江苏省徐州市2012-2013学年高一下学期期中考试数学试题答案
江苏省徐州市高一数学下学期期末试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市高一(下)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4=.3.函数f(x)=(sinx﹣cosx)2的最小正周期为.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n=.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为.6.根据如图所示的伪代码,可知输出的结果S为.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于.9.已知变量x,y满足,则目标函数z=2x+y的最大值是.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是.11.在△ABC中,若acosB=bcosA,则△ABC的形状为.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是.13.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是.14.已知正实数x,y满足,则xy的取值X围为.二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.2015-2016学年某某省某某市高一(下)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为\frac{1}{2} .【考点】直线的斜率.【分析】直接利用直线的斜率公式可得.【解答】解:∵过M(﹣1,2),N(3,4)两点,∴直线的斜率为: =,故答案为:.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4= 16 .【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式即可得出.【解答】解:由已知可得:S4===16.故答案为:16.3.函数f(x)=(sinx﹣cosx)2的最小正周期为π.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】化简函数的表达式为一个角的一个三角函数的形式,然后利用周期公式求出函数的周期.【解答】解:函数f(x)=(sinx﹣cosx)2=1﹣2sinxcosx=1﹣six2x;所以函数的最小正周期为:T=,故答案为:π.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n= 60 .【考点】分层抽样方法.【分析】根据分层抽样原理,利用样本容量与频率、频数的关系,即可求出样本容量n.【解答】解:根据分层抽样原理,得;样本中A种型号产品有12件,对应的频率为:=,所以样本容量为:n==60.故答案为:60.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为\frac{1}{12} .【考点】列举法计算基本事件数及事件发生的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为: =.故答案为:.6.根据如图所示的伪代码,可知输出的结果S为56 .【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用,一直求出不满足循环条件时S的值.【解答】解:模拟执行程序,可得S=0,I=0,满足条件I<6,执行循环,I=2,S=4满足条件I<6,执行循环,I=4,S=20满足条件I<6,执行循环,I=6,S=56不满足条件I<6,退出循环,输出S的值为56.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是\frac{8}{5} .【考点】茎叶图.【分析】由已知中的茎叶图,我们可以得到七位评委为某班的小品打出的分数,及去掉一个最高分和一个最低分后的数据,代入平均数公式及方差公式,即可得到所剩数据的平均数和方差.【解答】解:由已知的茎叶图七位评委为某班的小品打出的分数为:79,84,84,84,86,87,93去掉一个最高分93和一个最低分79后,所剩数据的平均数==85方差S2= [(84﹣85)2+(84﹣85)2+(86﹣85)2+(84﹣85)2+(87﹣85)2]=,故选:.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于126 .【考点】等比数列的前n项和.【分析】由题意可知,数列{a n}是以2为首项,以2为公比的等比数列,然后直接利用等比数列的前n项和公式得答案.【解答】解:由a n+1﹣2a n=0(n∈N*),得,又a1=2,∴数列{a n}是以2为首项,以2为公比的等比数列,则.9.已知变量x,y满足,则目标函数z=2x+y的最大值是13 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(5,3),代入目标函数z=2x+y得z=2×5+3=13.即目标函数z=2x+y的最大值为13.故答案为:13.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是\frac{4}{9π}.【考点】几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要求出铜钱面积的大小和中间正方形孔面积的大小,然后代入几何概型计算公式进行求解.【解答】解:如图所示:∵S正=1,S圆=π()2=,∴P==.则油(油滴的大小忽略不计)正好落人孔中的概率是故答案为:.11.在△ABC中,若acosB=bcosA,则△ABC的形状为等腰三角形.【考点】三角形的形状判断.【分析】利用正弦定理,将等式两端的“边”转化为“边所对角的正弦”,再利用两角和与差的正弦即可.【解答】解:在△ABC中,∵acosB=bcosA,∴由正弦定理得:sinAcosB=sinBcosA,∴sin(A﹣B)=0,∴A﹣B=0,∴A=B.∴△ABC的形状为等腰三角形.故答案为:等腰三角形.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是﹣1 .【考点】直线的一般式方程与直线的平行关系.【分析】两直线的斜率都存在,由平行条件列出方程,求出a即可.【解答】解:由题意知,两直线的斜率都存在,由l1与l2平行得﹣=∴a=﹣1 a=2,当a=2时,两直线重合.∴a=﹣1故答案为:﹣113.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是(﹣∞,﹣\sqrt{3}]∪[\sqrt{3},+∞).【考点】等差数列的通项公式.【分析】由已知条件利用等差数列前n项和公式得+10a1d+15=0,从而d=﹣﹣a1,由此利用均值定理能求出实数d的取值X围.【解答】解:∵等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,∴+15=0,∴+10a1d+15=0,∴d=﹣﹣a1,当a1>0时,d=﹣﹣a1≤﹣2=﹣,当a1<0时,d=﹣﹣a1≥2=,∴实数d的取值X围是(﹣∞,﹣]∪[,+∞).故答案为:(﹣∞,﹣]∪[,+∞).14.已知正实数x,y满足,则xy的取值X围为[1,\frac{8}{3}].【考点】基本不等式在最值问题中的应用.【分析】设xy=m可得x=,代入已知可得关于易得一元二次方程(2+3m)y2﹣10my+m2+4m=0,由△≥0可得m的不等式,解不等式可得.【解答】解:设xy=m,则x=,∵,∴++3y+=10,整理得(2+3m)y2﹣10my+m2+4m=0,∵x,y是正实数,∴△≥0,即100m2﹣4(2+3m)(m2+4m)≥0,整理得m(3m﹣8)(m﹣1)≤0,解得1≤m≤,或m≤0(舍去)∴xy的取值X围是[1,]故答案为:[1,]二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.【考点】直线的倾斜角;两角和与差的余弦函数.【分析】(1)求出tanA,根据二倍角公式,求出tan2A的值即可;(2)根据同角的三角函数的关系分别求出sinA和cosA,代入两角差的余弦公式计算即可.【解答】解:(1)由4x﹣3y+12=0,得:k=,则tanA=,∴tan2A==﹣;(2)由,以及0<A<π,得:sinA=,cosA=,cos(﹣A)=cos cosA+sin sinA=×+×=.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.【考点】数列的求和;数列递推式.【分析】(1)设等差数列{a n}的公差为d,由a2=4,S5=30,可得,联立解出即可得出.(2)==,利用“裂项求和”方法、数列的单调性即可得出.【解答】(1)解:设等差数列{a n}的公差为d,∵a2=4,S5=30,∴,解得a1=d=2.∴a n=2+2(n﹣1)=2n.(2)证明: ==,∴数列{}的前n项和为T n=+…+=,∴T1≤T n,∴≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.【考点】二次函数的性质;函数零点的判定定理.【分析】(1)由k的值,得到f(x)解析式,由此得到大于0的解集.(2)由f(x)>0恒成立,得到判别式小于0恒成立.(3)由两个不同的零点,得到判别式△>0,由两点均大于,得到对称轴大于,和f()>0.【解答】解:(1)若k=时,f(x)=x2﹣x.由f(x)>0,得x2﹣x>0,即x(x﹣)>0∴不等式f(x)>0的解集为{x|x<0或x>}(2)∵f(x)>0对任意x∈R恒成立,则△=(﹣k)2﹣4(2k﹣3)<0,即k2﹣8k+12<0,解得k的取值X围是2<k<6.(3)若函数f(x)两个不同的零点均大于,则有,解得,∴实数k的取值X围是(6,).19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.【考点】基本不等式在最值问题中的应用;函数解析式的求解及常用方法.【分析】(1)求出AN,AM,即可建立函数关系;(i)设AN=x米,先求出AM的长,即可表示出矩形AMPN的面积;(ii)由∠BMC=θ(rad),可以依次表示出AM与AN的长度,即可表示出S关于θ的函数表达式;(2)选择(ii)中的函数关系式,化简,由基本不等式即可求出最值.【解答】解:(1)(i)∵Rt△CDN~Rt△MBC,∴=,∴,∴BM=,由于,则AM=∴S=AN•AM=,(x>2)(ii)在Rt△MBC中,tanθ=,∴MB=,∴AM=3+,在Rt△CDN中,tanθ=,∴DN=3tanθ,∴AN=2+3tanθ,∴S=AM•AN=(3+)•(2+3tanθ),其中0<θ<;(2)选择(ii)中关系式∵S=AM•AN=(3+)•(2+3tanθ),(0<θ<);∴S=12+9tanθ+≥12+2=24,当且仅当9tanθ=,即tanθ=时,取等号,此时AN=4答:当AN的长度为4米时,矩形AMPN的面积最小,最小值为24m2.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.【考点】数列的求和;等差关系的确定.【分析】(1)由a n+1+a n=4n﹣3,n∈N*,可得a2+a1=1,a3+a2=5,相减可得a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,可得2d=4,解得d.(2)由a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,可得a n+2﹣a n=4,a2=4.可得数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.对n分类讨论利用等差数列的求和公式即可得出.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10,求出其最大值即可得出.当n为偶数时,同理可得.【解答】解:(1)∵a n+1+a n=4n﹣3,n∈N*,∴a2+a1=1,a3+a2=5,∴a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,则2d=4,解得d=2.∴2a1+2=1,解得a1=﹣.(2)∵a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,∴a n+2﹣a n=4,a2=4.∴数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.∴a2k﹣1=﹣3+4(k﹣1)=4k﹣7;a2k=4+4(k﹣1)=4k.∴a n=,∴当n为偶数时,S n=(a1+a2)+…+(a n﹣1+a n)=﹣3+9+…+(4n﹣3)==.当n为奇数时,S n=S n+1﹣a n+1=﹣2(n+1)=.∴S n=.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10=﹣4(n﹣2)2+6,当n=1或3时,[f(n)]max=2,∴﹣a1≥2,解得a1≥2或a1≤﹣1.当n为偶数时,a n=2n﹣3﹣a1,a n+1=2n+a1,由≥5成立,a n+1+a n=4n﹣3,可得: +3a1≥﹣4n2+16n﹣12,令g(n)=﹣4n2+16n﹣12=﹣4(n﹣2)2+4,当n=2时,[f(n)]max=4,∴+3a1≥4,解得a1≥1或a1≤﹣4.综上所述可得:a1的取值X围是(﹣∞,﹣4]∪[2,+∞).。
江苏省徐州市2013届高三期中考试 数学
2012~2013学年度第一学期期中考试高三数学参考答案与评分标准一、填空题1.{0,1} 2.)2,1(∈∃x ,12≤x 3.534.24 5.充分不必要 6.3ln 33- 7.)31(7+ 8.(文)[-7,3] (理){1,6} 9.①②③10.(文)8 (理))4,2()3,2( -- 11.4023 12.-2 13.3 14.4 二、解答题15. 解:(1){}n a 是等差数列,)0(,121>==a a a a ,∴)1)(1(1--+=a n a n ,……2分 又123=b ,∴1243=a a ,即12)23)(12(=--a a , 解得:65-=a (舍去)或2=a , ……4分∴n a n =; ……6分 (2){}n a 是等比数列,)0(,121>==a a a a ,∴1-=n n a a ,有121-+==n n n n a a a b ,…8分 ∴21a b b nn =+,即数列{}n b 是首项为a ,公比为2a 的等比数列, ……10分∴当1=a 时,n S n =; 当1a ≠时,22122(1)11n n n a a a aS a a +--==--. ……14分16. 解:(1)因为C b B c a cos cos )2(=-,所以C B B C A cos sin cos )sin sin 2(=-,…2分 即A B C C B B C B A sin )sin(cos sin cos sin sin sin 2=+=+=, ……4分 而0sin >A ,所以21cos =B ,故060=B ; ……6分 (2)因为)2cos ,3(),1,(sin A n A m ==,所以817)43(sin 2sin 21sin 32cos sin 322+--=-+=+=⋅A A A A A n m , (10)分由⎪⎩⎪⎨⎧<<=<<000090060900C B A 得⎩⎨⎧<-<<<00000901200900A A ,所以009030<<A ,从而)1,21(sin ∈A , ……12分故n m ⋅的取值范围是]817,2(. ……14分17. 解:设箱底边长为x ,则箱高为)0(233a x x a h <<-⨯=, ……2分 箱子的容积为)0(818160sin 21)(3202a x x ax h x x V <<-=⨯⨯=. ……6分由08341)(2'=-=x ax x V 解得01=x (舍),a x 322=, ……8分且当)32,0(a x ∈时,0)('>x V ;当),32(a a x ∈时,0)('<x V ,所以函数)(x V 在a x 32=处取得极大值, ……10分这个极大值就是函数)(x V 的最大值:332541)32(81)32(81)32(a a a a a V =⨯-⨯=.……12分答:当箱子底边长为a 32时,箱子容积最大,最大值为3541a . ……14分18. (文)解:(1)不等式0)(<x f 的解集是)31,41(,故方程0)(=x f 的两根是31,4121==x x ,所以⎪⎩⎪⎨⎧=+-=+-01)31()31(01)41()41(22b a b a ,解得7,12==b a ; ……6分 (2)因为2+=a b ,所以14)2()22(1)2()(222++-+-=++-=aa a a x a x a ax x f , …8分对称轴为a a a x 12122+=+=,当2≥a 时,a a a x 12122+=+=]1,21(∈, ……10分所以14)2(1)22()(2m in -=+-=+=a a a a f x f ,解得2=a , ……12分当1=a 时,a a a x 12122+=+=23=,所以1)1()(m in -==f x f 成立. ……14分综上可得:2=a 或1=a . ……16分(理)解:(1)2=a 时,11,,222222)(222<≥⎩⎨⎧+--+=-+=x x x x x x x x x f , ……2分结合图象知,函数)(x f y =的单调增区间为),1[+∞,减区间为]1,(-∞. ……6分(2)22,,22)(22ax a x a x x a x x x f <≥⎩⎨⎧+--+=, ……8分 12,2->∴->aa ,当2≥a 时,函数)(x f y =的最小值为1)1(-=a f = 2,解得a = 3符合题意; ……10分当22<<-a 时,函数)(x f y =的最小值为24)2(2==a a f ,无解;综上,a = 3. ……12分(3)由(2)知,当2≥a 时函数)(x f y =的最小值为1)1(-=a f ,所以)2(12≥≥-a ab a 恒成立,令)2(1)1()(2≥+-=a b a a g , ……14分有:⎩⎨⎧≤+-≤-01)1(20122b b ,故2222≤≤-b . ……16分 19. 解:(1)当2≥n 时,12)1(221-=--=-=-n n n S S a n n n , ……2分 当1=n 时,111==S a ,满足上式,所以12-=n a n ; ……4分(2)由分段函数⎪⎩⎪⎨⎧=为偶数为奇数n n f n a n f n ),2(,)(可以得到:,1)1()2()4()8(,5)3()6(1231==========a f f f f c a f f c ……6分当*,3N n n ∈≥时,121)12(2)12()22()42(1221+=-+=+=+=+=----n n n n n n f f f c , ……8分故当*,3N n n ∈≥时,)12()12()12(15132++++++++=-n n Tn n n n +=-+--+=-2)2(21)21(462, ……10分所以⎩⎨⎧≥+==2,21,5n n n T n n ; ……12分(3)由2n S n =,及k n m S S S ⋅>+λ得222k n m ⋅>+λ,mnn m n m n m n m k n m k n m 2)(9)()(9,32222222222+++=++=+∴=+ , ……14分 29)(92)(9),(2222222222222222=++++>+++=+∴≠+<nm n m n m mn n m n m k n m n m n m mn ,要222k n m +<λ恒成立,只要29≤λ,∴λ的最大值为29. ……16分 20. (文)(1)由已知,1)(2+-==bx x x f y 为偶函数,所以b = 0; ……2分 设方程212+=+kx x 的两根为1x ,2x ,由10=AB 得:2122122124)(11x x x x k x x k -++=-+=10)4)(1(22=++k k解得1-=k ; ……4分 (2)由(1)知1)(2+=x x f ,2)(+-=x x g ,故)()()(x g x f x F ==2223+-+-x x x , 由0143)(2=-+-='x x x F ,解得31,121==x x , ……6分 列表如下:x 0 (0,31) 31 (31,1) 1 )(x F '-+)(x F227502 所以,函数)(x F 在区间[0,1]上的最小值为2750)31(=f ; ……10分(3)由(2)知,当]1,0[∈x 时,有不等式)2)(1(2x x -+≥2750恒成立,所以211x +≤)2(5027x -,有21xx +≤)2(50272x x -, ……12分 当∈γβαsin ,sin ,sin [0,1],且1sin sin sin =++γβα时,αα2sin 1sin ++ββ2sin 1sin ++γγ2sin 1sin +≤)]sin sin (sin )sin sin (sin 2[5027222γβαγβα++-++ =)]sin sin (sin 2[5027222γβα++- ……14分 又1 = 2)sin sin (sin γβα++≤3)sin sin (sin 222γβα++, ∴γβα222sin sin sin ++≥31, ∴αα2sin 1sin ++ββ2sin 1sin ++γγ2sin 1sin +≤109)312(5027=-, 当且仅当31sin sin sin ===γβα时,等号成立. ……16分(理)解:(1)由题意012212)(2'=+++=++=x ax x x a x x f 在),1(+∞-有两个不等实根,即0222=++a x x 在),1(+∞-有两个不等实根, ……2分设a x x x F ++=22)(2,则⎩⎨⎧>->-=∆0)1(084F a ,解之得210<<a ; ……4分(2)1=a 时,)1ln()(2++=x x x f , 令)1(25)1ln(25)()(2≥-++=-=x x x x x x f x g , ……6分 则)1(2)1)(34()1(23425112)(2'+-+=+--=-++=x x x x x x x x x g , 当1≥x 时,0)('≥x g ,所以函数)(x g 在),1[+∞上是增函数. ……8分 由已知,不妨设+∞<<≤211x x ,则)()(21x g x g <, 所以221125)(25)(x x f x x f -<-,即25)()(2121>--x x x f x f ; ……10分 (3)令函数)1ln()(23++-=x x x x h , ……12分则1)1(31123)(232'+-+=++-=x x x x x x x h , 当),0[+∞∈x 时,0)('>x h ,函数)(x h 在),0[+∞上单调递增. ……14分 又0)0(=h ,所以当),0(+∞∈x 时,恒有0)0()(=>h x h ,即32)1ln(x x x ->+恒成立. 取),0(1+∞∈=n x ,则有3211)11ln(nn n ->+恒成立,故存在最小的正整数1=N ,使得当N n ≥时,不等式311ln nn n n ->+恒成立.……16分。
高一徐州市六校2012-2013学年高一下学期期中联考数学试题
2012-2013学年江苏省徐州市六校联考高一(下)期中数学试卷一、填空题:本大题共14小题,每小题5分,满分70分.1.(5分)已知直线的斜率是﹣3,点P(1,2)在直线上,则直线方程的一般式是3x+y ﹣5=0.考点:直线的一般式方程.专题:直线与圆.分析:先由点斜式求得直线的方程,再化为一般式.解答:解:已知直线的斜率是﹣3,点P(1,2)在直线上,由点斜式求得直线的方程为y ﹣2=﹣3(x﹣1),化为一般式为3x+y﹣5=0,故答案为3x+y﹣5=0.点评:本题主要考查用点斜式求直线的方程,直线的一般式方程,属于基础题.2.(5分)若直线过点(1,2),(4,2+),则此直线的倾斜角是.考点:直线的倾斜角.专题:直线与圆.分析:利用倾斜角、斜率的计算公式即可得出.解答:解:设直线的倾斜角为α,则tanα==,又∵α∈[0,π],∴.故答案为.点评:熟练掌握倾斜角、斜率的计算公式是解题的关键.3.(5分)已知△ABC中,AB=6,∠A=30°,∠B=120°,则△ABC的面积为.考点:三角形中的几何计算.专题:计算题.分析:先根据三角形内角和,得到∠C=180°﹣∠A﹣∠B=30°,从而∠A=∠C,所以BC=AB=6,最后用正弦定理关于面积的公式,可得△ABC的面积为BC•ABsinB=,得到正确答案.解答:解:∵△ABC中,∠A=30°,∠B=120°,∴∠C=180°﹣30°﹣120°=30°∴∠A=∠C⇒BC=AB=6由面积正弦定理公式,得S△ABC=BC•ABsinB=×6×6sin120°=即△ABC的面积为.故答案为:点评:本题以求三角形的面积为例,着重考查了正弦定理、三角形面积公式和三角形内角和等知识点,属于基础题.4.(5分)在等差数列{a n}中,若a2=3,a3+a7=26,则a8=23.考点:等差数列的通项公式.专题:计算题.分析:由a2=3,a3+a7=26,结合等差数列的性质可求a5,然后代入到d=可求公差d,即可求解解答:解:∵{a n}为等差数列,且a2=3,a3+a7=26由等差数列的性质可知,a3+a7=2a5=26∴a5=13d==a8=a5+3d=13=23故答案为:23点评:本题主要考查了等差数列的通项公式的应用,灵活利用公式是求解问题的关键5.(5分)在△ABC中,sinA:sinB:sinC=3:2:4,则cosC的值为﹣.考点:余弦定理;正弦定理.专题:计算题.分析:由正弦定理化简已知的比例式,得到a,b及c的比值,根据比例设出a,b及c,再利用余弦定理表示出cosC,将表示出的三边长代入,即可求出cosC的值.解答:解:∵在△ABC中,sinA:sinB:sinC=3:2:4,∴根据正弦定理得:a:b:c=3:2:4,设a=3k,b=2k,c=4k,则由余弦定理得cosC===﹣.故答案为:﹣点评:此题考查了正弦、余弦定理,以及比例的性质,熟练掌握正弦、余弦定理是解本题的关键.6.(5分)中a1=3,a2=6,且a n+2=a n+1﹣a n,那么a4=﹣3.考点:数列的概念及简单表示法.专题:计算题.分析:已知a1=3,a2=6,令n=1代入可得a3=a2﹣a1,可以求出a3,再令n=2代入a n+2=a n+1﹣a n,即可求出a4;解答:解:∵中a1=3,a2=6,n=1可得,a3=a2﹣a1,即a3=6﹣3=3,n=2,可得a4=a3﹣a2=3﹣6=﹣3,故答案为﹣3;点评:此题主要考查数列的递推公式以及应用,利用特殊值法进行求解,是一道基础题;7.(5分)tan19°+tan26°+tan19°tan26°=1.考点:两角和与差的正切函数.专题:三角函数的求值.分析:由tan45°=tan(19°+26°)=1,利用两角和与差的正切函数公式化简,变形后代入所求式子中化简即可求出值.解答:解:∵tan45°=tan(19°+26°)==1,∴tan19°+tan26°=1﹣tan19°tan26°,则tan19°+tan26°+tan19°tan26°=1﹣tan19°tan26°+tan19°tan26°=1.故答案为:1点评:此题考查了两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.8.(5分)数列{a n}为等比数列,S n为其前n项和.已知a1=1,q=3,S t=364,则a t=243.考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由题意可得S t===364,解之可得t=6,代入等比数列的通项公式可得答案.解答:解:由题意可得S t===364,化简可得3t=729,解之可得t=6,故a t=a6=1×35=243故答案为:243点评:本题考查等比数列的前n项和公式,属基础题.9.(5分)(2010•杭州模拟)一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为14.考点:等差数列的性质.专题:计算题.分析:由题意可得a1+a2+a3+a4=40,a n+a n﹣1+a n﹣2+a n﹣3=80,两式相加,且由等差数列的性质可求(a1+a n)的值,代入等差数列的前n项和公式,结合已知条件可求n的值.解答:解:由题意可得:前4项之和为a1+a2+a3+a4=40①,后4项之和为a n+a n﹣1+a n﹣2+a n﹣3=80②,根据等差数列的性质①+②可得:4(a1+a n)=120⇒(a1+a n)=30,由等差数列的前n项和公式可得:=210,所以n=14.故答案为:14点评:本题考查等差数列的定义和性质,以及等差数列前n项和公式的应用,根据题意,利用等差数列的性质求出a1+a n的值是解题的难点和关键.10.(5分)化简=﹣2sin40°.考点:二倍角的正弦;三角函数值的符号;同角三角函数间的基本关系;二倍角的余弦.专题:三角函数的求值.分析:原式第一项被开方数利用同角三角函数间的基本关系及二次根式的化简公式化简,第二项被开方数提取2,利用二倍角的余弦函数公式化简,再利用二次根式的化简公式化简,合并即可得到结果.解答:解:∵0<sin40°<cos40°,∴原式=2﹣=2|sin40°﹣cos40°|﹣|2cos40°|=2(cos40°﹣sin40°)﹣2cos40°=﹣2sin40°.故答案为:﹣2sin40°点评:此题考查了二倍角的正弦、余弦函数公式,同角三角函数间的基本关系,以及三角函数值的符号,熟练掌握公式是解本题的关键.11.(5分)△ABC中,若sinAsinB<cosAcosB,则△ABC的形状为钝角三角形.考点:两角和与差的余弦函数.专题:计算题.分析:把已知的不等式移项后,根据两角和的余弦函数公式化简得到cos(A+B)大于0,然后利用诱导公式得到cosC小于0,根据余弦函数的图象可知C为钝角,所以得到三角形为钝角三角形.解答:解:由sinA•sinB<cosAcosB得cos(A+B)>0,即cosC=cos[π﹣(A+B)]=﹣cos(A+B)<0,故角C为钝角.所以△ABC的形状为钝角三角形.故答案为:钝角三角形点评:考查学生灵活运用两角和的余弦函数公式及诱导公式化简求值,会根据三角函数值的正负判断角的范围.12.(5分)两等差数列{a n}、{b n}的前n项和的比,的值是.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:利用等差数列的性质,及求和公式,可得===,利用条件,即可求得结论.解答:解:∵===,,∴==故答案为:点评:本题考查等差数列的通项与求和,考查学生的计算能力,属于中档题.13.(5分)已知数列{a n}中,,,则a2013=.考点:数列递推式.专题:等差数列与等比数列.分析:由,两边取倒数得,可得数列{}是以为首项,3为公差的等差数列,从而可得结论.解答:解:∵,∴a n≠0.由,两边取倒数得,即.∴数列{}是以为首项,3为公差的等差数列,∴.∵,∴9=,解得a1=.∴,∴∴a2013=故答案为:点评:本题考查数列递推式,考查等差数列的通项,考查学生分析解决问题的能力,属于中档题.14.(5分)设y=f(x)是一次函数,f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)=3n+2n2.考点:数列与函数的综合.专题:计算题.分析:由已知可以假设一次函数为y=kx+1,在根据f(1),f(4),f(13)成等比数列,得出k=3,利用等差数列的求法求解即可.解答:解:由已知,假设f(x)=kx+b,(k≠0)∵f(0)=1=k×0+b,∴b=1.∵f(1),f(4),f(13)成等比数列,且f(1)=k+1,f(4)=4k+1,f(13)=13k+1.∴k+1,4k+1,13k+1成等比数列,即(4k+1)2=(k+1)(13k+1),16k2+1+8k=13k2+14k+1,从而解得k=0(舍去),k=2,f(2)+f(4)+…+f(2n)=(2×2+1)+(4×2+1)+…+(2n×2+1)=(2+4+…+2n)×2+n=4×+n=2n(n+1)+n=3n+2n2,故答案为3n+2n2.点评:本题考查了等比数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于基础题.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.15.(14分)若三个数成等差数列,其和为15,其平方和为83,求此三个数.考点:等差数列的通项公式;等差数列的前n项和.专题:等差数列与等比数列.分析:设三个数分别为a﹣d,a,a+d,由题意可建立关于ad的方程组,解之即可求得三个数.解答:解:由题意设三个数分别为a﹣d,a,a+d,则(a﹣d)+a+(a+d)=15,(a﹣d)2+a2+(a+d)2=83,解得a=5,d=±2.所以这三个数分别为3、5、7;或7、5、3.点评:本题考查等差数列的基本运算,属基础题.16.(14分)已知(1)求tanα的值;(2)求的值.考点:二倍角的正切;两角和与差的正切函数.专题:三角函数的求值.分析:(1)所求式子利用二倍角的正切函数公式化简,将tan的值代入计算即可求出值;(2)所求式子利用两角和与差的正切函数公式及特殊角的三角函数值化简,将tan的值代入计算即可求出值.解答:解:(1)∵tan=,∴tanα===;(2)∵tan=,∴tan(α﹣)===.点评:此题考查了二倍角的正切函数公式,以及两角和与差的正切函数公式,熟练掌握公式是解本题的关键.17.如图,海中有一小岛,周围3.8海里内有暗礁.一军舰从A地出发由西向东航行,望见小岛B在北偏东75°,航行8海里到达C处,望见小岛B在北偏东60°.若此舰不改变舰行的方向继续前进,问此舰有没有触礁的危险?考点:点到直线的距离公式.分析:由条件求得∠ACB=150°,BC=8,过B作AC的垂线垂足为D,在△BCD中,求得BD=4>3.8,从而得出结论.解答:解:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,过B作AC的垂线垂足为D,在△BCD中,可得BD=BC•sin30°=4.∵4>3.8,∴没有危险.点评:本题主要考查解三角形,直角三角形中的边角关系,属于中档题.18.在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列.(1)若,c=2,求△ABC的面积;(2)若sinA,sinB,sinC成等比数列,试判断△ABC的形状.考点:余弦定理;三角形的形状判断;正弦定理.专题:计算题;解三角形.分析:(1)根据A、B、C成等差数列,结合A+B+C=π算出B=,再由正弦定理得sinC==.根据b>c得C为锐角,得到C=,从而A=π﹣B﹣C=,△ABC 是直角三角形,由此不难求出它的面积;(2)根据正弦定理,结合题意得b2=ac,根据B=利用余弦定理,得b2=a2+c2﹣ac,从而得到a2+c2﹣ac=ac,整理得得(a﹣c)2=0,由此即可得到△ABC为等边三角形.解答:解:解:∵A、B、C成等差数列,可得2B=A+C.∴结合A+B+C=π,可得B=.(1)∵,c=2,∴由正弦定理,得sinC===.∵b>c,可得B>C,∴C为锐角,得C=,从而A=π﹣B﹣C=.因此,△ABC的面积为S==×=.(2)∵sinA、sinB、sinC成等比数列,即sin2B=sinAsinC.∴由正弦定理,得b2=ac又∵根据余弦定理,得b2=a2+c2﹣2accosB=a2+c2﹣ac,∴a2+c2﹣ac=ac,整理得(a﹣c)2=0,可得a=c∵B=,∴A=C=,可得△ABC为等边三角形.点评:本题给出三角形的三个内角成等差数列,在已知两边的情况下求面积,并且在边成等比的情况下判断三角形的形状.着重考查了三角形内角和定理和利用正、余弦定理解三角形的知识,属于中档题.19.(2010•湖北)已知函数f(x)=cos(+x)cos(﹣x),g(x)=sin2x﹣(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数h(x)=f(x)﹣g(x)的最大值,并求使h(x)取得最大值的x的集合.考点:三角函数的周期性及其求法;三角函数的最值.专题:计算题.分析:(Ⅰ)对于求函数f(x)的最小正周期,可以先将函数按照两角和,两角差的余弦公式展开后,再利用降幂公式化成一个角一个函数的形式后,用公式T=周期即可求出.(Ⅱ)对于函数h(x)=f(x)﹣g(x),把f(x)与g(x)解析式代入后,依照两角和余弦公式的逆用化成一个角一个函数为h(x)=cos(2x+),由于定义域为全体实数R,故易知最值为,而此时角2x+应为x轴正半轴的所有角的取值,即2x+=2kπ,k∈Z.由此确定角x的取值几何即可.解答:解:(1)f(x)=cos(+x)cos(﹣x)=(cosx﹣sinx)(cosx+sinx)=cos2x ﹣=﹣=cos2x﹣,∴f(x)的最小正周期为=π(2)h(x)=f(x)﹣g(x)=cos2x﹣sin2x=(cos2x﹣sin2x)=(cos cox2x ﹣sin sin2x)=cos(2x+)∴当2x+=2kπ,k∈Z,即x=kπ﹣,k∈Z时,h(x)取得最大值,且此时x取值集合为{x|x=kπ﹣,k∈Z}点评:本题主要考查三角函数的周期和最值问题,并兼顾检测了学生对两角和,差的正余弦公式和降幂公式等,属于三角函数的综合性问题.而解决有关复合角三角函数问题的关键还是在于对三角函数性质的掌握,本题难度系数0.620.(16分)设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的n ∈N +,都有8S n =(a n +2)2.(1)写出数列{a n }的前3项;(2)求数列{a n }的通项公式(写出推证过程); (3)设,T n 是数列{b n }的前n 项和,求使得对所有n ∈N +都成立的最小正整数m 的值.考点:数列与不等式的综合. 专题:综合题. 分析: (1)在8S n =(a n +2)2中,令n=1求a1,令n=2,求a2,l 令n=3,可求a3. (2))根据Sn 与an 的固有关系an=,得a n 2﹣a n ﹣12﹣4a n ﹣4a n ﹣1=0,化简整理可证.(3)把(2)题中a n 的递推关系式代入b n ,根据裂项相消法求得T n ,最后解得使得 对所有n ∈N *都成立的最小正整数m .解答: 解:(1)n=1时 8a 1=(a 1+2)2∴a 1=2n=2时 8(a 1+a 2)=(a 2+2)2∴a 2=6 n=3时 8(a 1+a 2+a 3)=(a 3+2)2∴a 3=10(2)∵8S n =(a n +2)2∴8S n ﹣1=(a n ﹣1+2)2(n >1)两式相减得:8a n =(a n +2)2﹣(a n ﹣1+2)2即a n 2﹣a n ﹣12﹣4a n ﹣4a n ﹣1=0 也即(a n +a n ﹣1)(a n ﹣a n ﹣1﹣4)=0∵a n >0∴a n ﹣a n ﹣1=4即{a n }是首项为2,公差为4的等差数列 ∴a n =2+(n ﹣1)•4=4n ﹣2 (3)∴=…∵对所有n ∈N +都成立∴即m ≥10故m 的最小值是10.点评:本题主要考查Sn 与an 的固有关系、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力.11。
江苏省苏州市常熟市2023-2024学年高一下学期期中调研数学试题(含答案)
常熟市2023-2024学年高一下学期期中调研数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数满足(是虚数单位),则的虚部是( )A.B. C.D. 2. 设,是两个不共线的向量,若向量与向量共线,则( )A.B. C. D.3. 已知,都是锐角,,,则( )A.B. C. D.4. 沪苏通长江公铁大桥(如图1)是中国自主设计建造、世界上首座跨度超千米的公铁两用斜拉桥.已知主塔垂直于桥面,一辆小汽车在行驶过程中,车内乘客两次仰望塔顶的仰角分别为,(如图2),设乘客眼睛离地面的距离为,.若,,在同一水平高度,且,,在同一竖直平面内,则根据以上数据可计算主塔高为( ).A.B.C.D.5. 将曲线上所有点向左平移个单位长度,再将所得曲线上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线,则的方程为( )A. B. z 1z =-i z 1e 2e ()12R m e ke k =-+∈ 1225n e e =+k =5252-25-25αβ35=cos α()5sin 13αβ-=cos β=1665336556656365AB A 30ADE ∠=︒45ACE ∠=︒DM CN h ==()0,0CD a h a =>>D C E AD AC AB AB h +h +)1a h+)1a h-+1π:2sin 6C y x ⎛⎫=+⎪⎝⎭π62C 2C π2sin 23y x ⎛⎫=+⎪⎝⎭π2sin 26y x ⎛⎫=+⎪⎝⎭C. D. 6. 已知复数满足,则(是虚数单位)的最小值为( )A.B. 4C.D. 67. 在平行四边形中,,分别在边,上,,,与相交于点,记,,则( )A. B. C. D. 8. 已知锐角中,,则边上的高的取值范围为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 函数的图象的一条对称轴可以是( )A. B. C. D. 10. 已知复数,是方程两根,则()A.B. C. D. 11. 窗花是贴在窗户上的剪纸,是中国古老的传统民间艺术之一.图1是一个正八边形窗花,图2是从窗花图中抽象出的几何图形的示意图.已知正八边形,是正八边形边上任意一点,则下列结论正确的是( )的12sin2y x =1π2sin 23y x ⎛⎫=+⎪⎝⎭z 11z -=24i z ++i 1-1+ABCD E F AD CD 3AE ED =DF FC =AF BE G BC a = BA b = =AG 361111a b - 361111a b-+631111a b -631111a b-+ABC V π6AB C ==AB (0,3+(3,3+(3,3+(6,3+()()πsin 23f x x x ⎛⎫=+∈ ⎪⎝⎭R 5π12x =-π12x =-π12x =5π12x =1z 2z 210x x ++=121z z +=121z z ==212z z =33121z z ==ABCDEFGH P ABCDEFGHA. 在上投影向量为B.C. 的最大值为2D. 若在线段上(含端点),且,则的取值范围为三、填空题:本题共3小题,每小题5分,共15分.12. 已知角满足,则______.13. 《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积”中提出了:已知三角形三边,,,求面积的公式.这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即:.现有的三边,,满足,且的面积,若点是边的中点,则______.14. 已知函数,若为奇函数,为偶函数,且上至少有2个实根,至多有3个实根,则函数的对称轴为______(写出一个即可),正整数的所有可能取值之和为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15 已知向量,,.的.AD AB1)AB+ AF AE HG HFAF AE HG HF⋅⋅=⋅⋅ ()()PA PB PE PF +⋅+P BC AP x AB y AH =+x y +[1,2+αsin cos αα-=sin2α=a b c S S =ABC V a b c ::1:2:a b c =ABC V =S D AB =CD ()()πsin 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭π4f x ⎛⎫- ⎪⎝⎭π4f x ⎛⎫+ ⎪⎝⎭()f x =π0,6⎛⎫⎪⎝⎭()f x ω()1,1OA =-()2,3OB =- ()1,2OC m m =--(1)若,求实数的值;(2)若,求实数的值.16. 复数平面内表示复数的点分别满足下列条件:(1)位于第四象限;(2)位于第一象限或第三象限;(3)位于直线上.求实数的取值范围.17. 已知函数的最大值为3.(1)若的定义域为,求的单调递增区间;(2)若,,求的值.18. 赵爽是我国古代数学家,大约在公元222年,他为《周脾算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到正方形由4个全等的直角三角形再加上中间的一个小正方形组成,如图1所示).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的,,与中间一个小等边拼成的一个较大的等边.记的面积为,的面积为,的面积为.(1)若,求;(2)设,当时,求以及值.19. 如图所示,设,是平面内相交成角的两条数轴,,分别是与,轴正方向同向的单位向量,则称平面坐标系为仿射坐标系,若在仿射坐标系下,则的的AB OC ⊥m OA BCP m ()()22815514i z m m m m =-++--y x =m ()22sin cos cos f x x x x x m =+-+()f x []0,π()f x 01125x f ⎛⎫= ⎪⎝⎭0π0,2x ⎡⎤∈⎢⎥⎣⎦0cos2x ACF △BAD V CBE △DEF V ABC V DEF V 1S ABD △2S ABC V 3S 13AF AD = 13S S π06BAD θθ⎛⎫∠=<< ⎪⎝⎭23S S =θAF AD Ox Oy π0π,2θθθ⎛⎫<<≠ ⎪⎝⎭1e 2e x y xOy θθ12OM xe ye =+把有序数对叫做向量的仿射坐标,记为.已知在仿射坐标系下,.(1)求向量,的仿射坐标;(2)当时,求;(3)设,若对恒成立,求的最大值.(),x y OM(),OM x y = θ()3,1OA = ()1,1OB =2OA OB + -OA OB π3θ=cos AOB ∠AOB α∠=OA tOB -≥R t ∀∈cos α常熟市2023-2024学年高一下学期期中调研数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BD【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】①. (答案不唯一)②. 51四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)【16题答案】【答案】(1)或(2)或或(3)【17题答案】【答案】(1)单调递增区间为和(2【18题答案】【答案】(1)(2)【19题答案】【答案】(1)(2(379π4x=5m=2m=23m-<<57m<<2m<-35m<<7m>293m=π0,3⎡⎤⎢⎥⎣⎦5π,π6⎡⎤⎢⎥⎣⎦413π12θ=()()7,3,2,0。
重庆市2023-2024学年高一下学期5月期中考试 数学含答案
重庆市2023-2024学年高二下学期5月期中考试数学试题(答案在最后)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.一、单选题(本大题共8个小题,每题只有一个选项正确,每小题5分,共40分)1.复数z 满足(2i)43i z -=+(i为虚数单位),则z =()A.2i- B.2i+ C.2i 55- D.2i 55+2.已知,,a b c 分别表示ABC 中内角A ,B ,C 所对边的长,其中2,60,ABC a B S ︒=== ,则ABC 的周长为()A.6B.8C.6+D.6+3.已知向量2,4,2a b a b ==-=,则a 在b 上的投影向量为()A.b- B.bC.14bD.14b- 4.已知直线,m n 和平面α,则()A.若//,m m n α^,则n α⊥B.若,m m n α⊥⊥,则//n αC.若,m n αα⊥⊂,则m n⊥ D.若//,//m n αα,则//m n5.如图,点A ,B ,C ,M ,N 为正方体的顶点或所在棱的中点,则下列各图中,不满足直线//MN 平面ABC 的是()A. B. C. D.6.已知向量(,1),(2,)x a y b ==,向量x 与y u r 为同向向量,则x y ⋅ 的最小值为()A.2B.3C.4D.57.在正三棱锥A BCD -中,侧面与底面所成二面角的正切值为6BC =,则这个三棱锥的内切球半径为()A.1B.32C.2D.528.如图,在长方体1111ABCD A B C D -中,2AB AD ==,1AA =P ,Q 分别是棱BC 和11C D 上的两个动点,且2PQ =,则PQ 的中点E 到1CC 的距离为()A.2B.2C.3D.12二、多选题(本大题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列命题为真命题的是()A.若22i z =+,则22i z =-+B.复数2i -在复平面内对应的点在第四象限C.2024i i 2i +=D.若()()242i,R z m m m =-+-∈为纯虚数,则2m =-10.如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,,F M 分别是,AD CD 的中点,则下列结论中正确的是()A.11//FM A C B.当E 为11A C 中点时,BE FM ⊥ C.三棱锥B CEF -的体积为定值D.直线BE 到平面1ACD 的距离为3211.在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,且2cos c b b A =+,则下列结论正确的有()A.2A B= B.B 的取值范围为ππ,63⎛⎫⎪⎝⎭C.a b的取值范围为 D.112sin tan tan A B A -+的取值范围为,33⎛⎫ ⎪ ⎪⎝⎭三、填空题(本大题共3个小题,每小题5分,共15分)12.已知正四棱锥P ABCD -的底边长为2,过棱PA 上点1A 作平行于底面的截面1111D C B A ,截面1111D C B A 边长为11,2AA =,则截得的台体1111ABCD A B C D -的体积为_______________.13.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知60,4A a b ︒===,则ABC 的面积为______________.14.已知平面非零向量,,a b c满足:4,2,()a b a b b ==-⊥ ,且b 与c 的夹角为30︒,则在所有的情况中,||a c -的最小值为______________.四、解答题(本大题共5个小题,共70分,解答应写出文字说明,证明过程或演算步骤)15.在ABC 中,、、A B C 所对的边分别为a b c 、、,且满足sin sin 2a B b A =.(1)求A ∠;(2)点D 在线段AC 的延长线上,且π2ABD ∠=,若2,a BD ==,求ABC 的面积.16.如图,四边形ABCD 是矩形,2,1,AD DC AB ==⊥平面,,1BCE BE EC EC ⊥=.(1)求证:平面DCE ⊥平面ABE ;(2)求直线AC 和直线BE 所成角的余弦值.17.在ABC 中,角,,A B C 所对的边分别为,,,a b c 且满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若ABC 为锐角三角形,且外接圆半径为1,求2b c +的取值范围.18.如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,ABD △为底面圆O 的内接正三角形,E 在母线PC 上,且1AE CE ==.(1)求证://PO 平面BDE;(2)求二面角E AB D --平面角的正弦值;(3)若点M 为线段PO 上的动点,当直线DM ⊥平面ABE 时,求AM 与平面ABE 所成的角的正弦值.19.我们知道,一个一元一次方程最多有一个根,一个一元二次方程最多有两个根,这些都是代数基本定理的简单表示,代数基本定理可以表述为:一元n 次多项式方程最多有n 个不同的根.由代数基本定理可以得到如下推论:若一个一元n 次方程有不少于1n +个不同的根,则必有各项的系数均为0.已知函数32()3f x x x =+,函数()f x 的图象上有四个不同的点A 、B 、C 、D .利用代数基本定理及其推理回答下列问题:(1)解关于x 的方程2()6680f x x x --+=;(2)是否存在实数,m n ,使得关于x 的方程(2)()2f m x f x n -+=有三个以上不同的解,若存在,求出m n 、的值,若不存在,请说明理由;(3)若ABCD 按逆时针方向顺次构成菱形,设(,()),(,())A a f a B b f b ,求代数式()(2222aa b +-+22)b -的值.重庆市2023-2024学年高二下学期5月期中考试数学试题注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.一、单选题(本大题共8个小题,每题只有一个选项正确,每小题5分,共40分)【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】D二、多选题(本大题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)【9题答案】【答案】BD【10题答案】【答案】ABC【11题答案】【答案】ACD三、填空题(本大题共3个小题,每小题5分,共15分)【12题答案】【答案】6【13题答案】【14题答案】【答案】2四、解答题(本大题共5个小题,共70分,解答应写出文字说明,证明过程或演算步骤)【15题答案】【答案】(1)π3A =(2)S =【16题答案】【答案】(1)证明见解析(2)5【17题答案】【答案】(1)π3(2)【18题答案】【答案】(1)证明见解析(2)7(3)17【19题答案】【答案】(1)2x =-或1x =或4x =(2)存在,1,2m n =-=(3)1-。
江苏省徐州市2019~2020学年度高一第1学期期中考试数学试题及参考答案解析
2019~2020学年度江苏省徐州市高一第一学期期中数学试卷一、选择题(本大题共12小题)1.已知集合A={1,3,5},B={3,5,7},则A∩B=( )A.3,5,B.C.D.2.函数f(x)=+ln(1-x)的定义域为( )A. B. C. D.3.已知幂函数f(x)的图象过点(2,16),则f(3)=( )A.27B.81C.12D.44.函数f(x)=a x+1+2(a>0且a≠1)的图象恒过定点( )A. B., C. D.5.设a=logπ3,b=π0.3,c=log0.3π,则( )A. B. C. D.6.已知函数,则的值是( )A.27B.C.D.7.已知函数f(x)=ax5-bx3+cx-3,f(-3)=7,则f(3)的值为( )A.13B.C.7D.8.函数y=(a>1)的图象的大致形状是( )A. B. C. D.9.已知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)-1<0的解集是( )A. B.或C. D.或10.已知函数f(x)=x2•(a+)是R上的奇函数,则实数a=( )A. B. C. D.111.若函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则函数的单调递增区间( )A. B. C. D.12.若函数f(x)=|lg x|-()x+a有2个零点,则实数a的取值范围是( )A. B. C. D.二、填空题(本大题共4小题)13.已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为______.14.若函数f(x)=lg x+x-3的零点在区间(k,k+1),k∈Z,则k=______.15.若函数f(x)=的值域为R,则实数a的范围是______.16.已知函数y=x+有如下性质:常数a>0,那么函数在(0,]上是单调减函数,在[,+∞)上是单调增函数.如果函数f(x)=|x+-m|+m在区间[1,4]上的最小值为7,则实数m的值是______.三、解答题(本大题共6小题)17.计算:(1);(2)2lg5+lg8+lg5•lg20+(lg2)2.18.已知集合A={x|3≤3x≤27},B={x|1<log2x<2}.(1)分别求A∩B,(∁R B)∪A;(2)已知集合C={x|2a<x<a+2},若C⊆A,求实数a的取值范围.19.已知函数f(x)是定义在(-4,4)上的奇函数,满足f(2)=1,当-4<x≤0时,有f(x)=.(1)求实数a,b的值;(2)求函数f(x)在区间(0,4)上的解析式,并利用定义证明函数f(x)在(0,4)上的单调性.20.某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨x%,则每年的销售数量将减少mx%,其中m为正常数,销售的总金额为y万元.(1)当m=时,该产品每吨的价格上涨百分之几,可使销售总金额最大?(2)当x=10时,若能使销售总金额比涨价前增加,试设定m的取值范围.21.已知函数f(x)=x|x-a|+x(a∈R)(1)若函数f(x)是R上的奇函数,求实数a的值;(2)若对于任意x∈[1,2],恒有f(x)≥2x2,求实数a的取值范围;(3)若a≥2,函数f(x)在区间[0,2]上的最大值为4,求实数a的值.22.已知函数f(x)=lg(m+),m∈R.(1)当m=-1时,求函数f(x)的定义域;(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,求实数m的取值范围;(3)任取x1,x2∈[t,t+2],若不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,求实数m的取值范围.答案和解析1.【参考答案】C【试题分析】解:∵集合A={1,3,5},B={3,5,7},∴A∩B={3,5}.故选:C.利用交集定义直接求解.本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【参考答案】B【试题分析】解:要使f(x)有意义,则,解得,∴f(x)的定义域为.故选:B.可看出,要使得f(x)有意义,则需满足,解出x的范围即可.本题考查了函数定义域的定义及求法,对数函数的定义域,考查了计算能力,属于基础题.3.【参考答案】B【试题分析】解:设幂函数f(x)=xα,又f(x)过点(2,16),∴2α=16,解得α=4,∴f(x)=x4,∴f(3)=34=81.故选:B.用待定系数法求出f(x)的解析式,再计算f(3)的值.本题考查了幂函数的定义与应用问题,是基础题.4.【参考答案】D【试题分析】解:由x+1=0,解得x=-1,此时y=1+2=3,即函数的图象过定点(-1,3),故选:D.根据指数函数过定点的性质,直接领x+1=0即可得到结论本题主要考查指数函数过定点问题,利用指数幂等于0是解决本题的关键.5.【参考答案】D【试题分析】解:0=logπ1<logπ3<logππ=1,π0.3>π0=1,log0.3π<log0.31=0,∴b>a>c.故选:D.容易得出,从而得出a,b,c的大小关系.考查对数函数、指数函数的单调性,以及增函数和减函数的定义.6.【参考答案】B【试题分析】解:∵∴=f(-3)=故选B.由已知中的函数的解析式,我们将代入,即可求出f()的值,再代入即可得到的值.本题考查的知识点是分段函数的函数值,根据分析函数的解析式,由内到外,依次代入求解,即可得到答案.7.【参考答案】B【试题分析】解:∵函数f(x)=ax5-bx3+cx-3,f(-3)=7,令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,∴g(3)=-10,故f(3)=g(3)-3=-13,故选:B.令g(x)=ax5-bx3+cx,则g(-3)=10,又g(x)为奇函数,故有g(3)=-10,故f(3)=g(3)-3.本题考查函数的奇偶性的应用,求函数值,令g(x)=ax5-bx3+cx,求出g(3)=-10,是解题的关键.8.【参考答案】C【试题分析】解:当x>0时,y=a x,因为a>1,所以函数y=a x单调递增,当x<0时,y=-a x,因为a>1,所以函数y=-a x单调递减,故选:C.根据函数的单调性即可判断.本题考查了函数图象和识别,关键掌握函数的单调性,属于基础题9.【参考答案】B【试题分析】解:因为y=f(x)为奇函数,所以当x>0时,-x<0,根据题意得:f(-x)=-f(x)=-x+2,即f(x)=x-2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)-1<0,即2x<-3,解得x<-,则原不等式的解集为x<-;当x≥0时,f(x)=x-2,代入所求的不等式得:2(x-2)-1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<-或0≤x<}.故选:B.根据f(x)为奇函数,得到f(-x)=-f(x),设x大于0,得到-x小于0,代入已知的解析式中化简即可求出x 大于0时的解析式,然后分两种情况考虑,当x小于0时和x大于0时,分别把所对应的解析式代入所求的不等式中,得到关于x的两个一元一次不等式,求出不等式的解集的并集即为原不等式的解集.此题考查了其他不等式的解法,考查了函数奇偶性的应用,是一道基础题.10.【参考答案】A【试题分析】解:根据题意,函数f(x)=x2•(a+)是R上的奇函数,则有f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形可得:a+=-(a+),则有2a=-1,即a=-;故选:A.根据题意,由函数奇偶性的定义可得f(-x)=-f(x),即(-x)2(a+)=-(x2•(a+),变形分析可得a的值,即可得答案.本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.11.【参考答案】C【试题分析】解:∵函数f(x)=a x-a-x(a>0且a≠1)在R上为减函数,则0<a<1.则函数的单调递增区间,即y=x2+2x-3在y>0时的减区间.由y=x2+2x-3>0,求得x<-3,或x>1.再利用二次函数的性质可得,y=x2+2x-3在y>0时的减区间为(-∞,-3),故选:C.复合函数的单调性,指数函数、二次函数的性质,先判断0<a<1,本题即求y=x2+2x-3在y>0时的增区间,再利用二次函数的性质得出结论.本题主要考查复合函数的单调性,指数函数、二次函数的性质,属于中档题.12.【参考答案】B【试题分析】解:原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,函数有2个零点,相当于y=|lg x|与y=()x-a有两个交点,根据图象:当x=1时,y=()x-a的值-a>0即可所以a∈(-∞,).故选:B.原函数转化为f(x)=|lg x|-()x+a,|lg x|=()x-a,根据图象:当x=1时,y=()x-a的值-a>0即可.把零点问题转换为两个函数的交点问题,考察图象法的应用,中档题.13.【参考答案】8【试题分析】解:∵A={-2,0,1,3},B={x|-<x<},∴A∩B={-2,0,1},∴A∩B的子集个数为:23=8个.故答案为:8.进行交集的运算求出A∩B,从而得出A∩B的元素个数,进而可得出A∩B的子集个数.本题考查了描述法、列举法的定义,交集的运算,集合子集个数的计算公式,考查了计算能力,属于基础题.14.【参考答案】2【试题分析】解:因为函数y=lg x与y=x-3都是定义域上的增函数,所以函数f(x)=lg x+x-3也为定义域上的增函数.因为f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,所以由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,所以k=2.故答案为:2.确定函数f(x)=lg x+x-3也为定义域上的增函数.计算f(2)=lg2+2-3<lg10+2-3=0,f(3)=lg3+3-3>0,由零点存在性定理可得函数f(x)=lg x+x-3的近似解在区间(2,3)上,即可得出结论.本题考查零点存在性定理,考查学生的计算能力,比较基础.15.【参考答案】[0,+∞)【试题分析】解:x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,∴①a>1时,f(x)≥1-a2,且f(x)的值域为R,∴2+a≥1-a2,解得a∈R,∴a>1;②a≤1时,f(x)>(1-a)2+1-a2=2-2a,且f(x)的值域为R,∴2+a≥2-2a,解得a≥0,∴0≤a≤1,∴综上得,实数a的范围是[0,+∞).故答案为:[0,+∞).根据f(x)的解析式得出,x≤1时,f(x)≤2+a;x>1时,f(x)=(x-a)2+1-a2,从而得出:a>1时,f(x)≥1-a2,进而得出2+a≥1-a2;a≤1时,f(x)>2-2a,进而得出2+a≥2-2a,从而解出a的范围即可.本题考查分段函数值域的求法,配方求二次函数值域的方法,考查计算能力,属于中档题.16.【参考答案】6【试题分析】解:设t=在[1,2]上单调递减,在[2,4]上单调递增,所以t∈[4,5],问题化为y=|t-m|+m在区间[4,5]上的最小值为7,当m>5时,y min=y(5)=m-5+m=7,m=6;当m∈[4,5]时,y min=y(m)=m=7(舍去);当m<4时,y min=y(4)=4-m+m=7,不成立.故答案为:6.换元将问题化为绝对值函数在闭区间上的最小值问题,根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.本题是一个经典题目,通过换元将问题化为绝对值函数在闭区间上的最小值问题,接下来根据对称轴在闭区间的右侧、中间、左侧分三类讨论即可.17.【参考答案】解:(1)原式==4-4+3-π-1+π=2.(2)原式=2lg5+2lg2+lg5•(lg2+1)+(lg2)2=2+lg2(lg5+lg2)+lg5=2+lg2+lg5=3.【试题分析】(1)利用指数幂的运算性质即可得出.(2)利用对数的运算性质及其lg2+lg5=1即可得出.本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.18.【参考答案】解:(1)因为A={x|3≤3x≤27}={x|1≤x≤3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x≤3},从而(C R B)∪A={x|x≤3或x≥4}.(2)当2a≥a+2,即a≥2时C=∅,此时C⊆A,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需即.故要使C⊆A,实数a的取值范围是{a|a≥2或}.【试题分析】(1)求出集合A,B,由此能求出A∩B和(C R B)∪A.(2)当2a≥a+2,即a≥2时C=∅,符合条件;当2a<a+2,即a<2时,C≠∅,要使C⊆A,只需由此能求出实数a的取值范围是.本题考查交集、补集、并集的求法,考查交集、补集、并集定义等基础知识,考查运算求解能力,是基础题.19.【参考答案】解:(1)∵函数f(x)是定义在(-4,4)上的奇函数,∴f(0)=0,即,∴b=0,又因为f(2)=1,所以f(-2)=-f(2)=-1,即,所以a=1,综上可知a=1,b=0,(2)由(1)可知当x∈(-4,0)时,,当x∈(0,4)时,-x∈(-4,0),且函数f(x)是奇函数,∴,∴当x∈(0,4)时,函数f(x)的解析式为,任取x1,x2∈(0,4),且x1<x2,则=,∵x1,x2∈(0,4),且x1<x2,∴4-x1>0,4-x2>0,x1-x2<0,于是f(x1)-f(x2)<0,即f(x1)<f(x2),故在区间(0,4)上是单调增函数.【试题分析】(1)根据f(x)是定义在(-4,4)上的奇函数及-4<x≤0时的f(x)解析式即可得出b=0,并可求出f(-2)=-1,从而可得出,求出a=1;(2)根据上面知,x∈(-4,0)时,,从而可设x∈(0,4),从而得出,从而得出x∈(0,4)时,,然后根据函数单调性的定义即可判断f(x)在(0,4)上的单调性:设任意的x1,x2∈(0,4),且x1<x2,然后作差,通分,提取公因式,然后判断f(x1)与f(x2)的大小关系即可得出f(x)在(0,4)上的单调性.本题考查了奇函数的定义,奇函数在原点有定义时,原点处的函数值为0,求奇函数在对称区间上的解析式的方法,以及函数的单调性,考查了推理能力和计算能力,属于基础题.20.【参考答案】解:(1)由题设,当价格上涨x%时,每年的销售数量将减少mx%,销售总金额y=10(1+x%)•1000(1-mx%)=-mx2+100(1-m)x+10000().当时,y=[-(x-50)2+22500],当x=50时,y max=11250.即该产品每吨的价格上涨50%时,销售总金额最大.(2)当x=10时,若能使销售总金额比涨价前增加,能使销售总金额增加,则存在使y>10×10000,由得,所以m<10.由y>10×10000,即-100m+1000(1-m)+10000>10000亦即,所以.故若能使销售总金额比涨价前增加,m的取值范围设定为.【试题分析】(1)得出y关于x的函数,根据二次函数的性质求出结论;(2)根据题意列不等式得出m的范围.本题考查了函数解析式,函数最值的计算,考查不等式的解法,属于中档题.21.【参考答案】解:(1)∵f(x)是奇函数,∴f(-1)=-f(1),∴-|-1-a|-1=-(1•|1-a|+1)∴-|1+a|-1=-|1-a|-1,∴|1+a|=|1-a|,∴a=0,当a=0时,f(x)=x•|x|+x是奇函数,∴a=0;(2)任意的x∈[1,2],f(x)≥2x2恒成立,∴x|x-a|+x≥2x2恒成立,∴|x-a|+1≥2x恒成立,∴|x-a|≥2x-1恒成立, ∵x∈[1,2],∴2x-1∈[1,3],2x-1>0,∴x-a≥2x-1恒成立或x-a≤-2x+1恒成立,∴a≤-x+1恒成立或a≥3x-1恒成立,而-x+1∈[-1,0],3x-1∈[2,5],∴a≤-1或a≥5;(3)∵a≥2,x∈[0,2],∴x-a≤0,∴|x-a|=-(x-a),∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,开口向下,对称轴为x=≥,①当,即2≤a≤3时,f(x)max=f()==4,∴a=3或a=-5(舍),②当>2,即a>3时,f(x)max=f(2)=-4+2a+2=2a-2=4,∴a=3,又a>3,矛盾,综上a=3.【试题分析】(1)由奇函数的性质f(-x)=-f(x),进而求解;(2)x∈[1,2],2x-1∈[1,3],2x-1>0,f(x)≥2x2等价于x-a≥2x-1恒成立或x-a≤-2x+1恒成立,进而求解;(3))∵a≥2,x∈[0,2],∴x-a≤0,∴f(x)=x[-(x-a)]+x=-x2+(a+1)x,进而比较对称轴与区间端点的关系求解;(1)考查奇函数的性质,去绝对值号;(2)考查不等式恒成立的转化,得出x-a≥2x-1恒成立或x-a≤-2x+1恒成立,是突破本题的关键点;(3)考查不等式在特定区间上的最值问题,将不等式恒成立转化为二次函数在特定区间上的最值.22.【参考答案】解:(1)当m=-1时,,要使函数f(x)有意义,则需,即2x<2,从而x<1.故函数f(x)的定义域为{x|x<1};(2)若函数g(x)=f(x)+2x lg2有且仅有一个零点,即有且仅有一个根,亦即,即,即m(2x)2+2•2x-1=0有且仅有一个根.令2x=t>0,则mt2+2•t-1=0有且仅有一个正根,当m=0时,2•t-1=0,,即x=-1,成立;当m≠0时,若△=4+4m=0即m=-1时,t=1,此时x=0成立;若△=4+4m>0,需,即m>0,综上,m的取值范围为[0,+∞)∪{-1};(3)若任取x1,x2∈[t,t+2],不等式|f(x1)-f(x2)|≤1对任意t∈[1,2]恒成立,即f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,因为在定义域上是单调减函数,所以,,即,即,,所以,即,又有意义,需,即,所以,t∈[1,2],.所以m的取值范围为.【试题分析】(1)将m=-1代入f(x)中,根据,解不等式可得f(x)的定义域;(2)函数g(x)=f(x)+2x lg2有且仅有一个零点,则可得方程m(2x)2+2•2x-1=0有且仅有一个根,然后求出m的范围;(3)由条件可得f(x)max-f(x)min≤1对任意t∈[1,2]恒成立,求出f(x)的最大值和最小值代入该式即可得到m 的范围.本题考查了函数定义域的求法,函数的零点判定定理和不等式恒成立问题,考查了分类讨论思想和转化思想,属难题.。
陕西省榆林二中2017-2018学年高一下学期中考试数学试题(无答案)
榆林市二中2019--2019学年第二学期期中考试高一年级数学试题考试时间: 120 分钟 满分: 150 分一、选择题:在每小题给出的四个选项中,只有一项符合题目要求.(本题共12小题,每小题5分,共60分)1.把-1485°转化为α+k·360°(0°≤α<360°,k ∈Z )的形式是( )A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°2.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A.()-1,15B.()-∞,12∪()1,+∞C .(-∞,1)∪()15,+∞ D .(-∞,-1)∪()12,+∞3.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=04.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4 B.21313 C.52613 D.72010 5.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是 ( )A .x 2+y 2=2B .x 2+y 2= 2C .x 2+y 2=1D .x 2+y 2=46.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为( )A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=07.函数f (x )=3sin()x 2-π4,x ∈R 的最小正周期为( )A.π2B .πC .2πD .4π8.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法:①OP 的中点坐标为()12,1,32;②点P 关于x 轴对称的点的坐标为(-1,-2,-3); ③点P 关于坐标原点对称的点的坐标为(1,2,-3); ④点P 关于xOy 平面对称的点的坐标为(1,2,-3). 其中正确说法的个数是( ) A .2 B .3 C .4 D .1 9.为了得到函数y =sin(2x -π3)的图像,只需把函数y =sin(2x +π6)的图像( )A .向左平移π4个长度单位B .向右平移π4个长度单位 C .向左平移π2个长度单位 D .向右平移π2个长度单位 10.若sin α<0且tan α>0,则α是 ( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角11.若扇形的面积为3π8,半径为1,则扇形的圆心角为( ) A.3π2 B.3π4 C.3π8 D.3π1612.已知cos α=-513,且α为第三象限角,求tan α( )A.1213 B .-1213 C.125 D .-125二、填空题:把答案填写在相应题号后的横线上(本大题共4小题,每小题5分,共20分)13.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是________. 14.已知sin()5π2+α=15,那么cos α=________.15.tan 300°+sin 450°的值为 = . 16.直线y =2x +1被圆x 2+y 2=1截得的弦长为________.三、解答题:解答应写出必要的文字说明、证明过程和重要的演算步骤(本题共6小题,共70分)17. (10分) 已知角α的终边上有一点的坐标是P (3a ,4a ),其中a ≠0,求sin α,cosα.18.(12分)化简:(1)sin(-1 071°)sin 99°+sin(-171°)sin(-261°)+ tan(-1 089°)tan(-540°)(2)tan (π-α)cos (2π-α)sin ⎝⎛⎭⎪⎫-α+3π2cos (-α-π)sin (-π-α)19.(12分)求过点(2,3)且与两坐标轴的交点到原点的距离相等的直线方程. 20.(12分)已知函数f (x )=a sin()2ωx +π6+a2+b ()x ∈R ,a >0,ω>0的最小正周期为π,函数f (x )的最大值是74,最小值是34.(1)求ω,a ,b 的值; (2)求出f (x )的单调递增区间.21.(12分)已知sin θ=45,π2<θ<π. (1)求tan θ的值;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.22.(12分)) 过原点O 的圆C ,与x 轴相交于点A (4,0),与y 轴相交于点B (0,2).(1)求圆C 的标准方程;(2)直线L 过B 点与圆C 相切,求直线L 的方程,并化为一般式.。
江苏省徐州市2012―2013学年度高一第一学期期中考试数学试题
高一年级数学试卷一、填空题:本大题共14小题,每小题5分,共70分1.设集合}4,2,1{=A ,}6,2{=B ,则B A 等于 2. 已知a 是实数,若集合{x | ax =1}是任何集合的子集,则a 的值是 3.函数)13lg(1132++-+=x xx y 的定义域为4.幂函数的图象过点(4,2),则它的单调递增区间是 5.已知函数24)12(x x f =+,则=)5(f6.已知函数2()48f x x kx =--在(5,+∞)上为单调递增函数,则实数k 的取值范围是 7.已知a =log5,b =log3,c =log 32,d =2,则a,b,c,d 从小到大排列为 8.若⎩⎨⎧∈+-∈+=]2,1[62]1,1[7)(x x x x x f ,则()f x 的最大值为9. 函数24x x y -=的单调递减区间为10.定义在R 上的奇函数)(x f ,当0<x 时,11)(+=x x f ,则)21(f =11. 方程3log 3=+x x 的解在区间)1,(+n n 内,*n N ∈,则n =11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为13. 设函数4421lg )(a x f x x ++=,R a ∈.如果不等式4lg )1()(->x x f 在区间]3,1[上有解,则实数a 的取值范围是 .14.设函数()f x =x |x |+b x +c ,给出下列四个命题: ①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根其中正确的命题是 (填序号)二、解答题:本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分14分)已知集合2514Ax yx x ,集合)}127lg(|{2---==x x y x B ,集合}121|{-≤≤+=m x m x C . (1)求A B ;(2)若A C A = ,求实数m 的取值范围.16.(本小题满分14分)(1)若2121-+xx =3, 求32222323++++--x x x x 的值;(2)计算32221)827()25.0(8log )31(⨯-+---的值.17.(本小题满分14分)有甲、乙两种商品,经营销售这两种商品所得的利润依次为M 万元和N 万元,它们与投入资金x 万元的关系可由经验公式给出:M=4x ,≥1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?18.(本小题满分16分)设函数21()12xxaf x⋅-=+是实数集R上的奇函数.(1)求实数a的值;(2)判断()f x在R上的单调性并加以证明;(3)求函数()f x的值域.19.(本小题满分16分)函数y=f(x)对于任意正实数x、y,都有f(xy)=f(x)·f(y),当x>1时,0<f(x)<1,且f(2)=19.(1)求证:1f(x)f()=1(x>0)x;(2)判断f(x)在(0,+∞)的单调性;(3)若f(m)=3,求正实数m的值.20. (本小题满分16分) 已知函数)(||)(a x x x f -=,a 为实数. (1)当1=a 时,判断函数)(x f 的奇偶性,并说明理由; (2)当0≤a 时,指出函数)(x f 的单调区间(不要过程);(3)是否存在实数a )0(<a ,使得)(x f 在闭区间]21,1[-上的最大值为2.若存在,求出a 的值;若不存在,请说明理由.高一年级数学试卷答案1.}6,2,1{2.03. )1,31(- 4. (0,+∞) 5.16 6. (-∞,40] 7. a<b<c<d 8.10 9. [2,4] 10.-2 11.2 12. [57,43] 13. 41>a14. ①②③ 二、解答题15、解:(1)∵),7[]2,(+∞--∞= A ,………………………………………………2分)3,4(--=B , ………………………………………………4分∴)3,4(--=B A .… ……………………………………………6分(2) ∵A C A = ∴A C ⊆.………………………………………………8分①φ=C ,112+<-m m ,∴2<m .……………………………………10分 ②φ≠C ,则⎩⎨⎧-≤-≥2122m m 或⎩⎨⎧≥+≥712m m .∴6≥m . ………………………………………………12分综上,2<m 或6≥m …………………………14分16、答案:52, 29 17、【解析】设投入乙种商品的资金为x 万元,则投入甲种商品的资金为(8-x)万元, …………2分共获利润1(8)4y x =- …………………………………………………6分t = (0≤t ,则x=t 2+1,∴22131337(7)()444216y t t t =-+=--+…………………………………………………10分 故当t=32时,可获最大利润 3716万元. ……………………………………………………12分此时,投入乙种商品的资金为134万元,投入甲种商品的资金为194万元. …………………………14分18、解:(1))(x f 是R 上的奇函数∴()f x -=()f x =-,即21211212x x x x a a --⋅-⋅-=-++,即2121212x xx xa a --⋅=++ 即(1)(21)0xa -+= ∴1=a或者 )(x f 是R 上的奇函数 .0)0()0()0(=∴-=-∴f f f.0211200=+-⋅∴a ,解得1=a ,然后经检验满足要求 。
解析版20122013学年江苏省徐州市四年级下期末数学试卷
2012-2013 学年江苏省徐州市四年级(下)期末数学试卷一、直接写出得数( 10 分)1.(10.00 分)直接写出得数210× 3=60× 800=20×140=750÷ 25=102= 80×500=300÷60=990÷30=10×530=3a+2a=二、列竖式计算( 8 分)2.(8.00 分)列竖式计算.28×782=770×70=48×509=900÷ 34=三、按运算序次计算( 9 分)3.(9.00 分)按运算序次计算16×75﹣ 315÷21 420÷( 630÷15×2)450÷[ 25×( 400﹣397) ]四、用简单方法计算( 9 分)4.(9.00 分)用简单方法计算103× 33132×18﹣18×3225× 7× 4五、填空( 20 分)5.(3.00 分)在横线里填上“升”或“毫升”,在横线上填上适合的数.( 1)一辆汽车的邮箱能装50汽油.( 2)把 3 升水倒入 500 毫升的量杯内,可以倒杯.( 3)在右侧这个瓶子里装满水,大体有升.6.(2.00 分)用、、三张卡片白三位数,一共能摆出个不一样样的三位数,此中,既是 2 的倍数,又是 5 的倍数的有.7.(2.00 分) 40 的因数有,在这些因数中,素数有.8.( 3.00 分)如图,等边三角形的一条高把它分成两个三角形,此中一个三角形三个内角的度数分别是°、°和°.9.( 3.00 分)李庄小学有男生 a 人,女生比男生少20 人.女生有人,全校有学生人.假如 a=325,全校有学生人.10.( 2.00 分)依据第一道算式的得数,写出下边两道算式得数.111111111÷ 9=12345679333333333÷ 27=;777777777÷ 63=.11.( 2.00 分)如图,三角形绕点按时针方向旋转°.12.( 2.00 分)甲、乙两辆汽车分别从两地同时开出,在途中相遇(如图).( 1)车的速度快一些.( 2)假如甲车每小时行 a 千米,乙车每小时行 b 千米,两地间的行程是千米.( 3)两车相遇时,甲车比乙车多行了千米.六、按要求画图( 4 分)13.( 4.00 分)( 1)用两个完满相同的梯形拼出不一样样的轴对称图形,画在方格图中.(最少拼出两种)( 2)画出拼出的图形的对称轴.七、选择正确的答案,在它右侧的□里画“√”14.( 2.00 分)有 3 厘米、 4 厘米、 6 厘米、 7 厘米长的小棒各一根,选择此中的三根小棒围成一个三角形,一共可以围成多少种三角形?()A.4 种 B.无数种C.3 种15.( 2.00 分) 2 的倍数都是如何的数?下边哪句判断是错误的?()A.都是合数B.都是偶数C.可能是合数,也可能是素数16.( 2.00 分)当 x 是什么数时, x2> 2x?()A.x 小于 2 时B.x 等于 2 时C. x 大于 2 时17.( 2.00 分)甲数是乙数的倍数,丙数是乙数的因数,那么甲数与丙数有什么关系?()A.甲数是丙数的倍数B.丙数是甲数的倍数C.甲数是丙数的因数18.( 2.00 分) 5 辆卡车运货 a 吨, 10 辆这样的卡车能运货多少吨?()A.2 吨 B.a 吨 C.2a 吨19.( 2.00 分)两个相同的长方形,第一个长方形的长减少 3 米,宽不变;第二个长方形的宽减少 3 米,长不变.变化后哪个长方形的面积大一些?()A.第一个面积大一些B.第二个面积大一些C.两个面积相同大20.( 2.00 分)哪道算式的得数与 45×99+45 相等?()A.45×( 100﹣ 1) B. 45×100﹣ 45C.45×( 99+1)21.( 2.00 分)把一个长方形木框拉成一个平行四边形,长方形和平行四边形有什么关系?()A.平行四边形的高等于长方形的宽B.平行四边形的周长等于长方形的周长八、解决实诘问题( 24 分)22.(5.00 分)有两块长方形菜地(如图),白菜地的面积比黄瓜地的面积多多少平方米?23.( 5.00 分)工程队铺一条 600 米长的水管,第一周铺了 5 天,均匀每日铺 64 米,第二周计划每日铺 70 米,剩下的水管还要几日铺完?(先整理数据,再解答)水管全长第一周每日铺米铺天米第二周每日铺米铺天24.(5.00 分)五年级一班的男生人数是偶数,在40~50 之间.假如每 3 人一组进行实践活动,则所有分完,没有节余.这个班可能有多少人?也可能有多少人?(先填写答案,再写出你是如何想的)答:这个班可能有人,也可能有人.我是这样想的:.25.(5.00 分)王校长准备到文具店买55 支钢笔将给“三勤学生”.他到两家文具店发现每支钢笔的售价都是15 元,但每家文具店的促销方法不一样样:小浣熊百货:买10 支送 1 支;Q 店:一次购买超出10 支,每支返还 2 元;王老师到哪家文具店买比较合算?(经过计算回答)26.( 5.00 分)下边折线统计图记录了王老师清晨锻炼的状况.( 1)王老师早饭锻炼一共用去分钟;( 2)王老师在距离家米处往回返;( 3)王老师去的时候速度快一些,还是返回时速度快一些?.2012-2013 学年江苏省徐州市四年级(下)期末数学试卷参照答案与试题解析一、直接写出得数( 10 分)1.(10.00 分)直接写出得数210× 3= 60×800= 20×140= 750÷25=102=80×500= 300÷60= 990÷ 30= 10×530=3a+2a=【解答】解:210× 3=630××÷102=100 60 800=4800020 140=2800750 25=3080×500=40000300÷60=5990÷30=3310× 530=53003a+2a=5a二、列竖式计算( 8 分)2.(8.00 分)列竖式计算.28×782=770× 70=48×509=900÷ 34=【解答】解: 28×782=21896770× 70=5390048×509=24432900÷ 34=26⋯ 16三、按运算序算( 9 分)3.(9.00 分)按运算序算420÷( 630÷15×2)450÷[ 25×( 400 397) ] 16×75315÷21【解答】解:(1)16×75 315÷21=120015=1185;(2) 420÷( 630÷15×2)=420÷( 42×2)=420÷84=5;(3) 450÷[ 25×( 400 397)]=450÷[ 25× 3]=450÷75=6.四、用简单方法计算( 9 分)4.(9.00 分)用简单方法计算132×18﹣ 18×32 25×7×4103× 33【解答】解:① 103× 33=(100+3)× 33=100×33+3×33=3300+99=3399②132×18﹣ 18×32=18×( 132﹣32)=18× 100=1800③25×7×4=25× 4× 7=100×7=700五、填空( 20 分)5.(3.00 分)在横线里填上“升”或“毫升”,在横线上填上适合的数.( 1)一辆汽车的邮箱能装50升汽油.( 2)把 3 升水倒入 500 毫升的量杯内,可以倒 6 杯.( 3)在右侧这个瓶子里装满水,大体有升.【解答】解:(1)一辆汽车的邮箱能装50 升汽油.( 2)把 3 升水倒入 500 毫升的量杯内,可以倒 6 杯.(3)在右侧这个瓶子里装满水,大体有 2.4 升;故答案为:升, 6,.6.(2.00 分)用、、三张卡片白三位数,一共能摆出4个不一样样的三位数,此中,既是 2 的倍数,又是 5 的倍数的有 230、 320.【解答】解:用 2、3、 0 三张卡片一共能摆 4 个不一样样的三位数,即230、203、320、 302;此中,既是 2 的倍数,又是 5 的倍数的有 230、320.答:一共能摆出 4 个不一样样的三位数,此中,既是 2 的倍数,又是5的倍数的有230、 320.故答案为: 4,230、320.7.(2.00 分)40 的因数有1、2、4、5、8、10、20、40,在这些因数中,素数有2、5.【解答】解: 40 的因数有1、 2、 4、 5、 8、 10、20、40.这些因数中 2、5 是素数.故答案为: 1、2、4、 5、 8、 10、20、40; 2、 5.8.( 3.00 分)如图,等边三角形的一条高把它分成两个三角形,此中一个三角形三个内角的度数分别是30°、60°和90°.第9页(共 17页)【解答】解:如图,等边三角形的一条高把它分成两个三角形,此中一个三角形三个内角的度数分别是 30°、60°和 90°;故答案为: 30, 60,90.9.(3.00 分)李庄小学有男生a 人,女生比男生少20 人.女生有a﹣20人,全校有学生2a﹣ 20人.假如a=325,全校有学生630人.【解答】解:女生: a﹣20(人)全校: a+a﹣20=2a﹣20(人)当 a=325 时2a﹣20=325×2﹣20=630(人)答:女生有 a﹣20 人,全校有 2a﹣20 人,假如 a=325,全校有学生 630 人.故答案为: a﹣ 20,2a﹣20, 630.10.( 2.00 分)依据第一道算式的得数,写出下边两道算式得数.111111111÷ 9=12345679333333333÷ 27= 12345679;777777777÷ 63= 12345679.【解答】解:因为: 111111111÷9=12345679,因此: 333333333÷ 27=12345679777777777÷ 63=12345679故答案为: 12345679,12345679.11.( 2.00 分)如图,三角形绕A点按顺时针方向旋转90°.【解答】解:如图,三角形绕 A 点按顺时针方向旋转90°.故答案为: A,顺, 90.12.( 2.00 分)甲、乙两辆汽车分别从两地同时开出,在途中相遇(如图).(1)甲车的速度快一些.(2)假如甲车每小时行 a 千米,乙车每小时行 b 千米,两地间的行程是(a+b)×3 千米.(3)两车相遇时,甲车比乙车多行了(a﹣b)× 3千米.【解答】解:( 1)甲车到相遇地点的距离比乙车到相遇地点的距离长,依据时间必定,速度和行程成正比可得:甲车速度快一些.(2)(a+b)× 3(3)(a﹣b)× 3故答案为:甲,(a+b)× 3,(a﹣b)× 3.六、按要求画图( 4 分)13.( 4.00 分)( 1)用两个完满相同的梯形拼出不一样样的轴对称图形,画在方格图中.(最少拼出两种)( 2)画出拼出的图形的对称轴.【解答】解:由解析可得:七、选择正确的答案,在它右侧的□里画“√”14.( 2.00 分)有 3 厘米、 4 厘米、 6 厘米、 7 厘米长的小棒各一根,选择此中的三根小棒围成一个三角形,一共可以围成多少种三角形?()A.4 种 B.无数种C.3 种【解答】解:①因为 3+4>6,因此采纳 3 厘米、 4 厘米和 6 厘米的三根小棒就可以围成一个三角形;②因为 3+6>7,因此采纳 3 厘米、6 厘米和 7 厘米的三根小棒就可以围成一个三角形;③因为 4+6>7,因此采纳 4 厘米、6 厘米和 7 厘米的三根小棒就可以围成一个三角形;④因为 4+3=7,因此采纳 4 厘米、 3 厘米和 7 厘米的三根小棒不可以围成一个三角形;一共可以围成 3 种三角形;应选: C.15.( 2.00 分) 2 的倍数都是如何的数?下边哪句判断是错误的?()A.都是合数B.都是偶数C.可能是合数,也可能是素数【解答】解: A:因为 2 是最小的质数.2 也是 2 最小的倍数.因此 2 的倍数都是合数是错误的.B:依据偶数的定义可知,一个数如是 2 的倍数,即这个数能被 2 整除,则这个数必定是偶数.C:因为 2 是最小的质数,4是 2的倍数 4是合数.因此是 2 的倍数的数可能是合数,也可能是素数的说法正确.应选: A.16.( 2.00 分)当 x 是什么数时, x2> 2x?()A.x 小于 2 时 B.x 等于 2 时 C. x 大于 2 时【解答】解: A、假设 x=1 时, x2 2 ,×,因为<,因此2<2x,=1 =12x=21=212x不切合题意;B、x=2 时, x2=22=4, 2x=2×2=4,因为 4=4,因此 x2=2x,不切合题意;、假设x=3时, 2 2 ,×,因为>,因此2>2x,切合题意.C x =3 =92x=23=696x应选: C.17.( 2.00 分)甲数是乙数的倍数,丙数是乙数的因数,那么甲数与丙数有什么关系?()A.甲数是丙数的倍数B.丙数是甲数的倍数C.甲数是丙数的因数【解答】解:设甲、乙、丙分别为A、B、C.因为甲数是乙数的倍数,则有A=xB;丙数是乙数的因数,则有B=yC;故 A=(xy)C,因此甲数是丙数的倍数.应选: A.18.( 2.00 分) 5 辆卡车运货 a 吨, 10 辆这样的卡车能运货多少吨?()A.2 吨 B.a 吨 C.2a 吨【解答】解: 10÷5× a=2a(吨).答: 10 辆这样的卡车能运货2a 吨.应选: C.19.( 2.00 分)两个相同的长方形,第一个长方形的长减少 3 米,宽不变;第二个长方形的宽减少 3 米,长不变.变化后哪个长方形的面积大一些?()A.第一个面积大一些B.第二个面积大一些C.两个面积相同大【解答】解:设这个长方形的长是 a 米,宽是 b 米.而且.第一个长方形变化后的面积是:(a﹣ 3)× b=ab﹣ 3b第二个长方形变化后的面积是:a(b﹣3)=ab﹣ 3a.因为 a>b,因此 3a> 3b.故 ab﹣ 3b>ab﹣3a.应选: A.20.( 2.00 分)哪道算式的得数与 45×99+45 相等?()A.45×( 100﹣ 1) B. 45×100﹣ 45C.45×( 99+1)【解答】解: 45×99+45=45×( 99+1)(与选项 C 相同)=45× 100应选: C.21.( 2.00 分)把一个长方形木框拉成一个平行四边形,长方形和平行四边形有什么关系?()A.平行四边形的高等于长方形的宽B.平行四边形的周长等于长方形的周长【解答】解:把一个长方形木框拉成一个平行四边形,面积和本来比较小了,周长不变;应选: B.八、解决实诘问题( 24 分)22.(5.00 分)有两块长方形菜地(如图),白菜地的面积比黄瓜地的面积多多少平方米?【解答】解: 35×20﹣35×12=35×( 20﹣ 12)=35× 8=280(平方米)答:白菜地的面积比黄瓜地的面积多280 平方米.23.( 5.00 分)工程队铺一条 600 米长的水管,第一周铺了 5 天,均匀每日铺 64 米,第二周计划每日铺 70 米,剩下的水管还要几日铺完?(先整理数据,再解答)水管全长第一周每日铺64米铺5天600 米第二周每日铺70米铺4天【解答】解:水管全第一周每日64米5天600米第二周每日70米4天(600 64× 5)÷ 70=(600 320)÷ 70=280÷70=4(天);答;剩下的水管要 4 天好.24.(5.00 分)五年一班的男生人数是偶数,在40~50 之.假如每 3 人一行践活,所有分完,没有节余.个班可能有多少人?也可能有多少人?(先填写答案,再写出你是怎想的)答:个班可能有42人,也可能有48人.我是想的:用 3 分乘以自然数1、2、3、4⋯14、15、16,从中找出切合要求的倍数即可..【解答】解: 40~50 之 3 的倍数有: 42、45、 48,又因五年一班的男生人数是偶数,因此个班可能有 42 人,也可能有 48 人.我是想的:用 3 分乘以自然数 1、2、3、4⋯14、15、16,从中找出切合要求的倍数即可.故答案: 42;48;用 3 分乘以自然数 1、2、3、4⋯14、15、16,从中找出切合要求的倍数即可.25.(5.00 分)王校准到文具店55 支笔将“三勤学生”.他到两家文具店每支笔的售价都是15 元,但每家文具店的促方法不一样样:小浣熊百:10 支送 1 支;Q 店:一次超10 支,每支返 2 元;王老到哪家文具店比合算?(通算回答)【解答】解:①小浣熊百:10 支送 1 支; 50 支送 5 支,花: 50×15=750(元),②Q 店: 55×15﹣55×2 =825﹣110 =715(元)715< 750答:王老师到 Q 店买比较合算.26.( 5.00 分)下边折线统计图记录了王老师清晨锻炼的状况.(1)王老师早饭锻炼一共用去30 分钟;(2)王老师在距离家 1500 米处往回返;(3)王老师去的时候速度快一些,还是返回时速度快一些?返回时多少快.【解答】解:(1)答:王老师清晨锻炼一共用去 30 分钟.(2)答:王老师在距离家 1500 米处往回返.(3) 1500÷ 20=75(米/ 分);1500÷10=150(米 / 分);答:返回时速度快.故答案为: 30 分钟; 1500 米;返回时速度快.。
数列周练三
2014届一轮复习数学试题选编:等差与等比数列综合填空题1 .(江苏省扬州市2013届高三下学期5月考前适应性考试数学(理)试题)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列,则{}n a 的通项公式是______.2 .(常州市2013届高三教学期末调研测试数学试题)已知数列{}n a 满足143a =,()*11226n n a n N a +-=∈+,则11ni ia =∑=______. 3 .(江苏省徐州市2013届高三上学期模底考试数学试题)已知各项均为正数的等比数列{a n }的前n 项和为S n ,若a 3=18,S 3=26,则{a n }的公比q =________.4 .(扬州、南通、泰州、宿迁四市2013届高三第二次调研测试数学试卷)设数列{a n }满足:()()*3118220()n n n n a a a a a n ++=---=∈N ,,则a 1的值大于20的概率为____.5 .(苏北老四所县中2013届高三新学期调研考试)已知数列}{na 满足122n n aqa q +=+-(q 为常数,||1q <),若3456,,,a a a a ∈}{18,6,2,6,30---,则1a = ▲ .6 .(镇江市2013届高三上学期期末考试数学试题)观察下列等式:31×2×12=1-122, 31×2×12+42×3×12=1-13×2, 31×2×12+42×3×12+53×4×12=1-14×2,,由以上等式推测到一个一般的结论:对于n ∈N *, 31×2×12+42×3×122++n +2n n +×12n =______. 7 .(江苏省扬州市2013届高三上学期期中调研测试数学试题)已知等比数列{}n a 的首项是1,公比为2,等差数列{}n b 的首项是1,公差为1,把{}n b 中的各项按照如下规则依次插入到{}n a 的每相邻两项之间,构成新数列}{n c :1122334,,,,,,,a b a b b a b 564,,b b a ,,即在n a 和1n a +两项之间依次插入{}n b 中n 个项,则2013c =____.8 .(江苏省淮安市2013届高三上学期第一次调研测试数学试题)若数列{}n a 是各项均为正数的等比数列,则当n b =时,数列{}n b 也是等比数列;类比上述性质,若数列{}n c 是等差数列,则当n d =_______时,数列{}n d 也是等差数列.9 .(江苏省无锡市2013届高三上学期期中考试数学试题)已知等差数列{}n a 满足:21-=a ,02=a .若将1a ,4a ,5a 都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为___________.10.(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)过点(1 0)P -,作曲线C :e x y =的切线,切点为1T ,设1T 在x 轴上的投影是点1H ,过点1H 再作曲线C 的切线,切点为2T ,设2T 在x 轴上的投影是点2H ,,依次下去,得到第1n +()n ∈N 个切点1n T +.则点1n T +的坐标为______.11.(江苏省2013届高三高考模拟卷(二)(数学) )已知数列{a n }满足3a n +1+a n =4(n ∈N*),且a 1=9,其前n 项之和为S n ,则满足不等式|S n -n -6|<1125的最小整数n 是______. 解答题12.(江苏省无锡市2013届高三上学期期中考试数学试题)数列{}n a 是公比大于1的等比数列,62=a ,263=S . (1)求数列{}n a 的通项公式;(2)在n a 与1+n a 之间插入n 个数,使这2+n 个数组成公差为n d 的等差数列.设第n 个等差数列的前n 项和是n A .求关于n 的多项式)(n g ,使得n n d n g A )(=对任意+∈N n 恒成立;(3)对于(2)中的数列1d ,2d ,3d ,⋅⋅⋅,n d ,⋅⋅⋅,这个数列中是否存在不同的三项m d ,k d ,p d (其中正整数m ,k ,p 成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.13.(江苏省南京市四区县2013届高三12月联考数学试题 )设等差数列}{n a 的公差0≠d ,数列}{n b 为等比数列,若a b a ==11,33b a =,57b a = (1)求数列}{n b 的公比q ;(2)若*,,N m n b a m n ∈=,求n 与m 之间的关系;(3)将数列}{n a ,}{n b 中的公共项按由小到大的顺序排列组成一个新的数列}{n c ,是否存在正整数r q p ,,)(r q p <<使得r q p ,,和r c q c p c r q p +++,,均成等差数列?说明理由.14.(江苏省盐城市2013届高三10月摸底考试数学试题)已知数列{}n a 的前n 项和为n S , 且1517a a +=.(1)若{}n a 为等差数列, 且856S =.①求该等差数列的公差d ;②设数列{}n b 满足3nn n b a =⋅,则当n 为何值时,n b 最大?请说明理由; (2)若{}n a 还同时满足: ①{}n a 为等比数列;②2416a a =;③对任意的正整数k ,存在自然数m ,使得2k S +、k S 、m S 依次成等差数列,试求数列{}n a 的通项公式.15.(常州市2013届高三教学期末调研测试数学试题)已知数列{}n a 是等差数列,12315a a a ++=,数列{}n b 是等比数列,12327b b b =.(1)若1243,a b a b ==.求数列{}n a 和{}n b 的通项公式;(2)若112233,,a b a b a b +++是正整数且成等比数列,求3a 的最大值.16.(江苏省连云港市2013届高三上学期摸底考试(数学)(选修历史))已知数列*122{}:1,(0),{}()n n n n n a a a a a b b a a n N +==>=∈满足数列满足 (1)若{}n a 是等差数列,且345,{}n b a a =求的值及的通项公式; (2)若{}n a 的等比数列,求{}n b 的前n 项和.n S17.(南京市、盐城市2013届高三年级第一次模拟考试数学试题)若数列{}n a 是首项为612t -,公差为6的等差数列;数列{}n b 的前n 项和为3n n S t =-.(1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n b 是等比数列, 试证明: 对于任意的(,1)n n N n ∈≥, 均存在正整数n c , 使得1n n c b a +=, 并求数列{}n c 的前n 项和n T ;(3)设数列{}n d 满足n n n d a b =⋅, 且{}n d 中不存在这样的项k d , 使得“1k k d d -<与1k k d d +<”同时成立(其中2≥k , *∈N k ), 试求实数的取值范围.18.(江苏省徐州市2013届高三上学期模底考试数学试题)设()2012()k k k f n c c n c n c n k =+++⋅⋅⋅+∈N ,其中012,,,,k c c c c ⋅⋅⋅为非零常数, 数列{a n }的首项a 1=1,前n 项和为S n ,对于任意的正整数n ,a n +S n =()k f n . (1)若k =0,求证:数列{a n }是等比数列;(2)试确定所有的自然数k ,使得数列{a n }能成等差数列.19.(江苏省徐州市2013届高三考前模拟数学试题)已知数列{}n a ,其前n 项和为n S .⑴若对任意的n *∈N ,2-12+12,,n n n a a a 组成公差为4的等差数列,且1=1a ,220132nS n=,求n 的值;⑵若数列{+}nnS a a 是公比为(1)q q ≠-的等比数列,a 为常数,求证:数列{}n a 为等比数列的充要条件为1=1+q a.20.(江苏省淮安市2013届高三上学期第一次调研测试数学试题)已知各项均为正数的数列{}n a 前n 项的和为n S ,数列{}2n a 的前n 项的和为n T ,且()2*234,n n S T n N -+=∈.⑴证明数列{}n a 是等比数列,并写出通项公式; ⑵若20n n S T λ-<对*n N ∈恒成立,求λ的最小值; ⑶若12,2,2x y n n n a a a ++成等差数列,求正整数,x y 的值.21.(江苏省泰兴市2013届高三上学期期中调研考试数学试题)已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+,其中2n ≥,*n ∈N . (1)求证;数列{}n a 为等差数列,并求其通项公式;(2)设n n n a b -⋅=2,n T 为数列{}n b 的前n 项和,求使n T >2的n 的取值范围.(3)设λλ(2)1(41n an n n c ⋅-+=-为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n c c >+1成立.22.(江苏省2013届高三高考压轴数学试题)已知等差数列{a n }的首项a 1为a (,0)a R a ∈≠.设数列的前n 项和为S n ,且对任意正整数n 都有24121n n a n a n -=-. (1) 求数列{a n }的通项公式及S n ;(2) 是否存在正整数n 和k ,使得S n , S n +1 , S n +k 成等比数列?若存在,求出n 和k 的值;若不存在,请说明理由.23.(2013江苏高考数学)本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈);(2)若}{n b 是等差数列,证明:0=c .24.(江苏省南京市四校2013届高三上学期期中联考数学试题)已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .25.(扬州市2012-2013学年度第一学期期末检测高三数学试题)已知数列{}n a 的前n 项和为n S .(Ⅰ)若数列{}n a 是等比数列,满足23132a a a =+, 23+a 是2a ,4a 的等差中项,求数列{}n a 的通项公式;(Ⅱ)是否存在等差数列{}n a ,使对任意*n N ∈都有22(1)n n a S n n ⋅=+?若存在,请求出所有满足条件的等差数列;若不存在,请说明理由.26.(苏州市2012-2013学年度第一学期高三期末考试数学试卷)设数列{}n a 的前n 项和为n S ,满足21n n a S An Bn +=++(0A ≠).(1)若132a =,294a =,求证数列{}n a n -是等比数列,并求数列{}n a 的通项公式; (2)已知数列{}n a 是等差数列,求1B A-的值.27.(2012年江苏理)已知各项均为正数的两个数列{}n a 和{}n b 满足:221nn n n n b a b a a ++=+,*N n ∈,(1)设n n n a b b +=+11,*N n ∈,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列; (2)设nnn a b b ∙=+21,*N n ∈,且{}n a 是等比数列,求1a 和1b 的值.。
江苏省徐州市五县二区2013-2014学年高一期中考试数学试卷(带解析)
江苏省徐州市五县二区2013-2014学年高一期中考试数学试卷(带解析)1.化简sin20°cos40°+cos20°sin 40°= .【解析】试题分析:根据sin cos cos sin sin()αβαβαβ+=+得:sin20°cos40°+cos20°sin 40°=.23)4020sin(=+o o .考点:两角和的正弦公式2.已知数列{a n }的通项公式为a n = (-1)nn ,则a 4=_____. 【答案】4 【解析】试题分析:因为a n = (-1)nn ,所以4 4.a =考点:数列通项公式 3.在ABC ∆中,sin cos A Ba b=,则B ∠=____ __ 【答案】045 【解析】试题分析:由正弦定理得:sin cos A B a b =sin cos tan 1sin sin A BB A B⇒=⇒=,因为(0,)B π∈,所以B ∠=045. 考点:正弦定理4.数列{}n a 中, *115,2,n n a a a n N +==+∈,那么此数列的前10项和10S = . 【答案】140 【解析】 试题分析:由21+=+n n a a 得,21=-+n n a a 所以数列{}n a 是以51=a 为首项,2为公差的等差数列,因此.14029102151010=⨯⨯⨯+⨯=S .考点:等差数列定义5.ABC ∆的三内角,,A B C 成等差数列,且40A C ︒-=,则A = . 【答案】080 【解析】试题分析:因为ABC ∆的三内角,,A B C 成等差数列,所以.120,60oo =+=C A B 又40A C ︒-=,所以A =080.考点:三内角成等差数列6.在△ABC 中,A=60°,B=75°,C =a=_________.【答案】【解析】试题分析: 由正弦定理得:,sin sin a cA C=而180607545,C =--=所以,sin 60sin 45a =a=考点:正弦定理.7.已知-7,1a ,2a ,-1四个实数成等差数列,-4,1b ,2b ,3b ,-1五个实数成等 比数列,则212b a a -= . 【答案】-1 【解析】试题分析:因为-7,1a ,2a ,-1四个实数成等差数列,所以211(7)2,3a a ----==因为-4,1b ,2b ,3b ,-1五个实数成等比数列,所以22(4)(1)4,b =--=又20,b <所以22,b =-因此212a ab -=21.2=-- 考点:等差数列及等比数列基本量 8.已知,αβ为锐角,41cos ,tan(),53ααβ=-=-则tan β= . 【答案】139【解析】试题分析:因为α为锐角,4cos ,5α=所以3t a n .4α=因此31tan tan()1343tan tan(()).1tan tan()9143ααββααβααβ+--=--===+--⋅.考点:两角差的正切公式9.设等差数列}{n a 的前n 项和为48,8,20n S S S ==若,则9101112a a a a +++= . 【答案】16 【解析】试题分析:由等差数列性质知:484128,,S S S S S --也成等差,所以1288,12,S S -成等差,即12816S S -=,因此910111212816.a a a a S S +++=-= 考点:等差数列性质10.在等式cos()(1)1=★的括号中,填写一个锐角,使得等式成立,这个锐角是 . 【答案】040 【解析】 试题分析:因为sin10cos103sin102sin 402sin 40111cos10sin80cos 40+=====, 所以这个锐角是040.考点:三角函数式化简11.设等差数列{}n a 的前n 项和为n S ,已知67S S <,且78S S >,则下列结论中正确的有 .(填序号) ①此数列的公差0d <; ②96S S <;③7a 是数列{}n a 的最大项; ④7S 是数列{}n S 中的最小项. 【答案】①②【解析】试题分析:因为67S S <,78S S >,所以780,0,0.a a d ><<1a 是数列{}n a 的最大项;7S 是所有正项的和,所以7S 数列{}n S 中的最大项.因为96789830,S S a a a a -=++=< 所以96S S <.考点:等差数列性质12.某货轮在航行中不幸遇险,发出呼救信号,我海军护卫舰在A 处获悉后,测得该货轮在北偏东45º方向距离为10海里的C 处,并测得货轮正沿北偏东105º的方向、以每小时9海里的速度向附近的小岛靠拢。
北京市2023-2024学年高一下学期期中考试数学试卷含答案
北京市2023-2024学年高一(下)期中数学试卷一、选择题(每题5分,共50分)(答案在最后)1.若复数2i z =-+,则复数z 在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】运用复数的几何意义求解即可.【详解】复数2i z =-+,则复数z 在复平面内对应的点(2,1)-位于第二象限.故选:B .2.已知向量(2,1)a = ,(4,)b x = ,且a b∥,则x 的值为()A.-2B.2C.-8D.8【答案】B 【解析】【分析】运用平面向量共线的坐标公式计算即可.【详解】(2,1)a =rQ ,(4,)b x =,且a b∥,240x ∴-=,即2x =.故选:B .3.在三角形ABC 中,角,,A B C 对应的边分别为,,a b c ,若0120A ∠=,2a =,3b =,则B =()A.3πB.56π C.566ππ或 D.6π【答案】D 【解析】【详解】试题分析:由于0120A ∠=为钝角,所以只有一解.由正弦定理得:21sin sin1203sin 2B B =⇒=,选D.考点:解三角形.4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的体积为()A.B.πC.D.2π【答案】A 【解析】【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,即可求解.【详解】由题知,如图,PAB 为圆锥的轴截面,边长均为2,则圆锥的高322PO =⨯=底面半径1212r =⨯=,故圆锥体积2211ππ1π333V r PO =⋅=⨯=.故选:A5.已知P 为ABC 所在平面内一点,2BC CP =uu u r uur,则()A.1322AP AB AC =-+uu u r uu u r uuu r B.1233AP AB AC=+C.3122AP AB AC=-uu u r uu u r uuu r D.2133AP AB AC=+uu u r uu u r uuu r【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+- 1322AB AC =-+,故选:A.6.已知非零向量a ,b,则“a b b -= ”是“20a b -= ”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义,结合向量的模的定义,数量积的性质和运算律判断.【详解】若20a b -= ,则a b b -=,a b b -= ,所以“a b b -= ”是“20a b -=”成立的必要条件,若a b b -= ,则220a a b -⋅=,()20a a b ⋅-= ,当()1,0a = ,11,22b ⎛⎫=- ⎪⎝⎭时,()20,1a b -= ,()20a a b ⋅-= 成立,但20a b -≠.所以,“a b b -= ”不是“20a b -=”成立的充分条件,所以“a b b -= ”是“20a b -= ”成立的必要不充分条件,故选:B.7.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且2cos a B c =,则ABC 的形状一定是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形【答案】B 【解析】【分析】由正弦定理可得2sin cos sin A B C =,再由()C A B π=-+,可得2sin cos sin()sin cos cos sin A B A B A B A B =+=+,从而可得in 0()s A B -=,进而可得结论【详解】解:因为2cos a B c =,所以由正弦定理可得2sin cos sin A B C =,因为A B C π++=,所以()C A B π=-+,所以()()sin sin sin C A B A B π⎡⎤=-+=+⎣⎦,所以2sin cos sin()sin cos cos sin A B A B A B A B =+=+,所以sin cos cos sin 0A B A B -=,所以in 0()s A B -=,因为A B ππ-<-<,所以0A B -=,所以A B =,所以ABC 为等腰三角形,故选:B8.对于非零向量,m n ,定义运算“⨯”:sin m n m n θ⨯=,其中θ为,m n 的夹角.设,,a b c 为非零向量,则下列说法错误..的是A.a b b a⨯=⨯ B.()a b c a c b c+⨯=⨯+⨯C.若0a b ⨯=,则//a bD.()a b a b⨯=-⨯【答案】B 【解析】【详解】由运算定义,sin ,sin a b a b b a b a θθ⨯=⨯=,所以a b b a⨯=⨯正确;()sin ,sin sin a b c a b c a c b c a c b c θαβ+⨯=+⨯+⨯=+ ,所以()a b c a c b c +⨯≠⨯+⨯,故B错误;C 、sin 0a b a b θ⨯== ,则0,θπ=,所以//a b 正确;D 、()()sin ,sin sin a b a b a b a b a b θπθθ⨯=-⨯=--= ,所以()a b a b ⨯=-⨯正确.故选B .点睛:本题考查向量的新定义运算,关键就是理解新定义.本题采取排除法,通过逐个验证,我们可以发现A 、C 、D 都是正确的,所以错误的就是B .9.如图,直三棱柱111ABC A B C -中,1,,AB BC AA AB P ⊥=为棱11A B 的中点,Q 为线段1AC 上的动点.以下结论中正确的是()A.存在点Q ,使BQ AC ∥B.不存在点Q ,使11BQ B C ⊥C.对任意点Q ,都有1BQ AB ⊥D.存在点Q ,使BQ 平面1PCC 【答案】C 【解析】【分析】A 选项,根据异面直线的定义可以判断;B 选项,容易发现1,A Q 重合时符合题意;C 选项,利用线面垂直得到线面垂直;D 选项,先找出平面1PCC 的一条垂线,问题转化为判断这条垂线是否和BQ 垂直的问题.【详解】A 选项,由于BQ ⋂平面ABCB =,B AC ∉,AC ⊂平面ABC ,则,BQ AC 一定异面,A 选项错误;B 选项,根据直三棱柱性质,1BB ⊥平面ABC ,BC ⊂平面ABC ,故1BB BC ⊥,又AB BC ⊥,1AB BB B Ç=,1,AB BB ⊂平面11ABB A ,故BC ⊥平面11ABB A ,又1BA ⊂平面11ABB A ,故1BC BA ⊥,显然11BC B C ∥,即111B C BA ⊥,故1,A Q 重合时,11BQ B C ⊥,B 选项错误;C 选项,直棱柱的侧面11ABB A 必是矩形,而1AA AB =,故矩形11ABB A 成为正方形,则11AB BA ⊥,B 选项已经分析过,BC ⊥平面11ABB A ,由1AB ⊂平面11ABB A ,故1AB BC ⊥,又1BC BA B ⋂=,1,BC BA ⊂平面1BCA ,故1AB ⊥平面1BCA ,又BQ ⊂平面1BCA ,则1BQ AB ⊥必然成立,C 选项正确;D 选项,取AB 中点M ,连接,CM PM ,根据棱柱性质可知,CM 和1C P 平行且相等,故平面1PCC 可扩展成平面1CMPC ,过B 作BN CM ⊥,垂足为N ,根据1BB ⊥平面ABC ,BN ⊂平面ABC ,故1BB BN ⊥,显然11BB CC ∥,故1BN CC ⊥,由BN CM ⊥,1CC CM C = ,1,CC CM ⊂平面1CMPC ,故BN ⊥平面1CMPC ,若BQ 平面1PCC ,则BQ BN ⊥,过Q 作QO //1BB ,交11A C 于O ,连接1B O ,于是1BQOB 共面,又1BQ BB B = ,1,BQ BB ⊂平面1BQOB ,故BN ⊥平面1BQOB ,由于1B O ⊂平面1BQOB ,故1BN B O ⊥,延长OQ 交AC 于J ,易得1B O //BJ ,则BJ BN ⊥,而J 在线段AC 上,这是不可能的,D 选项错误.故选:C10.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5 ,夏至正午太阳高度角(即ADC ∠)为73.5 ,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为()A.sin532sin 47a ︒︒B.2sin 47sin53a ︒︒C.tan 26.5tan 73.5tan 47a ︒︒︒D.sin 26.5sin 73.5sin 47a ︒︒︒【答案】D 【解析】【分析】先求BAD ∠,在BAD 中利用正弦定理求AD ,在Rt ACD 中即可求AC .【详解】73.526.547BAD ∠=-= ,在BAD 中由正弦定理得:sin sin BD AD BAD ABD=∠∠,即sin 47sin 26.5a AD= ,所以sin 26.5sin 47a AD =,又因为在Rt ACD 中,sin sin 73.5ACADC AD=∠= ,所以sin 26.5sin 73.5sin 73.5sin 47a AC AD =⨯=,故选:D【点睛】本题主要考查了解三角形应用举例,考查了正弦定理,属于中档题.二、填空题(每题5分,共30分)11.已知复数i(1i)z =+,则z =________;||z =________.【答案】①.1i--②.【解析】【分析】运用共轭复数、复数乘法及复数的模的公式计算即可.【详解】因为i(1i)1i z =+=-+,则1i z =--,||z ==.故答案为:1i --.12.已知向量(1,1)a =-r ,(2,1)b =- ,则2a b += ________;向量a 在b上的投影向量的坐标为________.【答案】①.(0,1)-②.63(,)55-【解析】【分析】运用平面向量加法、向量数量积、向量的模、投影向量公式计算即可.【详解】解:(1,1)a =-r,(2,1)b =-,则2(2,2)(2,1)(0,1)a b +=-+-=-;()()12113a b ⋅=⨯-+-⨯=-,||b == 故向量a 在b上的投影向量的坐标为:363,555a b b b b b⋅⎛⎫⨯=-=- ⎪⎝⎭ .故答案为:(0,1)-;63(,55-.13.在正四面体A -BCD 中,二面角A -BC -D 的余弦值是_______.【答案】13【解析】【分析】根据二面角平面角的定义,结合正四面体的性质,找出该角,由余弦定理,可得答案.【详解】如图,取BC 的中点F ,连接AF,DF,则AF BC ⊥,DF BC ⊥,即AFD ∠为二面角A BC D --的平面角,设正四面体D ABC -的棱长为6,在正ABC中,sin 60AF AB ==sin 60DF BD ==由余弦定理2221cos 23FD FA AD AFD FD FA +-∠===⋅⋅.故答案为:13.14.已知点(0,0)O ,(1,2)A ,(,0)(0)B m m >,则cos ,OA OB <>=___________;若B 是以OA 为边的矩形的顶点,则m =___________.【答案】①.②.5【解析】【分析】①根据向量的夹角公式,直接求解即可;②根据已知可得0OA AB ⋅=,求出相应的坐标代入即可求出m 的值.【详解】①因为(0,0)O ,(1,2)A ,(,0)(0)B m m >,所以(1,2)OA = ,(,0)OB m =,所以5cos ,5||||OA OB OA OB OA OB ⋅<>===;②(1,2)AB m =-- ,若B 是以OA 为边的矩形的顶点,则0OA AB ⋅=,即140OA AB m ⋅=--=,所以5m =.故答案为:5;515.若ABC 的面积为2223()4a cb +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.【答案】①.60②.(2,)+∞【解析】【分析】根据题干结合三角形面积公式及余弦定理可得tan B =,可求得3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题.【详解】()2221sin 42ABC S a c b ac B ∆=+-=,2222a c b ac +-∴=,即cos B =,sin cos 3B B B π∴=∠=,则21sin cos sin sin 11322sin sin sin 2tan 2A A Ac C a A A A A π⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭====⋅+,C ∴∠为钝角,,036B A ππ∠=∴<∠<,)1tan 0,,3tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,∞+.【点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角A B C π++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键.16.如图矩形ABCD 中,22AB BC ==,E 为边AB 的中点,将ADE V 沿直线DE 翻转成1A DE △.若M 为线段1AC 的中点,则在ADE V 翻转过程中,下列叙述正确的有________(写出所有序号).①BM 是定值;②一定存在某个位置,使1CE DA ⊥;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使1MB A DE 平面∥.【答案】①②④【解析】【分析】运用等角定理及余弦定理可判断①;运用勾股定理证得1A E CE ⊥、DE EC ⊥,结合线面垂直的判定定理及性质可判断②;运用反证法证及线面垂直判定定理证得DE ⊥平面1A EC ,结合线面垂直性质可得1DE A E ⊥得出矛盾可判断③;运用面面平行判定定理证得平面//MBF 平面1A DE ,结合面面平行性质可判断④.【详解】对于①,取CD 中点F ,连接MF ,BF ,如图所示,则1MF DA ∥,BF DE ,11122MF A D ==,FB DE ==由等角定理知,1π4A DE MFB ∠=∠=,所以由余弦定理可得22252cos 4MB MF FB MF FB MFB =+-⋅⋅∠=,所以52MB =是定值,故①正确;对于④,由①知,1MF DA ∥,BF DE ,又FB 、MF ⊄平面1A DE ,1DA 、DE ⊂平面1A DE ,所以//FB 平面1A DE ,//MF 平面1A DE ,又FB MF F = ,FB 、MF ⊂平面MBF ,所以平面//MBF 平面1A DE ,又因为MB ⊂平面MBF ,所以//MB 平面1A DE ,故④正确,对于②,连接EC ,如图所示,当1A C =时,因为11A E =,CE =22211A C A E CE =+,所以1A E CE ⊥,因为矩形ABCD 中,D E C E ==,2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A E DE E ⋂=,1A E 、DE ⊂平面1A DE ,所以CE ⊥平面1A DE ,又1A D ⊂平面1A DE ,所以1CE DA ⊥,故②正确;对于③,假设③正确,即在某个位置,使1DE A C ⊥,又因为矩形ABCD 中,D E C E ==2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A C EC C ⋂=,1AC 、EC ⊂平面1A EC ,所以DE ⊥平面1A EC ,又1A E ⊂平面1A EC ,所以1DE A E ⊥,这与1π4DEA ∠=矛盾,所以不存在某个位置,使1DE A C ⊥,故③错误.故答案为:①②④.三、解答题(每题14分,共70分)17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为正方形,E ,F 分别是AB ,PB 的中点.(1)求证://EF 平面PAD ;(2)求证:EF CD ⊥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由三角形中位线证得EF PA ∥,结合线面平行的判定定理证明即可.(2)由线面垂直性质可得PD CD ⊥,结合线面垂直判定定理可得CD ⊥平面PAD ,再结合线面垂直性质、线线垂直性质证明即可.【小问1详解】因为E ,F 分别是AB ,PB 的中点,所以EF PA ∥,又EF ⊄平面PAD ,PA ⊂平面PAD ,所以//EF 平面PAD ;【小问2详解】因为PD ⊥平面ABCD ,CD ⊂平面ABCD ,所以PD CD ⊥,又因为底面ABCD 为正方形,CD AD ⊥,=PD AD D ⋂,PD 、AD ⊂平面PAD ,所以CD ⊥平面PAD ,又PA ⊂平面PAD ,所以CD PA ⊥,由(1)知,EF PA ∥,所以EF CD ⊥.18.已知2()22cos f x x x =+.(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)π,π2π[π,π]63k k ++,Z k ∈(2)max ()3f x =,min ()0f x =【解析】【分析】(1)结合二倍角公式及辅助角公式化简函数()f x ,结合sin y t =图象与性质求解即可.(2)先求出π26x +的范围,结合sin y t =图象与性质即可求得最值.【小问1详解】因为2π()22cos 2cos 212sin(216f x x x x x x =+=++=++,所以()f x 的最小正周期2ππ2T ==,令ππ3π2π22π262k x k +≤+≤,Z k ∈,解得π2πππ63k x k +≤≤+,Z k ∈,所以()f x 单调递减区间为π2π[π,π]63k k ++,Z k ∈.【小问2详解】因为π[0,]2x ∈,所以ππ7π2[,]666x +∈,所以由函数图象性质知,当ππ262x +=,即π6x =时,max ()3f x =;当π7π266x +=,即π2x =时,min ()0f x =.19.如图,四边形ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,3DE AF =.(1)求证:平面//BAF 平面CDE ;(2)求证:平面EAC ⊥平面EBD ;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.【答案】(1)证明见解析(2)证明见解析(3)13BM BD =,证明见解析【解析】【分析】(1)利用线面平行的判定定理得到//AF 平面CDE ,//AB 平面CDE ,再利用面面平行的判定定理,即可证明结果;(2)根据条件得到AC ⊥平面EBD ,再由面面垂直的判定定理,即可证明结果;(3)构造平行四边形,利用线面平行的判定定理,即可证明结果.【小问1详解】因为//AF DE ,AF ⊄面CDE ,DE ⊂面CDE ,所以//AF 平面CDE ,同理,//AB 平面CDE ,又AF AB A ⋂=,,AF AB ⊂面BAF ,所以平面//BAF 平面CDE .【小问2详解】因为四边形ABCD 是菱形,所以AC BD ⊥,DE ⊥ 平面ABCD ,AC ⊂平面ABCD ,AC DE ∴⊥,BD DE D = ,,BD DE ⊂平面EBD ,AC ∴⊥平面EBD ,AC ⊂ 平面EAC ,所以平面EAC ⊥平面EBD .【小问3详解】当13BM BD =时,//AM 平面BEF ,理由如下:作MN ED ∥,则MN 平行且等于13BD ,//AF DE ,3DE AF =,∴AF 平行且等于MN ,∴AMNF 是平行四边形,//AM FN ∴,AM ⊄ 平面BEF ,FN ⊂平面BEF ,//AM ∴平面BEF .20.在ABC ∆中,2sin sin sin A B C =.(Ⅰ)若π3A ∠=,求B ∠的大小;(Ⅱ)若1bc =,求ABC ∆的面积的最大值.【答案】(1)π3B ∠=,(2).【解析】【详解】【分析】试题分析:(Ⅰ)因为2sin sin sin ,A B C =由正弦定理可得2a bc =,再利用余弦定理得所以22222122a b c bc b c bc =+-⨯=+-即b c =,所以为等边三角形.所以π3B ∠=(注:当然也可用化角来处理);(Ⅱ)由已知可得21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=,又sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤11sin sin 224ABC S bc A A ∆==≤试题解析:(Ⅰ)方法一:因为2sin sin sin ,A B C =且,所以2a bc =.又因为π3A ∠=,所以22222122a b c bc b c bc =+-⨯=+-.所以2()0b c -=.所以b c =.因为π3A ∠=,所以为等边三角形.所以π3B ∠=.方法二:因为πA BC ++=,所以sin sin()C A B =+.因为2sin sin sin B C A =,π3A ∠=,所以2ππsin sin()sin 33B B +=.所以13sin cos sin )224B B B +=.所以11cos 23sin 24224B B -+⨯=.所以12cos 2122B B -=.所以πsin(2)16B -=.因为(0,π)B ∈,所以ππ112(,π)666B -∈-.所以ππ262B -=,即π3B ∠=.(Ⅱ)因为2sin sin sin ,A B C =1bc =,且,所以21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=(当且仅当时,等号成立).因为(0,π)A ∈,所以π(0,]3A ∈.所以sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤.所以当是边长为1的等边三角形时,其面积取得最大值.考点:三角函数的性质与解三角形21.对于数集{}12,,1,n X x x x =- ,其中120n x x x <<<⋅⋅⋅<,2n ≥,定义向量集(){},,,Y a a s t s X t X ==∈∈ ,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,则称X 具有性质P .(1)判断{}1,1,2-是否具有性质P ;(2)若2x >,且{}1,1,2,X x =-具有性质P ,求x 的值;(3)若X 具有性质P ,求证:1X ∈且当1n x >时,11x =.【答案】(1)具有性质P(2)4(3)证明见解析【解析】【分析】(1)根据集合新定义判断即可;(2)在Y 中取()1,2a x = ,根据数量积的坐标表示,求出可能的2a ,再根据2x >求出符合条件的值即可;(3)取()111,a x x Y =∈ ,()2,a s t Y =∈ ,由120a a ⋅= ,化简可得0s t +=,所以,s t 异号,而1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,从而得到1X ∈,最后通过反证法得出1n x >时,11x =.【小问1详解】{}1,1,2-具有性质P .因为{}1,1,2X =-,所以()()()()()()()()(){}1,1,1,1,1,2,1,1,1,1,1,2,2,1,2,1,2,2Y =------,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,所以X 具有性质P .【小问2详解】因为2x >,且{}1,1,2,X x =-具有性质P ,所以可取()1,2a x = ,又Y 中与()1,2a x = 垂直的元素必有形式()()()1,1,1,2,1,x ---中的一个,当()21,1a =- 时,由120a a ⋅= ,可得202x x -+=Þ=,不符合题意;当()21,2a =- 时,由120a a ⋅= ,可得404x x -+=Þ=,符合题意;当()21,a x =- 时,由120a a ⋅= ,可得200x x x -+=Þ=,不符合题意;所以4x =.【小问3详解】证明:取()111,a x x Y =∈ ,设()2,a s t Y =∈ ,满足120a a ⋅= ,所以()100s t x s t +=⇒+=,所以,s t 异号,因为1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,所以1X ∈,假设1k x =,其中1k n <<,则101n x x <<<,选取()11,n b x x = ,并设()2,b p q = ,满足120b b ⋅= ,所以10n px qx +=,则,p q 异号,从而,p q 之中恰有一个为1-,若1p =-,则1n x qx =,显然矛盾;若1q =-,则1n n x px p x =<<,矛盾,所以当1n x >时,11x =,综上,得证.【点睛】关键点点睛:本题的关键在于理解集合的新定义,并用向量的数量积为零时坐标表示出所求的参数值.。
江苏省徐州市2018-2019学年高二下学期期中考试数学(理)试题(解析版)
江苏省徐州市2018—2019学年高二下学期期中考试数学(理)试题一、填空题(不需要写出解答过程,请将答案填写在答题卡相应的位置上.)1.=______【答案】60【解析】【分析】根据排列数公式计算即可.【详解】5×4×3=60.故答案为:60.【点睛】本题主要考查了排列数公式,属于基础题.2.若i是虚数单位,且复数z满足z=3﹣i,则=______【答案】【解析】【分析】由已知直接代入复数模的计算公式求解.【详解】∵z=3﹣i,∴|z|.故答案为:.【点睛】本题考查复数模的求法,是基础题.3.用反证法证明命题“如果m<n,那么”时,假设的内容应该是______【答案】假设【解析】【分析】由于用反证法证明命题时,应先假设命题的否定成立,由此得出结论.【详解】∵用反证法证明命题时,应先假设命题的否定成立,而“m7<n7”的否定为:“m7≥n7”,故答案为:假设m7≥n7【点睛】本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.4.若,则x的值为______.【答案】3或4【解析】【分析】结合组合数公式结合性质进行求解即可.【详解】由组合数的公式和性质得x=2x﹣3,或x+2x﹣3=9,得x=3或x=4,经检验x=3或x=4都成立,故答案为:3或4.【点睛】本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键.5.已知复数(是虚数单位),则=______【答案】-1 【解析】【分析】把代入ω3﹣2,再由复数代数形式的乘除运算化简得答案.【详解】∵,∴ω3﹣2.故答案为:﹣1.【点睛】本题考查复数代数形式的乘除运算,是基础题.6.用灰、白两种颜色的正六边形瓷砖按如图所示的规律拼成若干个图案,则第6个图案中正六边形瓷砖的个数是______【答案】37【解析】【分析】通过已知的几个图案找出规律,可转化为求一个等差数列的通项公式问题即可.【详解】第1个图案中有灰色瓷砖6块,白色瓷砖1块第2个图案中有灰色瓷砖11块,白色瓷砖2块;第3个图案中有灰色瓷砖16块,白色瓷砖3块;…设第n个图案中有瓷砖a n块,用数列{}表示,则=6+1=7,=11+2=13,=16+3=19,可知﹣=﹣=6,…∴数列{}是以7为首项,6为公差的等差数列,∴=7+6(n﹣1)=6n+1,∴=37,故答案为:37.【点睛】本题考查了归纳推理的问题,属于基础题.7.有这样一段“三段论”推理,对于可导函数,大前提:如果,那么是函数的极值点;小前提:因为函数在处的导数值,结论:所以是函数的极值点.以上推理中错误的原因是______错误(“大前提”,“小前提”,“结论”).【答案】大前提【解析】因为导数等于零的点不一定是极值点.如函数y=x3,它在x=0处导数值等于零,但x=0不是函数y=x3的极值点.因为只有此值两侧的导数值异号时才是极值点8.用数学归纳法证明(,n>1)时,第一步应验证的不等式是______.【答案】【解析】试题分析:式子的左边应是分母从1,依次增加1,直到,所以答案为。
2023-2024学年江苏省徐州市高一(上)期中数学试卷【答案版】
2023-2024学年江苏省徐州市高一(上)期中数学试卷一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B =( ) A .{0,1}B .{﹣1,1}C .{﹣1,0,1}D .{0,1,2}2.设a ∈R ,则“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的( ) A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件3.下列各组函数表示相同函数的是( ) A .y =x +1,y =|x +1|B .y =2x (x >0),y =2x (x <0)C .y =√x 2,y =(√x)2D .y =x 3+xx 2+1,y =x 4.已知a >0,b >0,且a +2b =ab ,则a +b 的最小值是( ) A .4√2B .3+2√2C .16D .325.命题p :“∀x ∈(2,3),3x 2﹣a >0”,若命题p 是真命题,则a 的取值范围为( ) A .a >27B .a ≤12C .a <12D .a ≥276.已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},则关于x 的不等式bx 2+ax +c <0的解集为( ) A .{x|−1<x <65} B .{x|x <−1或x >65} C .{x|−23<x <1}D .{x|x <−23或x >1}7.设a =lg 6,b =lg 20,则log 43=( ) A .a+b−12(b+1)B .a+b−1b−1 C .a−b+12(b−1)D .a−b+1b+18.已知f (x )=ax +b (a >0),满足f (f (x ))=x +2,则函数y =x −√f(x)的值域为( ) A .[1,+∞)B .[﹣1,+∞)C .[−54,+∞)D .[0,+∞)二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列图形不可能是函数y =f (x )图象的是( )A .B .C .D .10.下列命题是真命题的是( ) A .若a >b ,则ab >1B .若a >b ,且1a>1b,则ab >0C .若a >b >0,则b+1a+1>baD .若1≤a ﹣b ≤2,2≤a +b ≤4,则5≤4a ﹣2b ≤1011.早在公元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称a+b 2为正数a ,b 的算术平均数,√ab 为正数a ,b 的几何平均数,并把这两者结合的不等式√ab ≤a+b2(a >0,b >0)叫做基本不等式.下列与基本不等式有关的命题中正确的是( ) A .若ab =1,则a +b ≥2B .若a >b >0,且1a +1b=1,则a +b 最小值为4C .若a >0,b >0,则(a +1a )(b +1b )≥4 D .若a >0,b >0且a +b =4,则a 2a+2+b 2b+2的最小值为212.在R 上定义运算:x ⊗y =x (1﹣y ),若命题p :∃x ∈R ,使得(x ﹣a )⊗(x +a )>1,则命题p 成立的充分不必要条件是( ) A .{a|a <−12或a >32} B .{a|a ≤−12或a >32} C .{a|a <−1或a >32}D .{a |a >2}三、填空题(本大题共4题,每小题5分,共20分)13.命题p :所有的质数都是奇数,则命题p 的否定是 .14.已知函数f (x )对任意实数x 都有f (x )+2f (﹣x )=2x +1,则f (x )= .15.已知函数f (x )=ax 2﹣2x +1(x ∈R )有两个零点,一个大于1另一个小于1,则实数a 的取值范围为 .16.我们可以把(1+1%)365看作每天的“进步”率都是1%,一年后是1.01365;而把(1﹣1%)365看作每天的“落后”率都是1%,一年后是0.99365,则一年后“进步”的是“落后”的 倍;大约经过 天后“进步”的分别是“落后”的10倍.(参考数据:lg 101≈2.004,lg 99≈1.996,102.91≈812.831,102.92≈831.764,102.93≈851.138,结果保留整数)四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)(214)12+(−2.5)0+√6−2√5(23)−2;(2)log 3√27+lg25−3log 32+2lg2. 18.(12分)已知集合A ={x|x−3x+2<0},B ={x ||x ﹣1|>2},C ={x |x 2﹣4ax +3a 2<0}. (1)求集合A ∪B ;(2)若a <0且(A ∩B )⊆C ,求实数a 的取值范围. 19.(12分)已知函数y =x 2﹣mx +3.(1)若y ≤﹣4的解集为[2,n ],求实数m ,n 的值;(2)对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立,求实数m 的取值范围. 20.(12分)已知命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题. (1)求实数m 的取值集合M ;(2)设集合N ={x |3a <x <a +4},若“x ∈N ”是“x ∈M ”的充分条件,求实数a 的取值范围. 21.(12分)某公司为了竞标某体育赛事配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件成本为20元,售价为25元,每月销售8万件.(1)若售价每件提高1元,月销售量将相应减少2000件,要使月总利润不低于原来的月总利润(月总利润=月销售总收入﹣月总成本),该产品每件售价最多为多少元? (2)厂家决定下月进行营销策略改革,计划每件售价x (x ≥26)元,并投入334(x −26)万元作为营销策略改革费用.据市场调查,若每件售价每提高1元,月销售量将相应减少0.45(x−25)2万件.则当每件售价为多少时,下月的月总利润最大?并求出下月最大总利润.22.(12分)已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )只能同时满足下列三个条件中的两个: ①a =2;②不等式f (x )>0的解集为{x |﹣1<x <3};③函数f (x )的最大值为4. (1)请写出满足题意的两个条件的序号,并求出函数f (x )的解析式; (2)求关于x 的不等式f (x )≥(m ﹣1)x 2+2(m ∈R )的解集.2023-2024学年江苏省徐州市高一(上)期中数学试卷参考答案与试题解析一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B =( ) A .{0,1}B .{﹣1,1}C .{﹣1,0,1}D .{0,1,2}解:由已知集合A ={﹣1,0,1,2},B ={x |﹣1<x <2},则A ∩B ={0,1}. 故选:A .2.设a ∈R ,则“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的( ) A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件解:若关于x 的方程x 2+x +a =0有实数根, 则Δ=12﹣4a ≥0,解得a ≤14, 而﹣2∈(−∞,14],所以“a =﹣2”是“关于x 的方程x 2+x +a =0有实数根”的充分条件, 故选:A .3.下列各组函数表示相同函数的是( ) A .y =x +1,y =|x +1|B .y =2x (x >0),y =2x (x <0)C .y =√x 2,y =(√x)2D .y =x 3+xx 2+1,y =x 解:y =x +1与y =|x +1|的对应关系不同,不是同一函数; y =2x ,x >0与y =2x ,x <0定义域不同,不是同一函数;y =√x 2的定义域为R ,y =(√x )2的定义域为[0,+∞)不同,不是同一函数; y =x+x 3x 2+1=x 与y =x 的定义域都为R ,对应关系相同,是同一函数. 故选:D .4.已知a >0,b >0,且a +2b =ab ,则a +b 的最小值是( ) A .4√2B .3+2√2C .16D .32解:在a +2b =ab 的两边都除以ab ,整理得2a+1b=1,所以a +b =(2a +1b )(a +b)=3+ab +2ba ≥3+2√ab ⋅2ba =3+2√2,当且仅当a b=2b a时,即a =2+√2,b =√2+1时,a +b 的最小值是3+2√2.故选:B .5.命题p :“∀x ∈(2,3),3x 2﹣a >0”,若命题p 是真命题,则a 的取值范围为( ) A .a >27B .a ≤12C .a <12D .a ≥27解:命题p :“∀x ∈(2,3),3x 2﹣a >0”,命题p 是真命题, 当∀x ∈(2,3)时, 则a <(3x 2)min <3×22, 故a <12. 故选:C .6.已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},则关于x 的不等式bx 2+ax +c <0的解集为( ) A .{x|−1<x <65} B .{x|x <−1或x >65} C .{x|−23<x <1}D .{x|x <−23或x >1}解:因为不等式ax 2+bx +c >0的解集为{x |2<x <3}, 所以2和3是方程ax 2+bx +c =0的两个实数解,且a <0; 由根与系数的关系知,{2+3=−ba 2×3=c a ,所以b =﹣5a ,c =6a ;所以不等式bx 2+ax +c <0可化为﹣5ax 2+ax +6a <0, 即5x 2﹣x ﹣6<0,解得﹣1<x <65, 所求不等式的解集为{x |﹣1<x <65}. 故选:A .7.设a =lg 6,b =lg 20,则log 43=( ) A .a+b−12(b+1)B .a+b−1b−1 C .a−b+12(b−1)D .a−b+1b+1解:∵a =lg 6=lg 2+lg 3,b =lg 20=1+lg 2, ∴lg 2=b ﹣1,lg 3=a ﹣lg 2=a ﹣(b ﹣1), ∴log 43=lg3lg4=lg32lg2=a−(b−1)2(b−1)=a−b+12(b−1). 故选:C .8.已知f (x )=ax +b (a >0),满足f (f (x ))=x +2,则函数y =x −√f(x)的值域为( ) A .[1,+∞)B .[﹣1,+∞)C .[−54,+∞)D .[0,+∞)解:因为f (x )=ax +b (a >0),满足f (f (x ))=f (ax +b )=a (ax +b )+b =x +2, 所以{a 2=1ab +b =2,解得a =1,b =1或a =﹣1(舍), 故f (x )=x +1,则函数y =x −√f(x)=x −√x +1, 令t =√x +1,则t ≥0,原函数化为y =t 2﹣t ﹣1=(t −12)2−54≥−54. 故选:C .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列图形不可能是函数y =f (x )图象的是( )A .B .C .D .解:对于A ,D ,存在一个x 对应两个y 的情况,故不满足函数的定义,故排除A ,D , B ,C 均满足函数定义. 故选:AD .10.下列命题是真命题的是( ) A .若a >b ,则ab >1B .若a >b ,且1a>1b,则ab >0C .若a >b >0,则b+1a+1>baD .若1≤a ﹣b ≤2,2≤a +b ≤4,则5≤4a ﹣2b ≤10解:当a =1,b =﹣1时,A ,B 显然错误; 若a >b >0,则b+1a+1−b a=a−b a(a+1)>0,则b+1a+1>ba,C 正确;若1≤a ﹣b ≤2,2≤a +b ≤4,则4a ﹣2b =3(a ﹣b )+a +b ∈[5,10],D 正确.故选:CD .11.早在公元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称a+b 2为正数a ,b 的算术平均数,√ab 为正数a ,b 的几何平均数,并把这两者结合的不等式√ab ≤a+b2(a >0,b >0)叫做基本不等式.下列与基本不等式有关的命题中正确的是( ) A .若ab =1,则a +b ≥2B .若a >b >0,且1a +1b=1,则a +b 最小值为4C .若a >0,b >0,则(a +1a)(b +1b)≥4 D .若a >0,b >0且a +b =4,则a 2a+2+b 2b+2的最小值为2解:对于A ,ab =1,可能a =b =﹣1,此时a +b ≥2不成立,故A 不正确; 对于B ,a +b =(1a +1b )(a +b)=2+ba +ab ≥2+2√b a ⋅ab =4, 由于取等号的条件是ba =a b=1,即a =b ,与题设a >b >0矛盾,故a +b 最小值大于4,故B 不正确;对于C ,a >0,b >0,由a +1a ≥2√a ⋅1a =2,b +1b ≥2√b ⋅1b =2,两不等式相乘,得(a +1a )(b +1b)≥4,当且仅当a =1且b =1时,等号成立,故C 正确;对于D ,a >0,b >0且a +b =4,设m =a +2,n =b +2,则m >2,n >2,且m +n =8,a 2a+2+b 2b+2=(m−2)2m+(n−2)2n =m +4m−4+n +4n−4=(m +n)+4m+4n−8=4m+4n,因为4m+4n=4(m+n)mn=32mn≥32(m+n 2)2=2,当且仅当m =n =4时,即a =b =2时,等号成立,所以a 2a+2+b 2b+2的最小值为2,故D 正确.故选:CD .12.在R 上定义运算:x ⊗y =x (1﹣y ),若命题p :∃x ∈R ,使得(x ﹣a )⊗(x +a )>1,则命题p 成立的充分不必要条件是( ) A .{a|a <−12或a >32} B .{a|a ≤−12或a >32} C .{a|a <−1或a >32}D .{a |a >2}解:根据题意,可得(x ﹣a )⊗(x +a )>1,即(x ﹣a )[1﹣(x +a )]>1,命题p 可化为:∃x ∈R ,使得(x ﹣a )[1﹣(x +a )]>1,即:∃x ∈R ,使﹣x 2+x +a 2﹣a ﹣1>0成立.化简得:∃x∈R,使x2﹣x﹣a2+a+1<0成立,故Δ=1﹣4(﹣a2+a+1)>0,解得a<−12或a>32.综上所述,命题p成立的充要条件是a<−12或a>32,因此,命题p成立的充分不必要条件,对应的集合是{a|a<−12或a>32}的真子集,对照各个选项,可知C、D两项符合题意.故选:CD.三、填空题(本大题共4题,每小题5分,共20分)13.命题p:所有的质数都是奇数,则命题p的否定是存在某个质数不是奇数.解:命题p:所有的质数都是奇数,则命题p的否定是:存在某个质数不是奇数.故答案为:存在某个质数不是奇数.14.已知函数f(x)对任意实数x都有f(x)+2f(﹣x)=2x+1,则f(x)=﹣2x+13.解:因为函数f(x)对任意实数x都有f(x)+2f(﹣x)=2x+1,所以f(﹣x)+2f(x)=﹣2x+1,解得f(x)=﹣2x+1 3.故答案为:﹣2x+1 3.15.已知函数f(x)=ax2﹣2x+1(x∈R)有两个零点,一个大于1另一个小于1,则实数a的取值范围为(0,1).解:∵函数f(x)=ax2﹣2x+1(x∈R)有两个零点,∴a≠0,而且一个大于1另一个小于1,则{a>0f(1)=a−2+1<0或{a<0f(1)=a−2+1>0,解得:0<a<1.∴实数a的取值范围为(0,1).故答案为:(0,1).16.我们可以把(1+1%)365看作每天的“进步”率都是1%,一年后是1.01365;而把(1﹣1%)365看作每天的“落后”率都是1%,一年后是0.99365,则一年后“进步”的是“落后”的832倍;大约经过125天后“进步”的分别是“落后”的10倍.(参考数据:lg101≈2.004,lg99≈1.996,102.91≈812.831,102.92≈831.764,102.93≈851.138,结果保留整数)解:lg 1.013650.99365lg 1.01365﹣lg 0.99365=365(lg 1.01﹣lg 0.99)=365(lg 101﹣lg 99)≈2.92,故1.013650.99365=102.92≈832,设x 天后“进步”的分别是“落后”的10倍,则1.01x 0.99x=10,即lg 1.01x0.99x =lg1.01x −lg0.99x =x(lg1.01−lg0.99)=x(lg101−lg99)=1, 解得x =1lg101−lg99≈125. 故答案为:832;125.四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)(214)12+(−2.5)0+√6−2√5(23)−2;(2)log 3√27+lg25−3log 32+2lg2.解:(1)原式=32+1+√(√5−1)2+94=32+1+√5−1+94=154+√5; (2)原式=log 3332+2lg 5﹣2+2lg 2=32+2(lg 5+lg 2)﹣2=32+2﹣2=32.18.(12分)已知集合A ={x|x−3x+2<0},B ={x ||x ﹣1|>2},C ={x |x 2﹣4ax +3a 2<0}. (1)求集合A ∪B ;(2)若a <0且(A ∩B )⊆C ,求实数a 的取值范围.解:(1)∵集合A ={x|x−3x+2<0}={x |﹣2<x <3},B ={x ||x ﹣1|>2}={x |x >3或x <﹣1}, ∴集合A ∪B ={x |x ≠3}.(2)由(1)可得A ∩B ={x |﹣2<x <﹣1},若a <0,则C ={x |x 2﹣4ax +3a 2<0}={x |(x ﹣a )(x ﹣3a )<0}={x |3a <x <a }. 由(A ∩B )⊆C ,可得{3a ≤−2a ≥−1,求得﹣1≤a ≤−23,即实数a 的取值范围为[﹣1,−23].19.(12分)已知函数y =x 2﹣mx +3.(1)若y ≤﹣4的解集为[2,n ],求实数m ,n 的值;(2)对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立,求实数m 的取值范围. 解:(1)由题意可得x 2﹣mx +3≤﹣4,即x 2﹣mx +7≤0,其解集为[2,n ], 所以x 1=2和x 2=n 是方程x 2﹣mx +7=0的两根,由韦达定理可得{2+n =m2n =7,解得n =72,m =112;(2)因为对于∀x ∈[12,+∞),不等式y ≥2﹣x 2恒成立, 即对于∀x ∈[12,+∞),不等式x 2﹣mx +3≥2﹣x 2恒成立, 即m ≤2x +1x 对于∀x ∈[12,+∞)恒成立, 又因为2x +1x≥2√2x ⋅1x=2√2, 当且仅当2x =1x ,即x =√22∈[12,+∞)时,等号成立,所以m ≤2√2,即实数m 的取值范围为(﹣∞,2√2].20.(12分)已知命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题. (1)求实数m 的取值集合M ;(2)设集合N ={x |3a <x <a +4},若“x ∈N ”是“x ∈M ”的充分条件,求实数a 的取值范围. 解:(1)命题:“∀x ∈R ,x 2﹣x ﹣m >0”为真命题,即不等式x 2﹣x >m 在R 上恒成立, 因为当x =12时,x 2﹣x 的最小值为−14,所以−14>m ,即实数m 的取值集合M =(−∞,−14); (2)若“x ∈N ”是“x ∈M ”的充分条件,则N ⊆M , 而M =(−∞,−14),N ={x |3a <x <a +4},有以下两种情况: ①若3a ≥a +4,则N =∅,符合题意,此时a ≥2; ②若N ≠∅,则a <2且a +4≤−14,解得a ≤−174. 综上所述,实数a 的取值范围是(−∞,−174]∪[2,+∞).21.(12分)某公司为了竞标某体育赛事配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件成本为20元,售价为25元,每月销售8万件.(1)若售价每件提高1元,月销售量将相应减少2000件,要使月总利润不低于原来的月总利润(月总利润=月销售总收入﹣月总成本),该产品每件售价最多为多少元? (2)厂家决定下月进行营销策略改革,计划每件售价x (x ≥26)元,并投入334(x −26)万元作为营销策略改革费用.据市场调查,若每件售价每提高1元,月销售量将相应减少0.45(x−25)2万件.则当每件售价为多少时,下月的月总利润最大?并求出下月最大总利润.解:(1)该产品每件售价为x 元,则[8﹣(x ﹣25)×0.2](x ﹣20)≥(25﹣20)×8,解得25≤x ≤60,故产品每件售价最多为60元;(2)设下个月的总利润为W ,则W =(x −20)[8−0.45(x−25)2(x −25)]−334(x −26)=47.8−(x−254+2.25x−25) ≤47.8−2√x−254⋅2.25x−25=46.3, 当且仅当x−254= 2.25x−25,即x =28时等号成立,故当每件售价为28时,下月的月总利润最大,最大总利润为46.3.22.(12分)已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )只能同时满足下列三个条件中的两个: ①a =2;②不等式f (x )>0的解集为{x |﹣1<x <3};③函数f (x )的最大值为4.(1)请写出满足题意的两个条件的序号,并求出函数f (x )的解析式;(2)求关于x 的不等式f (x )≥(m ﹣1)x 2+2(m ∈R )的解集.解:(1)当a =2时,不等式f (x )>0的解集不能为{x |﹣3<x <1},且函数f (x )没有最大值,所以a =2不成立,即满足题意的两个条件是②③,由f (x )>0的解集为{x |﹣3<x <1},可令f (x )=a (x +3)(x ﹣1)=ax 2+2ax ﹣3a (a <0), f (x )的最大值为4,所以4a×(−3a)−(2a)24a =4,解得a =﹣1,所以f (x )=﹣x 2﹣2x +3;(2)不等式f (x )≥(m ﹣1)x 2+2可化为mx 2+2x ﹣1≤0,当m =0时,不等式等价于2x ﹣1≤0,解得x ≤12,所以不等式的解集为(−∞,12];当m >0时,对于一元二次方程mx 2+2x ﹣1=0,由于Δ=4+4m >0,方程有两个不相等的实数根x 1=−1+√m+1m ,x 2=−1−√m+1m , 不等式的解集为[−1−√m+1m ,−1+√m+1m ]; 当m <0时,对于一元二次方程mx 2+2x ﹣1=0,Δ=4+4m ,当m <﹣1时,Δ<0,一元二次方程无实数根,所以不等式的解集为R ;当m =﹣1时,Δ=0,一元二次方程有两个相等的实数根,此时不等式的解集也为R ;当﹣1<m <0时,Δ>0,一元二次方程有两个不相等的实数根x 1=−1+√m+1m ,x 2=−1−√m+1m,且x 1<x 2,所以不等式的解集为(−∞,−1+√m+1m ]∪[−1−√m+1m,+∞),综上,当m=0时,不等式的解集为(−∞,12 ];当m>0时,不等式的解集为[−1−√m+1m,−1+√m+1m];当m≤﹣1时,不等式的解集为R;当﹣1<m<0时,不等式的解集为(−∞,−1+√m+1m]∪[−1−√m+1m,+∞).。
江苏省徐州市2023-2024学年高三上学期11月期中数学试题含解析
2023~2024学年度第一学期高三年级期中抽测数学试题(答案在最后)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}1,2,3,4,5,1,3,1,2,5U A B ===,则()U A B =ð()A.{}1,3,4 B.{}1,3 C.{}1,2,5 D.{}1,2,4,5【答案】A 【解析】【分析】利用并集与补集的概念计算即可.【详解】由题意可知{}3,4U B =ð,所以(){}1,3,4U A B ⋃=ð.故选:A 2.若2i 1iz -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据复数的乘法运算求得复数z ,即可得z ,可得其对应的点的坐标,即可得答案.【详解】由题意知2i 1iz -=+,故i(1i)21i z =++=+,故1iz =-则复数z 对应的点为(1,1)-,在第四象限,故选:D3.拋掷一枚质地均匀的骰子,将得到的点数记为a ,则,4,5a 能够构成钝角三角形的概率是()A.23B.12C.13D.16【答案】D 【解析】【分析】先确定a 可能的取值,再结合余弦定理判断三角形为钝角时a 的取值,根据古典概型的概率公式,即可求得答案.【详解】由题意拋掷一枚质地均匀的骰子,将得到的点数记为a ,则a 的取值可能为1,2,3,4,5,6,有6种可能;,4,5a 能够构成三角形时,需满足19a <<,若,4,5a 能够构成钝角三角形,当5所对角为钝角时,有2222450,9a a +-<∴<,此时2a =;当a 所对角为钝角时,需满足2222540,41a a +-<∴>,此时没有符合该条件的a 值,故,4,5a 能够构成钝角三角形的概率是16,故选:D4.已知向量()()0,2,1,a b t =-= ,若向量b 在向量a 上的投影向量为12a - ,则⋅= ab ()A.2-B.52-C.2D.112【答案】A 【解析】【分析】根据投影向量定义及向量的数量积、向量的模计算即可.【详解】因为()()0,2,1,a b t =-=,所以向量b 在向量a上的投影向量为2142||||b a a t a a a a⋅-⋅==-,所以1t =,故2a b ⋅=-故选:A5.已知等比数列{}n a 的首项为3,则“911a a <”是“1114a a <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B 【解析】【分析】结合等比数列的通项公式,由911a a <可得q 的取值范围,说明1q <-时不能推出1114a a <;继而说明1114a a <成立时推出1q >,即可推得911a a <,由此可判断答案.【详解】由题意知等比数列{}n a 的首项为3,设公比为q ,由911a a <,则81033q q <,即21,1q q >∴>或1q <-,当1q <-时,01114133(1)0q a a q -=->,即1114a a >,即“911a a <”不是“1114a a <”的充分条件;当1114a a <时,即1013,1q q q <∴>,则810q q <,即81033q q <,即911a a <,故“911a a <”是“1114a a <”的必要条件,故“911a a <”是“1114a a <”的必要不充分条件,故选:B 6.已知π4ππsin ,3536θθ⎛⎫+=-<< ⎪⎝⎭,则πtan 26θ⎛⎫+= ⎪⎝⎭()A.2425-B.2425C.724D.724-【答案】C 【解析】【分析】根据角的变换及诱导公式,二倍角的正切公式求解即可.【详解】因为ππ36θ-<<,所以ππ032θ<+<,所以3cos 5π3θ⎛⎫= ⎪⎭+⎝,故4tan 3π3θ⎛⎫= ⎪⎭+⎝,πππsin 2cos 232πππ13tan 2tan 2ππ632ππsin 2tan 2cos 23332θθθθθθθ⎡⎤⎛⎫⎛⎫+-+ ⎪⎢ ⎪⎡⎤⎛⎫⎛⎫⎝⎭⎣⎦⎝⎭+=+-==-=-⎪ ⎪⎢⎡⎤⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎣⎦+++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π161tan 17394π2422tan 33θθ⎛⎫-+-⎪⎝⎭=-=-=⎛⎫⨯+ ⎪⎝⎭,故选:C7.已知()1y f x =-为偶函数,当1x ≥-时,()()2ln 23f x x x =++.若()()12f x f x >,则()A.()()121220x x x x -+-< B.()()121220x x x x -+->C.()()121220x x x x -++< D.()()121220x x x x -++>【答案】D 【解析】【分析】利用偶函数的性质及复合函数的单调性计算即可.【详解】由()1y f x =-为偶函数可知()f x 的图象关于=1x -轴对称,又1x ≥-时,()222312u x x x =++=++单调递增,ln y u =单调递增,故()()2ln 23f x x x =++在()1,-+∞上单调递增,(),1-∞-上单调递减,即()()()()()()221212121212111120f x f x x x x x x x x x >⇒+>+⇒+-+=-++>.故选:D8.已知抛物线2:4C y x =的焦点为F ,过点()0,3的直线与C 交于,A B 两点,线段AB 的垂直平分线与x 轴交于点D ,若6AF BF +=,则ABD △的面积为()A.2B.C.2D.【答案】C 【解析】【分析】设AB 的中点为H ,A 、B 、H 在准线上的射影分别为A B H '''、、,由题意和抛物线的定义可得3HH '=,即2H x =,设()()1122,,,A x y B x y ,设直线AB 方程,联立抛物线方程,利用韦达定理求出直线AB 的斜率,求得H 的坐标,进而求出其中垂线方程,可得D 的坐标,结合弦长公式和三角形面积公式计算即可求解.【详解】设AB 的中点为H ,抛物线的焦点为(1,0)F ,准线为=1x -,设A 、B 、H 在准线上的射影分别为A B H '''、、,则1()2HH AA BB '''=+,由抛物线的定义可知,,,6AF AA BF BB AF BF ''==+=,所以6AA BB ''+=,得3HH '=,即点H 的横坐标为2,设直线AB :3y kx =+,代入抛物线方程,得22(64)90k x k x +-+=,由22(64)360k k ∆=-->,得13k <且0k ≠.设()()1122,,,A x y B x y ,则122464k x x k -+==,解得2k =-或12(舍去).所以直线AB :23y x =-+,(2,1)H -,所以AB 的中垂线方程为11(2)2y x +=-,令0y =,解得4x =,即(4,0)D ,则DH =又122994x x k==,所以AB =所以1122ABD S AB DH == .故选:C.Q二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.为调研某地空气质量,连续10天测得该地PM 2.5(PM 2.5是衡量空气质量的重要指标,单位:3ug /m )的日均值,依次为36,26,17,23,33,106,42,31,30,33,则()A.前4天的极差大于后4天的极差B.前4天的方差小于后4天的方差C.这组数据的中位数为31或33D.这组数据的第60百分位数与众数相同【答案】AD 【解析】【分析】根据方差和极差判断A ,B 选项,根据中位数判断C 选项,根据百分位数和众数判断D 选项.【详解】前4天的极差361719-=,后4天的极差423012-=,A 正确;前4天的平均数25.5,方差222210.50.58.5 2.547.254+++=,后4天的平均数34,方差2222834122.54+++=,前4天的方差大于后4天的方差,B 选项错误;数据从小大排列17,23,26,30,31,33,33,36,42,106,这组数据的中位数为3133322+=,C 选项错误;这组数据的第60百分位数100.66⨯=是第6个数和第7个数的平均数3333332+=与众数33相同,D 选项正确.故选:AD.10.已知函数()()cos (0,0,0π)f x A x A ωϕωϕ=+>><<在5π12x =处取得极小值2-,与此极小值点相邻的()f x 的一个零点为π6,则()A.()2π2sin 23f x x ⎛⎫=+⎪⎝⎭B.π3y f x ⎛⎫=-⎪⎝⎭是奇函数C.()f x 在ππ,63⎛⎫- ⎪⎝⎭上单调递减D.()f x 在π5π,46⎡⎫⎪⎢⎣⎭上的值域为⎡-⎣【答案】ABD 【解析】【分析】对A ,根据极小值可得A ,再根据极值点与零点关系可得周期,进而可得ω,再代入极小值点求解即可;对B ,根据解析式判断即可;对C ,代入ππ,63⎛⎫- ⎪⎝⎭判断是否为减区间即可;对D ,根据正弦函数在区间上的单调性与最值求解即可.【详解】对A ,由题意2A =-,且周期T 满足5πππ12644T -==,故πT =,即2ππω=,2=ω,故()()2cos 2f x x ϕ=+.因为()f x 在5π12x =处取得极小值2-,故()5π2π2π,Z 12k k ϕ⨯+=+∈,即()π2π,Z 6k k ϕ=+∈,又0πϕ<<,故π6ϕ=,则()π2cos 26f x x ⎛⎫=+ ⎪⎝⎭.由诱导公式()2ππππ2sin 22sin 22cos 23626f x x x x ⎛⎫⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 正确;对B ,ππππ2cos 22cos 22sin 23362y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对C ,ππ,63x ⎛⎫∈-⎪⎝⎭则ππ5π2,666x ⎛⎫+∈- ⎪⎝⎭,不为余弦函数的单调递减区间,故C 错误;对D ,π5π,46x ⎡⎫∈⎪⎢⎣⎭则1π22π1π,366x ⎡⎫∈⎪⎢⎣⎭+,故,πc 2os 216x ⎡⎫∈-⎪⎢⎪⎛⎫+ ⎪⎝⎣⎭⎭,则π2cos 26x ⎡∈-⎣⎛⎫+ ⎪⎝⎭,故D 正确.故选:ABD11.在棱长为2的正方体1111ABCD A B C D -中,,E F 分别是棱,BC CD 的中点,则()A.11B D 与EF 是异面直线B.存在点P ,使得12A P PF =,且BC //平面1APBC.1A F 与平面1B EB 所成角的余弦值为3D.点1B 到平面1A EF 的距离为45【答案】BC 【解析】【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P ⎛⎫⎪⎝⎭,得到平面1APB 的法向量()1,0,1m =- ,根据数量积为0得到BC m ⊥,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =-=- ,由于112B D EF =,故11B D 与EF 平行,A 错误;B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z ----=,即224222x xy y z z=-⎧⎪=-⎨⎪-=-⎩,解得242,,333x y z ===,故242,,333P ⎛⎫⎪⎝⎭,设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a mAB a b c a c ⎧⎛⎫⋅=⋅=++= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ ,令1a =,则0,1b c ==-,则()1,0,1m =-,因为()()0,2,01,0,10BC m ⋅=-= ,故BC m ⊥,BC //平面1APB ,故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =r,故1A F 与平面1B EB 所成角的正弦值为1113A F n A F n ⋅=⋅,则1AF 与平面1B EB所成角的余弦值为3=,C 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-+=⎪⎩,令11x =,则1131,2y z ==,故131,1,2n ⎛⎫= ⎪⎝⎭ ,则点1B 到平面1A EF的距离为111117A B n n ⋅==,D 错误.故选:BC12.已知函数()()()11ln ,f x a x x x a =-++∈R ,则下列说法正确的是()A.当1ln8a =时,()122f f ⎛⎫= ⎪⎝⎭B.当0a >时,()22f a a a <-C.若()f x 是增函数,则2a >-D.若()f x 和()f x '的零点总数大于2,则这些零点之和大于5【答案】ABD 【解析】【分析】直接代入即可判断A ,令()()()22a g a f a a =--,利用导数说明函数的单调性,即可判断B ,由()0f x '≥在()0,∞+上恒成立,利用导数求出()min f x ',即可求出a 的取值方程,即可判断C ,首先说明2a <-,得到()f x '在()0,1和()1,+∞上各有一个零点1x ,2x ,利用对数均值不等式得到121x x >,即可得到122x x +>,再说明()f x 在()10,x 和()2,x +∞上各有一个零点3x 、4x 且431x x =,最后利用基本不等式证明即可.【详解】对于A :当1ln 8a =时()()()11ln 1ln 8f x x x x =-++,则()12ln3ln23ln 23ln 208f =+=-+=,11111331ln 1ln ln 2ln 202282222f ⎛⎫⎛⎫⎛⎫=-++=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()122f f ⎛⎫=⎪⎝⎭,故A 正确;对于B :()()()()211ln 1ln f a a a a a a a a a =-++=-++,令()()()()()()222221ln 21ln a a a a a a a a a g a f a a a --+--=--+==++,则()112ln ln 21a a a a a a ag a '=+-++=-++,令()()1ln 21a a am a g a -+=+'=,则()2222217211214820a m a a a a a a a '⎛⎫--- ⎪--⎝⎭=--==<,所以()g a '在()0,∞+上单调递减,又()10g '=,所以当01a <<时()0g a '>,当1a >时()0g a '<,所以()g a 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 110g a g ==-<,所以当0a >时,()22f a a a <-,故B 正确;对于C :()1ln 0x f x a x x+'=++≥在()0,∞+上恒成立,令()()1ln x h x f x a x x +'==++,则()22111x h x x x x-'=-=,所以当01x <<时()0h x '<,当1x >时()0h x '>,所以()f x '在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 120f x f a ''==+≥,解得2a ≥-,故C 错误;对于D :因为()10f =,即1为()f x 的一个零点,当2a =-时()0f x '≥,()0f x '=有且仅有一个根1,此时()f x 在()0,∞+上单调递增,所以()f x 和()f x '都只有1个零点,不符合题意;当2a >-时()0f x ¢>,则()f x '无零点,()f x 只有一个零点,不符合题意;当2a <-时()f x '在()0,1和()1,+∞上各有一个零点1x ,2x ,所以11221ln 101ln 10a x x a x x ⎧+++=⎪⎪⎨⎪+++=⎪⎩,所以211221ln ln x x x x x x -=>-,所以121x x >,所以122x x +>=,且()f x 在()10,x 上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增,且()10f =,所以()10f x >,()20f x <,所以()f x 在()10,x 和()2,x +∞上各有一个零点3x 、4x ,又()()()11111111ln 11ln f a a x x x f x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-++=--++=-⎡⎤⎪ ⎪ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭,所以431x x =,所以()123412*********x x x x x x x x ⎛⎫++++=++++>++= ⎪⎝⎭,故D 正确.ln ln a ba b-<-的证明如下:ln ln a b a b -<-,只需证ln ln ln aa b b -=⇔=1x =>,只需证12ln x x x <-,1x >,设1()2ln n x x x x=-+,1x >,则()22221(1)10x n x x x x-'=--=-<,可得()n x 在(1,)+∞上单调递减,∴1()(1)02ln n x n x x x<=⇒<-,得证.故选:ABD【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量()25,X N σ~,且(7)0.8P X <=,则(35)P X <<的值为__________.【答案】0.3##310【解析】【分析】根据正态分布的性质求得(7)P X ≥,根据正态分布的对称性求出(3)0.2P X ≤=,继而可求得答案.【详解】由题意知随机变量()25,X N σ~,且(7)0.8P X <=,则(7)10.80.2P X ≥=-=,故(3)0.2P X ≤=,故(35)0.5(3)0.50.20.3P X P X <<=-≤=-=,故答案为:0.314.已知52323a x x ⎛⎫+ ⎪⎝⎭的展开式中所有项的系数之和为32,则展开式中的常数项为__________.【答案】270【解析】【分析】利用二项式定理计算即可.【详解】令()5523211332322a x x a a x ⎛⎫=⇒+=+=⇒=- ⎪⎝⎭,则()552233233a x x x x -⎛⎫+=- ⎪⎝⎭,设()5233x x --的通项为()()()5235102355C 3C 31rrrrrr r r r T x x x -----=-=⋅⋅-⋅,当2r =时,()55C 311027270rrr -⋅⋅-=⨯=,即展开式中的常数项为270.故答案为:27015.已知圆锥的母线长为5,侧面积为15π,则该圆锥的内切球的体积为__________.【答案】9π2【解析】【分析】根据圆锥的侧面积求出圆锥的底面半径,即可求得圆锥的高,继而利用圆锥的母线和高之间的夹角的正弦求得内切球半径,即可求得答案.【详解】设圆锥的底面半径为r ,圆锥内切球的半径为R ,则π515π,3r r ⨯⨯=∴=,则圆锥的高为22534h =-=,设圆锥的母线和高之间的夹角为π,(0,)2θθ∈,则33sin ,452R R R θ==∴=-,故该圆锥的内切球的体积为3439ππ(322⨯=,故答案为:9π216.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点P 在C 上,且2PF x ⊥轴,过点2F 作12F PF ∠的平分线的垂线,与直线1PF 交于点A ,若点A 在圆222:O x y a +=上,则C 的离心率为__________.3【解析】【分析】由题意求出22||b PF a =,结合双曲线定义以及角平线性质推出1||2AF a =,从而推出1222cos 2cPF F b a a ∠+=,在1AOF △中,利用余弦定理可求得4224340a a c c -+=,结合齐次式求解离心率,即可得答案.【详解】由题意知2(,0)F c ,2PF x ⊥轴,故将x c =代入22221x ya b-=中,得22221c y a b -=,则2b y a =±,即22||b PF a=,不妨设P 在双曲线右支上,则12||||2PF PF a -=,故21||2b PF a a=+;设PQ 为12F PF ∠的平分线,由题意知2F A PQ ⊥,则2||||PA PF =,即2||b PA a =,而211||||||2b PF PA AF a a=+=+,故1||2AF a =,由点A 在圆222:O x y a +=上,得||OA a =;又1||OF c =,则1221212c ||os 2||F F PF b c PF F a a∠=+=,在1AOF △中,222111112||||||2||||cos OA OF AF OF AF PF F =+-⋅∠,即222224222ca c a c ab a a=+-⋅⋅⋅+,结合222b c a =-,即得4224340a a c c -+=,即42430e e -+=,解得23e =或21e =(舍),故3e =,即C 33【点睛】关键点睛:求解双曲线的离心率,关键是求出,,a b c 之间的数量关系式,因此解答本题时,要结合题中条件以及双曲线定义推出相关线段长,从而在1AOF △中,利用余弦定理求出,,a b c 的关系,化为齐次式,即可求得答案.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,且过点2⎫⎪⎪⎭.(1)求C 的标准方程;(2)过点()1,0-的直线l 与C 交于,A B 两点,当165AB =时,求直线l 的方程.【答案】(1)22143x y +=(2)y =或y =-【解析】【分析】(1)根据离心率的定义和椭圆经过的点,列出方程组,解之即可求解;(2)易知直线l 的斜率不为0,设:(1)l y k x =+,()()1122,,,A x y B x y ,联立椭圆方程,利用韦达定理表示出1212,x x x x +,根据弦长公式化简可得2212(1)34k AB k +=+,结合165AB =计算求出k 的值即可求解.【小问1详解】由题意,222222212()21c e a a b a b c ⎧==⎪⎪⎪⎨⎪+=⎪⎪=+⎩,解得2243a b ⎧=⎨=⎩,所以椭圆C 的标准方程为22143x y +=.【小问2详解】易知直线l 的斜率不为0,设:(1)l y k x =+,即y kx k =+,()()1122,,,A x y B x y ,22143y kx kx y =+⎧⎪⎨+=⎪⎩,消去y ,得2222(34)84120k x k x k +++-=,22222(8)4(34)(412)990k k k k ∆=-+-=+>,221212228412,3434k k x x x x k k -+=-=++,2212(1)34k AB k+==+,又165AB=,所以2212(1)16534kk+=+,解得k=,所以直线l的方程为yy=-.18.在①()()21212n n nS S a n-+=+≥,②1na=+这两个条件中任选一个,补充在下面问题中,并解答下列问题.已知正项数列{}n a的前n项和为1,1nS a=,且__________,*Nn∈.(1)求{}n a的通项公式;(2)设11,n nn nb Ta a+=为数列{}n b的前n项和,证明:12nT<.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)21na n=-(2)证明见解析【解析】【分析】(1)若选择①,根据n a和n S的关系得到12n na a+-=,确定等差数列得到通项公式;若选择②,根据n a和n S的关系得到12n na a+-=,确定等差数列得到通项公式;(2)确定11122121nbn n⎛⎫=-⎪-+⎝⎭,再根据裂项求和法计算得到答案.【小问1详解】若选择①:()()21212n n nS S a n-+=+≥,则()21121n n nS S a+++=+,相减得到:()()()1112n n n n n na a a a a a++++=+-,0na>,故12n na a+-=,()122221S S a+=+,解得23a=,212a a-=,故数列{}n a为首项是1,公差为2的等差数列,故21na n=-;若选项②:1na=+,则()241n nS a=+,()21141n nS a++=+,相减得到:()()2211411n n n a a a ++=+-+,整理得到()()1120n n n n a a a a +++--=,0n a >,故120n n a a +--=,故数列{}n a 为首项是1,公差为2的等差数列,故21n a n =-;【小问2详解】()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,故()21111111112335212122211n T n n n ⎛⎫=-+-++-=- ⎪-++⎝<⎭ .19.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos cos 3cos 3b C c B b A c +=-.(1)求cos B ;(2)设角B 的平分线交AC 边于点D,且BD =,若b =ABC 的面积.【答案】(1)13-(2)【解析】【分析】(1)利用正弦定理边化角结合两角和的正弦公式化简已知等式,可得cos B ,即得答案;(2)根据同角三角函数关系求出sin 3B =,设π,(0,)2ABD θθ∠=∈,由二倍角余弦公式求出cos 3θ=,利用等面积法推出()32a c ac +=,结合余弦定理即可求得12ac =,从而利用三角形面积公式求得答案.【小问1详解】由题意cos cos 3cos 3b C c B b A c +=-可得sin cos sin cos 3sin cos 3sin B C C B B A C +=-,即sin()3sin cos 3sin()B C B A A B +=-+,即sin 3sin cos 3(sin cos cos sin )3sin cos A B A A B A B A B =-+=-,而(0,π),sin 0A A ∈∴>,故1cos 3B =-;【小问2详解】由(0,π)B ∈,1cos 3B =-可得sin 3B =,角B 的平分线交AC 边于点D ,设π,(0,)2ABD θθ∠=∈,则213cos 2cos 1cos 33B θθ=-=-∴=,111sin sin sin 2222ABC S c a ac θθθ=⋅+=⋅ ,()32323ac a c ac =⋅∴+=,由b =22212483b a c ac ⎛⎫=+-⋅-= ⎪⎝⎭,即()24483a c ac +-=,则()()224448,129093a c ac ac ac -=∴-+=,则12ac =(负值舍去),故21s in 11232ABC ac B S =⨯⨯== 20.设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的5个球,其中甲箱有3个蓝球和2个黑球,乙箱有4个红球和1个白球,丙箱有2个红球和3个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X 表示最后摸出的2个球的分数之和,求X 的分布列及数学期望.【答案】(1)4495(2)分布列见解析,24475【解析】【分析】(1)求出甲箱中摸出2个球颜色相同的概率,继而求得最后摸出的2个球颜色不同的概率,再求出最后摸出的2个球是从丙箱中摸出的概率,根据条件概率的计算公式即可得答案.(2)确定X 的所有可能取值,求出每个值相应的概率,即可得分布列,根据期望公式即可求得数学期望.【小问1详解】从甲箱中摸出2个球颜色相同的概率为223225C C 2C 5P +==,记事件A 为最后摸出的2个球颜色不同,事件B 为这2个球是从丙箱中摸出的,则()()()|P AB P B A P A =,()111111113342222665661242C C C C C C C C 21433855C 5C 55C 5C 7523P A ⎛⎫⎛⎫=⨯⨯+⨯+⨯+⨯= ⎪⎝⎭⎝⎭,()111143223663C C C C 2148855C 5C 375P AB ⎛⎫=⨯⨯+⨯= ⎪⎝⎭,所以()8844375|389575P B A ==;【小问2详解】X 的所有可能取值为2,3,4,则()222342226662C C C 214333255C 5C 55C 25P X ⎛⎫==⨯⨯+⨯+⨯⨯= ⎪⎝⎭,()38375P X ==,()2222322542226666C C C C 2143228455C 5C 55C 5C 753P X ⎛⎫⎛⎫==⨯⨯+⨯+⨯⨯+= ⎪ ⎪⎝⎭⎝⎭,故X 的分布列如表:X 234P32538752875故()33828181141122442342575757575E X ++=⨯+⨯+⨯==.【点睛】难点点睛:本题解答的难点在于求分布列时,计算每个值相应的概率,要弄清楚每个值对应的情况,分类求解,注意计算量较大,要十分细心.21.如图,在三棱锥-P ABC 中,侧面PAB 是锐角三角形,PA BC ⊥,平面PAB ⊥平面ABC .(1)求证:AB BC ⊥;(2)设2,4PA PB AC ===,点D 在棱BC (异于端点)上,当三棱锥-P ABC 体积最大时,若二面角C PAD --大于30 ,求线段BD 长的取值范围.【答案】(1)证明见解析(2)46(0,9【解析】【分析】(1)过点P 作PE AB ⊥,根据面面垂直的性质定理,证得PE ⊥平面ABC ,进而证得BC ⊥平面PAB ,即可得到BC AB ⊥;(2)设2,2AB a BC b ==,得到22(4)3P ABC V a a -=-,令()22(4)3f a a a =-,利用导数求得函数的单调性,得到233a =时,三棱锥-P ABC 的体积最大,以B 为原点,建立空间直角坐标系,设BD m =,求得平面CPA 与PAD 的法向量分别为12,1)n = 和246(2,1)3n m= ,结合向量的夹角公式和题设条件,列出不等式,求得m 的取值范围即可.【小问1详解】证明:过点P 作PE AB ⊥于点E ,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,且PE ⊂平面PAB ,所以PE ⊥平面ABC ,又因为PA BC ⊥,且PE PA P = ,所以BC ⊥平面PAB ,因为AB ⊂平面PAB ,所以BC AB ⊥.【小问2详解】解:设2,2AB a BC b ==,因为BC AB ⊥,可得222AB BC AC +=,即224416a b +=,所以224a b +=,所以b =,又由PE ==所以2112222(4)3233P ABC V a b a a -=⨯⨯⨯==-,令()22(4)3f a a a =-,可得()22(43)3f a a '=-,令()0f a ¢=,解得233a =,当03a <<时,()0f a '>,()f a 单调递增;当23a <<时,()0f a '<,()f a 单调递减,所以当3a =时,即,33AB BC ==时,三棱锥-P ABC 的体积最大,以B 为原点,,BC BA 所在的直线分别为,x y 轴,以过点B 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,如图所示,设BD m =,可得4643232643(,,0),(0,,(,33333CA PA DA m =-=-=- ,则(,0,0),(,0,0),(0,,(0,,0)3333D m C P A ,设平面CPA 与平面PAD 的法向量分别为11112222(,,),(,,)n x y z n x y z == ,由11114643033033x y y z ⎧-+=⎪⎪⎨⎪-=⎪⎩,令1y =,可得111,1x z ==,所以1n = ,又由2222232603303y z mx y ⎧-=⎪⎪⎨⎪-+=⎪⎩,令1y =,可得22,13x z m ==,所以2()3n m = ,设二面角C PA D --的平面角的大小为θ,所以12123cos cos302n n n n θ⋅===,解得09m <<,所以BD 的长的取值范围为(0,9.22.已知函数()2e 32sin 1,xf x a ax x a =-+-∈R .(1)当01a <<时,求曲线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积的最大值;(2)当0x =时,函数()f x 取得极值,求a 的值.【答案】(1)38(2)2a =或1a =【解析】【分析】(1)求出曲线()y f x =在点()()0,0f 处的切线方程,然后求出与x 轴,y 轴的交点,表示出切线与两坐标轴围成的三角形面积,然后利用导数求最大值即可;(2)令()00f '=求出a 的值,然后验证a 的值使函数()f x 在0x =处取到极值.【小问1详解】由已知()2e 32cos xf x a a x '=-+,01a <<则()2320f a a '=-+,()201f a =-,曲线()y f x =在点()()0,0f 处的切线方程为()22321y a a x a =-++-,01a <<当0x =时,21y a =-,当0y =时,12a x a +=--,设线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积为()h a ,则()()221111112222a a a a a a h a ++=-=-⋅--,01a <<()()()()()()()()()23222321211213112222h a a a a a a a a a a a a +---+-∴-+-=⋅=--'-,令()0h a '>,则102a <<,即()h a 在10,2⎛⎫ ⎪⎝⎭上单调递增,令()0h a '<,则112a <<,即()h a 在1,12⎛⎫ ⎪⎝⎭上单调递减,即()max 111132112481222h a h +⎛⎫=-⋅= ⎪⎛⎫= ⎪-⎝⎝⎭⎭,即曲线()y f x =在点()()0,0f 处的切线与两坐标轴围成的三角形面积的最大值为38;【小问2详解】由(1)()2e 32cos x f x a a x '=-+,因为当0x =时,函数()f x 取得极值,得()20032f a a '=-+=,解得2a =或1a =,当2a =时,()4e 62cos x f x x '=-+,设()()4e 62cos xg x f x x '==-+,则()4e 2sin x g x x -'=,令()()4e 2sin xr x g x x =-'=,则()4e 2cos x r x x -'=,明显()4e 2cos x r x x -'=在π0,2⎛⎫ ⎪⎝⎭上单调递增,()()02r x r ''∴>=,即()4e 2sin x g x x -'=在π0,2⎛⎫ ⎪⎝⎭上单调递增,()4g x '∴>,即()4e 62cos x f x x '=-+在π0,2⎛⎫⎪⎝⎭上单调递增,()4620f x '∴>-+=,即函数()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递增又明显()4e 2sin 0x g x x -'=>在π,02⎛⎫- ⎪⎝⎭上恒成立,则()4e 62cos x f x x '=-+在π,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ''∴<=,即函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减,所以当0x =时,函数()f x 取得极值,当1a =时,()e 32cos x f x x '=-+,设()()e 2cos 3xt x f x x '=+-=,则()e 2sin xt x x -'=,当π,02x ⎛⎫∈- ⎪⎝⎭时,明显()0t x '>,当π0,2x ⎡⎫∈⎪⎢⎣⎭时,因为e 1,sin x x x x ≥+≥,()()()e 2sin 12sin sin 1sin 0x t x x x x x x x '∴-=≥+=-+-≥-()e 2sin 0x t x x -'∴=≥在ππ,22⎛⎫- ⎪⎝⎭上恒成立,()e 32cos x f x x '∴=-+在ππ,22⎛⎫- ⎪⎝⎭上单调递增,又()00f '=,∴函数()f x 在π,02⎛⎫- ⎪⎝⎭上单调递减,在π0,2⎡⎫⎪⎢⎣⎭上单调递增,所以当0x =时,函数()f x 取得极值,故2a =或1a =.现证明e 1x x ≥+,设()=e 1x m x x --,则()=e 1xm x '-,令()0m x '>,得0x >,()m x 在()0,∞+上单调递增,令()0m x '<,得0x <,()m x 在(),0∞-上单调递减,()()00m x m ∴≥=,即e 1x x ≥+,现证明πsin ,0,2x x x ⎡⎫≥∈⎪⎢⎣⎭,设()sin n x x x =-,则()1cos 0n x x ='-≥在π0,2⎡⎫⎪⎢⎣⎭上恒成立即()n x 在π0,2⎡⎫⎪⎢⎣⎭上单调递增,()()00n x n ∴≥=,即πsin ,0,2x x x ⎡⎫≥∈⎪⎢⎣⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012~2013学年度第二学期期中考试
高一数学参考答案与评分标准
1.
2
3
2. 2
3. 16
4. 212
5.
56 6. 7
24 7. 3 8. 等腰 9. 72 10. 1 11.
31 12. 50
3
724+ 13. 35π 14. 15 15. (本题满分14分)
解:(Ⅰ)212cos 1sin 21)(-++=
x x x f =)cos (sin 2
1x x + ……………………3分 =
)4
sin(22π
+x ………………………………………………………………5分 []1,1)4
sin(-∈+
π
x ,∴
)4sin(22π
+x ⎥⎦
⎤⎢⎣⎡-∈22,22 ∴函数()f x 的值域为⎥⎦
⎤
⎢⎣⎡-22,22……………………………………………7分 (Ⅱ)由 (1))4
sin(22)(παα+=
f , 即
)4sin(22πα+=
25
2
,即54)4sin(=+πα…………………………………8分 4
0π
α<<,∴
2
4
4
π
π
απ
<
+
<……………………………………………9分
∴5
3
)4
cos(=
+
π
α……………………………………………………………11分 ∴αsin =4
sin
)4
cos(4
cos
)4
sin()4
4
sin(π
π
απ
π
απ
π
α+
-+
=-
+
……………13分
=
22
532254⋅-⋅=10
2 ………………………………………………………14分 16. (本题满分14分)
解:(Ⅰ)设等差数列{}n a 的公差d , 366,0a a =-=
∴1126
50
a d a d +=-⎧⎨+=⎩ ………………………………………2分
解得110,2a d =-= ……………………………………4分
∴10(1)2212n a n n =-+-⋅=- …………………………………7分
(Ⅱ)设等比数列{}n b 的公比为q
8,2413212-=-=++=b a a a b ………………………………9分
∴824q -=-, 即q =3 ………………………………11分
∴{}n b 的前n 项和公式为1(1)
4(13)1n n n b q S q -=
=-- ……………………14分 17. (本题满分14分)
解:(Ⅰ)在ABC ∆中,3b B a A cos sin =,由正弦定理
sin sin b a
B A
= 得B A A B cos sin sin sin 3= …………………………………………………3分
A 是ABC ∆的内角,∴0sin ≠A ,∴
B B cos sin 3= ………………………4分
∴ 3
3
tan =
B …………………………………………………………………5分 又B 为三角形AB
C ∆内角,所以6
π
=
B …………………………………………7分
(Ⅱ)在△ABC 中,由正弦定理
B b A a sin sin =得b
B
a A sin sin ==233
21
.
3= ………8分
323π
π
=
=
∴A A 或 ………………………………………………………………10分
当3π=A ,2
π=C
2
3
33321=
⋅⋅=
∆ABC S ………………………………………………………12分 当32π=
A ,6
π=C 4
3
36sin 3321=
⋅⋅=
∆πABC S …………………………………………………14分
18. (本题满分16分)
解:(Ⅰ)如图,作E CD AE 于⊥,AB //CD ,
,12=CD AB 812==∴ED CE ,,
在DAE RT ∆中,AE DAE 8tan =
∠,在CA E
RT ∆中,AE
CAE 12tan =∠ …………2分 ∴)tan(tan DAE CAE CAD ∠+∠=∠=
DAE
CAE DAE
CAE ∠⋅∠-∠+∠tan tan 1tan tan ……………4分 即AE
AE AE AE 81218
121⋅
-+
=,096202
=--AE AE ,解得424-==AE AE 或(舍)
24==AE BC ,∴BC 长24米. …………………………………………6分
(Ⅱ)如图,作F CD PF 于⊥,则24==BC PF
设x CF =)120≤≤x (,x DF -=20 24
tan x
PF x CPF =
=
∠,24x -20-20tan ==∠PF x DPF ……………………8分 )tan(tan DPF CPF CPD ∠+∠=∠=
DPF
CPF DPF
CPF ∠⋅∠-∠+∠tan tan 1tan tan
24
20241242024x x x
x -⋅
--+=
576204802+-=x x 476)104802+-=x ( ……………………10分 ∴当119
120
tan 10取到最大值时CPD x ∠= ………………………………12分 120≤≤x ,∴0467)102>+-x (, 0tan >∠CPD ,∴是锐角CPD ∠, …13分 又正切函数在⎪⎭
⎫
⎝⎛20π,上单调增,∴取到最大值时CPD x ∠=10, 又BP CF =,
∴当10=BP m 时,∠CPD 最大.…………………………………………………16分
E F B
A D
P
19. (本题满分16分)
解:(Ⅰ)在ABD ∆中,5=AB ,060=∠BAD ,31=BD
由余弦定理,BAD AD AB AD AB BD ∠⋅-+=cos 22
2
2
………………………4分
2
11025312⋅
-+=AD AD ,0652
=--AD AD ………………………………6分 16-==AD AD 或(舍) ∴AD 的长为6 …………………………………………7分 (Ⅱ)在ABD ∆,ADC ∆中分别应用正弦定理,
ADB
BAD BD ∠=∠sin 5
sin ,ADB BD ∠=sin 560sin 0
………………………………9分 ADC AC CAD DC ∠=∠sin sin ,ADC AC DC ∠=sin 45sin 0 ………………………………11分 ADB ADC ∠-=∠0180ADB ADB ADC ∠=∠-=∠∴sin )180sin(sin 0
又BD CD 4=,两式相比得:AC BD BD 5
422
2
3=⋅ …………………………………14分 AC 5
3
42=,610=AC ,∴AC 的长为610…………………………………16分 20.(本题满分16分)
解:(Ⅰ)证明:由S n =2a n -n ,得S n +1=2a n +1-(n +1)
∴a n +1=2a n +1-2a n -1,
∴a n +1=2a n +1, ………………………………………2分 ∴a n +1+1=2(a n +1),∴
21
1
1=+++n n a a ……………………………4分
又当n=1时,S 1=2a 1-1,所以a 1=1,211=+a …………5分 所以数列{a n +1}是首项为2,公比为2的等比数列. ……6分
(Ⅱ)由(Ⅰ)得a n +1=(a 1+1)2
n-1
=2n , 故a n =2n -1 …………8分
(Ⅲ)由(Ⅱ)得b n =log 22n
,即b n =n (n ∈N *
) …………………………9分
数列{c n }中,b k (含b k 项)前的所有项的和是:
(1+2+3+…+k )+(20+21+22+…+2k -2)×2=k (k +1)2+2k
-2 …………12分
当k =10时,其和是55+210-2=1077<2 013 当k =11时,其和是66+211-2=2112>2 013
又因为2 013-1 077=936=468×2,是2的倍数…………14分
所以当m=10+(1+2+22+…+28)+468=989时,T m=2013
所以存在m=989使得T m=2 013……………16分。