TFP) 全部间接费用差异Total-overhead variance转移价格Transfer price触发点Triggerpoint不确定性Uncertainty分配不足的间接成本underabsorbed indirect costs, underapplied indirect costs, underallocated indirect costs不利差异Unfavorable variance单位成本Unit cost未用生产能力Unused capacity价值增加成本Value-added cost价值链Value chain价值工程Value engineering变动成本Variable cost变动成本法Variable costing变动间接费用效率差异Variable overhead efficiency variance变动间接费用弹性预算差异Variable overhead flexible-budget variance变动间接费用耗费差异Variable overhead spending variance差异Variance加权平均的分步法Weighted-average process-costing method在产品存货Work-in-process inventory 在产品Work-in-process。
Aspen中NIST使用方法
NIST ThermoData EngineUse this dialog box to estimate pure component parameters using the NIST Thermo Data Engine (TDE), or retrieve binary parameters from NIST. If at least two components are defined, you can choose at the top to evaluate either pure properties or binary mixture properties.If you choose databank component(s) or one(s) which have already had their structural formula specified, you can click Evaluate Now to run TDE to estimate properties immediately.If you choose a user-defined component, you can click Enter Additional Data to open the User-Defined Component Wizard for that component. Once you have specified the structural formula and optional additional data, you will be able to run TDE from within the wizard.TDE takes a few minutes to run. When it finishes running, the TDE Pure Results or TDE Binary Results window will appear with the results of the estimation.See AlsoUsing the NIST Thermo Data Engine (TDE)User-Defined Component WizardUsing the NIST Thermo Data Engine (TDE)You can use the ThermoData Engine (TDE) from the National Institute of Standards and Technology (NIST) to estimate property parameters for any component or pair of components given one of the following for each component:•CAS number•Molecular structure. TDE can only use molecular structure saved in an MDL file (*.mol) or specified using the drawing tool in the User Defined Component Wizard. It cannot use molecular structurespecified by atom and connectivity.Note: Only MDL files of version V2000 are supported. The version V3000 files, sometimes called Extended MDL files, are not supported.TDE has a variety of group contribution methods available to estimate pure component property parameters based on molecular structure. Based on TDE's large database of experimental data, these methodshave been ranked for accuracy for different compound classes. For eachTo run TDE:1.Specify the component(s) on the Components | Specifications |Selection sheet.2.On the Home tab of the ribbon, in the Data Source group, clickNIST. The NIST ThermoData Engine dialog box appears.3.Choose Pure or Binary mixture.4.Select the component from the list in the dialog box. For binarymixture properties select a component from the second list aswell.5.If the CAS number or molecular structure is specified for eachcomponent, then the Evaluate Now button (for pure componentproperties) or Retrieve Data button (for binary mixture properties) is enabled. Click it to estimate property parameters.ORFor pure component parameters, if neither CAS number normolecular structure is specified, click Enter Additional Data. TheUser Defined Component Wizard appears, allowing you tospecify the molecular structure and optionally other data aboutthe component. You will be given the option to run TDE toestimate parameters after specifying data.The following data can be sent to TDE:•Vapor pressure data•Liquid density•Ideal gas heat capacity•Normal boiling point•Molecular structure (if specified using a version V2000 MDL file or using the drawing tool in the User Defined Component Wizard)Note: TDE takes a couple minutes to run on a typical computer.6.When TDE is finished, the results will appear in the TDE Purewindow or the TDE Binary window.See AlsoAbout the NIST ThermoData Engine (TDE)User Defined Component WizardNIST TDE Data Evaluation MethodologyNIST TDE vs. NIST-TRC DatabankUsing TDE ResultsAbout the NIST ThermoData Engine (TDE)The ThermoData Engine (TDE) is a thermodynamic data correlation, evaluation, and prediction tool provided with Aspen Plus and Aspen Properties through a long-term collaboration agreement with the National Institute of Standards and Technology (NIST).The purpose of the ThermoData Engine software is to provide critically evaluated thermodynamic and transport property data based on the principles of dynamic data evaluation.Critical evaluation is based on:•Published experimental data stored in a program database•Predicted values based on molecular structure andcorresponding-states methods•User supplied data, if anyThe primary focus of the current version is pure organic compounds comprised of the elements: C, H, N, O, F, Cl, Br, I, S, and P. The principles upon which the ThermoData Engine software are based are fully discussed in two articles.1,2 The first article describes the foundations of TDE while the second describes the extension of TDE for dynamic equation-of-state evaluation and online updating. Online updating is not available in Aspen Plus.ThermoData Engine is the first software fully implementing all major principles of the concept of dynamic data evaluation formulated at NIST Thermodynamic Research Center (TRC). This concept requires the development of large electronic databases capable of storing essentially all raw experimental data known to date with detailed descriptions of relevant metadata and uncertainties. The combination of these databases with expert software designed primarily to generate recommended data based on available raw experimental data and their uncertainties leads to the possibility of producing data compilations automatically to order, forming a dynamic data infrastructure. The NIST TRC SOURCE data archival system currently containing more than 3 million experimental data points is used in conjunction with ThermoData Engine as a comprehensive storage facility for experimental thermophysical and thermochemical property data. The SOURCEdatabase is continually updated and is the source for the experimental database used with TDE.The ThermoData Engine software incorporates all major stages of the concept implementation, including data retrieval, grouping, normalization, sorting, consistency enforcement, fitting, and prediction. The ThermoData Engine emphasizes enforcement of consistency between related properties (including those obtained from predictions), and incorporates a large variety of models for fitting properties. Predicted values are provided using the following set of Prediction MethodsThe experimental database containing raw property data for a very large number of components (over 17,000 compounds) is included automatically with Aspen Plus/Aspen Properties. Results of the TDE evaluations –model parameters –can be saved to the Aspen Plus simulation and used in process calculations. Experimental data can also be saved to the simulation and used with the Aspen Plus Data Regression System, if needed, for example, to fit other property models, or to fit data over limited temperature ranges that correspond to the process conditions of interest.Note: AspenTech has provided the regression results for much of this data in the NIST-TRC databank. You can use this databank to gain mostof the advantage of NIST without spending the time to run TDE dynamically. The models linked below (used in many property methods) provide access to these properties when the NIST-TRC databank is used. See NIST TDE vs. NIST-TRC Databank for more information.Note: NIST TDE is a complementary technology of the existing Property Estimation System of Aspen Plus. The two features work independently of each other and will co-exist. However, we anticipate that TDE will continue to be enhanced with additional raw data and new or improved estimation methods and will be used in preference to the Property Estimation System in the future.The Aspen Plus - TDE interface covers the following properties of pure molecular compounds. Most of them can be estimated for new compounds based on molecular structure, using the methods listed below. Where multiple methods are listed for a property, they are ranked for accuracy for each compound class based on the data in the experimental database, and the highest-ranked one for the given structure is automatically selected.Single-Valued PropertiesTemperature-Dependent PropertiesReferences1.ThermoData Engine (TDE): Software Implementation of theDynamic Data Evaluation Concept, J. Chem. Inf. Model., 45 (4), 816 -838, 2005. /TDEarticle.pdf2.ThermoData Engine (TDE): Software Implementation of theDynamic Data Evaluation Concept. 2. Equations of State onDemand and Dynamic Updates over the Web, J. Chem. Inf. Model., 47, 1713-1754, 2007. /TDEarticle2.pdf3.K. G. Joback, R. C. Reid. Estimation of Pure-Component Propertiesfrom Group-Contributions. Chem. Eng. Comm. 1987, 57, 233-243.4.L. Constantinou, R. Gani. New Group-Contribution Method forEstimating Properties of Pure Compounds. AIChE J. 1994, 40,1697-1710.5.J. Marrero-Morejon, E. Pardillo-Fontdevila. Estimation of PureCompound Properties Using Group-Interaction Contributions.AIChE J. 1999, 45, 615-621.6.G. M. Wilson, L. V. Jasperson. Critical Constants T c, P c. EstimationBased on Zero, First, Second-Order Methods. AIChE Meeting, New Orleans, LA, 1996.7. D. Ambrose, J. Walton. Vapor-Pressures up to TheirCritical-Temperatures of Normal Alkanes and Alkanols. Pure Appl.Chem. 1989, 61, 1395-1403.8.T. Yamada, R. D. Gunn. Saturated Liquid Molar Volumes. TheRackett Equation. J. Chem. Eng. Data 1973, 18, 234-236.9.L. Riedel. Chem.-Ing.-Tech. 1954, 26, 259-264. As modified in: J. L.Hales, R. Townsend. J. Chem. Thermodyn. 1972, 4, 763-772.10.B. E. Poling, J. M. Prausnitz, J. P. O'Connell. The Properties of Gasesand Liquids, 5th ed.; McGraw-Hill: New York, 2001.11.S. R. S. Sastri, K. K. Rao. A New Group Contribution Method forPredicting Viscosity of Organic Liquids. Chem. Eng. J. Bio. Eng. J.1992, 50, 9-25.12.T. H. Chung, M. Ajlan, L. L. Lee, K. E. Starling, GeneralizedMultiparameter Correlation for Nonpolar and Polar FluidTransport-Properties. Ind. Eng. Chem. Res. 1988, 27, 671-679.13.B. E. Poling, J. M. Prausnitz, J. P. O'Connell. The properties of Gasesand Liquids, 5th ed.; McGraw-Hill: New York, 2001 (page 9.9 forlow-pressure gas and page 9.35 Lucas model for high-pressure).14.T. H. Chung, L. L. Lee, K. E. Starling. Applications of Kinetic GasTheories and Multiparameter Correlation for Prediction of DiluteGas Viscosity and Thermal-Conductivity. Ind. Eng. Chem. Fund.1984, 23, 8-13.See AlsoNIST TDE vs. NIST-TRC DatabankUsing the NIST ThermoData EngineNIST TDE Data EvaluationNIST TDE Data Evaluation MethodologyThe NIST ThermoData Engine (TDE) uses dynamic data evaluation to determine the data to be used in regressing property parameters from the collected raw experimental data in NIST's database. The data evaluation is broken into several phases.The data are broken into four blocks:•Phase diagram: triple point, critical temperature, phase boundary pressure•Volumetric: critical density, saturated & single phase density, volumetric coefficients•Energetic: energy differences, energy derivatives, speed of sound •Other: transport properties, surface tension, refractionThe blocks are first processed individually. The following thermodynamic consistency tests are performed within the phase diagram, volumetric, and energetic data:•Vapor pressures of phases must be equal at triple points, and slope/enthalpy change must be consistent•Condensed phase boundaries must converge to the triple point•Gas and liquid saturation density curves must converge at the critical temperature•First derivative of saturated density must trend toward infinity at the critical temperature•Single-phase densities must converge to saturated densities Then, the vapor pressure, saturated density, and enthalpy of vaporization are checked for consistency, and the other data is processed.See AlsoAbout the NIST ThermoData Engine (TDE)NIST TDE vs. NIST-TRC DatabankIn addition to the raw property data available with NIST TDE, the Aspen Physical Property System includes the NIST-TRC databank, which contains parameters regressed with TDE for compounds for which a significant amount of data was available. NIST-TRC and associated property models available in Aspen Plus provide all that most users need to use property data from NIST in their simulations.NIST TDE provides additional capabilities for users who need them:•You can perform dynamic data evaluation using the raw property database delivered with Aspen Physical Property System.•You can trace back to the original data sources.•You can save the data into Aspen Plus to perform additional data regressions beyond those automated by TDE, such as fitting to adifferent property model or fitting data over a differenttemperature range which corresponds to the process conditionsof interest.Note: The NIST-TRC databank is only available when using the Aspen Properties Enterprise Database. Starting in version V7.0, Aspen Plus and Aspen Properties are configured to use the enterprise database when installed.Using TDE ResultsPure component resultsOn the left side of the TDE Pure Results window under Properties for component ID is a list of the property parameters available, with All at the top. Selecting All displays a summary of the parameter results. ForT-dependent parameters, a + is displayed; you can click this to open the display of the estimated values for each element of these parameters.Selecting any parameter displays details about that parameter on a multi-tab display, including any experimental data and estimated property values. In the display of experimental data, one column indicates which data points were used in regression and which were rejected as outliers.With the Experimental Data, Predicted Values, or Evaluated Results tab of any T-dependent parameter open, in the Home tab of the ribbon, in the Plot group, you can click Prop-T in the ribbon to generate a plot of that data vs. temperature. The plot displays all available experimental data and predicted values along with the curve of evaluated values.If you want to save this data as part of your simulation, you must click Save Parameters to save it on Parameters and Data forms. See Saving data to forms, below.Binary mixture resultsOn the left side of the TDE Binary Results window is a list of the property parameters available, with Data for ID(1) and ID(2) at the top. Clicking Data for ID(1) and ID(2) displays a summary of the parameterresults. The retrieved parameters appear in a tree at the left; selecting categories in the tree displays a summary of the data available under that category. Selecting the individual numbered results displays the experimental data. Double-clicking a row in any of the summary views also displays its experimental data.With any experimental data set open, in the Home tab of the ribbon, the Plot group displays buttons for ways you can plot that data.If you want to save this data as part of your simulation, you must click Save Data to save it on Data forms. See Saving data to forms, below.Once you have saved some results to forms, you can click Data Regression to create a data regression case with this data. See NIST TDE Data Evaluation/Regression.Click the Consistency Test tab to run consistency tests on the VLE data. See NIST TDE VLE Consistency Test for details.Saving results to formsClick Save Parameters or Save Dava to save any of the pure component TDE results and most categories of pure component or binary experimental data in forms in your current Aspen Plus or AspenProperties run. A dialog box appears, allowing you to select which parameters you want to save data for. For pure component experimental data, a checkbox (selected by default) lets you specify to save only accepted data; if this is selected then experimental data points which were rejected by TDE are not saved to forms. For binary data, a checkbox allows you to save both the data and its uncertainty. The data is saved to:•Methods | Parameters | Pure Component| TDE-1 form (scalar parameter values)•Methods | Parameters | Pure Component|Parameter Name forms (T-dependent parameter values)•Data | Pure-Comp forms (pure component experimental data) •Data | Mixture forms (binary experimental data)Note: TDE results are only saved if you use Save Data. Otherwise, they are discarded when you close the window. Values are saved in SI units. These are treated as user-entered parameters.See AlsoNIST TDE Data Evaluation。
境中的化学组分
HLC:Bond Contribution Method
通过大量已有的数据获得有机化合物的各种化 学键对HLC的基本贡献值; 贡献值没有绝对的物理意义,但是相对值反映 了不同化学键对化合物HLC的影响趋势; 提出一些设定值(人为定义值); 规定一些基团在化学键中的表示方法。
键贡献法估算KH举例
Estimation of Kow by Fragments Contribution Method
碎片常数: 基本结构 碎片
校正因子:同一分子 中存在的基团之间的 电子和立体相互作用
结构相似的化合物之间Kow估算
2 Pollution Prevention (P2) Framework Models Overview
From: Bill Waugh
U.S. EPA waugh.bill@
Chemicals in Commerce
Pesticides ~2000 Active Ingredients (AI) Industrial Chemicals ~80,000 On Toxic Substances Control Act TSCA Inventory
Risk-related Information From P2 Framework Models
Once released, will the chemical go to air, water, soil, sediment? [EPI Suite]
How long will the chemical stay in media? [EPI Suite]
P2 Framework Models
AOPWIN
MPBPVP
PBT Profiler
ChemSTEER
萃取精馏分离苯乙酮与_苯乙醇的模拟研究_章锋
苯乙酮是重要的有机化工原料,广泛地应用于 香皂、香料及医药行业[1]。α-苯乙醇又叫 1-苯乙醇, 也是重要的化工原料,同样在香料和医药行业应用
广泛[2]。工业 上 生 产 苯 乙 酮 的 方 法 一 般 是 采 用 乙 苯为原料,环烷酸锆为催化剂的空气氧化法[1]。反 应产物中除了苯乙酮外,还含有苯乙酸、α-苯乙醇等
1 萃取剂的选择 选择合适的萃取剂对于分离过程的成功起着极
其关键的作用[8]。苯乙酮和 α-苯乙醇均为极性分
子,分子结构差别在于一个羰基和一个羟基的区别。 从分子结构式来看,苯乙酮是质子受体,而 α-苯乙 醇既是质子受体又是质子授体。苯乙酮易和质子授 体形成氢键,而 α-苯乙醇则均可和质子授体和质子 受体物质形成氢键。从分子间能否形成氢键及氢键 的强弱来看,选择溶剂为质子受体的物质或者既是 质子受体又是质子授体的物质和 α-苯乙醇有更强 的氢键作用。针对苯乙酮 / α-苯乙醇体系,可初步选 择溶剂范围为多元醇、酮、胺类物质。
表 1 苯乙酮 / α-苯乙醇的相对挥发度计算值 Table 1 Caculated value of relative volatility of acetophenone
and α-phenylethanol
萃取剂 二甘醇 三甘醇 2-吡咯烷酮 丙三醇
相对挥发度 1. 90 1. 85 1. 71 2. 06
量为 1 000 kg / h 的待分离物系,操作压力为 5 kPa,在塔板数为 30 的条件下萃取精馏塔在原料进料位置为第 19 块
塔板,溶剂进料位置为第 6 块塔板,回流比为 3 ∶ 1( 质量比) ,溶剂流率为 800 kg / h 的优化条件下,可以使塔顶苯乙
酮质量分数达到 99. 8% ,且塔釜几乎不含苯乙酮。模拟结果对进一步的实验研究和工业生产具有一定的指导意
有机物标准焓
Int. J. Mol. Sci. 2007, 8, 407-432International Journal ofMolecular SciencesISSN 1422-0067 © 2007 by MDPI /ijms/Full Research PaperPrediction of Standard Enthalpy of Formation by a QSPR ModelAli Vatani, Mehdi Mehrpooya* and Farhad GharagheiziDepartment of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O.Box: 11365-4563, Tehran, Iran.* Author to whom correspondence should be addressed; E-mail: m.mehrpooya@ Received: 1 March 2007 / Accepted: 27 March 2007 / Published: 22 May 2007Abstract : The standard enthalpy of formation of 1115 compounds from all chemical groups, were predicted using genetic algorithm-based multivariate linear regression (GA-MLR). The obtained multivariate linear five descriptors model by GA-MLR has correlation coefficient (9830.02=R ). All molecular descriptors which have entered in this model are calculated from chemical structure of any molecule. As a result, application of this model for any compound is easy and accurate.Keywords: QSPR; Enthalpy of formation; GA-MLR.1. IntroductionPhysical and thermodynamic properties data of compounds are needed in the design and operation of industrial chemical processes. Of them, standard enthalpy of formation or standard heat offormation, of H ∆ is an important fundamental physical property of compounds which is defined as change of enthalpy that accompanies the formation of 1 mole of compound in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 atm of pressure and the specified temperature usually 298 K or 25 degrees Celsius). All elements in their standard states (such as hydrogen gas, solid carbon in the form of graphite, etc.) have standard enthalpy of formation of zero, as there is no change involved in their formation.The standard enthalpy change of formation is used in thermo-chemistry to find the standard enthalpy change of reaction. This is done by subtracting the summation of the standard enthalpies of formation of the reactants from the summation of the standard enthalpies of formation of the products, as shown in the equation below.∑∑∆−∆=∆rf pf reactionH H H (1)where reaction H ∆, ∑∆pf H , and ∑∆rf H are standard enthalpy change of reaction, standard enthalpies offormation of the products, and standard enthalpies of formation of the reactants, respectively.There are many methods for calculation of of H ∆in the literature, but of them, only three methods are widely used. These three methods are the Benson method [1], Jobak and Reid method [2], and Constantinou and Gani method [3]. All of these methods are classified in the field of group contribution methods which in these methods, the property of a compound is estimated as a summation of the contributions of simple chemical groups which can occur in the molecular structure. They provide the important advantage of rapid estimates without requiring substantial computational resources.Application of quantitative structure-property relationship (QSPR) models in prediction and estimation of physical properties of materials is widely developing [4-5]. In QSPR, advanced mathematical methods (Genetic algorithm, neural networks, and etc.) are used to find a relation between property of interest and the basic molecular properties which are obtained solely from the chemical structure of compounds and called "molecular descriptors".In this study, a new QSPR model for prediction of of H ∆of 1115 organic compounds is presented. These 1115 compounds belong to all families of materials, as a result the obtained model can beapplied for prediction of of H ∆for any compound.2. Procedures and Methods2.1. Data setMany compilations for of H ∆have been published in the literature, but of them, we selected the DIPPR 801 [6] compilation for our problem. This compilation has been recommended by AIChE (American Institute of Chemical Engineers). From this compilation, 1115 compounds were selectedand of H ∆of them were extracted from this database.2.2. Calculation of Molecular DescriptorsIn the calculation of molecular descriptors, the optimized chemical structures of compounds are needed. The chemical structures of all 1115 compounds in our data set, were drawn in Hyperchem software [7], and pre-optimized using MM+ mechanical fore field. A more precise optimization was done with PM3 semi empirical method in Hyperchem.In the next step for all 1115 compounds, molecular descriptors were calculated by Dragon software [8]. Dragon can calculate 1664 molecular descriptors for any chemical structure. After calculating molecular descriptors for all 1115 chemical structures, we must reject non informative descriptors from output of Dragon. First the descriptors with standard deviation lower than 0.0001, have been rejected because these descriptors were near constant. In second step, the descriptors with only one value different from the remaining ones are rejected. In the third step, the pair correlation of each twodescriptors was checked and one of two descriptors with a correlation coefficient equal one (as a threshold value) was excluded. For each pair of correlated descriptors, the one showing the highest pair correlation with the other descriptors rejected from the pool of descriptors.Finally, the pool of molecular descriptors was reduced by deleting descriptors which could not be calculated for every structure in our data set.As a result, from the calculated 1664 molecular descriptors, in the first step, only 1477 molecular descriptors remained in the pool of molecular descriptors.2.3. Methods of calculation and resultsIn this step, 20% of our database (223 compounds) is randomly removed and entered to test set as an excluded data set. This test set was used in next steps, only for testing the prediction power of obtained model and are not used for developing model. The remaining 80% (892 compounds) of our data set was used for training set.In this step our problem is to find the best multivariate linear model which has the most accuracy as well as the minimum number of possible molecular descriptors. One of the best algorithms for these types of problems has been proposed by Leardi et al. [9]. In order to perform this algorithm, a program was written based on MATLAB (Mathworks Inc. software). This program finds the best multivariate linear model by genetic algorithm based multivariate linear regression (GA-MLR) which has proposed by Leardi et al. [9] and we have used it to our previous works, successfully [10-12]. The input of this program is the molecular descriptors which have been obtained in previous section and the desired number of parameter of multivariate linear model. The fitness function of our program was the cross validated coefficient. For obtaining the best model, we must consider the effect of increase in the number of molecular descriptors on the increase in the value of the cross validated coefficient. When the cross validated coefficient was quite constant with increasing the number of molecular descriptors, we must stop our search, and the best result has been obtained.For obtaining the best multivariate linear model, first, we started with one molecular descriptor model and found the best multivariate linear model, then the two molecular descriptors model were tested, and the best multivariate linear two descriptors model was found. This work was repeated and the number of descriptors was increased, till, we found that increase in the number of molecular descriptors does not affect the accuracy of the best model. The best obtained model has six parameters and is presented below:nHM nFSCBO SCBO nSK H f 57659.26675477.17421889.169536454652012.801688.50−−−+−=∆o(2)where the molecular descriptors of Eq.(2) and their meaning are presented in Table 1.The statistical parameters of fitting for Eq.(1) are the following: 9830.02=R , 02.10239=F , 541.58=s , 9826.02=Q , where 2R is the squared correlation coefficient, F is the Fisher factor, s is the standard deviation, and 2Q is the squared cross validated correlation coefficient. The statistical parameters of coefficients of the Eq. (2) are presented in the Table 2.Table 1. The molecular descriptors of Eq. (2) and their meaning .VariableMolecular descriptor meaningnSKNumber of non-H atomsSCBO Sum of conventional bond orders (H-depleted) nO Number of Oxygen atoms nF Number of Fluorine atoms nHMNumber of Heavy atomsTable 2. The values of the constants of Eq. (2) and their statistical interpretations .Regression Errors RegressionConfidence Standard RegressionID VariableCoefficientCoefficientIntervals (0.95)Coefficient0 intercept 50.16088267 4.075696 00 1 nSK -80.52012489 1.175295 -1.081325919 3.60196 2 SCBO 53.64545627 0.9837223 0.858696667 3.593514 3 nO -169.2188895 1.424115 -0.552855974 1.061814 4 nF -174.7547718 1.178939 -0.680669749 1.047946 5nHM-266.57658856.857063-0.1713898921.0061012.4. Validation of ModelThere are many validation techniques for checking the validation of the obtained model [13].Todeschini et al. [13] presented a quick rule for checking the validity of obtained model. This rule compares the multivariate correlation index X K of X-block of the predictor variables with the multivariate correlation index XY K obtained by the augmented X-block matrix by adding the column of the response variable. This rule says that if XY K is greater than X K , the model is predictive [13]. Obtained values of these two indexes in our problem are 62.31=X K and 81.40=XY K , as a result, with respect to this quick rule, obtained model is predictive (X XY K K >).Cross-validation technique is the most common validation technique [13]. In this technique each member of our data set is deleted, then, with the other members a model is produced, and the value of the deleted object is predicted. This technique is performed for all members of the data set and finally, a squared cross validated correlation is obtained. In our problem this work was done and the values of squared cross validated correlation (2Q ) was 0.9826. The difference between 2R and 2Q is promising and thus validity of this model is confirmed by this technique.Another validation technique is bootstrap technique [13]. By this technique, validation is performed by randomly generating training sets with sample repetitions and then evaluating the predicted responses of the samples not included in the training set. This work usually repeated thousands oftimes. After 5000 times repetition of this technique, the parameter 2Boot Q was 0.9823. As can be found,the difference between the 2Boot Q ,2Q ,and 2R is promising and thus the predictive power of model is confirmed.Ultimately, the last validation technique which we used was external validation. In this section by means of test set which we had separated from the original data set, the prediction power of the Eq.(2)was checked. The squared cross validated coefficient for the test (2ext Q ) set is 0.9894, which the promising difference between this value and the value of 2Q shows the prediction power of the Eq. (2). The calculated and DIPPR 801 values of of H ∆for training set are presented in the Table-3. Also, the predicted and DIPPR 801 values of of H ∆for test set are presented in Table 4. The comparison between the results of Eq.(2) and the DIPPR 801 values for training set and test set are shown in theFigure 1. Comparison between the results of Eq. (2) for training set and predicted valuesfor training set. 3. DiscussionIn the formation of a molecule from its constituent elements, of H ∆, is the difference between the enthalpy of this molecule and the elements which conform it. This enthalpy is a result of breaking bonds of the elements in the free form (breaking reaction) and formation of new bonds in the molecule of product (formation reaction). Breaking reaction is endothermic, but the formation reaction is exothermic.Any thing which can affect the bond properties and strength of the bonds in the molecule can affectthe value of of H ∆of that molecule. Of them, the number of atoms and number of the bonds and orderof the bonds and number of non-organic elements (heavy atoms) in a molecule directly affect on thevalue of of H ∆.Increase in the values of number of atoms in the H-depleted chemical structure of moleculedecreases o f H ∆of a molecule. Increase in the order of bonds in a molecule increases of H ∆. Also the number of atoms which are commonly existed in all molecules such as oxygen and fluorine atoms, andeven heavy atoms affect of H ∆of a molecule. Increase in the number of these atoms in a molecule, decreases of H ∆ of that molecule.Table 3. The obtained results from Eq. (2) for training set.∆H f o (kJ/mol)ID NameDIPPR 801Calculated from Eq. (2)Res 1 n-BUTANE -125.79 -110.98 14.81 2 n-HEXANE-198.66 -164.73 33.93 3 3-METHYLPENTANE -202.38 -164.73 37.65 4 n-HEPTANE-224.05 -191.61 32.44 5 3-METHYLHEXANE -226.44 -191.61 34.83 6 3-ETHYLPENTANE-224.56 -191.61 32.95 7 2,2-DIMETHYLPENTANE -238.28 -191.61 46.67 8 2,3-DIMETHYLPENTANE -233.09 -191.61 41.48 9 2,4-DIMETHYLPENTANE -234.6 -191.61 42.99 10 3,3-DIMETHYLPENTANE -234.18 -191.61 42.57 11 2,2,3-TRIMETHYLBUTANE -236.52 -191.61 44.91 12 2-METHYLHEPTANE -255.01 -218.48 36.53 13 4-METHYLHEPTANE -251.63 -218.48 33.15 14 3-ETHYLHEXANE-250.41 -218.48 31.93 15 2,2-DIMETHYLHEXANE -261.88 -218.48 43.4 16 2,3-DIMETHYLHEXANE -252.59 -218.48 34.11 17 2,4-DIMETHYLHEXANE -257.02 -218.48 38.54 18 3,3-DIMETHYLHEXANE-257.53 -218.48 39.05 19 2-METHYL-3-ETHYLPENTANE -249.58 -218.48 31.1 20 2,2,3-TRIMETHYLPENTANE -256.9 -218.48 38.42 21 2,2,4-TRIMETHYLPENTANE -259.16 -218.48 40.68 22 2,3,3-TRIMETHYLPENTANE -253.51 -218.48 35.03 23 2,3,4-TRIMETHYLPENTANE -255.01 -218.48 36.53 24 n-NONANE-274.68 -245.36 29.32 25 3,3,5-TRIMETHYLHEPTANE -304.76 -272.23 32.53 26 2,4,4-TRIMETHYLHEXANE -280.2 -245.36 34.84 27 3,3-DIETHYLPENTANE-275.39 -245.36 30.03 28 2,2,3,3-TETRAMETHYLPENTANE -278.28 -245.36 32.92 29 2,2,4,4-TETRAMETHYLPENTANE -279.99 -245.36 34.63 30 SQUALANE -806.3 -809.72 -3.42 31 n-DECANE-300.62 -272.23 28.39 32 2,2,5,5-TETRAMETHYLHEXANE -323.51 -272.23 51.28 33 n-UNDECANE -326.6 -299.11 27.49 34 n-DODECANE -352.13 -325.98 26.15 35 n-TRIDECANE -377.69 -352.86 24.83 36 n-TETRADECANE -403.25 -379.73 23.52 37 n-PENTADECANE -428.82 -406.6 22.22 38 n-HEXADECANE -456.14 -433.48 22.66 39 n-OCTADECANE -567.14 -487.23 79.91 40 n-NONADECANE -596.21 -514.1 82.11 41 n-HENEICOSANE -653.45 -567.85 85.6 42 n-DOCOSANE -682.07 -594.73 87.34 43n-TRICOSANE-710.69-621.689.0944 n-PENTACOSANE -767.93 -675.35 92.5845 n-HEXACOSANE -796.55 -702.23 94.3246 n-HEPTACOSANE -825.17 -729.1 96.0747 n-OCTACOSANE -853.79 -755.98 97.8148 n-NONACOSANE -882.41 -782.85 99.5649 2-METHYLNONANE -311.9 -272.23 39.6750 5-METHYLNONANE -310 -272.23 37.7751 2,2,4,4,6,8,8-HEPTAMETHYLNONANE -476.87 -433.48 43.3952 3-METHYLOCTANE -278.53 -245.36 33.1753 4-METHYLOCTANE -279.6 -245.36 34.2454 3-ETHYLHEPTANE -275.48 -245.36 30.1255 2,2-DIMETHYLHEPTANE -288.2 -245.36 42.8456 3-METHYLUNDECANE -355.2 -325.98 29.2257 ETHYLCYCLOPENTANE -163.43 -137.96 25.4758 cis-1,2-DIMETHYLCYCLOPENTANE -165.27 -137.96 27.3159 trans-1,3-DIMETHYLCYCLOPENTANE -168.07 -137.96 30.1160 n-PROPYLCYCLOPENTANE -189.07 -164.84 24.2361 1-METHYL-1-ETHYLCYCLOPENTANE -193.8 -164.84 28.9662 n-PROPYLCYCLOHEXANE -237.4 -191.71 45.6963 ISOPROPYLCYCLOHEXANE -239.45 -191.71 47.7464 1,1-DIETHYLCYCLOHEXANE -277.11 -218.59 58.5265 n-DECYLCYCLOHEXANE -417 -379.83 37.1766 CYCLOHEPTANE -156.61 -137.96 18.6567 CYCLOOCTANE -167.74 -164.84 2.968 trans-1,4-DIETHYLCYCLOHEXANE -266.1 -218.59 47.5169 2,6-DIMETHYLHEPTANE -286.12 -245.36 40.7670 2,2-DIMETHYL-3-ETHYLPENTANE -272.7 -245.36 27.3471 2,4-DIMETHYL-3-ETHYLPENTANE -269.7 -245.36 24.3472 1-TRIACONTENE -761.6 -756.08 5.5273 2-METHYL-1-BUTENE -60.96 -84.21 -23.2574 cis-2-HEXENE -80.11 -111.09 -30.9875 trans-2-HEXENE -85.52 -111.09 -25.5776 cis-3-HEXENE -78.95 -111.09 -32.1477 2-METHYL-1-PENTENE -89.96 -111.09 -21.1378 3-METHYL-1-PENTENE -78.16 -111.09 -32.9379 4-METHYL-1-PENTENE -80.04 -111.09 -31.0580 2-METHYL-2-PENTENE -98.53 -111.09 -12.5681 4-METHYL-1-HEXENE -101.5 -137.96 -36.4682 4-METHYL-cis-2-PENTENE -87.03 -111.09 -24.0683 4-METHYL-trans-2-PENTENE -91.55 -111.09 -19.5484 2-ETHYL-1-BUTENE -87.11 -111.09 -23.9885 2,3-DIMETHYL-1-BUTENE -95.6 -111.09 -15.4986 3,3-DIMETHYL-1-BUTENE -88.28 -111.09 -22.8187 2-ETHYL-1-PENTENE -109.9 -137.96 -28.0688 1-HEPTENE -98.37 -137.96 -39.5989 cis-2-HEPTENE -105.1 -137.96 -32.8690 trans-2-HEPTENE -109.5 -137.96 -28.4691 trans-3-HEPTENE -109.33 -137.96 -28.6392 2-METHYL-1-HEXENE -112.6 -137.96 -25.3693 3-ETHYL-1-PENTENE -98.49 -137.96 -39.4794 3-METHYL-1-HEXENE -101.1 -137.96 -36.8695 3-ETHYL-1-HEXENE -124.6 -164.84 -40.2496 2,3,3-TRIMETHYL-1-BUTENE -117.7 -137.96 -20.2697 cis-3-HEPTENE -104.35 -137.96 -33.6198 1-OCTENE -122 -164.84 -42.8499 2,4,4-TRIMETHYL-1-PENTENE -146.15 -164.84 -18.69 100 2-ETHYL-1-HEXENE -136.42 -164.84 -28.42 101 1-NONENE -148.8 -191.71 -42.91 102 1-UNDECENE -200.8 -245.46 -44.66 103 1-DODECENE -226.2 -272.34 -46.14 104 1-TRIDECENE -253.5 -299.21 -45.71 105 1-TETRADECENE -280.3 -326.08 -45.78 106 1-HEXADECENE -329.24 -379.83 -50.59107 1-OCTADECENE -374.77 -433.58 -58.81 108 6-METHYL-1-HEPTENE -129.5 -164.84 -35.34 109 CYCLOHEXENE -38.2 -57.44 -19.24 110 trans-2-EICOSENE -446.6 -487.33 -40.73 111 trans-2-PENTADECENE -319.5 -352.96 -33.46 112 cis-2-OCTENE -129.4 -164.84 -35.44 113 trans-3-OCTENE -134.38 -164.84 -30.46 114 cis-4-OCTENE -128.49 -164.84 -36.35 115 trans-4-OCTENE -134.61 -164.84 -30.23 116 cis-3-OCTENE -129.14 -164.84 -35.7 117 1-EICOSENE -459.21 -487.33 -28.12 118 1-METHYLCYCLOPENTENE -36.44 -57.44 -21 119 2,3-DIMETHYL-1-HEXENE -136 -164.84 -28.84 120 1,4-DI-tert-BUTYLBENZENE -188.9 -165.15 23.75 121 alpha-TOCOPHEROL -873.4 -879.94 -6.54 122 1,2,3-TRIETHYLBENZENE -130.32 -111.4 18.92 123 n-HEPTYLBENZENE -140.6 -138.27 2.33 124 1,2,3,5-TETRAETHYLBENZENE -196.36 -165.15 31.21 125 n-DECYLBENZENE -217.5 -218.9 -1.4 126 PENTAETHYLBENZENE -258.1 -218.9 39.2 127 m-TERPHENYL 165.58 156.52 -9.06 128 n-PENTYLBENZENE -89.5 -84.52 4.98 129 n-HEXYLBENZENE -115 -111.4 3.6 130 n-OCTYLBENZENE -166.1 -165.15 0.95 131 n-NONYLBENZENE -190.4 -192.02 -1.62 132 n-UNDECYLBENZENE -241.18 -245.77 -4.59 133 n-TRIDECYLBENZENE -288.73 -299.52 -10.79 134 n-TETRADECYLBENZENE -311.49 -326.4 -14.91 135 n-DODECYLBENZENE -264.79 -272.65 -7.86 136 2,3-DIMETHYL-2,3-DIPHENYLBUTANE -59.68 -58.06 1.62 137 1,1,2-TRIPHENYLETHANE 130.2 102.77 -27.43 138 TETRAPHENYLMETHANE 247.1 182.98 -64.12 139 1,1,2,2-TETRAPHENYLETHANE 216 156.1 -59.9 140 1-(4-ETHYLPHENYL)-2-PHENYLETHANE 12.03 -4.32 -16.35 141 STYRENE 103.47 49.75 -53.72 142 1-n-NONYLNAPHTHALENE -132.57 -111.76 20.81 143 1-n-DECYLNAPHTHALENE -156.26 -138.64 17.62 144 1-n-HEXYL-1,2,3,4-TETRAHYDRONAPHTHALENE -179.33 -165.25 14.08 145 1-PHENYLINDENE 148.61 129.85 -18.76 146 TRIPHENYLETHYLENE 233.38 156.41 -76.97 147 TETRAPHENYLETHYLENE 311.5 209.75 -101.75 148 trans-STILBENE 136.9 103.08 -33.82 149 ACENAPHTHALENE 186.6 183.65 -2.95 150 sec-BUTYLCYCLOHEXANE -263.7 -218.59 45.11 151 PIMARIC ACID -634.1 -611.29 22.81 152 ISOPIMARIC ACID -670.4 -611.29 59.11 153 SULFUR DIOXIDE -296.84 -315.26 -18.42 154 SULFUR TRIOXIDE -441.04 -457.7 -16.66 155 ACETALDEHYDE -166.4 -199.68 -33.28 156 PROPANAL -215.3 -226.56 -11.26 157 1,2,3,6-TETRAHYDROBENZALDEHYDE -162.1 -226.76 -64.66 158 BUTANAL -239.2 -253.43 -14.23 159 HEPTANAL -311.5 -334.06 -22.56 160 HEXANAL -291.83 -307.18 -15.35 161 OCTANAL -342.7 -360.93 -18.23 162 NONANAL -367.93 -387.8 -19.87 163 2-ETHYLHEXANAL -348.5 -360.93 -12.43 164 2-METHYLHEXANAL -317.47 -334.06 -16.59 165 2-METHYL-2-PENTENAL -201.8 -253.54 -51.74 166 2-ETHYL-2-HEXENAL -244.6 -307.28 -62.68 167 DECANAL -393.84 -414.68 -20.84 168 UNDECANAL -419.06 -441.55 -22.49 169 DODECANAL -445.25 -468.43 -23.18170 2-METHYLBUTYRALDEHYDE -271.5 -280.31 -8.81 171 3-METHYLBUTYRALDEHYDE -276.5 -280.31 -3.81 172 cis-CROTONALDEHYDE -137.7 -199.79 -62.09 173 trans-CROTONALDEHYDE -138.7 -199.79 -61.09 174 o-TOLUALDEHYDE -113.18 -146.35 -33.17 175 p-HYDROXYBENZALDEHYDE -310.82 -315.57 -4.75 176 TEREPHTHALDEHYDE -243.43 -288.8 -45.37 177 2-METHYL OCTANAL -370.2 -387.8 -17.6 178 METHYL ETHYL KETONE -273.3 -253.43 19.87 179 METHYL ISOBUTYL KETONE -328.4 -307.18 21.22 180 3-METHYL-2-PENTANONE -323.8 -307.18 16.62 181 3-HEPTANONE -348.6 -334.06 14.54 182 4-HEPTANONE -346.2 -334.06 12.14 183 3-HEXANONE -320.2 -307.18 13.02 184 2-HEXANONE -322.01 -307.18 14.83 185 MESITYL OXIDE -238.14 -253.54 -15.4 186 3,3-DIMETHYL-2-BUTANONE -328.6 -307.18 21.42 187 DIISOBUTYL KETONE -408.5 -387.8 20.7 188 DIISOPROPYL KETONE -352.92 -334.06 18.86 189 2-PYRROLIDONE -266.04 -226.66 39.38 190 N-METHYL-2-PYRROLIDONE -262.2 -253.54 8.66 191 ETHYL ISOAMYL KETONE -374.4 -360.93 13.47 192 5-NONANONE -398.24 -387.8 10.44 193 2-NONANONE -396.8 -387.8 9 194 ACETYLACETONE -423.8 -422.75 1.05 195 CYCLOPENTANONE -235.7 -226.66 9.04 196 CYCLOHEXANONE -271.2 -253.54 17.66 197 2-OCTANONE -372.7 -360.93 11.77 198 BENZOPHENONE -37.3 -66.14 -28.84 199 ACETOPHENONE -142.5 -146.35 -3.85 200 beta-PROPIOLACTONE -329.9 -369 -39.1 201 2-CYCLOHEXYL CYCLOHEXANONE -390.98 -361.14 29.84 202 METHANOL -239.1 -226.45 12.65 203 ETHANOL -276.98 -253.33 23.65 204 1-PROPANOL -302.6 -280.2 22.4 205 ISOPROPANOL -318.1 -280.2 37.9 206 1-BUTANOL -327.2 -307.08 20.12 207 2-BUTANOL -342.6 -307.08 35.52 208 2-METHYL-2-PROPANOL -365.9 -307.08 58.82 209 1-PENTANOL -351.6 -333.95 17.65 210 2-PENTANOL -365.2 -333.95 31.25 211 2-METHYL-1-BUTANOL -356.6 -333.95 22.65 212 2,2-DIMETHYL-1-PROPANOL -382.01 -333.95 48.06 213 1-HEXANOL -377.5 -360.83 16.67 214 2-HEXANOL -392 -360.83 31.17 215 3-METHYL-1-PENTANOL -380.9 -360.83 20.07 216 3-PENTANOL -370.33 -333.95 36.38 217 2-ETHYL-1-HEXANOL -432.8 -414.58 18.22 218 2-METHYL-1-HEXANOL -404.5 -387.7 16.8 219 3-METHYL-1-BUTANOL -356.4 -333.95 22.45 220 1-HEPTANOL -403.3 -387.7 15.6 221 1-NONANOL -453.6 -441.45 12.15 222 1-DECANOL -478.1 -468.32 9.78 223 1-UNDECANOL -504.8 -495.2 9.6 224 8-METHYL-1-NONANOL -483.13 -468.32 14.81 225 1-DODECANOL -528.5 -522.07 6.43 226 1-TRIDECANOL -599.4 -548.95 50.45 227 1-TETRADECANOL -628.18 -575.82 52.36 228 1-PENTADECANOL -658.2 -602.7 55.5 229 1-HEPTADECANOL -722.85 -656.45 66.4 230 2-ETHYL-1-BUTANOL -382.41 -360.83 21.58 231 1-METHYLCYCLOHEXANOL -388.17 -334.06 54.11 232 cis-2-METHYLCYCLOHEXANOL -390.2 -334.06 56.14233 cis-3-METHYLCYCLOHEXANOL -416.1 -334.06 82.04 234 trans-3-METHYLCYCLOHEXANOL -394.4 -334.06 60.34 235 cis-4-METHYLCYCLOHEXANOL -413.2 -334.06 79.14 236 trans-4-METHYLCYCLOHEXANOL -433.3 -334.06 99.24 237 AGATHADIOL -685.7 -718.58 -32.88 238 alpha-TERPINEOL -316.7 -361.03 -44.33 239 2-BUTYL-NONAN-1-OL -540.1 -548.95 -8.85 240 TETRAHYDROFURFURYL ALCOHOL -435.7 -476.4 -40.7 241 2-PHENYL-2-PROPANOL -244.43 -226.87 17.56 242 2-BUTYL-OCTAN-1-OL -512.2 -522.07 -9.87 243 2,6-XYLENOL -237.4 -199.99 37.41 244 BENZYL ALCOHOL -160.71 -173.12 -12.41 245 m-CRESOL -194 -173.12 20.88 246 o-ETHYLPHENOL -208.82 -199.99 8.83 247 p-HYDROQUINONE -371.1 -342.34 28.76 248 p-ETHYLPHENOL -224.39 -199.99 24.4 249 p-tert-BUTYLPHENOL -276.66 -253.74 22.92 250 BISPHENOL A -368.5 -369.63 -1.13 251 NONYLPHENOL -387.33 -388.12 -0.79 252 ETHYLENE GLYCOL -460 -449.42 10.58 253 DIETHYLENE GLYCOL -628.5 -699.26 -70.76 254 TETRAETHYLENE GLYCOL -981.7 -1198.95 -217.25 255 1,2-PROPYLENE GLYCOL -499.99 -476.3 23.69 256 1,3-PROPYLENE GLYCOL -480.8 -476.3 4.5 257 DIPROPYLENE GLYCOL -718.46 -753.01 -34.55 258 2-METHYL-1,3-PROPANEDIOL -505.9 -503.17 2.73 259 1,2-BUTANEDIOL -523.6 -503.17 20.43 260 1,3-BUTANEDIOL -501 -503.17 -2.17 261 HEXYLENE GLYCOL -602.92 -556.92 46 262 GLYCEROL -669.6 -672.39 -2.79 263 p-tert-BUTYLCATECHOL -474 -449.84 24.16 264 2,2,4-TRIMETHYL-1,3-PENTANEDIOL -497.18 -610.67 -113.49 265 2-METHYL-1,3-PENTANEDIOL -577.5 -556.92 20.58 266 2,3-BUTANEDIOL -541.5 -503.17 38.33 267 cis-2-BUTENE-1,4-DIOL -372.9 -449.52 -76.62 268 trans-2-BUTENE-1,4-DIOL -401.6 -449.52 -47.92 269 1,5-PENTANEDIOL -531.49 -530.05 1.44 270 1,6-HEXANEDIOL -583.86 -556.92 26.94 271 1,2-BENZENEDIOL -354.1 -342.34 11.76 272 1,3-BENZENEDIOL -368 -342.34 25.66 273 PENTAERYTHRITOL -920.6 -922.23 -1.63 274 TRIMETHYLOLPROPANE -751.61 -753.01 -1.4 275 1,2,3-BENZENETRIOL -551.1 -538.43 12.67 276 SORBITOL -1354.2 -1341.29 12.91 277 FORMIC ACID -425.5 -368.9 56.6 278 ACETIC ACID -484.5 -395.78 88.72 279 PROPIONIC ACID -508.5 -422.65 85.85 280 n-DECANOIC ACID -713.7 -610.77 102.93 281 OXALIC ACID -829.7 -734.32 95.38 282 n-BUTYRIC ACID -533.8 -449.52 84.28 283 n-PENTANOIC ACID -558.7 -476.4 82.3 284 n-NONANOIC ACID -661.8 -583.9 77.9 285 ISOBUTYRIC ACID -531 -449.52 81.48 286 ISOVALERIC ACID -561.6 -476.4 85.2 287 n-HEXANOIC ACID -583.8 -503.27 80.53 288 2-METHYLHEXANOIC ACID -613.9 -530.15 83.75 289 1,4-CYCLOHEXANEDICARBOXYLIC ACID -998.5 -841.92 156.58 290 n-OCTANOIC ACID -636.8 -557.02 79.78 291 n-UNDECANOIC ACID -735.9 -637.65 98.25 292 CYCLOPENTYLACETIC ACID -551.73 -476.5 75.23 293 DILACTIC ACID -1122.8 -1037.91 84.89 294 n-DODECANOIC ACID -774.6 -664.52 110.08 295 n-HEXADECANOIC ACID -891.5 -772.02 119.48296 trans-CROTONIC ACID -446.23 -395.88 50.35 297 STEARIC ACID -948 -825.77 122.23 298 ACRYLIC ACID -383.88 -369 14.88 299 OLEIC ACID -802.49 -772.12 30.37 300 LINOLEIC ACID -674.04 -718.48 -44.44 301 SALICYLIC ACID -589.9 -511.66 78.24 302 ADIPIC ACID -994.3 -841.82 152.48 303 MALEIC ACID -789.4 -734.42 54.98 304 TEREPHTHALIC ACID -816.18 -680.98 135.2 305 ACETIC ANHYDRIDE -624.4 -591.97 32.43 306 PROPIONIC ANHYDRIDE -679.1 -645.72 33.38 307 BUTYRIC ANHYDRIDE -719.12 -699.47 19.65 308 PALUSTRIC ACID -852.4 -664.94 187.46 309 SUCCINIC ANHYDRIDE -607.8 -538.33 69.47 310 GLUTARIC ANHYDRIDE -618.5 -565.2 53.3 311 PHTHALIC ANHYDRIDE -460.1 -431.24 28.86 312 MALEIC ANHYDRIDE -469.8 -484.68 -14.88 313 TRIMELLITIC ANHYDRIDE -894.81 -796.66 98.15 314 METHYL FORMATE -386.1 -395.78 -9.68 315 n-PROPYL FORMATE -445.2 -449.52 -4.32 316 n-BUTYL FORMATE -469.2 -476.4 -7.2 317 ISOBUTYL FORMATE -475.87 -476.4 -0.53 318 n-PENTYL FORMATE -493.28 -503.27 -9.99 319 n-OCTYL FORMATE -566.45 -583.9 -17.45 320 n-NONYL FORMATE -588.93 -610.77 -21.84 321 n-DECYL FORMATE -613.73 -637.65 -23.92 322 VINYL FORMATE -293.36 -369 -75.64 323 ETHYL ACETATE -478.8 -449.52 29.28 324 n-PROPYL ACETATE -504.32 -476.4 27.92 325 n-BUTYL ACETATE -529.2 -503.27 25.93 326 ISOBUTYL ACETATE -536.06 -503.27 32.79 327 ISOPENTYL ACETATE -558.69 -530.15 28.54 328 ALLYL ACETATE -386.3 -422.75 -36.45 329 ISOPROPYL ACETATE -518.8 -476.4 42.4 330 sec-BUTYL ACETATE -544.04 -503.27 40.77 331 VINYL ACETATE -349.7 -395.88 -46.18 332 METHYL PROPIONATE -463.3 -449.52 13.78 333 ETHYL PROPIONATE -502.7 -476.4 26.3 334 n-PROPYL PROPIONATE -527.5 -503.27 24.23 335 n-BUTYL PROPIONATE -549.9 -530.15 19.75 336 VINYL PROPIONATE -385.46 -422.75 -37.29 337 ETHYL n-BUTYRATE -514.63 -503.27 11.36 338 n-PROPYL ISOBUTYRATE -564.5 -530.15 34.35 339 METHYL ACRYLATE -362.2 -395.88 -33.68 340 ETHYL ACRYLATE -379.59 -422.75 -43.16 341 n-PROPYL ACRYLATE -407.17 -449.63 -42.46 342 n-BUTYL NONANOATE -697.78 -691.4 6.38 343 n-BUTYL VALERATE -613.3 -583.9 29.4 344 ETHYL ISOVALERATE -570.9 -530.15 40.75 345 METHYL METHACRYLATE -399.13 -422.75 -23.62 346 ETHYL METHACRYLATE -421.34 -449.63 -28.29 347 n-PROPYL METHACRYLATE -446.7 -476.5 -29.8 348 DIOCTYL PHTHALATE -1084.1 -1110.98 -26.88 349 DIISOOCTYL PHTHALATE -1087.3 -1110.98 -23.68350 1,2-BENZENEDICARBOXYLIC ACID, HEPTYL, NONYLESTER -1085 -1110.98 -25.98351 n-PENTYL ACETATE -553 -530.15 22.85 352 2-ETHYLHEXYL ACETATE -627.99 -610.77 17.22 353 BENZYL ACETATE -368.8 -369.32 -0.52 354 ISOBUTYL ISOBUTYRATE -594.07 -557.02 37.05 355 ISOPENTYL ISOVALERATE -644.74 -610.77 33.97 356 METHYL OLEATE -734.5 -799 -64.5 357 n-HEXYL ACETATE -577.9 -557.02 20.88。
化工热力学 相平衡综述
《化工热力学理论及应用》课程作业题目:液液相平衡在单一脂肪酸甲酯体系中的应用研究院(系):化学化工学院专业:化学工程学号:**********姓名:000000指导教师:00000000000000液液相平衡在单一脂肪酸甲酯体系中的应用研究摘要:生物柴油是一种重要的可再生能源,引起人们的广泛研究,但研究大多集中于原料,新型催化剂开发,反应工艺条件的优化等方面。
生物柴油相关体系的液液相平衡数据对于生产工艺中反应器及分离装置的设计非常重要,但仅见少量文献报道。
目前需要积累大量准确有效的相平衡数据,获取有效的相关热力学模型参数,尽量做到以最少量的相平衡实验数据,为今后的计算模拟及装置设计提供依据。
关键词:生物柴油;单一脂肪酸甲酯;液液相平衡1引言目前,对于生物柴油的研究得到了越来越多的关注,逐渐从实验室制备研究转变到工厂生产工艺研究。
这一转变极大的增加了对生物柴油相关体系基础数据的需求。
相平衡数据是设计合适的分离设备所必须的。
故多组分相平衡数据在设计或者优化生产过程中具有基础性的重要性。
此外技术的进步和精炼的过程设计需要高质量的实验数据。
但因为体系的种类很多,并且过程设计需要考虑实际意义,实验数据的数量远远不够。
所以预测混合性质的技术成为了工业计算机模拟中非常重要的一部分。
故需要尽量提供准确大量的数据,丰富相平衡数据库,为进一步的计算和模拟提供数据基础。
目前,对生物柴油的相关研究主要集中于原料、制备工艺的开发和优化、新型催化刑的开发和应用等方面,相关体系相平衡数据在文献中出现较少,应用模型回归和关联实验数据的研究也较少。
本文选取了一系列的生物柴油相关体系,进行了不同温度条件下的相平衡数据的测定,在一定程度上弥补了这方面的空缺。
2液液相平衡的研究进展液液相平衡研究的是达到平衡时,系统的温度、压力、各相的体积、各相的组成以及其他热力学性质间的函数关系。
它是分离技术及分离设备进行开发设计的理论基础。
按照参与相平衡的相的不同,相平衡可以分为气液相平衡(VLE),液液相平衡(LLE),固液相平衡(SLE),它们是化工生产中精馆、吸收、吸附、萃取、结晶等传统分离技术的基础。
有机物定量结构—水溶解性相关的研究
桂林工学院硕士学位论文
NH2
图4.1MinoxidiI图4.2Cyhexatin
洲
图4,4Cephaloridine
本研究中有机化合物的水溶解性数据由溶解度的对数logS表示,其中S为20。
250C时有机物在纯水中的摩尔溶解度,单位为mol/L。
1290个化台物的logS值最小为一11.62,最大值为+1.58,该1290个化合物的logS值的分布情况如图4.5所示。
可以看出,其中微溶物质占总样本的一半以上,剩余难溶有机物与易溶有机物分布频率相差不大。
可以说,本数据集内样本的水溶解性数据涵盖了大多数典型有机物的水溶解性数据范围,因此,本研究所采用的数据集具有一定的典型性和代表性。
logS值
图4.51290个化合物的logS值分布
一35一
莎。
坷~
』∽。
塑件内应力检测ESCR
MATERIALS TESTINGEvaluating Environmental Stress Cracking of Medical PlasticsEric J. Moskala and Melanie JonesWhen a plastic is exposed to a chemical environment, the material may undergo numerous changes. These can include weight gain if the plastic absorbs the chemical, weight loss if the plastic is degraded by the chemical or if the chemical extracts low-molecular-weight components of the plastic, dissolution if the chemical is a good solvent, or other changes such as variations in opacity or color. If the plastic is under stress, it may also experience environmental stress cracking, which can be defined as the crazing and cracking that may occur when a plastic under a tensile stress is exposed to aggressive chemicals. The potential for environmental stress cracking is of paramount concern when plastics are used in medical device components such as luers and stopcocks. In these applications, chemicals such as isopropanol and lipid solutions can initiate crazes—microcracksbridged by polymer fibrils—in the plastic andseriously compromise its mechanical integrity.Products like medical luers can be susceptible tocrazing when under stress and exposed toaggressive chemicals. Photo: Eastman Chemical Co.The proper selection of a medical plastic requires a thorough analysis and interpretation of the phenomenon of environmental stress cracking. The goal of this article is to provide a framework for evaluating the suitability of a plastic for medical uses in terms of its stress-crack behavior. Our strategy will be to examine, in some detail, the roles of the three critical components of environmental stress cracking: the chemical environment, the plastic, and the tensile stress.THE CHEMICAL ENVIRONMENTChemicals that cause environmental stress cracking can be divided into those that swell or wet the polymer and those that chemically react with the polymer. An example of the latter would be the caustic or aqueous sodium hydroxide that can hydrolyze poly(ethylene terephthalate) (PET).1 The reduction in polymer molecular weight from the hydrolysis can lead to crazing and eventual catastrophic failure—a mechanism that has been identified as the probable cause for stress-crack failures in one-piece carbonated soft-drinkThis article, however, will emphasize chemicals that cause stress cracking simply by swelling or wetting the polymer. (Lipid solutions and isopropanol fall into this category.) It is the general consensus in the literature that the majority ofstress-crack failures experienced by end-users results from this category of –5 Numerous studies have linked the ability of a solvent to swell a plastic with its abilityto craze the plastic. Perhaps the best-known work of this kind is that of Kambour et al., who demonstrated—in studies on polycarbonate,6 poly(phenylene oxide),7 polysulfone,8 and polystyrene9—that the absorption of the solvent and concomitant reduction in the polymer's glass-transition temperature can be correlated with a propensity for stress cracking. They also showed that absorption of the liquid by the polymer tends to be correlated by the solubility parameters of the liquid and polymer. The solubility parameter, , is defined aswhere CED is cohesive energy density, E vap is the heat of vaporization, and V m is molar volume. Hansen proposed that the solubility parameter was composed of contributions from the three major types of cohesive forces, namely dispersive, polar, and hydrogen bonding, so thatwhere d, p, and h are the dispersive, polar, and hydrogen bonding components of the total solubility Values of these parameters for a few representative chemicals are shown in Table I. If the solubility parameter of the solvent is close to the solubility parameter of the polymer, the polymer will probably show some solubility in the solvent or undergo solvent-induced crystallization. Experience has shown that absorption of a liquid by a polymer may be better correlated by using the partial solubility parameters.LiquidMolarVolume(cm3mol-1)d(MPa½)p(MPa½)h(MPa½)Total(MPa½)Isooctane HeptaneCyclohexaneEthylbenzeneDioctyl phthalateTolueneMethyl ethyl ketoneChloroformTetrahydrofuranCyclohexanoneAcetoneo-Dichlorobenzene1-PentanolNitrobenzenei-PropanolEthanolDimethyl sulfoxideMethanolEthylene glycolGlycerolWaterTable I. Solubility parameters for selectedBecause the solubility parameter of a polymer cannot be calculated directly from the heat of vaporization, indirect methods such as solvent swelling andgroup-contribution approaches are used. Solvents that swell or dissolve the polymer most effectively will have solubility parameters close to the solubility parameter of the polymer, in keeping with the adage that "like dissolves like." In the group-contribution approach, the solubility parameter is determined by using the equationwhere F i is the molar attraction constant and V i is the molar volume for each subsegment of the polymer repeating unit (as demonstrated for PET in Table II).Table II. Estimation of solubility parameter for polyethylene terephthalate (PET) using the group-contribution PET molecular structure shown at top.The ability of the solubility parameter approach to correlate the absorption behavior of plastics has been demonstrated by the authors using PET, PCTG (a copolyester), and polycarbonate. Pieces of 3-mil-thick amorphous, unoriented, extruded film were suspended in sealed jars above a few milliliters of liquid. The films were removed every two weeks for weighing until they reached an equilibrium weight. The results, listed in Table III, indicate that all three plastics appear to show a broad peak with a maximum in liquid absorption at a solubility parameter of approximately 20 MPa½. The solubility parameters for PET, PCTG, and polycarbonate, as determined by the group-contribution approach, are MPa½, 22 MPa½, and MPa½, respectively, which fall into the range of the broad maximum in liquid absorption. (The alcohols are exceptions to this trend, as seen in Table I, presumably because of their strong hydrogen bonding characteristics.) These results highlight the difficulty in using the solvent-swelling technique for determining the solubility parameter of a polymer and in using the total solubility parameter to correlate a polymer's absorption behavior.LiquidTotal(MPa½) PET(%)PCTG(%)Polycarbonate(%)Isooctane 0 0 0Heptane 0 0 0 Cyclohexane 0 0 1 Ethylbenzene 61727 Toluene 122131Methyl ethylketone131525 Chloroform 57 D D Tetrahydrofuran 1833 D Cyclohexanone 212865 Acetone 121324 o-Dichlorobenzene 255060THE PLASTICAll plastics can be classified as either amorphous or crystalline materials. In amorphous plastics such as polystyrene and poly(methyl methacrylate), the polymer chains are randomly configured, displaying no significant order. In crystalline plastics such as polyethylene and nylon 6/6, the polymer chains are aligned or ordered into crystallites.Crystalline plastics, however, are never completely crystalline, but rather contain regions of amorphous material. A few plastics, among them PET and polycarbonate, can be entirely amorphous or semicrystalline, depending on processing conditions. At room temperature, the thermodynamically favored state for these plastics is the crystalline form; however, if they are cooled rapidly enough from the melt to below their glass-transition temperatures (T g), they will remain in their amorphous forms. Under normal injection molding conditions, parts made from such plastics are clear, indicating the absence of crystallinity. If the finished parts are heated to above T g orare exposed to strong solvents, they will crystallize. The latter phenomenon is often called solvent-induced crystallization, and was observed during the absorption studies discussed above.The nominally amorphous PET, PCTG, and polycarbonate films turned opaque upon exposure to certain solvents (see italicized data in Table III), indicating that crystallization had occurred. Absorption of these liquids decreased the T g's of the plastics to at least ambient conditions, giving the polymer chains sufficient mobility to align and crystallize. It was noted that crystallinity developed much more quickly in PET and PCTG than in polycarbonate, primarily because the copolyesters have much lower T g's (approximately 80°C) than does polycarbonate (approximately 150°C), and therefore needed to absorb less liquid before T g was depressed to ambient temperature. Solvent-induced crystallization may have a pronounced effect on stress-cracking behavior, as will be discussed later.Although both amorphous and crystalline plastics are susceptible to environmental stress cracking, it is generally recognized that amorphous plastics tend to be more at –5 The closely packed crystalline domains in crystalline plastics act as barriers to fluid penetration and therefore tend to resist environmental stress cracking.THE TENSILE STRESSPlastics will exhibit environmental stress cracking when exposed to an aggressive chemical environment if and only if a tensile stress is present. The tensile stress may be applied externally or may simply be a consequence of residual, or molded-in, stresses. Residual stresses can be minimized through the use of proper design guidelines and the control of critical variables in the injection molding Externally applied stresses can result from subassembly processes, shipping and storage conditions, or improper packing. An externally applied tensile stress may also be part of the intended end-use of the device. A female luer, for example, may be subjected to extremely high hoop stresses upon insertion of the maleObviously, the most reliable method for evaluating the stress-crack resistance of a plastic in a given application is to analyze its performance under simulated end-use conditions. Alternatively, stress-crack resistance can be determined by some type of standard testing procedure whose results can be related to the stress and strain levels observed in end-use conditions. A few of the numerous tests that have been developed to evaluate environmental stress-crack resistance are listed in the box on page 41. The tests differ primarily in the way the external stress is applied.ASTM D 1693 describes a test for evaluating the stress-crack resistance of ethylene plastics in environments such as soaps, wetting agents, oils, or detergents. Strips of a plastic, each containing a controlled defect, are placed in a bending rig and exposed to a stress-cracking agent. The number of specimens that crack over a given time is recorded.ISO 4600 details a ball or pin impression method for determining stress-crack resistance. In this procedure, a hole of specified diameter is drilled in the plastic. An oversized ball or pin is inserted in the hole and the plastic is exposed to astress-cracking agent. After exposure, tensile or flexural tests may be performed on the specimen.A constant tensile-stress method is outlined in ISO 6252, in which a test specimen is exposed to a constant tensile force while immersed in a stress-cracking agent so as to determine time-to-rupture under a specified stress. Variations of this test include a tensile creep test that monitors strain, and a monotonic creep test that uses a constant stressing rate instead of a fixedAnother bent-strip method for evaluating stress-crack resistance is presented in ISO 4599. In this test, strips of a plastic are positioned in a fixed flexural strain and exposed to a stress-cracking agent for a predetermined period. After exposure, the strips are removed from the straining rig, examined visually for changes in appearance, and then tested for some indicative property such as tensile strength.Commonly Used Tests for Evaluating Stress-Crack Resistance of PlasticsASTM D 1693—Environmental Stress Cracking of Ethylene PlasticsISO 4600—Resistance to ESC—Ball/Pin Impression MethodISO 6252—Resistance to ESC—Constant-Tensile-Stress MethodISO 4599—Resistance to ESC—Bent-Strip MethodCritical Strain 15Fracture Mechanics16–19A variation of the ISO 4599 test was performed by the authors on medical-grade versions of PCTG, polycarbonate, and an acrylic resin. Injection-molded tensile bars were placed under fixed strains of 0%, %, %, and % and exposed to a lipid solution and isopropanol using a wet-patch technique. After a 72-hour exposure period, the specimens were removed from the strain rig, rinsed clean of chemical with distilled water, allowed to equilibrate at ambient conditions for 24 hours, and then tested for residual tensile properties according to ASTM D 638. The results for specimens exposed to isopropanol and to lipid solution are displayed in Tables IV and V, respectively. In isopropanol, polycarbonate crazed at strain levels of % and higher, resulting in dramatic losses in tensile properties. PCTG also crazed at strain levels of % and higher but maintained most of its tensile properties. The acrylic resin fractured on the strain rig shortly after the appearance of crazing, at a strain level as low as %.In the lipid solution, polycarbonate crazed at a strain level as low as %, and fractured while still on the strain rig at a strain level of %. The acrylic resin crazed only at the % strain level, and demonstrated a dramatic loss of tensile properties for this one strain level. PCTG crazed at a strain level as low as % but retained most of its tensile properties. One can speculate that the ability of PCTG to retain most if its mechanical properties despite being heavily crazed is linked to its ability to undergo rapid solvent-induced crystallization.The critical strain test attempts to determine the minimum strain required to initiate crazing in the presence of a stress-cracking agent. The test is most commonly performed using a Bergen elliptical strain rig: a strip of plastic is placed on the rig, which is patterned after a quarter of an ellipse, and exposed to a stress-cracking The strain at any point along the elliptical rig, , is given by the equationwhere a is the semimajor axis, b is the semiminor axis, t is specimen thickness, and X is the distance along the semimajor axis to the point of interest. With a specimen, an elliptical rig with a = 10 in. and b = 5 in. will give minimum and maximum strains of % and %, respectively.Results of critical strain tests on PET, PCTG, and polycarbonate are listed in Table VI. Injection-molded flexural bars were strapped to a Bergen elliptical strain rig and exposed to the liquids using a wet-patch technique. The width of the patch was smaller than the width of the flexural bar to avoid exposing the edges of the flexuralbar to the liquids. Polycarbonate displayed outstanding critical-strain values in alcohols and aliphatic hydrocarbons but very low critical-strain values (<%) in most other liquids. In fact, polycarbonate fractured while still on the strain rig when exposed to acetone and dimethyl sulfoxide. PET and PCTG displayed moderate to high critical-strain values in most solvents. Finally, it is of interest to note a modest correlation between the critical-strain values reported in Table VI and theweight-gain values reported in Table III: liquids that tend to swell the polymers the most also induce the lowest critical-strain values.LiquidTotal(MPa½) PET(%)PCTG(%)Polycarbonate(%)Isooctane >2HeptaneCyclohexaneEthylbenzene < Toluene <Methyl ethylketone.031 < Chloroform < Tetrahydrofuran .076 < Cyclohexanone < < Acetone B o-Dichlorobenzene X 1-PentanolNitrobenzene D < i-PropanolEthanol >2Several laboratories have used the concepts of fracture mechanics to evaluate stress cracking in –19 The basic premise of fracture mechanics is that the strength of a material is determined by the presence of flaws. In fracture-mechanics testing, a well-defined flaw or crack is machined into a plastic. The specimen is stressed and the growth of the flaw in the presence of a stress-cracking agent is monitored until failure. Whereas fracture mechanics is ideal for studying the effect of a preexisting crack on the residual strength of a plastic, it provides no insight into the mechanism for initiation of a crack or craze upon exposure to a stress-cracking agent.Each of the aforementioned tests has its advantages and disadvantages. The choice of the best method for evaluating the performance of a medical device material will depend on which test most closely simulates end-use conditions ., constant stress versus constant strain, etc.) and on the failure criterion selected by the designer. Critical strain is an excellent method for evaluating stress-crack resistance if themere appearance of crazing constitutes a failure, since the test determines the minimum strain required to initiate a craze. However, it should be emphasized that the appearance of crazing does not necessarily indicate a loss of mechanical properties. The results shown in Tables IV and V demonstrate that a plastic such as PCTG can be heavily crazed by a chemical but undergo no loss in mechanical properties. This was not the case for polycarbonate and acrylic, in which the appearance of crazing signaled a deterioration of mechanical properties. If the failure criterion is retention of mechanical properties without regard to aesthetic appearance, any of the ISO tests or variations thereof that measure retention of mechanical properties may be the appropriate choice.CONCLUSIONThe roles of the chemical agent, the plastic, and the stress are all important factors in causing environmental stress cracking. Chemicals that tend to swell or wet a plastic are often active stress-cracking agents; however, the solubility-parameter approach is only modestly useful for correlating stress-cracking behavior with the ability of a liquid to swell a plastic. Semicrystalline plastics tend to be more resistant to environmental stress cracking than amorphous ones. It was demonstrated that amorphous but crystallizable plastics, such as PET and PCTG, can be heavily crazed by a stress-cracking agent and yet retain their mechanical properties due to solvent-induced crystallization of the crazing fibrils in the polymer. Finally, several tests for evaluating stress-crack resistance were reviewed. For a given medical application, the optimal test method will depend on the failure criteria established by the designers of the component or device.REFERENCES1. Zeronian SH, Wang HZ, and Alger KW, "Further Studies on the Moisture-Related Properties of Hydrolyzed Poly(ethylene terephthalate)," J Appl Polym Sci, 41:527, 1990.2. Moskala EJ, "Environmental Stress Cracking in PET Beverage Containers," in Proceedings of Bev-Pak America '96, Ft. Lauderdale, FL, Directions 21, Inc., 8, 1996.3. Kramer EJ, "Environmental Cracking of Polymers," Developments in Polymer Fracture, Vol 1, chap 3, Andrews EH (ed), London, Applied Science, 1979.4. Kambour RP, "A Review of Crazing and Fracture in Thermoplastics," Macromol Rev, 7:1, 1973.5. Wright DC, Environmental Stress Cracking of Plastics, Shawbury, UK, Rapra, 1996.6. Kambour RP, Gruner CL, and Romagosa EE, "Bisphenol-A Polycarbonate Immersed in Organic Media. Swelling and Response to Stress," Macromol, 7:248, 1974.7. Bernier GA, and Kambour RP, "The Role of Organic Agents in the Stress Crazing and Cracking of Poly(2,6 dimethyl-1, 4 phenylene oxide)," Macromol, 1:393, 1968.8. Kambour RP, Romagosa EE, and Gruner CL, "Swelling, Crazing, and Cracking of an Aromatic Copolyether-Sulfone in Organic Media," Macromol, 5:335, 1972.RP, Gruner CL, and Romagosa EE, "Solvent Crazing of 'Dry' Polystyrene and 'Dry' Crazing of Plasticized Polystyrene," J Polym Sci, Polym Phys Ed, 11:1879, 1973.10. Hansen CM, "The Three-Dimensional Solubility Parameter—Key toPaint-Component Affinities: I. Solvents, Plasticizers, Polymers, and Resins," J Paint Technol, 39:104, 1967.11. Barton AFM, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, Boca Raton, FL, CRC Press, 1991.12. Coleman MM, Serman CJ, Bhagwagar DE, et al., "A Practical Guide to Polymer Miscibility," Polym, 31:1187, 1990.13. Kambour RP, Caraher JC, Schnoor RC, et al., "Tensile Stresses in the Edges of Injection Moldings: Roles of Packing Pressure, Machine Compliance, and Resin Compression," Polym Eng Sci, 36:2863, 1996.14. Hong KZ, "Selecting Clear Plastics for Medical Applications," Med Plast Biomat, 1(1):48–54, 1994.15. Bergen RL, "Stress Cracking of Rigid Plastics," SPE Journal, 24:667, 1968.16. Wyzgoski MG, and Novak GE, "Stress Cracking of Nylon Polymers in Aqueous Salt Solutions, Part 1: Stress-Rupture Behavior," J Mater Sci, 22:1707, 1987.17. Wyzgoski MG, and Novak GE, "Stress Cracking of Nylon Polymers in Aqueous Salt Solutions, Part 2: Craze-Growth Kinetics," J Mater Sci, 22:2615, 1987.18. Williams JG, and Marshall GP, "Environmental Crack and Craze Growth Phenomena in Polymers," Proc R Soc Lond, A342:55, 1975.19. Moskala EJ, "A Fracture Mechanics Approach to Environmental Stress Cracking in Poly(ethyelene terephthalate)," Polym, 39:675, 1998.Eric J. Moskala, PhD is a principal research scientist in the Polymer Processing and Applications Research Laboratory at Eastman Chemical Co. (Kingsport, TN). He specializes in the fracture and fatigue properties of engineering plastics. Working at the same facility, Melanie Jones is an advanced technical service representative for specialty plastics design services. Her primary responsibilities involve design support for the medical device business segment.Copyright ©1998 Medical Plastics and Biomaterials。
祖冲之证明圆周率方法
祖冲之证明圆周率方法Zu Chongzhi, a prominent Chinese mathematician and astronomer from the 5th century, is widely known for his remarkable achievement in estimating the value of pi. 祖沖之,一位杰出的中国数学家和天文学家,以其估算圆周率数值的卓越成就而著名。
His method involved inscribing a polygon inside a circle and circumscribing another polygon outside the circle, allowing him to calculate upper and lower bounds for pi. 他的方法涉及将一个多边形内接到一个圆内,并在外部围绕另一个多边形,从而使其能够计算π的上下限。
This method is often referred to as the "Method of Liu Hui," as another Chinese mathematician is credited with its discovery, although Zu Chongzhi is the one who popularized it. 这种方法经常被称为“刘徽法”,因为另一位中国数学家被认为是其发现者,尽管祖冲之是使其广为人知的人。
It is important to look at Zu Chongzhi's contribution to the estimation of pi not only from a mathematical perspective but also from a cultural and historical viewpoint. 重要的是,我们不仅要从数学角度看待祖冲之对π的估算的贡献,还要从文化和历史的角度来看。
定位分布贡献法估算有机物的沸点
定位分布贡献法估算有机物的沸点江红艳【摘要】Position group contribution method is proposed as a new model for the estimation of basic properties of organic compounds involving a carbon chain from C2 to C18.The characteristic of this method is the use of position distribution function.It could distinguish most of isomers that included cis-or trans-structure from organic compounds.The basic properties ( normal boiling) of some organic compounds by using the new method.The results were compared with those by the most commonly used estimating the method of Joback and the method of Constantinou-Gani.This new position contribution group method was not only much more accurate but also had the advantages of simplicity and stability.%定位分布贡献法是一个新的基团贡献模型,用于预测碳链从C2到C18的有机化合物的性质,如正常沸点等。
这种方法的特点是提出了位置调整的功能。
该方法能够较好的区别顺式、反式结构异构体。
运用该方法计算了一些化合物的正常沸点,并和Joback方法、 Constantinou-Gani方法就平均绝对误差、平均相对误差等方面作对比,得出该方法具有不仅更加准确,而且更加简单、稳定的优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Group Contribution Based Estimation of Pure ComponentPropertiesJorge MarreroCenter of Pharmaceutical Chemistry, POB 16042, Havana, CubaRafiqul Gani*CAPEC, Department of Chemical Engineering, Technical University of DenmarkDK-2800 Lyngby, Denmark*Corresponding author <rag@kt.dtu.dk>AbstractA new method for the estimation of properties of pure organic compounds is presented. Estimation is performed at three levels. The primary level uses contributions from simple groups that allow describing a wide variety of organic compounds while the higher levels involves polyfunctional and structural groups that provide more information about molecular fragments whose description through first-order groups is not possible. The presented method allows estimations of the following properties: normal boiling point, critical temperature, critical pressure, critical volume, standard enthalpy of formation, standard enthalpy of vaporization, standard Gibbs energy, normal melting point and standard enthalpy of fusion. The group contribution tables have been developed from regression using a data set of more than 2000 compounds ranging from C=3 to C=60, including large and complex polycyclic compounds. Compared to the currently used group-contribution methods, the new method makes significant improvements both in accuracy and applicability.Keywords: Group Contribution; Property PredictionIntroductionThe basis for the design and simulation of many chemical processing units is a set of physical and thermodynamic properties of compounds in the process that undergo some form of transformation. It is not always possible, however, to find experimental values of properties for the compounds of interest in the literature. Since it is not practical either to measure them as the need arises, estimation methods are generally employed in this and other similar situations.For the estimation of properties of pure compounds, group-contribution methods, Joback and Reid [1], Lydersen [2], Ambrose [3], Klincewicz and Reid [4], Lyman et al.[5], Horvath [6], have been widely used. In these methods, the property of a compound is a function of structurally dependent parameters, which are determined by summing the number frequency of each group occurring in the molecule times its contribution. These methods provide the advantage of quick estimates without requiring substantial computational resources. Many of these methods are, however, of questionable accuracy, unable to distinguish among isomers and have limited applicability due to the oversimplification of the molecular structure representation as a result of the use of a simple group-contribution approach and relatively small data set used for estimation of group contributions.To overcome these limitations, several attempts have been reported in the literature. Constantinou et al. [7, 8] have proposed a quite complex estimation technique, which is based on conjugate forms (alternative formal arrangements of valence electrons). Thistechnique provides accurate estimations of several properties of pure compounds and allows capturing the differences among isomers. However, the generation of conjugate forms is a nontrivial issue and requires a symbolic computing environment, Prickett et al. [9]. A less complex method has been proposed by Constantinou and Gani [10], which performs the estimation at two levels: the basic level uses contributions from first-order simple groups, while the second level uses a small set of second-order groups having the first-order groups as building blocks. The role of the second-order groups is to consider, in some extent, the proximity effects and to distinguish among isomers. Marrero-Morejón and Pardillo-Fontdevila [11] proposed another technique that considers the contributions of interactions between bonding groups instead of the contributions of simple groups, which allows the distinction of a large number of isomers.Despite the advantages of above-mentioned methods, however, their ranges of applicability are still quite restricted. Properties of large, complex and polyfunctional substances, of interest in biochemical and environmental studies, cannot be accurately estimated by using the current available methods. Due to the relatively small data sets used in the development of these methods, which usually includes just a few hundred of relatively simple compounds, the predictive capability usually breaks down when dealing with large, polycyclic or polyfunctional molecules. Also, most of the existing group-contribution techniques do not include suitable groups for representing complex molecules such as the ones of biochemical or environmental importance. Motivated by these drawbacks, our efforts have been focused on developing a new group-contributionmethod that allows more accurate and reliable estimations of a wide range of chemical substances including large and complex compounds.In our method, the estimation is performed at three levels. The basic level has a large set of simple groups that allow describing a wide variety of organic compounds. However, these groups capture only partially the proximity effects and are unable to distinguish among isomers. For this reason, the first level of estimation is intended to deal with simple and monofunctional compounds. The second level involves groups that permit a better description of proximity effects and differentiation among isomers. The second level of estimation is consequently intended to deal with polyfunctional, polar or non-polar, compounds of medium size, C=3 to C=6, and aromatic or cycloaliphatic compounds with only one ring and several substituents. The third level has groups that provide more structural information about molecular fragments of compounds whose description is insufficient through the first and second level’s groups. The third level of estimation allows estimation of complex heterocyclic and large (C=7 to C=60) polyfunctional acyclic compounds. The ultimate objective of the proposed multi-level scheme is to enhance the accuracy, reliability and the range of application for a number of important pure component properties.Development of the New MethodIn the new method, the molecular structure of a compound is considered to be a collection of three types of groups: first-order groups, second-order groups and third-order groups. The representation of a given compound through these groups is based on the following set of groups.1. In the first level, groups describing the entire molecule must be selected. Forexample, CH3COCH2COCH(CH3)CH3 is described in the following way: (1) CH3CO, (1) CH2CO, (2) CH3, (1) CH2. In the case of aromatic substituents, groups of type aC-R must be chosen. For example, acetophenone is described by (1) aC-CO, (5) aCH and (1) CH3. The same molecular fragment can not be represented by more than one group. For example, trimethylurea is represented by (1) NHCON, (3) CH3. To use groups CH3NH or CH3N would be wrong because the nitrogen atoms would be covered more than one time.2. In the second and third levels, the entire molecule does not need to be described bygroups and the same molecular portion can be covered by more than one group. For example, cyclohexanol has only CHcyc-OH as a second-order group and cyclohexylmethacrylate is represented by the second-order groups CHcyc-OOC, CHn=CHm-COO and CH3-CHn=CHm. Contrary to the case of first-order level, there can be molecules that do not need any second-order or third-order groups (eg.acetophenone). There can be compounds that do not need any second-order group but need third-order groups such as for diphenyl sulfide in where a third-order group aC−S−aC is needed.The property-estimation model has the form of the following equation.∑∑∑++=kk kjj jiiiEOzDMwCNXf)((1)In Eq. (1), C i is the contribution of the first-order group of type-i that occurs N i times, D j is the contribution of the second-order group of type-j that occurs M j times and E k is the contribution of the third-order group of type-k that has O k occurrences in a compound. In the first level of estimation, the constants w and z are assigned zero values because only first-order groups are employed. In the second level, the constants w and z are assigned unity and zero values respectively because only first and second-order groups are involved while in the third level, both w and z are set to unity values. The left-hand side of Eq. (1) is a simple function f(X) of the target property X. The selection of this function has been based on the following criteria:1. The function has to achieve additivity in the contributions C i, D j and O k.2. It has to exhibit the best possible fit of the experimental data.3. It should provide a good extrapolating capability and therefore a wide range ofapplicability.According to these criteria, the selected functions are the same as used by Constantinou and Gani [10]. The target properties as well as their corresponding estimation functions are listed in Table 1. The symbols Tm1i, Tb1i, Tc1i, Pc1i, Vc1i, Gf1i, Hf1i, Hv1i, Hfus1i represent the contributions (C i) of the first-order groups for the correspondig properties. Similarly, Tm2j, Tb2j, Tc2j, Pc2j, Vc2j, Gf2j, Hf2j, Hv2j, Hfus2j and Tm3k, Tb3k, Tc3k, Pc3k, Vc3k, Gf3k, Hf3k, Hfus3k represent the contributions (D j) and (O k.) of the second and third-order groups, respectively. The Tm0, Tb0, Tc0, Pc1, Pc2, Vc0, Gf0, Hf0, Hv0,Hfus0 are additional adjustable parameters of the estimation models or universal constants.The determination of the adjustable parameters of the models, that is, the contributions C i, D j and O k, has been divided into a three-step regression procedure:1. Regression is carried out to determine the contributions (C i) of the first-order groups and the universal constants of the models while w and z are set to zero.2. Then, w is set to unity, z is set to zero and another regression is performed using theC i s and universal constants calculated in the previous step to determine the contributions (D j) of the second-order groups.3. Finally, both w and z are assigned to unity and, using the universal constants of the models, C i s and D j s obtained as results of the previous steps, the contributions (O k.) of the third-order groups are determined.This stepped regression scheme ensures the independence among contributions of first, second and third order. Besides, the contributions of the higher levels act as corrections to the approximations of the lower levels. The total of the contributions C i, D j and O k for the nine properties listed earlier can be obtained from the authors. The universal constants determined in the first step of the regression scheme are listed in Table 2. The optimization algorithm used for the data fitting was the Levenberg-Marquardt technique and the objective function was to minimize the sum of squares of the differences between experimental and estimated values of the target properties. The experimental data used in regression has been obtained from a comprehensive data bank of propertyvalues developed at CAPEC-DTU [12] through a systematic search of several data sources. Property values have been included in this collection after a rigorous analysis of their reliability.Results and DiscussionTable 3 presents for each property the standard deviation, the average absolute error and the average relative error for the first, second and third approximations. The number of experimental values used in the first regression step is also given. The statistics offered for the second and third approximations encompass all the data points, even those corresponding to compounds in which no second order or third order groups occur (and consequently not used in the second and third regression steps). Therefore, the average deviations given for the third approximation characterize the global results of the three subsequent approximations. Furthermore, due to the low number of available experimental values of enthalpies of vaporization at 298 K for complex and heterocyclic compounds, the contributions of third-order groups to this property have not been considered in this paper. A comparison of the average deviations obtained as results of the second and third regression steps is shown in Table 4, which does include the actual number of data points used in each step, that is, the number of compounds in which second and third order groups occur. For each set of compounds, the average deviations corresponding to both the current and previous step are presented in order to illustrate the improvement in accuracy achieved in each step.The reliability of the estimation equations obtained from the regression steps has been tested for each property by performing a least-square analysis in which a randomlyconformed subset of the N experimental data points has been excluded from the full data set. Then, the mean-square residual J defined as follows, ()N Y X J i i ∑−=2(2)was calculated. In Eq. 2, N is the number of data points excluded from the full data set, X i is the property value of the compound i estimated by the full regression, and Y i is the property value of the same compound estimated by the partial regression. For all the properties, the residuals are smaller than the estimation errors reported in Table 3, confirming the reliability of the method.A fair comparison with other existing group-contribution methods is impossible since no other method exhibit the wide-ranging applicability of the proposed method. Moreover, the new method is able to deal with classes of compounds that cannot be handled by other widely used methods. The reason is that, compared to other methods, a significantly larger data set has been used in the development of the new method as well as a larger and comprehensive set of groups. However, in order to make a quite acceptable comparison of the proposed method with another classical group-contribution method, we have calculated the contributions of the groups used by Joback and Reid [1] and recalculated our group contributions using the estimation models reported in Table 1 and a common set of compounds that can be described by both group schemes. A comparison between the results obtained from both methods, the modified Joback’s and the proposed one after the third approximation, is presented in Table 5. Clearly, the new method exhibits a much better accuracy.ConclusionThe application of three different sets of functional groups, one for a first-order approximation and two successive ones for refining the estimations for complex, large and heterocyclic compounds has led to a new group contribution method for the estimation of important physical and thermodynamic properties. Compared to other currently used estimation methods, the proposed method exhibits an improved accuracy and a considerably wider range of applicability to deal with chemical, biochemical and environmental-related compounds. Even for lower molecular weight organic compounds, the larger set of first-order groups provides not only a wider range of application but also an improved accuracy. A computer program is also being developed for automatic selection of groups.References[1] K. G. Joback and R. C. Reid, “Estimation of Pure-Component Properties from Group-Contributions”, Chem. Eng. Comm., 57, 233 (1987).[2] A. L. Lydersen, “Estimation of Critical Properties of Organic Compounds”, Univ. Cool. Exp. Stn., Rept., Madison, WI, April (1955).[3] D. Ambrose, “Correlation and Estimation of Vapor-Liquid Critical Properties: I. Critical Temperatures of Organic Compounds”, Nat. Physical Lab., Teddington, UK, NPL Rep. Chem., 92 (1978).[4] K. M. Klincewicz and R. C. Reid, “Estimation of Critical Properties with Group-Contribution Methods”, AIChE J., 30, 137 (1984).[5] W. J. Lyman, W. F. Reehl and D. H. Rosenblatt, “Handbook of Chemical Property Estimation Methods”, Americal Chemical Soc., Washington, DC (1990).[6] A. L. Horvath, “Molecular Design”, Elsevier, Amsterdam (1992).[7] L. Constantinou, S. E. Prickett and M. L. Mavrovouniotis, “Estimation of Thermodynamic and Physical Properties of Acyclic Hydrocarbons using the ABC Approach and Conjugation Operators”, Ind, Eng. Chem. Res., 32, 1734 (1993).[8] L. Constantinou, S. E. Prickett and M. L. Mavrovouniotis, “Estimation of Properties of Acyclic Organic Compounds using Conjugation Operators”, Ind, Eng. Chem. Res., 39, 395 (1994).[9] S. E. Prickett, L. Constatinou and M. L. Mavrovouniotis, “Computational Identification of Conjugate Paths for Estimation of Properties of Organic Compounds”, Molecular Simulation, 11, 205 (1993).[10] L. Constantinou and R. Gani, “New Group Contribution Method for Estimating Properties of Pure Compounds”, AIChE J., 40, 1697 (1994).[11] J. Marrero-Morejón and E. Pardillo-Fontdevilla, “Estimation of Pure Compound Properties Using Group-Interaction Contributions”, AIChE J., 45, 615 (1999).[12] CAPEC Database, Department of Chemical Engineering, DTU, Lyngby, Denmark (2000).Table 1. Selected function for each propertyProperty (X) Left-hand side of Eq. 1[Function f(X)]Right-hand side of Eq. 1 (Group-Contribution Terms)Normal Melting Point(Tm)exp(Tm/Tm0) Σi N i Tm1i+Σj M j Tm2j+Σk O k Tm3kNormal Boiling Point(Tb)exp(Tb/Tb0) Σi N i Tb1i+Σj M j Tb2j+Σk O k Tb3kCritical Temperature(Tc)exp(Tc/Tc0) Σi N i Tc1i+Σj M j Tc2j+Σk O k Tc3k Critical Pressure (Pc) (Pc-Pc1)-0.5-Pc2 Σi N i Pc1i+Σj M j Pc2j+Σk O k Pc3k Critical Volume (Vc) Vc-Vc0 Σi N i Vc1i+Σj M j Vc2j+Σk O k Vc3k Standard GibbsEnergy at 298 K (Gf)Gf-Gf0 Σi N i Gf1i+Σj M j Gf2j+Σk O k Gf3kStandard Enthalpy ofFormation at 298 K(Hf)Hf-Hf0 Σi N i Hf1i+Σj M j Hf2j+Σk O k Hf3kStandard Enthalpy ofVaporization at 298 K(Hv)Hv-Hv0 Σi N i Hv1i+Σj M j Hv2jStandard Enthalpy ofFusion (Hfus)Hfus-Hfus0 Σi N i Hfus1i+Σj M j Hfus2j+Σk O k Hfus3kTable 2. Values of the additional adjustable parameters Adjustable Parameter(Universal Constants) ValueTm0 147.450KK Tb0 222.543Tc 231.239Kbar Pc1 5.9827bar-0.5Pc2 0.108998Vc0 7.95cm3/molkJ/mol Gf0 -34.967kJ/mol Hf0 5.549Hv0 11.733kJ/molkJ/mol Hfus0 -2.806Table 3. Global comparison of consecutive first, second and third approximationsData STD AAE ARE (%) Property (X) Points 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd Tm (K) 1547 33.87 29.5227.6724.9021.4120.229.3 7.9 7.6Tb (K) 1794 11.11 8.968.097.90 6.38 5.89 1.8 1.4 1.4Tc (K) 783 17.25 8.50 6.998.75 5.67 4.93 1.4 0.9 0.8Pc (bar) 775 1.73 1.53 1.39 1.020.870.79 2.9 2.6 2.3Vc (cc/mol) 762 13.36 11.5710.749.127.857.33 2.2 1.9 1.8Gf (kJ/mol) 679 8.37 6.85 5.90 5.35 4.12 3.70--- --- ---Hf (kJ/mol) 686 8.29 6.79 5.75 5.27 4.05 3.60--- --- ---Hv (kJ/mol) 437 2.05 1.61--- 1.100.86--- 2.7 2.3 ---Hfus (kJ/mol) 711 4.16 3.88 3.65 2.58 2.32 2.1718.3 16.4 15.7 STD =()NX Xest ∑−2expAAE =∑−exp 1X Xest NARE =%100expexp1∑−X X Xest Nwhere N is the number of data points, Xest is the estimated value of the property X , and Xexp is the experimental value of the property XTable 4. Comparison of average deviations for second and third order approximations2nd3rdProperty Data Points Data Deviations Data Deviations (X) (total) Points 1st 2nd Points 1st & 2nd 3rd Tm 1547 960 9.7 % 7.5 % 181 10.0 % 7.1 % Tb 1794 1107 1.9 % 1.3 % 141 2.6 % 1.4 % Tc 783 412 1.6 % 0.8 % 52 1.8 % 0.5 % Pc 775 411 2.6 % 1.9 % 64 5.0 % 2.3 % Vc 762 408 2.5 % 1.9 % 62 2.7 % 1.4 %Gf 679 358 5.8 * 3.5 * 57 9.5 * 4.6 * Hf 686 353 5.6* 3.3 * 58 9.3 * 4.0 * Hv 437 218 2.5 % 1.6 % ---- ---- ---- Hfus 711 351 19.2 % 15.5 % 99 22.9 % 17.7 %Deviations are expressed as average relative errors for all properties excepting for Gf and Hf , which are expressed as average absolute errors*kJ/molTable 5. Comparison of accuracy between a classical group-contribution scheme and the proposed method(%) Data STD AAE ARE Property (X) Points JR New JR New JR NewTm (K) 1103 38.87 25.3434.9018.7614.67.5Tb (K) 1211 15.86 8.0111.02 5.89 3.1 1.4Tc (K) 587 18.73 6.8710.96 4.87 2.10.9Pc (bar) 573 3.71 1.36 2.450.74 5.6 2.2Vc (cc/mol) 544 18.36 10.6914.537.25 2.7 1.8Gf (kJ/mol) 481 12.41 5.909.03 3.62------Hf (kJ/mol) 493 12.23 5.688.98 3.60------Hv (kJ/mol) 343 2.93 1.60 2.710.83 4.2 2.4Hfus (kJ/mol) 499 6.84 3.62 3.06 2.1146.315.6JR = Joback and Reid [1]New = Proposed methodAppendix 1To illustrate the proposed method, we provide the estimation of the normal boiling point and normal melting point using six example compounds. The experimental data and estimations through Joback and Reid method [1] are also given.Example 1. Estimation of the normal boiling point of N-Phenyl-1,4-benzenediamineNHH2N(Experimental value: Tb = 627.15 K)aC-NH2 13.8298x1aC-NH 12.9230x1aC 11.5468x1aCH 90.8365x9Σi N i Tb1i = 15.8281Tb = 222.543ln(15.8281) = 614.62 K(first-order approx., error: 12.53 K)Second-order Groups Occurrences ContributionAROMRINGs1s4 1 0.1007x1Σj M j Tb2j = 0.1007Tb = 222.543ln(15.8281+0.1007) = 616.03 K(second-order approx., error: 11.12 K)Third-order Groups Occurrences ContributionaC-NH-aC 10.5768x1Σk O k Tb3k = 0.5768Tb = 222.543ln(15.8281+0.1007+0.5768) = 623.94 K(third-order approx., error: 3.21 K)Estimation through Joback and Reid [1]: 655.20 Kerror: -28.05 KExample 2. Estimation of the normal boiling point of Pyrene(Experimental value: Tb = 677.15)First-order Groups Occurrences Contribution aC (fused with arom. ring) 6 1.7324x6aCH 100.8365x10Σi N i Tb1i = 18.7593Tb = 222.543ln(18.7593) = 652.43 K(first-order approx., error: 24.72 K)No second-order groups are involved Third-order Groups Occurrences ContributionAROM.FUSED[3] 20.0402x2AROM.FUSED[4p] 20.9126x2Σk O k Tb3k = 1.9056Tb = 222.543ln(18.7593+1.9056) = 673.96 K(third-order approx., error: 3.19 K)Estimation through Joback and Reid [1]: 651.56 Kerror: -24.41 KExample 3. Estimation of the normal boiling point of 4-aminobutanolOHHN2(Experimental value: Tb = 478.15 K)First-order Groups Occurrences ContributionOH 1 2.5670x1CH2NH2 12.7987x1CH2 30.7141x3Σi N i Tb1i = 7.508Tb = 222.543ln(7.508) = 448.64 K(first-order approx., error: 29.51 K)No second-order groups are involvedThird-order Groups Occurrences ContributionNH2-(CHn)m-OH (m>2) 1 1.0750x1Σk O k Tb3k = 1.0750Tb = 222.543ln(7.508+1.0750) = 478.42 K(third-order approx., error: -0.27 K)Estimation through Joback and Reid [1]: 364.31 Kerror: 113.84 KExample 4. Estimation of the normal melting point of 3,3'-Methylenebis-4-hydroxycoumarin (Dicoumarol)(Experimental value: Tm = 563.15 K)First-order Groups Occurrences Contrib.OH 2 2.7888x 2aC (fused with non-arom. ring) 4 1.2065x 4aCH 8 0.5860x 8C=C (cyc) 2 0.3048x 2CO (cyc) 2 3.2119x 2O (cyc) 2 1.3828x 2CH2 1 0.2515x 1Σi N i Tm1i = 25.1421Tm = 147.450ln(25.1421) = 475.46 K(first-order approx., error: 87.69 K) No second-order groups are involvedThird-order Groups Occurrences Contrib.AROM.FUSED[2] 2 0.2825x 2aC-(CHn=CHm)cyc (in fused rings) 2 0.2479x 2aC-O (cyc) (in fused rings) 2 -0.3545x 2(CHm=C)cyc-CHp-(C=CHn)cyc (in different rings) 1 16.8558x 1Σk O k Tm3k = 17.2076Tm = 147.450ln(25.1421+17.2076) = 552.34 K(third-order approx., error: 10.81 K)Estimation through Joback and Reid [1]: 749.28 K error: -186.13 KO CO OH O OC HOCH 2Example 5. Estimation of the normal melting point of 7-Chloro-5-(2-fluorophenyl)-1,3-dihydro-3-hydroxy-1-methyl-2H-1,4-benzodiazepin-2-one (Flutemazepan)F NNCOCH3 Cl(Experimental value: Tm = 436.00)OH 1 2.7888x1aC-Cl 11.7134x1aC-F 10.9782x1CH3 10.6953x1aC 10.9176x1aC (fused with non-arom. ring) 2 1.2065x2aCH 70.5860x7CH (cyc) 1 0.0335x1CO (cyc) 1 3.2119x1N (cyc) 1 0.6040x1(C=N)cyc 16.6382x1Σi N i Tm1i = 24.0959Tm = 147.450ln(25.1421) = 469.19 K(first-order approx., error: 33.19 K)AROMRINGs1s2 1-0.6388x1Ncyc-CH3 1-0.0383x1CHcyc-OH 11.3691x1Σj M j Tm2j = 0.6920Tm = 147.450ln(24.0959+0.6920) = 473.36 K(second-order approx., error: 37.36 K)Third-order Groups Occurrences Contrib.AROM.FUSED[2]s3 12.2589x1aC-NHn(cyc) (in fused rings) 1 3.4983x1aC-(C=N)cyc (in different rings) 1 -1.3060x1aC-(CHn=N)cyc (in fused rings) 1 -10.1007x1Σk O k Tm3k = -5.6495Tm = 147.450ln(24.0959+0.6920-5.6495) = 435.22 K(third-order approx., error: 0.78 K)Estimation through Joback and Reid [1]: 511.51 Kerror: -75.51 KExample 6. Estimation of the normal melting point of 1,9-Nonadiol HOHO(Experimental value: Tm = 318.95 K)First-order Groups Occurrences ContributionOH 2 2.7888x2CH2 90.2515x9Σi N i Tm1i = 7.8411Tm = 222.543ln(7.8411) = 303.66 K(first-order approx., error: 15.29 K)No second-order groups are involvedThird-order Groups Occurrences ContributionHO-(CHn)m-OH (m>2) 1 0.6674x1Σk O k Tm3k = 0.6674Tm = 222.543ln(7.8411+0.6674) = 315.70 K(third-order approx., error: 3.25 K)Estimation through Joback and Reid [1]: 312.83 Kerror: 6.12 K。