北京理工大学珠海学院概率统计历年真题(五)含参考答案

合集下载

北理珠数据库系统概论习题《概率论与数理统计》模拟试卷8

北理珠数据库系统概论习题《概率论与数理统计》模拟试卷8

1 n å X i ,则 X ~ ______________. n i=1
1 , 则 X 的概率密度函数为 2 ì ï f ( x) = ï . í ï ï î
8. 设 X 与 Y 为任意两随机变量,DX=1, DY=4, r XY = 0.6 则 D( X - Y ) =_______. 9. 设 X 1 , X 2 , X 3 , X 4 是总体 X 的一组简单随机样本, EX = m ,则下列统计量
第 2 页共 6 页
……………………………………………装………………………………订…………………………线…………………………………………………… 此处不能书写 此处不能书写 此处不能书写 此处不能书写 此处不能书写
此处不能书写 此处不能书写
2. 设有一批同类产品由某厂的甲、 乙、 丙三个车间生产, 其产量分别为批量的 25%、 35%、 40%,次品率分别为 5%、4%、2%,从这批产品中任取一件。 【提示:分别以 A、B、C 表示取到甲、乙、丙车间的产品;D 表示取到次品】 (1) 求取得次品的概率; (2)已知取得次品,求该次品是乙车间生产的概率.

n
0.20 0.883 0.879
0.15 1.100 1.093
0.10 1.383 1.3722
0.05 1.8331 1.8125
0.025 2.2622 2.2281
0.01 2.8214 2.7638
0.005 3.2498 3.1693
9 10
2 ( n)) = a 附表 3: c 2 分布表(部分) P (c 2 ( n) > ca
第 5 页 共 6 页
附表 1:标准正态分布函数表(部分), ( x)
x

概率统计习题详解习题详解5-8章

概率统计习题详解习题详解5-8章

习题解答习题5.11.设样本值如下:15, 20, 32, 26, 37, 18, 19, 43计算样本均值、样本方差、2阶样本矩及2阶样本中心矩.解 由样本均值的计算公式,有()8111152032263718194326.2588i i x x ===⨯+++++++=∑由样本方差的计算公式,有()28211102.2181i i s x x==-=-∑由2阶样本矩的计算公式,有82211778.58i i a x ===∑由2阶样本中心矩的计算公式,有()2821189.448i i b x x==-=∑2. 设总体~(12,4)X N ,125(,,,)X X X 是来自总体X 的样本,求概率12345{max(,,,,)12}P X X X X X >.解 12345{m a x (,,,,)12}P X X X X X > []551311(0) 1()232=-Φ=-=3. 设总体X ~ P (λ),X 是容量为n 的样本的均值,求 ()E X 和 ()D X . 解 因总体X ~ P (λ),故有(),()E X D X λλ==,于是()()E X E X λ==()()D X D X n nλ== 4. 某保险公司记录的6n =起火灾事故的损失数据如下(单位:万元):1.86, 0.75, 3.21,2.45, 1.98, 4.12. 求该样本的经验分布函数.解 将样本观测值排序可得:0.75 1.86 1.98 2.45 3.21 4.12<<<<< 则经验分布函数为60, 0.751, 0.75 1.8661, 1.86 1.9831(), 1.98 2.4522, 2.45 3.2135, 3.21 4.1261, 4.12x x x F x x x x x <⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩5.求标准正态分布的上侧0.01分位数和上侧0.48分位数 .解 由题知,X ~ (0,1)N ,求X 的上侧α分位数. 即求u α使满足{}P X u αα>=得{}1P X u αα≤=-即()1u ααΦ=-取0.01α=,查标准正态分布表得上侧0.01分位数为0.01 2.33u u α==取0.48α=,查标准正态分布表得上侧0.48分位数为0.480.05u u α==习题5.21.设总体~(8,36)X N ,129(,,,)X X X 是取自总体X 的样本,X 是样本均值,求{|7|2}P X -< .解 因~(8,36)X N ,且样本容量9n =,故36~(8,), ~(8,4)9X N X N 即 ,于是 9858{|7|2}{59}()()22P X P X ---<=<<=Φ-Φ (0.5)( 1.5)(0.5)(1.5)10.69150.933210.6247=Φ-Φ-=Φ+Φ-=+-=2.设 2~(9)X χ ,求λ使其满足()0.95P X λ<=解 由()0.95P X λ<=,得()0.05P X λ≥=,因为2~(9)X χ,所以查表可得20.05(9)16.919λχ==3. 设总体~(0,1X N ,1210(,,,)X X X 是取自总体X 的样本,求2221210()E X X X+++及2221210()D X X X +++.解 由总体~(0,1)X N 可知~(0,1) (1,2,,10)i X N i =,且1210,,,X X X 相互独立,于是22221210()~(10)X X X χ+++故有2221210()10E X X X +++=2221210()21020D X X X +++=⨯=4. 设总体X ~ N (20 ,3),从中独立地抽取容量分别为10和15的两个样本,求它们的样本均值之差的绝对值大于0.3的概率.解 设这两个样本分别为1210,,,X X X 和1215,,,Y Y Y , 则对样本均值有101110i i X X ==∑ ~15131(20,),1015i i N Y Y ==∑~3(20,)15N依定理 X Y -~1(0,)2N ,所以{}0.3P X Y P ⎫->=>1P ⎫=-≤1=-ΦΦ(1210.6744⎡⎤=-Φ-=⎢⎥⎣⎦(查标准正态分布表可得)5.设X ~ t (12) ,(1) 求 a 使得()0.05P X a <=;(2)求 b 使得()0.99P X b >= 解 (1)由()0.05P X a <=利用t 分布的对称性可得()0.05P X a >-=,查表可得0.05(12) 1.7823 1.7823a t a -==⇒=-(2)由()0.99P X b >=得()0.01P X b ≤=,又由t 分布的对称性可得()0.01P X b >-=于是0.01(12) 2.6810 2.6810b t b -==⇒=-6.设~(8,12)X F ,求 λ 使得()0.01P X λ<=.解 由()0.01P X λ<= 得 ()0.99P X λ>=,于是查表可得0.990.0111(8,12)0.176(12,8) 5.67f f λ====习题5.31.设总体X ~ N (μ ,4),(X 1 ,X 2 ,… ,X 16)为其样本,2S 为样本方差,求: (1) P ()666.62<S ; (2) P ()865.4279.22<<S . 解 因为()221n S σ-~()21n χ-所以本题中2154S ~()215χ 则 (1) {}(){}22215156.666 6.6661524.997544P S P S P χ⎧⎫<=<⨯=<⎨⎬⎩⎭(){}211524.997510.050.95P χ=-≥=-=(2) {}221515152.279 4.865 2.279 4.865444P S P S ⎧⎫<<=⨯<<⨯⎨⎬⎩⎭(){}28.546251518.24375P χ=<<(){}(){}22158.546251518.24375P P χχ=>-≥0.900.250.65=-=2. 总体2~(0,)X N σ,1225(,,,)X X X 是总体X 的样本,2X S 和分别是样本均值和样本方差,求λ,使5()0.99XP Sλ<=. 解 根据抽样分布定理知5~(24)Xt S = 又由5()0.99XP Sλ<=得 5()0.01XP Sλ>= 故查表可得0.01(24) 2.4922t λ==3.设总体X ~ N (30 ,64),为使样本均值大于28的概率不小于0.9 ,样本容量n 至少应是多少?解 因为X ~(30,64)N , 所以样本均值X .~64(30,)N n因此X ()0,1N , 故{}{}28128P X P X >=-≤1X P ⎧⎫=-≤1⎛=-Φ ⎝0.9=Φ≥1.29,解得 27n ≥,所以n 至少应取27.*4.设总体X ~ N )16(1,μ 与总体Y ~ N )36(2,μ 相互独立,(X 1 ,X 2 ,… ,X 13)和(Y 1 ,Y 2 ,… ,Y 10)分别为来自总体X 和总体Y 的样本.试求两总体样本方差之比落入区间(0.159 ,1.058)内的概率.解 因为()221n S σ-~()21n χ-,所以本题中211216S ~()222912,36S χ~()29χ又因为21212222121291694936S S F S S ==~()12,9F 从而221122229990.159 1.0580.159 1.058444S S P P S S ⎧⎫⎧⎫<<=⨯<<⨯⎨⎬⎨⎬⎩⎭⎩⎭(){}0.3577512,9 2.3805P F =<<0.85=(查F 分布表*5. 设从两个正态总体~(4,1)~(6,1)X N Y N 和中分别独立地抽取两个样本1219(,,,)X X X 和1216(,,,)Y Y Y ,样本方差分别为2212S S 和.求λ,使2122()0.5S P S λ<=.解 根据抽样分布定理可知2122~(18,15)S F S又由2122()0.05S P S λ<=可得2122()0.95S P S λ>=,于是查表可得0.950.0511(18,15)0.44(15,18) 2.27f f λ====*6.设总体X 与总体Y 相互独立,且都服从正态分布N (0 ,9),(X 1 ,X 2 ,… ,X 9)和(Y 1 ,Y 2 ,… ,Y 9)分别为来自总体X 和Y 的样本.试证明统计量T =∑∑==91291i ii iYX服从自由度为9的t 分布.证明 由正态分布的性质及样本的独立性知91ii X=∑~2(0,9)N得9119i i X =∑~(0,1)N 又因为i Y ~(0,9) (1,2,,9)N i =所以()22222291212913339Y Y Y Y Y Y ⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭~()29χ由于两个总体X 和Y 是相互独立的,所以其相应的样本也是相互独立的,故 9119i i X =∑与92119i i Y =∑也相互独立,于是由t 分布的定义知991ii XX T ==∑∑ ~ ()9t综合练习五一、填空题1.设总体X 的一组样本观测值为1.4 ,2.3 ,1.8 ,3.4 ,2.7则样本均值 x= ( 2.32 ) ,样本方差 2s = ( 0.607 ) .2.设总体X 服从正态分布N (2 ,5),(X 1 ,X 2 ,… ,X 10)为其样本,则样本均值X 的分布为 ( 122N ⎛⎫ ⎪⎝⎭, ).3.设总体X 服从具有n 个自由度的2χ 分布,(X 1 ,X 2 ,… ,X n )为其样本,X为样本均值,则有 ()( )E X n = ,()( 2 )D X = .4.设总体X ~ N (μ ,2σ),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别为样本均值和样本方差,则有 X ~( 2N n σμ⎛⎫ ⎪⎝⎭,),22)1(σS n - ~(2(1)n χ- ),nSX μ- ~( t (n - 1) ).5.设总体X ~ N (1 ,4),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)2()(X X X b X X a --+-则当a = (81 ) 、1()24b =时有T ~ 2χ(2) . 二、选择题1.设总体X ~ N (μ ,1),其中 μ 为未知参数,若(X 1 ,X 2 ,… ,X n )为来自总体X 的样本,则下列样本函数中( (b ) ) 不是统计量.(a )∑=ni i X1;(b )∑=-ni iX12)(μ ;(c) X 1 X 2 … X n ; (d )∑=ni i X12.2.设总体X ~ N (2 ,4),(X 1 ,X 2 ,… ,X 9)为其样本,X 为样本均值,则下列统计量中服从标准正态分布的是( (c ) ).(a ) X ; (b))2(43-X ; (c ))2(23-X ; (d ) )2(29-X . 3.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)(2)(3X X X X X +++则有T ~ ( (b ) ) .(a ) t (5) ; (b ) F (1 ,1) ; (c ) F (2 ,3) ; (d ) F (3 ,2) . 4.设总体X ~ N ⎪⎪⎭⎫ ⎝⎛410,,(X 1 ,X 2 ,… ,X 5)为其样本,令T=则有T ~( (d ) ).(a ) t (1) ; (b ) t (2) ; (c ) t (3) ; (d ) t (4) . 5.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别是样本均值和样本标准差,则 ( (c ) ) .(a ) n X ~ N (0 ,1): (b ) X ~ N (0 ,1); (c )∑=ni i X 12 ~ 2χ(n ) ; (d )SX~ t (n - 1) . 6.设随机变量X 和Y 都服从标准正态分布,则 ( (c ) ) .(a ) Y X + 服从正态分布; (b ) 22Y X + 服从 2χ 分布;(c ) 2X 和 2Y 都服从 2χ 分布; (d )22Y X 服从F 分布.三、解答题1.设总体~(2,16)X N ,12(,,,)n X X X 是总体X 的样本,令2211n i i A X n ==∑,求2A 的数学期望2()E A .解 因为~(2,16)X N ,所以~(2,16) (1,2,,)i X N i n =,则有22()()()16420i i i E X D X E X =+=+= 于是22111()()2020n i i E A E X n n n===⨯⨯=∑2.设总体~(15,9),X N ,129(,,,)X X X 是总体X 的样本,X 是样本均值,.求常数c ,使()0.95.P X c ≤=解 根据抽样分布定理可知~(15,1)X N 又由()0.95P X c ≤=可得15()()0.951c P X c -≤=Φ= 查表可得15 1.645c -=,于是得16.645c =3.设一组数据20.5,15.5,30.2,20.5,18.6, 21.3,18.6,23.4来自于总体,X 求经验分布函数.解 将样本观测值排序可得:15.518.618.620.520.521.323.430.2<=<=<<< 则由定义可得经验分布函数为80, 15.51, 15.518.683, 18.620.585(), 20.521.386, 21.323.487, 23.430.081, 30.2x x x F x x x x x ≤⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩4.设总体X ~ N (0 ,4),(X 1 ,X 2 ,… ,X 9)为其样本.求系数a 、b 、c ,使得T = 298762543221)()()(X X X X c X X X b X X a ++++++++服从 2χ 分布,并求其自由度.解 由于129,,,X X X 相互独立且来自总体X ~(0,4)N ,则由正态分布的线性运算性质有12X X +~(0,8)N ,345X X X ++~(0,12)N ,6789X X X X +++~(0,16)N于是,由2χ分布与正态分布的关系,有()()()22212345678981216X X X X X X X X X T ++++++=++服从2χ(3)分布,因此111,,81216a b c ===,自由度为3。

经济数学基础——概率统计课后习题答案

经济数学基础——概率统计课后习题答案

2
P(A)=
1 1 C3 15 # A C5 C82 28 #
(其中#A,#Ω分别表示有利于 A 的样本点数目与样本空间的样本点总数,余下同) 9. 计算上题中取到的两个球中有黑球的概率. 解 设事件 B 表示“取到的两个球中有黑球”则有利于事件 B 的样本点数为# B C52 .
P( B) 1-P( B) 1
从 9 题-11 题解中可以看到,有些时候计算所求事件的对立事件概率比较方便. 12. 一副扑克牌有 52 张,不放回抽样,每次一张,连续抽取 4 张,计算下列事件的概率: (1)四张花色各异; (2)四张中只有两种花色. 解 设事件 A 表示“四张花色各异” ;B 表示“四张中只有两种花色”. 4 1 1 1 1 # Ω C52, # A C13C13C13C13,
3
P( A) P( B) P(C ) P( D) P( E ) P( F )
1 27 8 27
P(G)
3 1 6 2 24 8 , P( H ) , P( I ) 27 9 27 9 27 9
15. 一间宿舍内住有 6 位同学,求他们中有 4 个人的生日在同一个月份的概率. 解 设事件 A 表示“有 4 个人的生日在同一个月份”. 1 #Ω=126,#A= C64C12 112 # A 21780 P( A) = =0.0073 #Ω 12 6 16. 事件 A 与 B 互不相容,计算 P ( A B ) . 解 由于 A 与 B 互不相容,有 AB=Φ,P(AB)=0 P( A B) P( AB) 1 P( AB) 1. 17. 设事件 B A,求证 P(B)≥P(A). 证 ∵B A ∴P(B-A)=P(B) - P(A) ∵P(B-A)≥0 ∴P(B)≥P(A) 18. 已知 P(A)=a,P(B)=b,ab≠0 (b>0.3a), P(A-B)=0.7a,求 P(B+A),P(B-A),P( B + A ). 解 由于 A-B 与 AB 互不相容,且 A=(A-B)+AB,因此有 P(AB)=P(A)-P(A-B)=0.3a P(A+B)=P(A)+P(B)-P(AB)=0.7a+b P(B-A)=P(B)-P(AB)=b-0.3a P( B + A )=1-P(AB)=1-0.3a 19. 50 个产品中有 46 个合格品与 4 个废品,从中一次抽取三个,计算取到废品的概率. 解

2012北京理工大学珠海学院数学竞赛试卷参考答案

2012北京理工大学珠海学院数学竞赛试卷参考答案
x t⎫ ⎛ t ⎞ sin t −sin x ⎧ = exp ⎨lim ln ⎬ 解: f ( x) = lim ⎜ ⎟ t→x ⎝ x⎠ ⎩ t → x sin t − sin x x ⎭ ⎧ x x t − x⎫ ⎛t ⎞⎫ ⎧ = exp ⎨lim ⎬ ⎜ − 1⎟ ⎬ = exp ⎨lim t → x sin t − sin x x t → x sin t − sin x x ⎭ ⎝ ⎠⎭ ⎩ ⎩
2
x →∞
x →∞
x →∞
(2) 由 lim
2x + x = ∞ 得, x = 1 为该曲线的一条铅垂渐近线; …………7 分 x →1 x −1 ⎛ 2x2 + x ⎞ y 2x2 + x 3x = 2, b = lim( y − ax) = lim ⎜ = 3, − 2 x ⎟ = lim 又 a = lim = lim x →∞ x x →∞ x ( x − 1) x →∞ x →∞ ⎝ x −1 ⎠ x→∞ x − 1
C = − ∫ cos7 xdx < 0, 得, C < A < B
二、解答下列各题(本题满分共 35 分)
x
………………5 分
⎛ t ⎞ sin t −sin x ( x ≠ 0) ,求 f ( x ) 的表达式并讨论 f ( x ) 3. (10 分)设函数 f ( x) = lim ⎜ ⎟ t→x ⎝ x⎠ 的间断点及其类型。
C = ∫ ( x5 sin 6 x − cos7 x)dx, 比较 A, B, C 的大小,并说明理由.
−1
1
解:由 A = ∫
1 −1
1 1 tan x cos 2 xdx = 0, B = ∫ (sin 3 x + cos 4 x + ) dx = ∫ cos 4 xdx > 0, 2 −1 1 + x −1 −1 1

北京理工大学珠海学院2015-2016-1简答题部分参考答案

北京理工大学珠海学院2015-2016-1简答题部分参考答案

习题1答案1.3答:单片微型计算机是指集成在一个芯片上的微型计算机,它的各种功能部件,包括CPU (Central Processing Unit)、随机存取存储器RAM(Random Access Memory)、只读存储器ROM(Read-only Memory)、基本输入/输出(Input/Output,简称I/O)接口电路、定时器/计数器等都制作在一块集成芯片上,构成一个完整的微型计算机,可以实现微型计算机的基本功能。

单片机应用系统是以单片机为核心,配以输入、输出、显示、控制等外围电路和软件,能实现一种或多种功能的实用系统。

单片机应用系统是由硬件和软件组成的,硬件是应用系统的基础,软件则是在硬件的基础上对其资源进行合理调配和使用,从而完成应用系统所要求的任务,二者相互依赖,缺一不可。

习题2答案习题4答案4.3答:不能,因为共阴极和共阳极数码管com段接的电平不一样,点亮段码所需的电平也不同。

应该将共阴极数码管的com端接至GND上,P1口和8个段之间接上非门。

4.4答:LED静态显示时各位数码管相对独立,公共端恒定接地(共阴极)或正电源(共阳极),每个数码管的8个字段分别与一个8位I/O口地址相连,适合于2个及其以下的数码管显示。

动态显示时各位数码管的段选线相应并联在一起,由一个8位的I/O口控制,各位的段选线由另外的I/O口控制。

4.5答:每次只能点亮一行。

其采用的为动态显示,具体原理为:从第一行开始点亮,每行点亮之间延时1ms,第八行结束后再从第一行开始循环显示。

利用人体的视觉驻留现象,所以看到的是一个稳定的图形,好像8行同时点亮。

4.6答:可以采用硬件和软件两种方式,硬件上可在键输出端加RS触发器或单稳态触发器构成去抖电路,软件上可以在检测到有按键按下时,执行一个10ms左右的延时程序,然后确认该键是否仍保持闭合状态的电平。

4.7答:独立式按键是直接用I/O口线构成的单个按键电路,其特点是每个按键单独占用一根I/O 口线,适合于八键以下使用;矩阵式键盘由行线和列线组成,按键位于行、列线的交叉点上,在按键数量较多时,矩阵式键盘较之独立式按键键盘要节省很多I/O口,适合于八个键以上使用。

北京理工大学珠海学院概率统计小测验

北京理工大学珠海学院概率统计小测验

《概率论与数理统计》小测验
1.管理学院由07级、08级部分学生组成一支代表队参加北京理工大学珠海学院长跑活动,代表队的构成如下表:
从代表队中任选一人作为旗手
(1) 求旗手为女生的概率;
(2) 已知该旗手为女生,求她是08级学生的概率.
(8 +8 =16分)
(1)求X和Y的边缘分布律;
(2)X和Y是否独立?
(3)求P{X+Y=2};
(4)求Z=X+Y的分布律.
(4 ⨯4=16分)
3. 设X 的概率密度为,02()0,A x x f x ≤≤⎧=⎨⎩其它.
(1)求常数A; (2) X 的分布函数F(x);
(3)求P(X ≤1) (4+10+4=18分)
4. 设(X,Y)的联合概率密度为
2,01,0(,)0,x y x f x y ≤≤≤≤⎧=⎨⎩其它.
(1) 求X 及Y 的边缘密度(),();X Y f x f y (8分)
(2) 指出X 与Y 的独立性,并说明理
由;(4分)
(3) 求P(Y ≤X/2) (8分)
(2)设X 的概率密度为
,0()0,x e x f x -⎧>=⎨⎩其它,求2Y =X 的概率密度. (10分)
6.设X,Y 相互独立,且X 服从数学期望100,方差为9的正态分布,Y 服从数学期望120,方差为16的正态分布。

(1)求Z=2X-Y, W=(X+Y)/2的 分布;
(2)求{218.5}P X Y +<,
{1105}2X Y
P +->
已知:(2)0.9772,(0.3)0.6179Φ=Φ= (6+10=16分)。

北京理工大学网络教育期末考试概率论与数理统计答案

北京理工大学网络教育期末考试概率论与数理统计答案

概率论与数理统计2005-0003 (题目数量:24 总分:100.0)1.单选题(题目数量:14 总分:70.0)1. 设A、B为互相独立的随机事件,P(A)=0.4, P(B)=0.7,则P(AB)=()。

A.0B.0.28C.0.3D.0.82答案:C2. -设X与Y相互独立,且知X~N(20,4),Y~N(8,2),则Z=2X-Y 服从的分布是()。

A.N(32,14)B.N(32,10)C.N(32,6)D.N(32,,18)答案:A3. 某厂生产的棉布,每米上的疵点数服从参数的泊松分布(即),则今任取棉布上至少有2个疵点的概率为()。

A. B. C. D.答案:A4. 已知离散型随机变量的分布律为:,则的数学期望()。

A.1B.1.5C.1.8D.2.1答案:A5. 在假设检验中,用和分别表示犯第一类错误和犯第二类错误的概率,则当样本容量一定时,下列说法正确的是()。

A.减小也减小B.增大也增大C.和不能同时减小,减小其中一个,另一个往往就会增大D.与同时成立答案:C6. 下列事件与事件A-B不等价的是()。

A.A-ABB.C.D.答案:C7. 一盒子中有20个相同型号的产品,其中有15个一等品,其余为二等品,今从盒子中任取一个产品,则此产品为二等品的概率为()。

A.0.75B.0.25C.1/3D.以上都不对答案:B8. 设随机变量的分布列为:则常数a=()。

A.-0.4B.0.4C.0.6D.0.3答案:A9. 设A、B为不相容的两个随机事件,且P(A)=0.2, P(B)=0.5,则P(AB)=()。

A.0B.0.1C.0.7D.0.3答案:D10. 设总体服从参数为的指数分布,即,是取自该总体的一个样本,是样本均值。

则参数的最大似然估计是()。

A. B. C. D.答案:A11. 设随机变量X的分布列为 ,则= ()。

A.0.7B.0.3C.0.5D.0.4答案:A12. 设随机变量X与Y相互独立,且都服从参数为的(0—1)分布,则有()。

北京理工大学珠海学院线性代数历届真题2及参考答案

北京理工大学珠海学院线性代数历届真题2及参考答案
由 α1 , α 2 , α 3 线性无关得,λ − λ1 = λ − λ2 = λ − λ3 = 0 ,这与 λ1 , λ2 , λ3 互不相等矛盾。 (2) ( β , Aβ , A2 β ) = (α1 + α 2 + α 3 , λ1α1 + λ2α 2 + λ3α 3 , λ12α1 + λ22α 2 + λ32α 3 )
. 条件是 6.已知向量组含有 4 个 3 维向量 α1 , α 2 ,α 3 , α 4 ,则其线性关系是 .(填
“线性相关”或“线性无关”) 7 . 已 知 2 阶 方 阵 A 的 主 对 角 线 元 素 之 和 为 3, 且 | A |= 2 , 则 A 的 特 征 值 . 为 8 . 若 n 阶 方 阵 A, B 相 似 , 则 必 存 在 n 阶 可 逆 矩 阵 P 使 得 .. 二、计算题(56%)
⎛1 λ1 ⎜ = (α1 , α 2 , α 3 ) ⎜1 λ2 ⎜1 λ 3 ⎝
λ12 ⎞ ⎟ λ22 ⎟ λ32 ⎟ ⎠
AK ,
则 K = (λ3 − λ2 )(λ3 − λ1 )(λ2 − λ1 ) ≠ 0 ,即 K 可逆, 所以 R ( β , Aβ , A2 β ) = R (α1 , α 2 , α 3 ) = 3, 即 β , Aβ , A2 β 线性无关.
(3)求出其一个最大无关组,并说明为什么. (4)将其余向量用(3)中所求最大无关组线性表示.程组
⎧ x1 + x2 + x3 + x4 = 0, ⎪ x + 2 x + 2 x = 1, ⎪ 2 3 4 ⎨ ⎪− x2 + (a − 3) x3 − 2 x4 = b, ⎪ ⎩3x1 + 2 x2 + x3 + ax4 = −1, 有(1)惟一解?(2)无解?(3)有无穷多解?当方程组有无穷多解时,求出其通解. 三、解答下列各题(20%)

概率统计题解(全)

概率统计题解(全)

第一章 随机事件及其概率1.写出下列随机试验的样本空间:(1)10件产品中有4件为次品,从中任取3件,记录3件中的正品数;(2)10件产品中4件为次品,每次从中任取一件(取后不放回),直到将次品全部取出时所取的次数;(3)同时掷两颗骰子,记录两颗骰子出现的点数之和(4)掷一颗骰子两次,记录两次出现的点数;(5)袋中有6个球,分别编号为1,2,3,4,5,6.从中依次任取两球,记录两球的编号;(6)射击某一目标,记录到击中目标为止射击的次数(7)将一根单位长的细棍,任分为两段,记录各段的长度(8)掷一枚硬币3次,记录“正面”和“反面”出现的情况.解:(1)Ω={0,1,2,3}(2)Ω={4,5,6,7,8,9,10}(3)Ω={2,3,4,5,6,7,8,9,10,11,12}(4)Ω={(i ,j )| i ,j =1,2,3,4,5,6}(5)Ω={(i ,j )| i ,j =1,2,3,4,5,6,且i ≠j }(6)Ω={1,2,3,…}(7)Ω={(x ,y )|x + y =1,且0<x <1,0<y <1}(8)Ω={正正正,正正反,正反正,正反反,反正反,反反正,反正正,反反反}2.若A 、B 、C 为3个事件,试用A 、B 、C 表示下列事件:(1)A 、B 同时发生,而C 不发生(2)A 、B 、C 都发生(3)A 、B 、C 都不发生(4)A 、B 、C 至少有一个发生(5)A 、B 、C 至少有一个不发生(6)A 、B 、C 恰有一个发生(7)A 、B 、C 最多有一个不发生(8)A 、B 、C 至少有两个发生(9)A 不发生,且B 、C 至少有一个发生.解:(1)ABC ;(2)ABC ;(3)ABC ;(4)A ∪B ∪C ;(5)ABC 或A ∪B ∪C ;(6)ABC ∪ABC ∪ABC ;(7)ABC ∪ABC ∪ABC ∪ABC ;(8)AB ∪AC ∪BC ;(9)A (B ∪C ). 3.掷一枚硬币,令A i 表示“第i 次为正面朝上”,i =1,2,3.说明:(1)A 1A 2A 3;(2)1A ∪2A ;(3)321A A A ;(4)A 1∪A 2∪A 3。

北理工数理统计期末考试题及答案

北理工数理统计期末考试题及答案

)
=
Pq
(
X 1
-0 /3
3C)
=
1-
P0
(
X 1
-0 /3
�< 3C)
=
1-
F(3C
)
=
0.05
\ F(3C) = 0.95
1
1.645
\ C = 3 u0.05 = 3 » 0.5483
\ 犯第一类错误概率为:
aj* (m) = ìïíïïîïbj0(,m),
H 0成立 H1成立
=
íïïïîìïF(30,C),
北京理工大学 2012-2013 年学年第二学期
å 1 n
x = n i=1 Xi 是 l 的 UMVUE。
三.设总体
X
~
N (m1,s2 )

X1,
X
2
,
X
n
是抽自总体的简单随机样本;总体
Y ~ ( ) N m2,s2 , Y1,Y2,Yn 是抽自总体Y 的简单随机样本,两组样本相互独立,且
s
2
step3 : L− S → UMVUE
X1, X 2 , X n 的联合概率密度为:
n
( ) ( ) P(
X1
=x1 , X 2
=x2 ,…, X n
=xn
)
λ =e ∑ −nλ
xi
i=1
( x1!x2! )xn! −1
=h( x)
g
t
x λ 1
f (= x1θ ) P= ( X1 x1 ) P= ( X 2 x2 )P= ( X n xn )
n
å 即 bj (m) = Pm ( XC) = P( xi3C) = P(3X -3m3C -3m) =1-F(3C -3m) 。 i

北理工《概率论与数理统计》题库复习资料

北理工《概率论与数理统计》题库复习资料

北理工《概率论与数理统计》FAQ (一)一、【古典概型】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算: (1)无空盒的概率; (2)恰有一个空盒的概率.解:4个球任意投入4个不同的盒子内有44种等可能的结果. (1)其中无空盒的结果有A 44种,所求概率P =4444A =323. 答:无空盒的概率是323. (2)先求恰有一空盒的结果数:选定一个空盒有C 14种,选两个球放入一盒有C 24A 13种,其余两球放入两盒有A 22种.故恰有一个空盒的结果数为C 14C 24A 13A 22,所求概率P (A )=4221324144A A C C =169. 答:恰有一个空盒的概率是169. 二、【条件概型】盒中有3个红球,2个白球,每次从袋中任取一只,观察其颜色后放回,并再放入一只与所取之球颜色相同的球,若从合中连续取球4次,试求第1、2次取得白球、第3、4次取得红球的概率。

解 设Ai 为第 i 次取球时取到白球,则 )|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =52)(1=A P 73)|(213=A A A P 63)|(12=A A P 84)|(3214=A A A A P求得:3 / 70三、【条件概型+全概型】市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为 2%、1%、3%,试求市场上该品牌产品的次品率。

解 设B 买到一件次品,A1为买到甲厂一件产品 A2为买到乙厂一件产品 A3为买到丙厂一件产品 可得:)()|()()|()()|(332211A P A B P A P A B P A P A B P ++= = ≈⨯+⨯+⨯2103.04101.04102.00.00225 四、【贝叶斯公式】商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1,0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?解 设A :从一箱中任取4只检查,结果都是好的. B 0, B 1, B 2分别表示事件每箱含0,1,2只次品已知:P (B 0)=0.8, P (B 1)=0.1, P (B 2)=0.11)|(0=B A P 54)|(4204191==C C B A P 1912)|(4204182==C C B A P由Bayes 公式:∑==2111)|()()|()()|(i iiB A P B P B A P B P A B P 0848.019121.0541.018.0541.0≈⨯+⨯+⨯⨯=五、 【伯努利概型】在体育比赛中,若甲选手对乙选手的胜率是0.6,那么甲在五局三胜与三局两胜这两种赛制中,选择哪个对自己更有利 解:在五局三胜赛制中,甲获胜的概率为P 5(3)+P 5(4)+P 5(5) =0.6826在三局两胜赛制中,甲获胜的概率为 P 3(2)+P 3(3) =0.648 甲应选择五局三胜制。

概率统计经典习题(含全解)

概率统计经典习题(含全解)

习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次}; (3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。

解 (1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 记X 为一分钟内接到的呼叫次数,则},2,1,0|{ ===Ωk k X , }3,2,1,0|{===k k X A .(3) 记X 为抽到的灯泡的寿命(单位:小时),则)},0({∞+∈=ΩX , )}2500,2000({∈=X A .2. 袋中有10个球,分别编有号码1至10,从中任取1球,设=A {取得球的号码是偶数},=B {取得球的号码是奇数},=C {取得球的号码小于5},问下列运算表示什么事件:(1)B A ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)C B ;(7)C A -. 解 (1) Ω=B A 是必然事件; (2) φ=AB 是不可能事件;(3) =AC {取得球的号码是2,4};(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9};(6) ==C B C B {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}; (7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}3. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A ;(2)B A ;(3)B A ;(4)B A .解 (1) ⎭⎬⎫⎩⎨⎧≤≤=2341x x B A ;(2) =⎭⎬⎫⎩⎨⎧≤<≤≤=B x x x B A 21210或⎭⎬⎫⎩⎨⎧≤<⎭⎬⎫⎩⎨⎧≤≤2312141x x x x ; (3) 因为B A ⊂,所以φ=B A ;(4)=⎭⎬⎫⎩⎨⎧≤<<≤=223410x x x A B A 或 ⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 4. 用事件CB A ,,的运算关系式表示下列事件:(1) A 出现,C B ,都不出现(记为1E ); (2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E ); (4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E ); (7) 不多于两个事件出现(记为7E ); (8) 三个事件中至少有两个出现(记为8E )。

概率论与数理统计习题解答

概率论与数理统计习题解答

概率论与数理统计习题解答第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;(4)测量一汽车通过给定点的速度. 解 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生; (2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生; (6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B C A B C A B CA B CA B C A B CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立?(3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?(2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB 解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3,所以 P (AB )=0.4, 故()P AB= 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)= 18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B 的事件数为1111112a b b a a b A A A A A A +=, 则2211222()()a b a ba ba bA A A AP A P B A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则 333333101016()()120720或者====C A P A P A C A .(2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求: (1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语} 根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2)()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+1()()()P A P B P AB =--+433532541100100100100=--+=(1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率; (3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则 3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C .(3) 设C={取三颗子中至少的一颗黑子} ()1()0.7=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则 500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE 的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有 2222770.000794A Ap A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法.设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品}, C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式40()()(|)0.196===∑i i i P B P A P B A由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B故2()(|)0.588==∑i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05. 因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数},0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻(1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?由题意,有p=0.1, q=1-p=0.9, 故 (1) 223155(2)(0.1)(0.9)0.0729===P P C(2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=第二章 随机变量及其分布1. 有10件产品,其中正品8件,次品两件,现从中任取两件,求取得次品数X 的分律. 解 X 的分布率如下表所示:2. 进行某种试验,设试验成功的概率为34,失败的概率为14,以X 表示试验首次成功所需试验的次数,试写出X的分布律,并计算X 取偶数的概率. 解 X 的分布律为:113(),1,2,3,44k P X k k -⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭X 取偶数的概率:2113{}(2)4411116331165116k k P X P X k -∞∞∞⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫==⨯=⎪-⎝⎭∑∑∑k=1k=1k=1为偶数 3. 从5个数1,2,3,4,5中任取三个为数123,,x x x .求:X =max (123,,x x x )的分布律及P(X ≤4); Y =min (123,,x x x )的分布律及P(Y>3). 解 基本事件总数为:3510C =,X 34 5(1)X 的分布律为:P(X ≤4)=P(3)+P(4)=0.4 (2)Y 的分布律为P(X>3) =04. C 应取何值,函数f(k) =!kC k λ,k =1,2,…,λ>0成为分布律?解 由题意, 1()1k f x ∞==∑, 即0110(1)1!!!0!kkk k k k C C C C e k k k λλλλλ∞∞∞===⎛⎫==-=-= ⎪⎝⎭∑∑∑ 解得:1(1)C e λ=-5. 已知X的分布律 X -112P162636求:(1)X 的分布函数;(2)12P X ⎛⎫< ⎪⎝⎭;(3)312P X ⎛⎫<≤ ⎪⎝⎭.解 (1) X 的分布函数为()()k k x xF x P X x p ≤=≤=∑0,11/6,11()1/2,121,2x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩;(2) 11(1)26P X P X ⎛⎫<==-= ⎪⎝⎭(3)31()02P X P ⎛⎫<≤=∅= ⎪⎝⎭6. 设某运动员投篮投中的概率为P =0.6,求一次投篮时投中次数X解 X 的分布函数00()0.60111x F x x x ≤⎧⎪=<≤⎨⎪>⎩7. 对同一目标作三次独立射击,设每次射击命中的概率为p ,求:(1)三次射击中恰好命中两次的概率;(2)目标被击中两弹或两弹以上被击毁,目标被击毁的概率是多少? 解 设A={三次射击中恰好命中两次},B=目标被击毁,则(1) P(A) =2232233(2)(1)3(1)P C p p p p -=-=-(2) P(B) =22323333233333(2)(3)(1)(1)32P P C p p C p p p p --+=-+-=-8. 一电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求:(1)每分钟恰有6次呼唤的概率;(2)每分钟的呼唤次数不超过10次的概率. 解(1) P(X=6) =6440.104!6!k e e k λλ--==或者P(X=6) =!kek λλ-446744!!k k k k e e k k ∞∞--===-∑∑= 0.21487 – 0.11067 =0.1042.(2) P(X ≤10)104401144110.00284!!kkk k e e k k ∞--====-=-∑∑ =0.997169. 设随机变量X 服从泊松分布,且P(X =1)=P(X =2),求P(X =4) 解 由已知可得,12,1!2!e e λλλλ--=解得λ=2, (λ=0不合题意)422,(4)4!P X e -==因此= 0.0910. 商店订购1000瓶鲜橙汁,在运输途中瓶子被打碎的概率为0.003,求商店收到的玻璃瓶,(1)恰有两只;(2)小于两只;(3)多于两只;(4)至少有一只的概率. 解 设X={1000瓶鲜橙汁中由于运输而被打破的瓶子数},则X 服从参数为n=1000, p=0.003的二项分布,即X~B(1000, 0.003), 由于n 比较大,p 比较小,np=3, 因此可以用泊松分布来近似, 即X~π(3). 因此(1) P(X=2)2330.2242!e -==(2)323(2)1(2)110.80080.1992!k k P X P X e k ∞-=<=-≥=-=-=∑(3)333(2)(2)0.5768!k k P X P X e k ∞-=>=>==∑(4)313(1)0.9502!k k P X e k ∞-=≥==∑11. 设连续型随机变量X 的分布函数为20,0(),011,1x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:(1)系数k ;(2)P(0.25<X<0.75);(3)X 的密度函数;(4)四次独立试验中有三次恰好在区间(0.25,0.75)内取值的概率.解 (1) 由于当0≤x ≤1时,有F(x )=P(X ≤x )=P(X<0)+P(0≤X ≤x )=k x 2 又F(1) =1, 所以k ×12=1因此k=1.(2) P(0.25<X<0.75) = F(0.75)-F(0.25) = 0.752-0.252=0.5(3) X 的密度函数为2,01()'()0,x x f x F x Other ≤≤⎧==⎨⎩(4) 由(2)知,P(0.25<X<0.75) = 0.5, 故P{四次独立试验中有三次在(0.25, 0.75)内} =334340.5(10.5)0.25C --=.12. 设连续型随机变量X 的密度函数为1()0,1x F x x ⎧<⎪=⎨⎪≥⎩求:(1)系数k ;(2)12P X⎛⎫<⎪⎝⎭;(3)X 的分布函数.解 (1)由题意,()1f x dx +∞-∞=⎰, 因此111()a r c s i n 111kf x d x d x k x kk ππ+∞+-∞====-=⎰⎰解得:(2)1/21/1/21111arcsin 1/22663k P x x ππππ--⎛⎫⎛⎫<===-= ⎪ ⎪-⎝⎭⎝⎭⎰ (3) X 的分布函数1()()1/2arcsin /11111/x x F x f x dx x x x k ππ-∞<-⎧⎪==+-≤≤⎨⎪>⎩=⎰解得: 13. 某城市每天用电量不超过100万千瓦时,以Z 表示每天的耗电率(即用电量除以100万千瓦时),它具有分布密度为212(1),01()0,x x x F x ⎧-<<=⎨⎩其他若该城市每天的供电量仅有80万千瓦时,求供电量不够需要的概率是多少?如每天供电量为90万千瓦时又是怎样的?解 如果供电量只有80万千瓦,供电量不够用的概率为: P(Z>80/100)=P(Z>0.8)=120.812(1)0.0272x x dx -=⎰如果供电量只有80万千瓦,供电量不够用的概率为:P(Z>90/100)=P(Z>0.9)=120.912(1)0.0037x x dx -=⎰ 14. 某仪器装有三只独立工作的同型号电子元件,其寿命(单位 小时)都服从同一指数分布,分布密度为6001,0()6000,xe x F x x⎧<⎪=⎨⎪≥⎩试求在仪器使用的最初200小时以内,至少有一只电子元件损坏的概率.解 设X 表示该型号电子元件的寿命,则X 服从指数分布,设A={X ≤200},则 P(A)=1200600311600x e dx e --=-⎰设Y={三只电子元件在200小时内损坏的数量},则所求的概率为:10033331(1)1(0)1()(1())1()1P Y P Y C P A P A e e--≥=-==--=-=- 15. 设X 为正态随机变量,且X ~N(2,2σ),又P(2<X<4) = 0.3,求P(X<0) 解 由题意知()222422(24)00.3X P X P σσσσ---⎛⎫⎛⎫<<=<<=Φ-Φ=⎪ ⎪⎝⎭⎝⎭即20.30.50.8σ⎛⎫Φ=+= ⎪⎝⎭故20222(0)10.2X P X P σσσσ---⎛⎫⎛⎫⎛⎫<=<=Φ=-Φ= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭16. 设随机变量X 服从正态分布N(10,4),求a ,使P(|X -10|<a ) = 0.9.解 由于()()10|10|10222a X a P X a P a X a P --⎛⎫-<=-<-<=<<⎪⎝⎭210.9222a a a -⎛⎫⎛⎫⎛⎫=Φ-Φ=Φ-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以0.952a ⎛⎫Φ= ⎪⎝⎭查表可得, 2a =1.65即 a = 3.3 17. 设某台机器生产的螺栓的长度X 服从正态分布N(10.05,0.062),规定X 在范围(10.05±0.12)厘米内为合格品,求螺栓不合格的概率. 解 由题意,设P 为合格的概率,则()10.05(|10.05|0.12)0.1210.050.12220.06X P P X P X P -⎛⎫=-<=-<-<=-<< ⎪⎝⎭(2)(2)2(2)120.977210.9544=Φ-Φ-=Φ-=⨯-=则不合格的概率=1-P = 0.045618. 设随机变量X 服从正态分布N(60,9),求分点x 1,x 2,使X 分别落在(-∞,x 1)、(x 1,x 2)、(x 2,+∞)的概率之比为3:4:5. 解 由题,111116060603()()0.253333456060()1()0.75,33x x X P X x P x x ---⎛⎫<=<=Φ== ⎪++⎝⎭--Φ-=-Φ=查表可得1600.673x --=解得, x 1 = 57.9922260606034()()0.5833333345x x X P X x P ---+⎛⎫<=<=Φ== ⎪++⎝⎭又查表可得2600.213x -=解得, x 2 =60.63. 19. 已知测量误差X (米)服从正态分布N(7.5, 102),必须进行多少次测量才能使至少有一次误差的绝对值不超过10米的概率大于0.98?解 设一次测量的误差不超过10米的概率为p , 则由题可知107.57.5107.5(10)101010(0.25)(1.75)(0.25)1(1.75)0.598710.95990.5586X p P X P ----⎛⎫=<=<< ⎪⎝⎭=Φ-Φ-=Φ-+Φ=-+= 设 Y 为n 次独立重复测量误差不超过10米出现的次数,则Y~B(n, 0.5586)于是 P(Y ≥1)=1-P(X=0)=1-(1-0.5586)n ≥0.98 0.4414n ≤0.02, n ≥ln(0.02)/ln(0.4414) 解得:n ≥4.784取n=5, 即,需要进行5次测量. 20.设随机变量X 的分布列为X -2 023P11 3 2试求:(1)2X 的分布列;(2)x 2的分布列. 解 (1) 2X 的分布列如下(2) x 2的分布列21. 设X 服从N(0,1)分布,求Y =|X |的密度函数.解 y=|x|的反函数为,0h(y)=,x x x x -<⎧⎨≥⎩,从而可得Y=|X|的密度函数为:当y>0时,222222()()|()'|()|'|yyy Y X X f y f y y f y y e e e---=--+==当y ≤0时,()Y f y =0 因此有 22,0()0,0yY e y f y y ->=≤⎩22. 若随机变量X 的密度函数为23,01()0,x x f x ⎧<<=⎨⎩其他求Y =1x的分布函数和密度函数.解 y=1x在(0,1)上严格单调,且反函数为 h(y)=1y,y>1, h ’(y)=21y -222411113()[()]|()|3Y X X f y f h y h y f y y y y y⎛⎫⎛⎫⎛⎫'==-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭因此有43,1()0,Y y y f y other ⎧>⎪=⎨⎪⎩Y 的分布函数为:433131,1()10,y Y y y dy y y y F y other---⎧=-=->⎪=⎨⎪⎩⎰23. 设随机变量X 的密度函数为22,0(1)()0,0x x f x x π⎧>⎪+=⎨⎪≤⎩试求Y =lnX 的密度函数.解 由于ln y x =严格单调,其反函数为(),'()y y h y e h y e ==且,则2()[()]|()|()2(1)2,()y yY X X yy y y f y f h y h y f e e e e y e e ππ-'===+=-∞<<+∞+24. 设随机变量X 服从N(μ,2σ)分布,求Y =x e 的分布密度.解 由于x y e =严格单调,其反函数为1()ln ,'(),h y y h y ==且yy>0,则221(ln )21()[()]|()|(ln ),0Y X X y f y f h y h y f y yey μσ--'===>当0y ≤时()0Y f y =因此221(ln )2,0()0,y Y e y f y y μσ--⎧>=≤⎩25. 假设随机变量X 服从参数为2的指数分布,证明:Y =21x e --在区间(0, 1)上服从均匀分布.解 由于21x y e -=-在(0, +∞)上单调增函数,其反函数为:1()ln(1),01,2h y y y =--<<并且1'()2(1)h y y =-,则当01y << 12(ln(1))2()[()]|()|11(ln(1))22(1)1212(1)Y X X y f y f h y h y f y y ey ---'==---==-当y ≤0或y ≥1时,()Y f y =0.因此Y 在区间(0, 1)上服从均匀分布. 26. 把一枚硬币连掷三次,以X 表示在三次中正面出现的次数,Y 表示三次中出现正面的次数与出现反面的次数之差的绝对值,试求(X ,Y )的联合概率分布.解 根据题意可知, (X ,Y)可能出现的情况有:3次正面,2次正面1次反面, 1次正面2次反面, 3次反面, 对应的X,Y 的取值及概率分别为P(X=3, Y=3)=18P(X=2,Y=1)=223113228C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭P(X=1, Y=1)=3113113228C -⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭P(X=0, Y=3)=31128⎛⎫= ⎪⎝⎭ 于是,(X ,27. 在10件产品中有2件一级品,7件二级品和1件次品,从10件产品中无放回抽取3件,用X 表示其中一级品件数,Y 表示其中二级品件数,求: (1)X 与Y 的联合概率分布;(2)X 、Y 的边缘概率分布; (3)X 与Y 相互独立吗?解 根据题意,X 只能取0,1,2,Y 可取的值有:0,1,2,3,由古典概型公式得:(1) 271310(,),i j k ijC C C p P X i Y j C====其中,3,0,1,2,i j k i ++==0,1,2,3j =0,1k =,可以计算出联合分布表如下j(2) X,Y 的边缘分布如上表(3) 由于P(X=0,Y=0)=0, 而P(X=0)P(Y=0)≠0, P(X=0,Y=0)≠P(X=0)P(Y=0), 因此X,Y 不相互独立. 28. 袋中有9张纸牌,其中两张“2”,三张“3”,四张“4”,任取一张,不放回,再任取一张,前后所取纸牌上的数分别为X 和Y ,求二维随机变量(X, Y)的联合分布律,以及概率P(X +Y>6)解 (1) X,Y 可取的值都为2,3,4, 则(X,Y)的联合概率j(2) P(X+Y>6) = P(X=3, Y=4) + P(X=4, Y=3) + P(X=4,Y=4)=1/6+1/6+1/6=1/2.29. 设二维连续型随机变量(X, Y)的联合分布函数为(,)arctan arctan 23x y F x y A B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭,求:(1)系数A 、B 及C ; (2)(X, Y)的联合概率密度; (3)X ,Y 的边缘分布函数及边缘概率密度;(4)随机变量X 与Y 是否独立?解 (1) 由(X, Y)的性质, F(x, -∞) =0, F(-∞,y) =0, F(-∞, -∞) =0, F(+∞, +∞)=1, 可以得到如下方程组:a r c t a n 022arctan 023022122x A B C y A B C A B C A B C ππππππ⎧⎛⎫⎛⎫+-= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫-+=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪--= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎛⎫⎛⎫⎪++= ⎪ ⎪⎪⎝⎭⎝⎭⎩解得:21,,,22A B C πππ===(2)2222(,)6(,)(4)(9)F x y f x y x y x y π∂==∂∂++(3) X 与Y 的边缘分布函数为:211()(,)arctan arctan 222222X x x F x F x ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 211()(,)arctan arctan 222322Y y y F y F y ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭X 与Y 的边缘概率密度为:'22()()(4)X X f x F x x π==+'23()()(9)Y Y f y F y y π==+(4) 由(2),(3)可知:(,)()()X Y f x y f x f y =, 所以X ,Y 相互独立.30. 设二维随机变量(X, Y)的联合概率密度为-(x+y)e ,0,(,)0,x f x y ⎧<<+∞=⎨⎩其他(1)求分布函数F(x, y);(2)求(X ,Y)落在由x =0,y =0,x +y =1所围成的三角形区域G 内的概率.解 (1) 当x>0, y>0时, ()00(,)(1)(1)yxu v x y F x y e dudv e e -+--==--⎰⎰ 否则,F (x, y ) = 0.(2) 由题意,所求的概率为11()10((,))(,)120.2642Gxx y P x y G f x y dxdydx e dy e --+-∈===-=⎰⎰⎰⎰31. 设随机变量(X ,Y )的联合概率密度为-(3x+4y)Ae ,0,0,(,)0,x y f x y ⎧>>=⎨⎩其他求:(1)常数A ;(2)X ,Y 的边缘概率密度;(3)(01,02)P X Y <≤<≤.解 (1) 由联合概率密度的性质,可得(34)00(,)1/12x y f x y dxdy Ae dxdy A +∞+∞+∞+∞-+-∞-∞===⎰⎰⎰⎰ 解得 A=12.(2) X, Y 的边缘概率密度分别为:(34)30123,0()(,)0,x y x X edy e x f x f x y dy other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰ (34)40124,0()(,)0,x y y Y edx e y f y f x y dx other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰(3) (01,02)P x y <≤<≤21(34)03812(1)(1)x y edxdye e -+--==--⎰⎰32. 设随机变量(X ,Y )的联合概率密度为2,01,02,(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他求 P(X +Y ≥1).解 由题意,所求的概率就是(X,Y)落入由直线x=0 ,x=1, y=0, y=2, x+y=1围的区域G 中, 则122012310((,))(,)3456532672G x P x y G f x y dxdyxy dx x dy x x x dx -∈==+=++=⎰⎰⎰⎰⎰33. 设二维随机变量(X, Y)在图2.20所示的区域G 上服从均匀分布,试求(X, Y)的联合概率密度及边缘概率密度.解 由于(X, Y)服从均匀分布,则G的面积A 为:2112001(,)()6x x GA f x y dxdy dx dy x x dx ===-=⎰⎰⎰⎰⎰,(X, Y)的联合概率密度为:6,01(,)0,x f x y other≤<⎧=⎨⎩.X,Y 的边缘概率密度为:2266(),01()(,)0,x x X dy x x x f x f x y dy other +∞-∞⎧=-≤<⎪==⎨⎪⎩⎰⎰ ),01()(,)0,y Y dy y y f y f x y dx other +∞-∞⎧=≤<⎪==⎨⎪⎩⎰34. 设X 和Y 是两个相互独立的随机变量,X 在(0, 0.2)上服从均匀分布,Y 的概率密度是55,0()0,0y y e y f y y -⎧ >=⎨≤⎩求:(1)X 和Y 和联合概率密度; (2)P(Y ≤X).解 由于X 在(0, 0.2)上服从均匀分布,所以()1/0.25X f x == (1) 由于X ,Y 相互独立,因此X, Y 525,0,00.2(,)()()0,y X Y e y x f x y f x f y other -⎧><<==⎨⎩(2) 由题意,所求的概率是由直线所围的区域,如右图所示, 因此0.2500.2511()(,)255111xy Gx P Y X f x y dxdy dx e dye dx e e ----≤===-=+-=⎰⎰⎰⎰⎰35. 设(X ,Y )的联合概率密度为1,01,02(,)20,x y f x y ⎧ ≤≤≤≤⎪=⎨⎪⎩其他求X 与Y中至少有一个小于12的概率.解 所求的概率为0.50.5120.50.511()()22111,221(,)15128P X Y P XY f x y dxdydxdy +∞+∞⎛⎫<< ⎪⎝⎭⎛⎫=-≥≥ ⎪⎝⎭=-=-=⎰⎰⎰⎰ 36. 设随机变量X 与Y 相互独立,且X -113 Y -3 1P1215310P 1434求二维随机变量(X ,Y )的联合分布律.解 由独立性,计算如下表37. 设二维随机变量(X ,Y )的联合分布律为X 1 2 3Y116191182 a bc(1)求常数a ,b ,c 应满足的条件;(2)设随机变量X 与Y 相互独立,求常数a ,b ,c. 解 由联合分布律的性质,有:11116918a b c +++++=, 即 a + b + c =12133-= 又,X, Y 相互独立,可得 111::::6918a b c =从而可以得到: 121,,399a b c ===38. 设二维随机变量(X ,Y )的联合分布函数为22232,0,1,1(,),0,01,10,x x y x x y F x y x y x⎧ >>⎪+⎪⎪= ><≤⎨+⎪⎪ ⎪⎩其他, 求边缘分布函数()x F x 与()y F y ,并判断随机变量X 与Y 是否相互独立.解 由题意, 边缘分布函数2222lim,0()(,)110,0y X x x x F x F x x x x →+∞⎧=>⎪=+∞=++⎨⎪≤⎩下面计算F Y (y )2332220,0()(,)lim ,011lim1,11Y x x y x y F y F y y y xx y x →+∞→+∞⎧⎪≤⎪⎪=+∞==<≤⎨+⎪⎪=>⎪+⎩可以看出,F(x,y)= F x (x ) F Y (y ), 因此,X ,Y 相互独立.39.设二维随机变量(X ,Y )的联合分布函数为132,1,1(,)0,ye x yf x y x -⎧ ≥≥⎪=⎨⎪ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <1时, ()0X f x =当x ≥1时,113331222()1y y X f x e dy e x x x+∞--+∞-===⎰再计算()Y f y , 当y <1时, ()0Y f y =当y ≥1时, 11132121()1y y y Y f y e dx e e x x+∞---+∞-===⎰可见, (,)()()X Y f x y f x f y =, 所以随机变量X, Y 相互独立40.设二维随机变量(X ,Y )的联合分布函数为,(,)0,x y x y f x y + 0≤,≤1,⎧=⎨ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <0或者x >1时, ()0X f x = 当1≥x ≥0时,1212011()02X f x x y dy xy y x =+=+=+⎰ 再计算()Y f y , 当y <0或者y >1时, ()0Y f y =当1≥y ≥0时, 120111()022Y f y x ydx xy x y =+=+=+⎰ 由于11(,)()()22X Y f x y x y f x f y x y ⎛⎫⎛⎫=+≠=++ ⎪⎪⎝⎭⎝⎭, 所以随机变量X,Y 不独立41.设二维随机变量(X ,Y )的联合分布函数为22,00(,)0,x y e x y f x y --⎧ >,>=⎨⎩其他求随机变量Z =X -2Y 的分布密度. 解 先求Z 的分布函数F(z ) :2()()(2)(,)D X Y zF z P Z z P X Y z f x y dxdy -≤=≤=-≤=⎰⎰当z<0时,积分区域为:求得2220()2z z yx y F z dy e dx +∞+---=⎰⎰224122z y y z z e e dy e +∞----=-=⎰ 当z ≥0时,积分区域为:z},2200()2z yx y F z dy e dx +∞+--=⎰⎰ 2401212yy zz eedy e +∞----=-=-⎰由此, 随机变量Z 的分布函数为11,02()1,02zz e z F z e z -⎧-≥⎪⎪=⎨⎪<⎪⎩ 因此, 得Z 的密度函数为:1,02()1,02zz e z f z e z -⎧≥⎪⎪=⎨⎪<⎪⎩42. 设随机变量X 和Y 独立,X ~2()N μ,σ,Y 服从[-b ,b ](b>0)上的均匀分布,求随机变量Z =X +Y 的分布密度. 解 解法一 由题意,22()21()()()2z y a bX Y F z f z y f y dy dy bσ---+∞-∞-=-=⋅⎰⎰令)/,,[,],z y a t dy dt y b b σσ--==-∈-(则()()()2211()22z b az b a t z b a z b aF z e dt b bσσσσ+----+---==Φ-Φ⎰ 解法二22()()(),()1()221122111212X Yz bz bF z f x f z x dx-b<z-x<b,z-b<x<z+bx aF z dxbz bx a z b a z b az bb ba zb a z bba z bbσσσσσσσ+∞-∞+-=-∴--=⋅+-⎛+---⎫⎛⎫⎛⎫⎛⎫=Φ=Φ-Φ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫--⎛-+⎫⎛⎫⎛⎫=-Φ--Φ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭-+⎛⎫=Φ ⎪⎝⎭⎰⎰a z bσ⎛--⎫⎛⎫-Φ ⎪⎪⎝⎭⎝⎭43.设X服从参数为12的指数分布,Y服从参数为13的指数分布,且X与Y独立,求Z=X+Y 的密度函数.解由题设,X~12120,0(),0X xxf xe x-≤⎧⎪=⎨>⎪⎩,Y~13130,0(),0Y xxf ye x-≤⎧⎪=⎨>⎪⎩并且,X,Y相互独立,则()()()Z X YF z f x f z x dx+∞-∞=-⎰由于()Xf x仅在x>0时有非零值,()Yf z x-仅当z-x>0,即z>x时有非零值,所以当z<0时,()Xf x=0, 因此()Zf z=0.当z>0时,有0>z>x, 因此1132()11()23z z xxZF z e e dx---=⎰1633216zz zz xe dx e e----==-⎰44.设(X,Y)的联合分布律为X0 1 2 3Y0 0 0.05 0.08 0.121 0.01 0.09 0.12 0.152 0.02 0.11 0.13 0.12求:(1)Z=X+Y的分布律;(2)U=max(X,Y)的分布律;(3)V=min(X,Y)的分布律.解(1) X+Y的可能取值为:0,1,2,3,4,5,且有P(Z=0)=P(X=0,Y=0) = 0P(Z=1)=P(X=1,Y=0) + P(X=0,Y=1) = 0.06P(Z=2)=P(X=2,Y=0) + P(X=0,Y=2) + P(X=1,Y=1) =0.19P(Z=3)=P(X=3,Y=0) + P(X=1,Y=2) + P(X=2,Y=1) =0.35P(Z=4)=P(X=2,Y=2) + P(X=3,Y=1) = 0.28P(Z=5)=P(X=3,Y=2) = 0.12同理,U=max(X,Y)的分布如下U∈{0,1,2,3}同理,V=min(X,Y)的分布分别如下V∈{0,1,2}概率论与数理统计 习题参考答案(仅供参考) 第三章 第30页 (共80页)第三章 随机变量的数字特征1. 随机变量X 的分布列为X -1 0 1212P13161611214求E(X),E(-X +1),E(X 2) 解 111111136261243()1012E X =-⨯+⨯+⨯+⨯+⨯=111111236261243(1)((1)1)(01)(1)(11)(21)E X -+=--+⨯+-+⨯+-+⨯+-+⨯+-+⨯=或者1233(1)()(1)()11E X E X E E X -+=-+=-+=-+= 22222235111111362612424()(1)(0)()(1)(2)E X -=-⨯+⨯+⨯+⨯+⨯=2. 一批零件中有9件合格品与三件废品,安装机器时从这批零件中任取一件,如果取出的废品不再放回,求在取得合格品以前已取出的废品数的数学期望. 解 设取得合格品之前已经取出的废品数为X, X 的取值为0, 1, 2, 3, A k 表示取出废品数为k 的事件, 则有:1391121230(),0,1,2,3,66()()0.3220k k k kk k C C P A k C C E X k P A -==∙==⋅==∑3. 已知离散型随机变量X 的可能取值为-1、0、1,E(X)=0.1,E(X 2)=0.9,求P(X=-1),P(X =0),P(X =1). 解 根据题意得:2222()1(1)0(0)1(1)0.1()(1)(1)0(0)1(1)0.9E X P X P X P X E X P X P X P X =-=-+=+===-=-+=+==可以解得 P(X =-1)=0.4, P(X=1)=0.5,P(X=0) = 1- P(X =-1) - P(X=1) = 1-0.4-0.5=0.14. 设随机变量X 的密度函数为2(1),()x x f x - 0<<1,⎧=⎨0, ⎩其他. 求E(X). 解 由题意,11()()2(1)3E X xf x dx x xdx ∞-∞==-=⎰⎰,5. 设随机变量X 的密度函数为,0()x e x f x x -⎧ ≥,=⎨0, <0.⎩ 求E(2X),E(2x e -). 解(2)2()2x E X xf x dx xe dx ∞∞--∞==⎰⎰()()0002|20|2x x x xe e dx e∞-∞--∞=+=-=⎰ 22230()()11|33Xx x xx E ee f x dxee dx e ∞---∞∞---∞===-=⎰⎰6. 对球的直径作近似测量,其值均匀分布在区间[a ,b ]上,求球的体积的数学期望.解 由题意,球的直接D~U(a,b), 球的体积V=()3432D π因此,341()()32bax E V Vf x dx dx b aπ∞-∞⎛⎫== ⎪-⎝⎭⎰⎰ 4220|()()24()24x a b a b b a ππ∞==++-7. 设随机变量X ,Y 的密度函数分别为22,0()x X e x f x x -⎧ >,=⎨0, ≤0.⎩ 44,0()y Y e y f y y -⎧ >,=⎨0, <0.⎩ 求E(X +Y),E(2X -3Y 2). 解()()(E X Y E X E Y+=+240()()24113244X Y x y x f x dx y f y dyxe dx ye dy+∞+∞-∞-∞+∞+∞--=+=+=+=⎰⎰⎰⎰22222400(23)2()3()2()3()223435188X Y xy E X Y E X E Y x f x dx y f y dyxedx y e dy+∞+∞-∞-∞+∞+∞---=-=-=-=-=⎰⎰⎰⎰8. 设随机函数X 和Y 相互独立,其密度函数为2,1()X x x f x 0≤≤,⎧=⎨ 0, .⎩其他5,5() 5y Y e y f y y -⎧ >,=⎨ 0, ≤.⎩(-)求E(XY).解 由于XY 相互独立, 因此有()()()12(5)05(5)(5)5(5)()()()()()225320553225(01)(6)433X Y y y y y E XY E X E Y x f x dx y f y dyx dx ye dyye e dy e +∞+∞-∞-∞+∞--+∞------===⎛⎫⎛+∞⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛+∞⎫=---- ⎪ ⎪ ⎪⎝⎭⎝⎭=-----=-⨯-=⎰⎰⎰⎰⎰9. 设随机函数X 的密度为()f x <,= 0, ≥⎩x 1x 1.求E(X), D(X). 解11()()0E X x f x dx +∞-∞-===⎰⎰π221122211001012()()2222211()arcsin |1422E X x f x dx x +∞-∞-====-=-+=-+=-+=⎰⎰⎰⎰⎰⎰ππππππππ()221()()()2D XE X E X =-=10. 设随机函数X 服从瑞利(Rayleigh)分布, 其密度函数为2222,0()x x e x f x x σ-⎧ >,⎪=σ⎨⎪ 0, ≤0.⎩其中σ>0是常数,求E(X),D(X). 解22222222()()x x x E X x f x dx edx xdeσσσ--+∞+∞+∞-∞===-⎰⎰⎰2222222222200/0022x x x u u x xe e dx e dxedu σσσσππσσσ---+∞+∞+∞-=⎛⎫+∞=--= ⎪⎝⎭−−−→===⎰⎰⎰22222222222222222232222200222()()2202220x x x x x x u u ux E X x f x dx edx x dex e xe dx xe dx e du e σσσσσσσσσσ=+∞+∞+∞---∞+∞+∞---+∞--===-⎛+∞⎫=--= ⎪⎝⎭+∞−−−→==-=⎰⎰⎰⎰⎰⎰ ()22222()()()2(2)22D XE X E X ππσσσ⎛⎫=-=-=- ⎪ ⎪⎝⎭11. 抛掷12颗骰子,求出现的点数之和的数学期望与方差.解 掷1颗骰子,点数的期望和方差分别为: E(X) = (1+2+3+4+5+6)/6= 7/2 E(X 2)=(12+22+32+42+52+62)/6=91/6 因此 D(X) = E(X 2)-(E(X)) 2 = 35/12掷12颗骰子, 每一颗骰子都是相互独立的, 因此有: E(X 1+X 2+…+X 12)=12E(X) = 42 D(X 1+X 2+…+X 12) =D(X 1)+D(X 2)+…+D(X 12)=12D(X)=35 12. 将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球,将一只球装入与球同号码的盒子中,称为一个配对,记X 为配对的个数,求E(X), D(X).解 (1)直接求X 的分布律有些困难,我们引进新的随机变量X k1,0,k k X k ⎧=⎨⎩第只球装入第k 号盒子第只球没装入第k 号盒子,则有:1nkk X X ==∑,X k 服0-1分布因此:11(0)11,(1),kk P X p P X p n n==-=-===()11111(),()11()1k k n nk k k k E X p D X n n n E X E X E X n n ==⎛⎫===- ⎪⎝⎭⎛⎫===⋅= ⎪⎝⎭∑∑ (2)k j X X 服从0-1分布,则有11(1)(1)(1)(1,1),()k j k j k j n n n n P X X P X X E X X --======1()n k k D X D X =⎛⎫= ⎪⎝⎭∑()112222(,)1112(()()())11112(1)1111112111(1)nk k j k k jnk j k j k k jk j n D X Cov X X E X X E X E X n n n n n n n C n n n n n n =<=<<=+⎛⎫=-+- ⎪⎝⎭⎛⎫=-+- ⎪-⎝⎭⎛⎫-⎛⎫=-+-=-+-= ⎪ ⎪-⎝⎭⎝⎭∑∑∑∑∑故,E(X)=D(X)=1.我们知道,泊松分布具有期望与方差相等的性质,可以认定,X 服从参数为1的泊松分布. 13. 在长为l 的线段上任意选取两点,求两点间距离的数学期望及方差.解 设所取的两点为X,Y, 则X,Y 为独立同分布的随机变量, 其密度函数为11,01,01(),(),0,0,X Y x x f x f y l l other other ⎧⎧≤≤≤≤⎪⎪==⎨⎨⎪⎪⎩⎩ 21,0,1(,)()(),0,Y Y x y f x y f x f y l other ⎧≤≤⎪==⎨⎪⎩依题意有()(,)E X Y x y f x y dxdy +∞+∞-∞-∞-=-⎰⎰()()2200011lxl l x x y dydx y x dydx l l=-+-⎰⎰⎰⎰222220011222l l x l x dx lx dx l l=+-+⎰⎰ 322322110032262l l x l x lx x l l ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ 663l l l =+= ()22()(,)E X Y x yf x y dxdy +∞+∞-∞-∞-=-⎰⎰()22001l lx y dxdy l=-⎰⎰ ()222003222012103ll l dx x xy y dyl l yx y xy dxl =-+⎛⎫=-+ ⎪⎝⎭⎰⎰⎰ 3222033222213111032316ll x l xl dx l ll x l x l x l l =-+⎛⎫=-+⎪⎝⎭=⎰ D(X -Y) = E((X -Y)2)-(E(X -Y))2 = 2221116918l l l -= 14.设随机变量X 服从均匀分布,其密度函数为12,()2x f x ⎧0<<,⎪=⎨⎪0, .⎩其他,求E(2X 2),D(2X 2). 解12222201(2)2()2()226E X E X x f x dx x dx +∞-∞====⎰⎰ 124442011()()2,()8012E X x f x dx x dx E X +∞-∞====⎰⎰ ()()22242111(2)4()4()()48014445D X D X E X E X ⎛⎫==-=⨯-=⎪⎝⎭15. 设随机变量X 的方差为2.5,试利用切比雪夫不等式估计概率(()7.5)P X E X -≥。

概率论试题与答案华南农业大学珠江学院期末考试试卷

概率论试题与答案华南农业大学珠江学院期末考试试卷

概率论试题与答案华南农业大学珠江学院期末考试试卷华南农业大学珠江学院期末考试试卷2010--2011学年度下学期考试科目:概率论与数理统计(信工)考试年级:__2009__级考试类型:(闭卷)A 卷考试时间: 120 分钟一、单项选择题(本大题共8小题,每小题3分,共24分)。

在每小题列出的四个备选项中只有一个正确,请将答案代码填......写到下列表格中,错选、多选或未选均无分。

1. 某人连续3次购买体育彩票,每次1张,令,,A B C 分别表示第1,2,3次购买的彩票中奖的事件。

则“至少1次不中奖”这一事件可表示为【】 A .AB AC BC B . A B C C . A B C D . ABC ABC ABC2. 10件产品中有3件次品,从中随机抽出2件,至少抽到1件次品的概率是【】 A .13 B .25 C .715 D .8153. 设离散型随机变量X 的分布律为:{0}0.5,{1}0.3,{2}0.2P X PX P X ======,X 的分布函数为()F x ,则=)2(F 【】A . 0.5B . 0.8C . 0.3D . 14. 已知X 服从二项分布(),(~p n B X ),且4.2)(=X E ,() 1.68D X =,则二项分布的参数为【】A . 6.0,4==p nB . 4.0,6==p nC . 3.0,8==p nD . 1.0,24==p n 5. 下列函数中可作为某随机变量X 的概率密度为【】A .2 , 01()0 , x x f x ≤≤?=?其它 B . 3 , 01()0 , x x f x ≤≤?=??其它C . , 01()0 , x x f x ≤≤?=?其它 D .2 , 10()0 , x x f x -≤≤?=??其它6. 设随机变量X 的概率密度为2(3)4(),x f x x +-=-∞<<+∞,则服从标准正态分布的随机变量为【】 A .32X + B . C . 32X - D 7. 设二维随机向量),(Y X 的联合分布列为若X 与Y 相互独立,则【】A . 19α=,16β= B . 16α=,19β= C . 16α=,16β=D . 518α=,118β=8. 已知随机变量,X Y 相互独立,且X 在[0,2]上服从均匀分布,Y 服从参数为2的指数分布,则()E XY =【】 A .12 B . 1 C .14D .2二、填空题(本大题共8小题,每小题3分,共24分)请在每小题的空格中填上正确答案。

北京理工大学珠海学院2023学年第二学期《分析化学》期末考试卷及答案(B卷)

北京理工大学珠海学院2023学年第二学期《分析化学》期末考试卷及答案(B卷)

北京理工大学珠海学院《分析化学》2023 一 2023 学年其次学期期末考试试卷〔B 卷〕班级姓名学号成绩一、选择题〔每题2分,共50分)【得分:】1.依据测定原理和使用仪器的不同,分析方法可分为( )。

A.质量分析法和滴定分析法B.气体分析法和仪器分析法C.化学分析法和仪器分析法D.色谱分析法和质谱分析法2.以下可用于削减测定过程中的偶然误差的方法是〔)。

A.进展比照试验 B.进展空白试验C.进展仪器校准D.增加平行试验次数3.以下各数中有效数字位数为四位的是:( )A. WCao=25.30%B. [H+]=0.0235 mol/LC.pH=10.46D.420Kg4.天平称量确定误差极值为0.2mg,假设要求称量相对误差小于0.1%,则应至少称取〔) 。

A. 1gB. 0.2gC. 0.lgD. 0.02g5.直接法配制标准溶液必需使用( )。

A.基准试剂B.化学纯试剂C.分析纯试剂 D.一般试剂6.化学计量点是指( )。

A.指示剂发生颜色变化的转变点B.标准溶液与被测物质按化学计量关系定量反响完全的那一点C.反响到达质量相等的那一点D.停顿滴定的那一点7.共轭酸碱对的Ka 与Kb 的关系是〔)。

A.KaKb=1B.KaKb =KwC.Ka/Kb =KwD.Kb /Ka =Kw8.浓度为 0.1 mol/LHAC(pKa=4.74)溶液的 pH 是( )。

A.4.87B.3.87C.2.87D.1.879.标定盐酸溶液常用的基准物质是〔 )。

第页共8页A.无水Na2CO3B.草酸〔H2C2O4·2HO)C.CaCO3 D.邻苯二甲酸氢钾10.用EDTA 直接滴定有色金属离子M,终点所呈现的颜色是〔)。

A.游离指示剂的颜色B.EDTA-M 络合物的颜色C.指示剂-M 络合物的颜色D.上述A+B 的混合色11.一般状况下,EDTA 与金属离子形成的协作物的协作比为〔)。

A.1: 2B.1: 1C.2: 1D.1:412.氧化复原滴定法中,常常承受的指示剂类型不包括〔)。

概率论与数理统计习题及答案

概率论与数理统计习题及答案

概率论与数理统计习题及答案习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3..4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C 8.(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N --由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11..见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p == 16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22.0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23.P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB-==+-0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.取出一球,若发现这球为白球,试求箱【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29..统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击. 32.P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.[0,a ]【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,CP (AB )+P (AC )-P (BC )≤P (A). 【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+- 42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44.n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rr m m m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

数理统计_北京理工大学中国大学mooc课后章节答案期末考试题库2023年

数理统计_北京理工大学中国大学mooc课后章节答案期末考试题库2023年

数理统计_北京理工大学中国大学mooc课后章节答案期末考试题库2023年1.一个参数的矩估计是唯一的.参考答案:错误2.在假设检验中,【图片】表示原假设,【图片】表示备择假设,则称为第一类错误的是参考答案:为真,接受3.现有以下结论(1)泊松分布族【图片】是指数族. (2) 二项分布族{b(n,p),0参考答案:34.一项研究表明,司机在驾车时因为接打电话而发生交通事故的概率p超过15%,针对该问题提出如下原假设和备择假设H0:p<15%,H1:p≥15%.参考答案:错误5.设总体【图片】,其中【图片】未知,【图片】是从总体X中抽取的样本,在显著性水平【图片】下接受原假设【图片】,则当【图片】时,下列结论( )正确.参考答案:接受6.分别来自两个总体的两个样本,当样本容量充分大时,样本均值差的抽样分布近似服从正态分布.参考答案:正确7.假设总体服从泊松分布,从该总体抽取容量为200的样本,则样本均值近似服从正态分布.参考答案:正确8.假设检验中,α和β分别表示犯第一类错误和第二类错误的概率,则当样本容量给定时,下列说法正确的是( ).参考答案:α和β不能同时减小9.在假设检验中,当我们做出拒绝原假设时,表示原假设一定是错误的参考答案:错误10.在正态总体的假设检验中,能用“≥”代替拒绝域的表达式中的“>”.参考答案:正确11.在假设检验中,检验两个正态总体方差是否相等利用()进行检验.参考答案:F 分布12.下列哪一个()不成立参考答案:均匀分布族是指数族13.设总体【图片】,其中【图片】未知,【图片】已知,则【图片】的置信水平【图片】置信区间的区间长度L与【图片】的关系是【图片】越小,区间长度L越小.参考答案:正确14.相互独立正态随机变量的线性组合服从()分布.参考答案:正态15.设总体【图片】,【图片】为来自总体X的简单随机样本,则样本二阶中心矩【图片】是总体方差【图片】的矩估计.参考答案:正确16.大样本性质和小样本性质的差别在于样本个数的多少.参考答案:错误17.设总体 X服从两点分布b(1,p),其中0参考答案:错误18.设总体【图片】,其中【图片】未知,【图片】已知,则【图片】的置信水平【图片】置信区间的区间长度L与【图片】的关系是【图片】越小,区间长度L不变.参考答案:错误19.在假设检验中,如果我们相信原假设是真的,而犯第二类错误又不会造成太大的影响,此时,检验的显著性水平应该取().参考答案:小些20.设总体X服从正态分布【图片】,【图片】为来自总体X的简单随机样本,记【图片】,则【图片】的值与n有关.参考答案:正确21.对显著性水平为α的检验结果而言,犯第一类错误的概率( ).参考答案:不超过α22.检验单个正态总体方差所使用的分布是().参考答案:卡方分布23.在一个确定的假设检验问题中,如果拒绝域给定,与判断结果无关的因素是( ).参考答案:总体均值24.设总体X服从正态分布【图片】,【图片】为来自总体X的简单随机样本,记【图片】,则【图片】的值为【图片】.参考答案:错误25.设【图片】,【图片】则【图片】参考答案:正确26.设总体【图片】,【图片】为来自总体X的简单随机样本,则样本方差【图片】是总体方差【图片】的矩估计.参考答案:错误27.Neyman-Pearson提出了假设检验的一条原则,通常是在限制犯第一类错误概率的条件下,寻找犯第二类错误概率尽可能小的检验.参考答案:正确28.设总体【图片】,其中【图片】均未知,如果样本容量n和置信水平【图片】都不变,对于不同的样本观测值,总体均值μ的置信区间的长度( ).参考答案:不能确定29.设【图片】为来自总体X的简单随机样本,下面不成立的是().参考答案:总体X服从均匀分布,,则()是充分完全统计量.30.在假设检验中,增大样本容量,可以使第一类和第二类错误的概率同时减小.参考答案:正确31.假设检验的基本原则通常是控制犯第一类错误的概率不超过α ,然后,尽可能的减少第二类错误的发生.参考答案:正确32.显著性水平α的选取,对拒绝和接受原假设H0没有影响.参考答案:错误33.自由度为n的χ2变量的概率密度函数曲线随着n的增大趋于对称.参考答案:正确34.上α分位数是α的单调()函数.参考答案:减35.如果把置信水平从95%增加到97.5%,则置信水平为1-α的样本均值的置信区间的长度将().参考答案:增加36.设总体【图片】,其中【图片】未知,【图片】已知,则【图片】的置信水平【图片】置信区间的区间长度L与【图片】的关系是【图片】的大小与区间长度L无关.参考答案:错误37.对于非正态总体,在大样本条件下,求总体均值区间估计所使用的分布是().参考答案:正态分布38.设假设检验【图片】:新工艺不比旧工艺好,【图片】:新工艺比旧工艺好,则下列属于犯第二类错误的是().参考答案:新工艺较好,保留旧工艺39.t分布与标准正态分布的区别是t分布的密度函数图形是不对称的,标准正态分布的密度函数图形是对称的.参考答案:错误40.正态总体的样本均值和样本方差的关系是相互().参考答案:独立41.设总体【图片】,其中【图片】未知,【图片】已知,则【图片】的置信水平【图片】置信区间的区间长度L与【图片】的关系是【图片】越小,区间长度L越大.参考答案:错误42.设总体【图片】,其中【图片】未知,【图片】是从总体X中抽取的样本,为使得【图片】是【图片】的置信水平为95%的置信区间,则样本容量至少为( ).参考答案:6243.设总体【图片】,其中【图片】均未知,记【图片】,【图片】,则当【图片】的置信区间为【图片】时,其置信水平为().参考答案:0.9544.利用两个相互独立的小样本求两个正态总体均值之差的区间估计,当两个正态总体的方差未知但是相等时,所使用的分布是().参考答案:t分布45.设总体【图片】,【图片】为来自总体X的简单随机样本,记【图片】,【图片】,则()成立.参考答案:S是的相合估计46.设总体【图片】,【图片】为来自总体X的简单随机样本,记【图片】,【图片】,则()不成立.参考答案:是的无偏估计.47.设随机变量X和Y都服从标准正态分布, 下列结论中一定正确的是( ).参考答案:和都服从分布48.设总体【图片】,其中【图片】未知,【图片】是从总体X中抽取的样本,在显著性水平【图片】下拒绝原假设【图片】,则当【图片】时,下列结论( )正确.参考答案:拒绝49.利用两个相互独立的大样本求两个总体均值之差的区间估计,当两个总体的方差未知且不相等,样本容量也不相同时,所使用的分布是().参考答案:正态分布50.给定样本之后,降低置信水平会使得置信区间的长度().参考答案:减少51.设总体X服从正态分布【图片】,【图片】为来自总体X的简单随机样本,记【图片】,则【图片】的值为【图片】.参考答案:正确52.所谓小概率原理是指发生概率很小的随机事件,在试验中不可能发生.参考答案:错误53.在假设检验中,【图片】表示原假设,【图片】表示备择假设,则称为第二类错误的是参考答案:不真,接受54.设总体X服从正态分布【图片】,【图片】为来自总体X的简单随机样本,记【图片】,则【图片】的值与【图片】有关.参考答案:错误55.设总体【图片】,【图片】为来自总体X的简单随机样本,记【图片】,【图片】,则【图片】和【图片】分别是【图片】和【图片】的相合估计.参考答案:正确56.设总体【图片】,σ已知,问抽取容量n最少应为( ),才能使μ的置信水平为0.95的置信区间长度不超过k.参考答案:+1。

北京理工大学珠海学院数字电子技术复习资料综合练习

北京理工大学珠海学院数字电子技术复习资料综合练习

北京理工大学珠海学院数字电子技术复习资料综合练习复习综合练习(一)一、选择题1.电路的输出信号只是该时刻输入信号的函数,与该时刻以前的输入状态无关,这类数字电路称为()电路。

A.时序逻辑B.组合逻辑C.同步逻辑D. 异步逻辑2.与函数相等的表达式是()。

A.B.C.D.3.为了使JK触发器的次态为1,JK的取值为()。

A.JK=00 B.JK=01 C.JK=10 D.JK=114.决定某一结论的所有条件中只要有一个成立,则结论就成立,这种因果关系叫作()。

A.与逻辑B.或逻辑C.与非逻辑D. 或非逻辑5.用8421BCD码表示两位十进制数,则至少需要()0、1码。

A.5位B.7位C.8位D.6位6、一个16选1的数据选择器,其地址输入端个数为()。

A.1 B.2 C.4 D.57、共阴极数码管显示为“7”,对应的a、b、c、d、e、f、g为()。

A.10010001B. 11010101C. 10000111D. 000001118、引起组合逻辑电路中竞争与冒险的原因是()。

A. 工作速度高B. 干扰信号C. 电源不稳定D. 电路延时9、一个五位的二进制加法计算器,由00000状态开始,问经过169个输入脉冲后,此计数器的状态为()A.00111B.00101C.01000D.01001二、填空题1.(427.375)D =()B2.逻辑函数表示方法有、、、和等几种。

3.逻辑函数的卡诺图化简法是个相邻的最小项为单位进行化简的。

4.74LS138译码器有个输入端和个输出端,若扩展为4—16译码器需块74LS138译码器。

5.组成一个十进制计数器至少需要个JK触发器。

6、F=AB+CD的对偶函数是。

7、若存储器的容量是128×8 RAM,该RAM字长位,地址线根。

8. 已知逻辑函数F=A⊕B,它的与非-与非表达式为,或与非表达式为。

9. 将2004个“1”异或起来得到的结果是。

10. 同步RS触发器的特性方程为:Qn+1= ,其约束方程为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.(12 分,每题 4 分)设随机变量 X ∼ f ( x) = ⎨
x>0 ,求 ≤ 0 x 0 ⎩ (1) P (0 < X < 1) ,(2) X 的分布函数 F ( x ) ,(3) X 的方差 DX .
第 1 页 共 3 页
⎧ Ae − x
解:先求 A , 1 =

+∞
−∞
f ( x)dx = ∫
(1)取得的 1 件是次品的概率;(8 分) (2)若已知所取的 1 件为次品,求其来自丙厂的概率。(6 分) 解: (1)设 B ={取得的是次品}; A1 ={所取得的箱是甲厂生产};
A2 ={所取得的箱是乙厂生产}; A3 ={所取得的箱是丙厂生产}
则由全概率公式得: P ( B ) =
∑ P( A ) ⋅ P( B A ) = 6 ⋅ 10 + 6 ⋅ 15 + 6 ⋅ 20 = 360
概率论与数理统计综合检测(五)参考答案
(时间 120 分钟)
一、填空题(18分)
1.设 A, B 为二事件,则 A, B 相互独立的充要条件是 P ( AB ) = P ( A) ⋅ P ( B ) . 2.随机变量 X 的分布函数定义为 F ( x ) = P{ X ≤ x} . 3.设 2 个独立随机变量 X 1 , X 2 均服从分布 N ( μ ,σ
⎧k (6 − x − y ) 0 < x < 1,0 < y < 1 0, 其它 ⎩
求:(1)参数 k ; (2) X 及 Y 的边缘概率密度; (3) X 与 Y 是否独立,为什么? 解: (1) 1 =
∫ (∫
+∞ −∞
+∞
−∞
f ( x, y )dx dy = ∫
)
1
0
( ∫ k (6 − x − y)dx )dy = 5k ⇒ k = 1 5
0 ≤ x1 , x2 , other
xn ≤ 1
xn ;θ ) =
d ln L( x1 , x2 , dx
n n ln θ + ( θ − 1)∑ ln xi 2 i =1 n 1 1 n xn ;θ ) = ⋅ + ∑ ln xi = 0 2 θ 2 θ i =1
⎛ ⎜ n 解得极大似然估计量 θ = ⎜ n ⎜ ln X i ⎜∑ ⎝ i =1
+∞
E( X 2 ) = ∫
−∞ +∞ −∞
xf ( x)dx = ∫
2
0
xe − x dx = − xe
+∞ 0 2
− x +∞ 0
+ ∫ e− x dx = 1
0 0
+∞
x 2 f ( x)dx = ∫
x 2 e− x dx = − x e
2 − x +∞
+ 2∫ e− x dx = 2
0
+∞
故 D ( X ) = E ( X ) − ( EX ) = 1 5. (16 分)设连续型随机变量 ( X , Y ) ∼ f ( x, y ) = ⎨
i =1 i i
3
3 1
2 1
1 1
29
1 1 ⋅ P( A3 ) ⋅ P( B A3 ) P( A3 B ) 3 = 3 = 6 20 = (2)由贝叶斯公式得: P ( A3 B ) = 29 29 P( B) P( Ai ) ⋅ P( B Ai ) ∑ 360 i =1
3. (10 分)游戏规则规定每个人独立向目标投 4 个球,若 4 次全不中得 0 分,中 1 个得 20 分,中 2 个得 30 分,中 3 个得 60 分,中 4 个得 100 分。某人每次投掷命中率为 0.6。问他能期望得到多少分? 解:设投中个数为 X ,得分为 Y 显然 X 服从 B (4, 0.6) ,故由题意
N (σ ,
σ2
2n
) ,证明: σ 的置信水平为 1 − α 的置信区间为
⎛ ⎜ S S ⎜ , Zα Zα ⎜ 1− 2 ⎜ 1+ 2 2n 2n ⎝ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ S −σ
证明:由假定,样本标准差 S 近似服从分布 N (σ ,
σ2
2n
) ,找枢轴量
σ2
2n
∼ N (0,1)
⎛ ⎞ ⎜ ⎟ S −σ 故可得 P ⎜ − Z α ≤ ≤ Z α ⎟ = 1 − α (利用标准正态分布关于 y 轴对称) ⎜ 2 ⎟ σ2 2 ⎜ ⎟ 2n ⎝ ⎠ ⎛ ⎞ ⎜ ⎟ ⎛ ⎞ S −σ S −σ P ⎜ −Zα ≤ ≤ Z α ⎟ = 1 − α ⇔ P ⎜ − Z α ≤ 2n ≤ Zα ⎟ = 1 − α ⎜ 2 ⎟ σ σ2 2 2 ⎠ ⎝ 2 ⎜ ⎟ 2n ⎝ ⎠ Zα ⎞ ⎛ Zα ⎛ ⎞ ⎛S ⎞ ⎛S ⎞ ⎜ 2 ⇔ P ⎜ − Z α ≤ 2n ⎜ − 1⎟ ≤ Z α ⎟ = 1 − α ⇔ P − ≤ ⎜ − 1⎟ ≤ 2 ⎟ = 1 − α ⎜ ⎟ 2n ⎝ σ 2n ⎟ ⎝σ ⎠ ⎠ 2 ⎠ ⎝ 2 ⎜ ⎝ ⎠ ⎛ ⎞ ⎜ ⎟ Z Z ⎛ α α ⎞ ⎜ ⎟ S S S ⎜ ⎟ P 1− 2 ≤ ≤ 1+ 2 = 1− α ⇔ P ⎜ = 1−α ≤σ ≤ ⎜ Zα Zα ⎟ 2n σ 2n ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ 1− 2 ⎟ ⎜ 1+ 2 2n 2n ⎠ ⎝ ⎛ ⎞ ⎜ ⎟ S S ⎟ 。 故得 σ 置信度为 1 − α 的置信区间为 ⎜ , Zα Zα ⎟ ⎜ 1− 2 ⎟ ⎜ 1+ 2 2n 2n ⎠ ⎝
第 3 页 共θ ) + ( Eθ ) = θ
2
θ = θ ,而 E θ
2
( )
2
= D(θ ) + Eθ
2
( )
2
= θ 2 + D(θ )
+ D(θ ) > θ 2 ,故 θ 不是 θ 2 的无偏估计量。
近似服从分布
2. 设 有 来 自 正 态 总 体
N ( μ ,σ 2 ) 的 样 本 , 假 定 样 本 容 量 n ≥ 30 时 , 样 本 标 准 差 S
1 0
(4) P {0 < X < 1, 0 < Y < X } .
数 θ 的矩估计量和极大似然估计量。 解:(1)令 X = EX = (2)似然函数
1 11 ⎧1 1 ⎪ ∫0 (6 − x − y )dy = ( − x), 0 < x < 1 (2) f X ( x ) = ∫ f ( x, y ) dy = ⎨ 5 5 2 −∞ ⎪ 0, other ⎩ 1 11 ⎧1 1 +∞ ⎪ ∫0 (6 − x − y )dx = ( − y ), 0 < y < 1 fY ( y ) = ∫ f ( x, y )dx = ⎨ 5 5 2 −∞ ⎪ 0, other ⎩ (3)∵ f ( x, y ) ≠ f X ( x) ⋅ fY ( y ), ( x, y ) ∈ {( x, y ) | 0 < x < 1, 0 < y < 1} ,所以 X 与 Y 不独立 1 1 x 1 1 3 1 (4) P (0 < X < 1, 0 < Y < X ) = ∫ ∫ (6 − x − y ) dy dx = ∫ (6 x − x 2 ) dx = 5 0 0 5 0 2 2 θ − 1 ⎧ ⎪ θ x , 0 < x <1 , X 1 , X 2 , , X n 为其一个样本,求未知参 6.(10 分)设总体 X 服从分布 f ( x ) = ⎨ 其它 ⎪ ⎩ 0,
2 n ⎛ Xi − X ⎞ ⎛ Xi − μ ⎞ 2 2 ∼ χ ( n ) , ⎜ ⎟ ∼ χ (n − 1) . ∑ ∑ ⎜ ⎟ σ ⎠ σ ⎠ i =1 ⎝ i =1 ⎝ n
值 与 样 本 方 差 , 则
2
二、计算题(72分) 1.(10 分)10 个球中有 2 个红球,从中任取 4 个,求恰好取得一个红球的概率。
+∞
0
Ae− x dx = A
−x
(1)P (0 < X < 1) = (3) E ( X ) =
∫e
0
1
−x
dx = ( −e
+∞
)
1 0
= 1− e ; (2)F ( x) = ∫
−1
x
−∞
x −x −x ⎧ ⎪ ∫0 e dx = 1 − e f ( x)dx = ⎨ ⎪0 ⎩
x≥0 x<0

1 3 C2 C8 8 解:设事件 A ={恰好取得一个红球},则 P ( A) = = 4 C10 15
2.(14 分)某仓库有同样规格的产品 6 箱,其中有 3 箱、2 箱和 1 箱依次是由甲、乙和丙厂生产,且三厂 的次品率依次为
1 1 1 、 和 。现从 6 箱中任取 1 箱,再从所取得的箱中任取 1 件,求: 10 15 20
2
) ,记 M = max{ X 1 , X 2 } 则用标准正态分布函数
Φ 表示概率 P{M ≤ b} = ⎧ ⎨Φ (

b−μ ⎫ )⎬ . σ ⎭
2
⎛1 3 ⎞ 1 . 4.设 X 1 , X 2 , X 3 ∼ N (1,3) 且相互独立,则 D ⎜ ∑ X i ⎟ = ⎝ 3 i =1 ⎠ 2 2 5 . 设 总 体 X ∼ N ( μ ,σ ) , X , S 分 别 是 容 量 为 n 的 样 本 均
+∞
(
)

+∞
−∞
xf ( x)dx = ∫ x θ x
0
1
θ −1
1 ⎛1 ⎞ dx = ,解得矩估计量 θ = ⎜ − 1⎟ θ +1 ⎝X ⎠
相关文档
最新文档