QoS and Power Consumption Analysis OFCooperative Multicast Scheme with Cell Zooming

合集下载

电网弹性备用参与下的机组组合优化决策研究

电网弹性备用参与下的机组组合优化决策研究

第28卷㊀第3期2023年6月㊀哈尔滨理工大学学报JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY㊀Vol.28No.3Jun.2023㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀电网弹性备用参与下的机组组合优化决策研究周㊀毅1,㊀李一晨2,㊀傅幼书3,㊀秦康平1,㊀朱㊀文1,㊀范栋琦1(1.国家电网有限公司华东分部,上海200120;2.南京邮电大学自动化学院㊁人工智能学院,南京210023;3.国电南瑞科技股份有限公司,南京211106)摘㊀要:电网结构的日益复杂使得电网应对各种事故的能力亟待提高,合理的增加电网备用容量有助于降低电网运行风险㊂首先考虑极端情况下电网中存在备用不足的风险,将新能源调频㊁直流调制以及可中断负荷归为电网弹性备用,对其备用潜力进行量化建模㊂其次,以系统运行总费用最小为目标函数建立计及弹性备用的机组组合优化模型,在Lingo 环境下编写优化算法程序,对多种备用资源进行优化㊂最后,在IEEE-39节点系统中进行算例分析㊂结果表明,所建模型在保证系统安全的情况下,对日前机组计划进行了重新分配,可以实现资源最优分配,有效缓解常规备用压力,保证系统稳定运行㊂关键词:弹性备用;备用量化;优化决策;机组组合DOI :10.15938/j.jhust.2023.03.007中图分类号:TM712文献标志码:A文章编号:1007-2683(2023)03-0056-11Study on Optimal Decision of Unit Commitment withFlexible Reserve Participation in Power GridZHOU Yi 1,㊀LI Yichen 2,㊀FU Youshu 3,㊀QIN Kangping 1,㊀ZHU Wen 1,㊀FAN Dongqi 1(1.East China Branch of State Grid Corporation of China,Shanghai 200120,China;2.College of Automation &College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;3.NARI Technology Development Co.,Ltd.,Nanjing 211106,China)Abstract :The increasing complexity of the grid structure makes the gridᶄs ability to respond to various accidents urgently need tobe improved,and a reasonable increase in grid reserve capacity can help reduce grid operation risks.Under extreme conditions of the power grid,the risk of insufficient reserve is considered in this article.New energy frequency modulation,DC modulation andinterruptible load are classified as grid flexible reserve,and the reserve potential is quantified.Secondly,a unit combination model considering the flexible reserve is established with the objective function of minimizing the total operating cost of the system,and the optimization algorithm program is written in the Lingo environment to optimize a variety of reserve resources.Finally,an example isanalyzed in IEEE 39-bus system.The results show that the built model redistributes the day-ahead unit plan under the condition of ensuring the safety of the system,which can realize the optimal allocation of resources,effectively alleviate the pressure of conventional reserve,and ensure the stable operation of the system.Keywords :flexible reserve;standby quantitative;optimization decision;unit commitment㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2021-11-30基金项目:国家自然科学基金(62073173);江苏省自然科学基金(BK20191376).作者简介:李一晨(1996 ),男,硕士;傅幼书(1990 ),男,硕士.通信作者:周㊀毅(1982 ),男,正高级工程师,E-mail:3523788837@.0㊀引㊀言随着新能源占比的不断提高,以及特高压交直流输电工程规模的不断扩大,电网结构变得日益复杂㊂目前,依据国内外当前新能源发展态势,我国的风电装机容量已成为世界首位㊂然而,由于风电出力的间歇性㊁不确定性㊁不可预测性,大规模的新能源并网给电力系统的稳定运行带来挑战[1]㊂以西北电网为例,2019年各类型电网总装机容量达到35.7%,风电和光伏成为第二㊁第三大电源[2]㊂因此如何保证电网安全稳定运行成了一项重要挑战㊂一方面,可再生能源的大规模应用,其出力的波动性㊁间歇性㊁不可控性增大了电网峰谷差和电网调控的不确定性[3-4],导致电网快速响应备用容量需求增大㊂另一方面,在特高压交直流电网建设过渡期,电网强直弱交特征突出,送㊁受端系统转动惯量减小,一旦发生直流闭锁故障将产生巨大有功缺额,落点区域可用的旋转备用容量难以满足大功率缺失下的控制需求㊂若电网备用不足,则以上各种因素都会对电网稳定带来影响,特别是在负荷高峰时期,一旦线路发生故障,大电源退出,系统就会因供电不足发生连锁反应,轻则影响电能质量,重则破坏电力稳定性㊂因此,为保障电网安全稳定运行,需对电力系统的备用容量安排做出合理安排[5]㊂目前备用大多是从系统发电机组获取,发电侧备用主要是火电机组(燃气㊁燃煤机组)㊁水电机组以及抽水蓄能机组等常规机组㊂然而随着新能源大量接入电网以及大规模直流输电的快速发展,新能源出力的随机不确定性以及大功率缺额事故使电网形态日益复杂化㊂在电网严重故障时,仅仅是将新能源机组切除㊁直流调制以及可中断负荷紧急切除作为紧急控制手段[6-7]㊂相关学者在高占比新能源电力系统的备用优化方面开展了一系列研究㊂文[8]基于风速预测得到风电出力的概率密度函数,并在调度问题中以机会约束的形式约束备用总量㊂考虑到中期风电过程的可用程度及适用范围,文[9]提出考虑置信水平的风电等效机组划分方法,进而实现中期-日前嵌套式机组组合优化㊂文[10]通过模拟大规模风电渗透调度模型,对风电合理纳入备用减少常规机组开机方式展开研究㊂文[11]提出了备用需求动态评估模型,将无效向上/向下备用容量㊁切负荷量和弃风量期望作为评价指标,实现动态评估不同调度时段下受系统不确定性影响的备用需求㊂基于上述研究,针对负荷预测㊁新能源预测误差分析,提出了兼顾电网安全和新能源消纳的柔性备用机制[12]㊂文[13-15]研究表明:新能源机组调频㊁直流调制以及可中断负荷具备灵活的有功功率平衡控制能力,可以达到与常规发电机组相近的响应速率,但鲜有研究将各种资源整合量化,并探讨其备用能力,使得调度人员无法合理有效的利用这些资源㊂备用容量的确定离不开机组组合[16],机组组合问题可以针对24小时不同时段的负荷变化来确定机组最优出力方式[17]㊂考虑采用机组组合优化的方法来合理利用这些资源,所获得经济效益有时比单纯经济调度所获得的经济效益更好㊂本文针对电网运行新形势下运行备用不足的问题,考虑新能源机组㊁直流调制以及可中断负荷的功率调节的能力,将其视为电网弹性备用,并对其调节原理做了分析㊂接着,对弹性备用的备用能力做了量化处理,同时以经济性为目标,建立了计及弹性备用的机组组合优化模型,在兼顾系统可靠性的同时使系统运行成本最低,并通过IEEE-39节点系统对模型进行了验证㊂1㊀电力系统运行备用1.1㊀电力系统常规备用备用是指在电力系统运行中的备用容量㊂备用使电网能经受设备随机停运㊁负荷波动等扰动,能尽快地建立发电与负荷的平衡,保证频率在规定的范围内,不发生连锁事故甚至大面积停电㊂按GB/T 38969_2020‘电力系统技术导则“定义,备用分为运行备用和检修备用,其中运行备用按用处可分为负荷备用和事故备用㊂需说明的是,本文所研究备用均为运行备用㊂现有备用体系中的备用多来自电源侧发电机组,来源单一,且配置及调度优化过程中缺乏风险决策㊁风险管控的经验与手段[18]㊂传统的电力系统备用容量的确定一般都基于最大单机容量与年最大负荷的百分数相加来确定,一般以区域电网全网容量的3%~5%为基础,结合区域电网实际运行方式及地区负荷变化特点进行调整㊂运行备用容量按各个电网公司要求进行配置,南方电网要求全网负荷备用不低于全网最大统调负荷的2%,全网事故备用为全网最大统调负荷的8%~12%;国家电网要求负荷备用容量应按全网最大发电负荷的2%~5%配置,事故备用容量应按不小于本区域电网内运行的最大单机容量与跨区重要输电通道的最大受电功率之和㊂75第3期周㊀毅等:电网弹性备用参与下的机组组合优化决策研究1.2㊀电力系统弹性备用新能源机组调频㊁直流调制以及可中断负荷具备灵活的有功功率平衡控制能力,可以达到与常规发电机组相近的响应速率,具有为系统提供备用服务的潜力㊂本文考虑新能源调频㊁直流调制及可中断负荷功率调节能力,将其视为系统弹性备用,并纳入系统运行备用,且本文提及的弹性备用作为常规运行备用的补充,可以作为负荷备用和事故备用使用㊂以下将对弹性备用调节机理做简单分析㊂1)风电机组参与调频新能源参与电网有功调控方式主要有新能源机组自身控制和新能源集群管理㊂目前参与并网的风电机组主要是变速恒频风电机组,在风电机组控制层面,风电机组参与电网有功调节主要体现在频率控制方面㊂国内外最新发布的一些电网导则均明确提出并网风电场需要提供和常规发电厂一样的旋转备用㊁惯性响应以及一次调频等附属功能[19]㊂风电参与调频的控制方法主要包括虚拟惯性控制[20]和有功减载控制[21],其中有功减载又包括转子超速控制和浆距角控制[22]㊂文[23]基于风电机组的虚拟惯性和一次调频特性,提出追踪最大功率点轨迹的减载运行方案,为风电厂预留调频所需备用容量㊂2)直流功率调制直流功率调制(DC power modulation,DCM)是指在直流输电控制系统中加入附加直流调制器,当交流系统发生扰动时,从交流系统中提取反映系统异常的信号来调节直流输电线路的输送功率,使之快速吸收或补偿其所连交流系统的功率过剩或缺额部分,起紧急支援和阻尼振荡的作用,从而改善系统运行性能㊂其本质就是通过直流线路来共同分担交流联络线上的功率波动[24-25]㊂3)可中断负荷可中断负荷(interruptible load,IL)资源主要是指一些具备灵活响应能力的负荷,当系统发生功率缺额时,通过在允许的时间内切除部分负荷来减少系统功率缺额[26]㊂按照赔偿方式,可以将可中断负荷分为低价可中断负荷以及高赔偿可中断负荷㊂美国的电力市场已经将可中断负荷作为应急资源参与到紧急需求响应计划中[27]㊂文[28]阐述了世界各个国家的电力市场的可中断负荷参与电力系统运行备用的情况,均表明可中断负荷可以作为紧急备用资源参与系统调频㊂上述研究表明风电机组㊁直流功率支援㊁可中断负荷作为电网弹性备用,均有提供电网备用的潜力,并参与系统调频㊂但面对不同事故场景,不同资源备用潜力尚需进一步量化分析㊂本文针对大规模有功缺失场景,对电网弹性备用能力做具体量化,旨在为调度人员提供指导㊂2㊀弹性备用量化建模2.1㊀风电机组备用能力量化变速风电机组通过超速与变桨距协调配合的主动减载策略使其具备一次调频能力,即不让风机在最大功率点运行㊂风速对风机的输出功率起着决定性作用,由于风速在相邻时间内具有关联性与稳定性,且风电场风速数据具有按时间排序和离散性,同时由于时间序列同时蕴含着数据顺序大小[29],所以可以采用时间序列分析法来预测风速㊂风电机组减载比d%反映了预留备用容量的大小:d%=P opt-P rP optˑ100%(1)其中P opt为机组减载前的有功功率;P r为机组减载后的有功功率㊂参考常规调频机组静态调差系数的定义,风机组减载比还可表示为d%=Δf0f n R aˑ100%(2)式中:Δf0为电网频率允许的最大偏差;f n为电网额定频率;R a为风电机组一次调频静态调差系数㊂风电机组机械输出功率为P m=12ρπR2ν3C P(λ,β)(3)其中:ρ为空气密度;R为风机叶片半径;ν为风速;C P(λ,β)为风能利用系数;λ为叶尖速比;β为桨距角㊂通过减载控制后,量化单个风机α留有的备用容量Wα为:W a=0νa,tɤνin或νa,tȡνout 12ρπR2v3a,t C P,max d%νin<νa,t<νnP wn d%νnɤνa,t<νoutìîíïïïï(4)其中:C P,max为最佳叶尖速比;P wn为机组额定功率;νa,t为风机α在t时刻的预测风速;νin为切入风速;νout为切出风速;νn为额定风速㊂由于风机的预测风速与实际测得风速有偏差,会导致预测功率因此发生偏差,因此,通过对大量历史数据的分析得到合适的校正因子B,同时假设不同风速下都使用相同的85哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀减载比d%,最后得到风机所能提供的总备用容量W :W =B ðGa =1W a(5)其中G 为风电场提供备用的风机总数㊂2.2㊀直流调制备用能力量化当交流系统发生有功缺失时,直流系统可通过加大馈入功率来减少交流系统有功缺额,在直流进行功率支援时,其实际支援的功率ΔP d 为ΔP d =P ᶄd -P d 0=K (t 2-t 1)(6)其中:P ᶄd 为直流调制后直流线路的功率;P d 0为直流不调制时的馈入功率;K 为直流调制速率;t 1为调制开始的时刻;t 2为调制结束时刻㊂直流系统具有3s 的1.5倍和2h 的1.1倍的过负荷能力,具有为电力系统提供备用的潜力,首先计算单条直流线路在t 时段的备用能力Dn :Dn =1.5P dN -P d 00ɤT ɤ3s 1.1P dN -P d 03s <T ɤ2h{(7)式中:P dN 为直流线路额定功率;T 为响应时间㊂再计算全网直流系统可以提供的功率D :D =ðHn =1(1.5P n dN -P n d 0)0ɤT ɤ3s ðHn =1(1.1P n dN -P n d 0)3s <T ɤ2hìîíïïïï(8)式中:P n dN 为第n 条线路的额定功率;P nd 0为第n 条线路的初始实际运行功率;H 为可以提供功率支援的线路数量㊂2.3㊀可中断负荷备用能力量化结合理论研究和工程实际,目前空调和热水器可作为理想的可中断负荷㊂同时考虑到空调与热水器的参与调控会对用户产生影响,因此本文加入舒适度因素㊂其t 时段可提供的备用能力L 为L =ðMj =1P j AC ,t S j AC ,t +ðNk =1P k WH ,t S kWH ,t(9)S j AC ,t =0T j AC ,t <T AC ,min 或T j AC ,t >T AC ,max 1T AC ,min ɤTjAC ,tɤT AC ,max{(10)Sk WH ,t=0T k WH ,t <T PS 1T k WH ,t >T PS{(11)式中:P j AC ,t 为第j 台空调t 时刻的响应功率;M 为空调的数量;S j AC ,t 为第j 台空调t 时刻的状态;P k WH ,t 为第k 台热水器t 时刻的响应功率;N 为热水器台数;S k WH ,t 为第k 台热水器t 时刻状态;T jAC ,t 为第j 台空调t 时刻室温;T AC ,min 为人体舒适室温下限;T AC ,max 为人体舒适室温上限;T k WH ,t 为第k 台热水器t 时刻水温;T PS 为预置人体合适水温㊂当空调所在室温为人体体感温度舒适区域内时,空调可以通过状态启停参与响应;若室温在人体体感舒适温度之外,则不参与响应㊂给热水器提供一个预置的人体舒适的预置水温,当热水器温度达到预置温度,则参与响应,否则不参与响应㊂2.4㊀新能源-直流-可中断负荷协同的备用能力将直流调制提供的备用容量与可中断负荷所能提供的备用容量以及风电机组通过减载运行提供的备用容量相加,得到弹性备用容量S :S =W +D +L (12)在发生功率缺失的不同时间段内,弹性备用所能提供的备用容量是不同的㊂本文以直流系统短时与长期过载能力的时间节点来做时间划分:S =W +ðHi =1(1.5P i dN -P i d 0)+L 0<T b <3sW +ðH i =1(1.1P i dN -P i d 0)+L 3sɤT b ɤ2hW +L T b >2h ìîíïïïïï(13)其中:T b 为故障发生的起始时间㊂可以看到,在0到3s 内,弹性备用容量为直流系统1.5倍过负荷所提供的备用能力加上可中断负荷提供的备用能力,再加上风电机组提供的备用;在3s 到2h 内,弹性备用容量为直流系统1.1倍过负荷所提供的备用能力加上可中断负荷提供的备用能力,再加上风电机组提供的备用;超过2h,直流系统不参与备用,弹性备用容量为可中断负荷提供的备用能力加上风电机组提供的备用㊂3㊀计及弹性备用参与的机组组合优化模型在完成弹性备用量化建模的基础上,本节将以经济性为目标,建立计及弹性备用的机组组合优化模型㊂备用成本包括弃风成本㊁直流功率调制出力成本㊁可中断负荷出力成本,以及常规机组运行成本㊂在保证系统安全的情况下,对日前机组计划进行重新分配㊂3.1㊀目标函数综合考虑系统发电成本㊁发电侧正负旋转备用㊁弃风成本㊁可中断负荷成本和直流调制成本,以系统总运行成本C min 最小为目标函数,表达式如下:C min =F G +F SR +F wc +F z +F IL (14)式中:F G 为常规机组运行成本;F SR 为常规机组提供的旋转备用成本;F wc 为弃风惩罚成本;F z 为直流调制成本;F IL 可中断负荷成本㊂95第3期周㊀毅等:电网弹性备用参与下的机组组合优化决策研究常规机组运行成本F G可表示为F G=ðT t=1ðNG i u i,t(a i P2Gi,t+b i P Gi,t+c i)+ðT t=1ðN G i=1u i,t(1-u i,t-1)SC iìîíïïïï(15)式中:T为总优化时间;N G为常规机组总数;P Gi,t为常规机组i在t时段的出力;a i,b i,c i为常规机组i 电量报价曲线系数;u i,t=0/1为常规机组处于停机开机状态;SC i为开机成本㊂常规机组提供的旋转备用成本F SR可表示为F SR=ðT t=1ðN G i=1(C+Gi R+Gi,t+C-Gi R-Gi,t)u i,t(16)式中:C+Gi和C-Gi分别为常规机组i提供的单位正负旋转备用报价;R+Gi,t为常规机组i在t时段提供的正旋转备用;R-Gi,t为常规机组i在t时段提供的负旋转备用㊂弃风惩罚成本F wc可表示为F wc=ðT t=1C wc P yc wc,t d(17)式中:C wc为弃风单位惩罚成本;P yc wc,t为t时段风电预测出力㊂为简化分析,假设风电场内所有风机控制性能相同且可以用单一风机等值风电场,同时忽略风电场内风速差异㊂由于风电出力上限受自然因素限制,其提供正旋转备用可信度不高[30-31],风电减载运行作为正备用的可靠性还需进一步验证,因此本文只考虑少量弃风作为负备用㊂直流调制成本F z可表示为F z=C z|P z0-P z,t|(18)式中:P z0为直流不调制时馈入功率;P z,t为t时刻直流输入功率;C z为直流调制成本系数㊂可中断负荷成本F IL可表示为F IL=ðT t=1C IL,t P IL,t(19)式中:C IL,t为t时段削减负荷所对应的代价系数;P IL,t 为t时段所对应的负荷削减量㊂综上有:min{ðT t=1ðN G i u i,t(a i P2Gi,t+b i P Gi,t+c i)+ðT t=1ðN G i=1u i,t(1-u i,t-1)SC i+ðT t=1ðN G i=1(C+Gi R+Gi,t+C-Gi R-Gi,t)u i,t+ðT t=1C wc P yc wc,t d+C z|P z0-P z,t|+ðT t=1C IL,t P IL,t}(20) 3.2㊀约束条件约束条件主要包括功率平衡约束㊁常规机组发电容量约束㊁常规机组爬坡㊁滑坡约束㊁常规机组最小持续运行时间和最小持续停机时间约束㊁常规机组旋转备用容量约束㊁风力发电约束㊁直流调制约束,以及可中断负荷备用约束㊂1)有功平衡约束ðN G i=1P Gi,t+P w,t+P z,t=P load,t-P IL,t(21)式中P load为系统总负荷㊂2)常规机组发电容量约束P min Gi,tɤP Gi,tɤP max Gi,t(22)式中:P min Gi,t为第i台电机组出力下限;P max Gi,t为第i台电机组出力上限㊂3)常规机组爬坡㊁滑坡约束P Gi,t-P Gi,t-1ɤR up GiP Gi,t-1-P Gi,tɤR down Gi}(23)式中:R up Gi和R down Gi为机组i单位时间爬坡功率和下降功率限值㊂4)常规机组最小持续运行时间和最小持续停机时间约束T on i,tȡT on i,minT off i,tȡT off i,min}(24)式中:T on i,t为常规机组运行时间;T off i,t为常规机组停机时间;T on i,min为常规机组最小持续运行时间;T off i,min为最小持续停机时间㊂5)常规机组旋转备用容量约束0ɤR+Gi,tɤmin{u Gi,t P Gi,max-P Gi,t,u Gi,t r up GiΔt R} 0ɤR-Gi,tɤmin{P Gi,t-u Gi,t P Gi,min,u Gi,t r down GiΔt R}}(25)式中Δt R为旋转备用响应时间㊂6)风力发电约束P min wc,tɤP wc,tɤP max wc,t(26)式中:P min wc,t为风电出力最小值;P max wc,t为风电出力最大值㊂7)直流调制约束㊂为简化模型,本文仅考虑直流长期调制㊂P d,minɤP d,tɤP d,max(27)式中:最小调制功率P d,min=0.9P d0;最大调制功率P d,max=1.1P d0㊂8)可中断负荷备用约束0ɤP IL,tɤP IL,max(28)式中P IL,max为可中断负荷最大可中断量㊂3.3㊀模型求解计及弹性备用参与的机组组合优化决策模型包括:目标函数㊁等式约束条件㊁不等式约束条件㊁上下限约束条件以及求解变量㊂机组组合优化是一个高维数㊁离散㊁非线性混合整数优化优化问题㊂对此问题,众多学者提出了多种求解方法,如遗传算法[32]㊁拉格朗日松弛法[33]㊁人工鱼群算法[34]㊁混合粒子群06哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀算法[35]等㊂尽管这些算法在理论上可以找到最优解,但是编程复杂,且不适用于所有问题㊂Lingo 软件可以针对所输入的优化模型的类别自动选取相应的求解程序,且编程简单,易于修改,故本文借助Lingo 对模型进行求解,主要包含以下步骤:1)输入发电机组㊁负荷㊁风电㊁直流及其他相关参数;2)定义机组组合优化模型目标函数中的独立变量,包括各时段机组启停状态㊁有功出力㊁旋转备用预留容量㊁直流馈入量;3)列写约束条件并根据约束条件写出目标函数;4)建立混合整数非线性规划机组组合模型;5)调用Lingo 求解模型㊂图1为机组组合优化模型求解流程图㊂图1㊀优化模型求解流程Fig.1㊀Optimization model solving process4㊀算例分析4.1㊀仿真系统为了验证本文所提模型的优越性和有效性,以IEEE-39节点系统为例进行仿真分析,系统结构如图2所示㊂在18号节点处接入的50MW 的直流,在12号节点接入风电场㊂设该风电场24时段的风功率预测值和可中断负荷预测值如图3所示㊂负荷参数㊁IEEE-39节点的10台机组参数参照文[36]㊂根据仿真系统,采用对比分析:方案1: 新能源-直流-可中断负荷 不参与系统日前机组组合调度,仅对常规10台发电机组做出优化,即采用常规机组组合模型㊂方案2: 新能源-直流-可中断负荷 参与日前机组组合调度,但是不计入备用,仅由常规机组提供正负备用㊂方案3: 新能源-直流-可中断负荷 参与日前机组组合调度,同时与常规机组一起组成系统正负备用㊂图2㊀IEEE-39节点系统结构Fig.2㊀IEEE-39node systemstructure图3㊀风功率预测和可中断负荷预测数据Fig.3㊀Wind power forecast and interruptibleload forecast data16第3期周㊀毅等:电网弹性备用参与下的机组组合优化决策研究参照文[36],设模型中发电侧提供的正旋转备用成本系数为20/MWh,发电侧提供的负旋转备用成本系数为11/MWh,弃风惩罚系数为35/MWh,直流调制成本系数为11/MWh,可中断负荷成本系数为100/MWh㊂4.2㊀仿真结果对比分析根据方案1㊁方案2和方案3的优化求解结果,分析系统的总成本,如表1所示㊂表1㊀方案1㊁方案2㊁方案3成本对比Tab.1㊀Cost comparison of plan 1,plan 2,plan 3方案发电侧成本/弹性侧成本/系统总成本/1584209058420925120657705720353510823773570796㊀㊀由表1可知,方案2比方案1总成本节省12174㊂由于方案2从 新能源-直流-可中断负荷 角度考虑了弃风㊁直流调制㊁可中断负荷参与系统优化,从而有效减少常规机组出力,减少发电侧出力成本,部分成本由弹性侧承担㊂方案3与方案2相比,发电侧成本较少,弹性侧成本略有增加,但是总成本减少㊂这是由于将弃风纳入系统负备用,直流调制和可中断负荷纳入系统正备用,从而减少常规备用压力,关闭部分处于开机状态但是不发电机组,减少机组开机成本,从而大幅减少总成本㊂图4㊀常规机组开机台数Fig.4㊀Number of conventional units started图4是3种方案下发电机开机台数的对比㊂由图4可见,方案2中大多数时段发电机的开机台数与方案1无区别,结合表2说明 新能源-直流-可中断负荷 融入系统后,可以有效减少常规机组的发电成本,但是,由于没有纳入系统备用,所以对机组启停无太大影响㊂方案3下10㊁11㊁12㊁13㊁14㊁20㊁21时段的发电机开机台数小于方案1㊁方案2,说明在负荷高峰期,可中断负荷的加入,可以有效减少传统机组配置的备用容量,从而减少增开的机组台数,减少因机组频繁启停带来的经济损失和环境污染㊂图5㊁6㊁7为方案1㊁2㊁3的不同机组㊁资源出力情况㊂图5㊀方案1机组组合优化结果Fig.5㊀Plan 1Unit Commitment OptimizationResults图6㊀方案2机组组合优化结果Fig.6㊀Plan 2Unit Commitment OptimizationResults图7㊀方案3机组组合优化结果Fig.7㊀Plan 3Unit Commitment Optimization Results26哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀对比方案1㊁2㊁3,在负荷低谷时段,机组出力情况大致相同㊂在负荷高峰期,相较于方案1,方案2和3中的常规机组出力减少,直流调制和可中断负荷代替部分高费用机组出力,从而减少发电成本㊂例如,在11点时,5号发电机组出力明显降低,直流调制与可中断负荷参与系统调峰,维持系统功率平衡㊂对比方案2㊁3,方案3比方案2多考虑了 新能源-直流-可中断负荷 纳入系统备用㊂在系统用电低谷时段机组多未满发,备用预留在机组上较多㊂12点时,处于负荷高峰,在方案2中,1㊁2㊁3㊁4号机组满发,8㊁9㊁10号机组处于出力下限,此时备用由5㊁6㊁8㊁9㊁10号机组承担㊂由于传统方法 新能源-直流-可中断负荷 侧不提供备用,因此需要多开机组保证备用容量,这就相当于以一定的经济代价换取系统安全,使得不少机组处于弱开机方式,同时5号高效能机组不能满发,带来资源浪费和环境污染;在方案3中,1㊁2㊁3㊁4㊁5号机组满发,同时关闭了8㊁9㊁10号弱开机机组,此时备用容量主要由6号机组㊁直流调制以及可中断负荷来承担,从而有效减少开机成本和资源浪费㊂需要提及的是,由于系统负备用充足,且弃风惩罚较高,因此一般情况下,弃风作为负备用时并不出力㊂本文所提模型目的是在确保系统可靠性的前提下,实现系统经济最优,通过以上方案1㊁2㊁3的运行成本㊁开机台数㊁机组出力的对比分析可知,方案3,即本文所提的计及弹性备用的机组组合模型,在满足系统同等可靠性要求的前提下,可以有效降低系统发电成本,减少机组频繁启停带来的环境污染,实现经济性更优㊂在电网发生大功率有功缺额事故时,备用不足将使系统频率大幅跌落情况,为考察优化后的机组备用组合出力对电网频率稳定性的影响,加入弹性备用有助系统频率的稳定恢复㊂假设某时刻发生发电机组掉机故障,基于IEEE-39节点系统,利用PSD-BPA软件模拟备用资源参与系统有功缺失扰动下的频率恢复过程,仿真结果如图8所示㊂由图8可见,加入弹性备用后,对比不考虑弹性备用的情况,系统频率跌落的最小值减小,稳态频率值上升㊂这是由于风机采用了主动减载控制策略为参与发电机组的一次调频留了备用容量,因此当系统发生功率缺额时,风电机组在频率动态过程转速降低,释放了动能,对系统起到了显著的惯性支持;直流参与备用后,由于与交流系统共同分担了功率缺额,所以直流系统会向交流系统增加有功功率的支持,防止交流系统频率的大幅度跌落;通过可中断负荷参与系统备用调频,使得动态过程中系统频率跌落显著下降,同时提升了最终的稳态值㊂图8㊀弹性备用方式下的频率恢复效果图Fig.8㊀The frequency recovery effect diagram underthe flexible reserve mode综上,相较于只考虑常规备用,计及弹性备用下的系统频率恢复效果更好,在系统一次调频过程中(10s后),明显改善了频率恢复特性㊂5㊀结㊀论本文从电网运行新形势背景出发,考虑当前电网中存在备用不足的风险,提出通过直流功率支援㊁风电减载控制以及可中断负荷组成电网弹性备用,在发生有功缺失事故时参与电网调频㊂对弹性备用潜力进行量化,建立弹性备用量化模型㊂建立计及 新能源-直流-可中断负荷 参与下的系统优化模型,并对模型求解,得出的结论为:1)考虑 新能源-直流-可中断负荷 参与日前机组组合调度,但是不计入备用,相较于常规机组组合模型可以有效减少系统发电成本,同时可以消纳部分风电㊂2)考虑 新能源-直流-可中断负荷 作为弹性备用纳入系统备用,并参与日前调度安排,可以有效减少系统发电成本;有效减少传统机组配置的备用容量,从而减少增开的机组台数,减少因机组频繁启停带来的经济损失和环境污染㊂3)本文提出的计及弹性备用参与日前机组组合优化模型,可以在电力系统发生故障时灵活调用各种备用资源,有效减少系统因备用不足而产生的风险,对保障电网安全稳定运行具有重要的学术研究36第3期周㊀毅等:电网弹性备用参与下的机组组合优化决策研究。

基于动态频率的芯片面积功耗优化设计

基于动态频率的芯片面积功耗优化设计

Microelectronic Technology基于动态频率的芯片面积功耗优化设计!詹瑞典4,2,杨家昌4,2(1.佛山芯珠微电子有限公司,广东佛山528225 ;2.广东工业大学自动化学院,广东广州510006)摘要:芯片面积和功耗与工作频率紧密相关,在保持原有项目设计的条件下,利用门电路在不同频率下的开关工作原理,提出一种动态频率闭环设计方法,从系统级综合优化芯片的面积和功耗。

通过筛选满足条件的多组测试集,建立频率与面积、频率与功耗的数学模型,综合考虑面积和功耗并计算出最优的频率。

通过对一款已流片的芯片进行仿真验证,该方法同原有设计方法相比可以减少芯片面积约0.59:%降低功耗约9.01:。

关键词:动态频率&优化&闭环&系统级中图分类号:T N4 文献标识码:A D0I :10.16157/j.is s n.0258-7998.181522中文引用格式:詹瑞典,杨家昌.基于动态频率的芯片面积功耗优化设计[J].电子技术应用,2019,45(1):35-38.英文弓I用格式:Zhan R u id ia n,Yang Jia ch a n g.A re a and pow er con sum ptio n o p tim iza tio n based on dyn am ic fre q u e n c y,】].A p p lic a tio n o f E le c tro n ic T e c h n iq u e,2019,45(1) :35-38.Area and power consumption optimization based on dynamic frequencyZ h a n R u id ia n12,Y a n g J ia c h a n g1 2(1.C hipeye M icro e le ctro n ics Foshan L t d.,Foshan 528225,C hina;2.S chool o f A u to m a tio n,G uangdong U n iv e rs ity o f T e c h n o lo g y,Guangzhou 510006,C h in a)A b s tra c t:A re a and pow er con sum ptio n o f an inte grated c irc u it c h ip is strongly re la ted to its op erating fre q u e n c y.U sing the sw itch­in g p rin c ip le o f the gate-le v e l c irc u it u n d e r d iffe re n t fre que ncies and kee ping the o rig in a l d e s ig n,a system le v e l c h ip area and pow er con sum ptio n o p tim iza tio n m ethod based on d yn a m ic fre que ncy a d ju stm en t is proposed in th is p a p e r.F ir s tly,the re la tio n sh ip s o f area v s.fre q u e n cy and pow er con sum ptio n v s.fre q u e n cy are established by choosing the m u ltip le test sets w h ic h satisfy the re­s tric tin g co n s tra in ts.S e co n d ly,the m a them atical m odels o f area v s.fre que ncy and pow er con sum ptio n v s.fre q u e n cy are d e riv e d. T h e n,the o p tim a l op erating fre q u e n cy is ob tained by re solving the m o d e ls.W ith a tape out d e s ig n,the proposed m ethod achieved about 0.59: area sh rin k and about 9.01:re d u ctio n in pow er c o n su m p tio n.K e y w o rd s:d yn a m ic fre que ncy;o p tim iza tio n;closed- loop;system le ve l〇引言随着消费类电子产品、网络产品等市场的快速发展,低成本、高速、低功耗和多功能的嵌入式系统的需求给集成电路设计行业带来了更大的挑战,实现更多复杂功能的单芯片集成度越来越高,同时单芯片功耗、成本 也随之增长。

认知无线传感网络中吞吐量能耗均衡研究

认知无线传感网络中吞吐量能耗均衡研究

认知无线传感网络中吞吐量能耗均衡研究高卉;冯友宏;王晓雨【摘要】Cognitive Wireless Sensor Networks ( CWSN) can utilize idle authorized spectrum to overcome the shortage of spectrum re-sources in the traditional wireless sensor network. Within the authorized spectrum,the use of spectrum hole for communication can im-prove performance of wireless sensor network. In addition,since the CWSN operates in wireless sensor network there exist many short-comings,such as weak energy of each sensor node,consideration of energy-saving and collaboration of energy-saving with specific node etc,which limit the direct application of traditional technology of cognitive radio network. Due to the energy constraint of each cognitive user and potential secondary transmission errors in CWSN,energy efficiency becomes very important for each cognitive node in spectrum sensing and cooperative transmission. The novel energy efficient strategies are proposed for the centralized CSS using hard decision fusion rules. In stage of energy consumption the minimum number of users can be calculated with the limitation of overall detection probability and false alarm probability;in stage of energy efficiency optimization under the constraint of parameters involving fixed perception time slot etc. the objective function is optimized with iterative algorithm for the optimized number of users as well as the maximum efficiency of energy consumption. Based on analysis on the channel information error rate of energy consumption,the simulation experimentson hard decision fusion algorithm are conducted in contrast with traditional ones. The results show that the optimality of k with N-Rule is prior to both of OR and AND-Rules and the energy efficiency is optimal.%认知无线传感网可利用空闲的授权频段来解决传统无线传感器网络的频谱资源短缺的问题,在授权频段内,其利用频谱空穴进行通信,从而改善了无线传感器网的性能.由于认知无线传感网主要基于无线传感器网,因此存在着节点能力弱、需考虑网络节能及其与节点协作等问题,不能直接套用传统认知无线电网络的技术.由于次用户能耗限制和上传信道信息可能存在错误,提高能耗效率在次用户频谱感知和协作发送过程中显得非常重要.为此,提出了一种用于集中式协作频谱感知的硬判决融合算法.该算法在能耗阶段,由总的检测概率和虚警概率的限制求最小的次用户数目;在能耗效率优化阶段,在固定感知时隙等参数限制下,设计优化目标函数,迭代算法求得最优用户数,从而实现能耗的最大效率.基于信道信息误码率对能耗影响的分析,进行了硬判决融合算法与传统算法的对比仿真实验.仿真结果表明,该算法需要的感知节点最少,且能耗效率可达到最优.【期刊名称】《计算机技术与发展》【年(卷),期】2017(027)010【总页数】6页(P130-135)【关键词】认知无线网络;协作频谱感知;能耗效率;硬判决;误码率限制【作者】高卉;冯友宏;王晓雨【作者单位】南京邮电大学教育部宽带无线通信与传感器技术重点实验室,江苏南京 210003;南京邮电大学教育部宽带无线通信与传感器技术重点实验室,江苏南京210003;安徽师范大学物理与电子信息学院,安徽芜湖 241000;南京邮电大学教育部宽带无线通信与传感器技术重点实验室,江苏南京 210003【正文语种】中文【中图分类】TP301目前无线传感网(WSN)面临着诸多挑战,包括非授权ISM频段频谱资源匮乏和节点的能量有限等问题。

430 Series II 产品比较指南说明书

430 Series II 产品比较指南说明书

430 Series II comparison guide434 Series II Energy Analyzer 435 Series II Power Qualityand Energy Analyzer437 Series II Power Qualitlyand Energy AnalyzerUsers ElectricianBasic power quality user Industrial electricianUtilities technicianAdvanced power quality userMilitary defense, avionicsand other transport-focusedindustrial electricians andutility techniciansApplications Power and energy analysisusing patented algorithms—Energy Loss Calculatormonetizes cost of poor powerqualityBasic PQ V/A/Hz, power, dips,swells, harmonics, unbalancePower Inverter Efficiency:measure efficiency of invertersin solar, wind and UPS apps PowerWave waveform capture:each event with full waveformdetailsPower Inverter Efficiency:measure efficiency of invertersin solar, wind and UPS appsPower Scope Record:troubleshoot non standardthree-phase power issuesAdvanced PQ, flicker,transients, Class A compliantPower and energy analysisusing patented algorithms—Energy Loss Calculatormonetizes cost of poor powerqualityCaptures power qualitymeasurements for avionic andmilitary power systems with400 Hz frequency needsPowerWave waveform capture:each event with full waveformdetailsPower Inverter Efficiency:measure efficiency of invertersin solar, wind and UPS appsAdvanced PQ, flicker,transients, Class A compliantPower and energy analysisusing patented algorithms—Energy Loss Calculatormonetizes cost of poor powerqualityKey features Energy Loss CalculatorPower Inverter Efficiency PowerWave data capturePower Inverter EfficiencyEnergy Loss Calculator400 HzPowerWave data capturePower Inverter EfficiencyEnergy Loss CalculatorModelFluke 434-II Fluke 435-II Fluke 437-II IEC 61000-4-30 compliance Class S Class A Class A Volt Amp Hz •••Dips and swells •••Harmonics •••Power and energy •••Energy loss calculator •••Unbalance •••Monitor •••Inrush•••Event waveform capture ••Flicker ••Transients ••Mains signaling ••Power wave••Power inverter efficiency •••400 Hz •C1740 Soft Case••C437-II Hard Case with rollers •SD card (Max 32 GB)8 GB8 GB8 GBAll models include the following accessories TLS430 test lead set, 4 x i430 thin flexi current probes, BP290 battery, BC430 power adapter with international power adapter set, USB cable A-B mini and PowerLog CD.430 Series II Power Quality and Energy Analyzer selection chartFluke Europe B.V .P.O. Box 11865602 BD Eindhoven The NetherlandsWeb: For more information call:In Europe/M-East/Africa +31 (0)40 2 675 200or Fax +31 (0)40 2 675 222Fluke (UK) Ltd.52 Hurricane Way Norwich, Norfolk NR6 6JBUnited KingdomTel.: +44 (0)20 7942 0700Fax: +44 (0)20 7942 0701E-mail:*******************.nl Web: ©2011 Fluke Corporation. All rights reserved. Printed in The Netherlands. Data subject to alteration without notice. Pub ID: 11878-engModification of this document is not permitted without written permission from Fluke Corporation.Fluke. Keeping your world up and running.®。

无线传感器网络路由协议分析

无线传感器网络路由协议分析

南京邮电大学硕士研究生学位论文术语表术语表Adaptive Threshold sensitive Energy APTEEN 自适应敏感阀值节能型传感网络协议CDMA码分多址Code Division Multiple AccessCSMA 载波侦听多路访问Carrier Sense Multiple AccessDD 定向扩散Directed DiffusionGEAR 地理和能量感知路由Geographic and Energy Routing LEACH 低功耗自适应分簇协议介质访问控制Media Access ControlMCU 微控制单元Micro-Controller UnitPEGASIS Po-Efficient Gathering in SensorInformation System服务质量Quality of Service信息协商传感协议Sensor Protocol for Information viaNegotiationTCP 传输控制协议Transfer Control ProtocolTDMA 时分多址Time Division Multiple AccessTEEN 敏感阀值节能型传感网络协议Threshold sensitive Energy Efficient sensorNetwork protocol用户数据包协议User Datagram ProtocolWSN 无线传感器网络Wireless Sensor Network南京邮电大学学位论文原创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。

尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得南京邮电大学或其它教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

【国家自然科学基金】_基于位置的服务(lbs)_基金支持热词逐年推荐_【万方软件创新助手】_20140730

【国家自然科学基金】_基于位置的服务(lbs)_基金支持热词逐年推荐_【万方软件创新助手】_20140730

科研热词 基于位置的服务 基于位置服务 障碍空间 隐私 连续查询 计算机应用 行人导航 网格 移动计算 移动数据 移动对象 移动位置服务(lbs) 服务质量 有向通视图 最近邻 数字校园 基于位置服务(lbs) 地理应用 地标 在线地图服务 原型系统 位置服务 个体行为 不确定 lbs支撑平台 lbs-p平台
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
科研热词 基于位置的服务 软件复用 轨迹回放 车辆监控 路径匹配 网格定位服务(gls) 网格 移动地理信息系统 社会性软件 物流管理 构件 服务质量 无线终端 复杂信息系统 增值服务 基于位置服务 地理信息系统 地图服务 博物馆导航 位置服务(lbs) 任务本体 业务生成 业务上下文 上下文感知 xpl(extanded-calling process ianguage) webservice web2.0 soa(services-oriented architecture,基于服 poi(point of interest,兴趣点) mobile2.0 lbs mv j2me gps gis gdl(geography description language,地理描 ajax
推荐指数 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
中央差分 不确定移动对象 不确定数据 voronoi图 rtk lbs k匿名 k-nn g1 1

大用户控制购电成本风险的均值–熵权组合优化模型(精)

大用户控制购电成本风险的均值–熵权组合优化模型(精)

(4)
E ( B1 ) = ∫
∫ −∞ (SQ − P1 x1 − P2 x2 − P0 x3 )

2
dP 1dP 2 =
式中 x3 为大用户购买的期权电量。 大用户的总利润
0 引言
大用户直购电是电力大用户和发电公司直接 进行双边交易的一种购电模式。作为推进电力市场 建设的重要内容,大用户直购电对提高用户市场地 位、促进电网公平开放、利于地方经济发展具有重 要意义,也是提高电能生产与输送效率、降低用户 用电成本的重要举措。 文献[1]正式对大用户直接购 电试点工作作了一系列明确规定。2005 年,吉林碳 素集团作为我国首家试点单位,从龙华热电购入电 量约 4×108kWh,购电价格为 0.253 元/kWh,并以 0.127 元/kWh 的价格向吉林省电力公司缴付输电 费,降低购电成本 2 000 万元左右,可见大用户直 购电对降低购电成本具有重要的意义。为此,国家 提出在 “十一五” 期间加快推进大用户直购电工作。 由于大用户直购电是一项新体制改革措施,如 果大范围推广需要对许多问题进行研究,如从政策 和法律的角度研究大用户直购电存在的问题[2];从 电网公司角度,采用博弈论方法研究转运费定价机 基于双方叫价拍卖理论研究发电公司 制的问题[3-4]; 这些研 和大用户如何建立有效的报价策略问题[5-6]。 究都有利于促进大用户直购电措施的推行。在输配 电分开的电力市场环境下,大用户可在多个交易市 场中购电,不同交易市场的上网电价波动程度不 同,因此,不同的购电策略将给大用户带来不同的
第 33 卷 第 11 期 2009 年 6 月 文章编号:1000-3673(2009)11-0065-06
电 网 技 术 Power System Technology 中图分类号:F407.2 文献标志码:A

High-Performance Computing

High-Performance Computing

High-Performance Computing High-Performance Computing High-performance computing (HPC) refers to the use of supercomputers and parallel processing techniques to solve complexcomputational problems. In recent years, HPC has become increasingly important in various fields such as scientific research, engineering, and business. This essay will discuss the significance of HPC, its applications, and the challenges it presents. To begin with, high-performance computing plays a crucial role in scientific research. It enables researchers to process and analyze large volumesof data, which is essential for making breakthroughs in fields such as genomics, climate modeling, and drug discovery. For example, scientists use HPC to simulate the behavior of molecules and proteins, which helps in the development of newdrugs and treatments for diseases. Without HPC, these simulations would be impractical or impossible to perform. Furthermore, high-performance computing is widely used in engineering and design. It allows engineers to create complex models and simulations that were previously not feasible. For instance, in the aerospace industry, HPC is used to simulate the airflow around an aircraft,leading to more efficient and safer designs. Similarly, in the automotive industry, HPC is used to simulate crash tests and optimize vehicle performance. These applications demonstrate how HPC is revolutionizing the way products are designed and tested. In addition, high-performance computing has become essential in the business world. It is used for tasks such as financial modeling, risk analysis,and customer analytics. For example, banks use HPC to analyze market trends and make high-speed trading decisions. Retailers use HPC to analyze customer data and personalize marketing strategies. The use of HPC in business has led to improved efficiency, better decision-making, and a competitive edge in the market. Despite its many benefits, high-performance computing also presents challenges. One of the main challenges is the cost of acquiring and maintaining supercomputers. These machines require significant investments in hardware, software, and skilled personnel. Additionally, the energy consumption of supercomputers is a concern, as they require large amounts of power to operate. Furthermore, there are challenges related to software development and optimization for parallel processing, as well as the need for high-speed networking infrastructure. In conclusion, high-performance computing is a vital tool for tackling complex problems in various fields. Its applications in scientific research, engineering, and business have led to significant advancements and innovations. However, the challenges it presents, such as cost and energy consumption, need to be addressed to fully realize its potential. As technology continues to advance, high-performance computing will play an increasingly important role in shaping the future.。

电力通信网络5G业务承载的QoS优化

电力通信网络5G业务承载的QoS优化

通信网络技术电力通信网络5G业务承载的李永杰,侯焕鹏,李功明,赵景隆(国网河南省电力公司信息通信分公司,河南探讨了电力通信网络中的服务质量(Quality of Service,QoS)主要分析了高带宽需求和多样化业务对网络性能的挑战,强调了高带宽、低延迟和高可用性的重要性;探讨了优化技术在电力通信网络中的应用,包括承载关键命令调度业务和支撑视频监控需求;同时,论述了业务识别与分级传输、多路径负载均衡、智能调度与优先控制等策略的重要性。

电力通信网络通过智能数据管理和控制,为电力系统的监视、控制和安全运行提供了技术支持。

业务;服务质量(QoS)优化QoS Optimization of 5G Service Carrying in Power Communication NetworkLI Yongjie, HOU Huanpeng, LI Gongming, ZHAO Jinglong(State Grid Henan Electric Power Company Information and Communication Branch, ZhengzhouAbstract: This paper discusses the optimization strategy of Quality of Service (QoS) in power communicationreliability of power system.下,网络性能下降,数据包传输会受到延迟和拥塞的数据包丢失率的增加。

数据包丢失率可能从正常的0.1%或更高。

若数据包丢失率高于正常值,表明有大量的数据包未能按时到达目的地,会导致信息[5]。

最后,数据包传输的延迟增加。

正常情况下,电力通信网络,而在网络拥塞时,延迟可或更高,从而增加了实时应用的响在电力通信网络中,故障容忍和恢复机制对QoS 产生了深远影响,直接影响网络的可靠性和连续性。

英语作文-揭秘集成电路设计中的功耗分析与优化方法

英语作文-揭秘集成电路设计中的功耗分析与优化方法

英语作文-揭秘集成电路设计中的功耗分析与优化方法Power analysis and optimization in integrated circuit (IC) design is a critical aspect that influences both the performance and efficiency of electronic devices. As technology advances, demands for lower power consumption in ICs have become increasingly stringent, driven by factors such as battery life in mobile devices, heat dissipation in high-performance computing, and environmental concerns. In this article, we will delve into various methods and strategies employed in the analysis and optimization of power consumption in IC design.Firstly, it's essential to understand the sources of power dissipation in ICs. The major contributors typically include dynamic power dissipation (P_dynamic), which arises from charging and discharging internal node capacitances during switching activities, and static power dissipation (P_static), caused by leakage currents in transistors even when they are not switching.To effectively analyze and optimize power consumption, designers employ several key methodologies:1. Power Estimation and Modeling:Before diving into optimization, accurate estimation of power consumption is crucial. This involves using tools and techniques to model power at various stages of the design process—from early architectural exploration to detailed circuit implementation. Power estimation tools simulate the behavior of the IC under different conditions (e.g., varying workloads or input signals) to predict power consumption accurately.2. Architectural Optimization:At the architectural level, design choices significantly impact power consumption. Techniques such as voltage and frequency scaling (DVFS), where the operating voltageand clock frequency are adjusted dynamically based on workload, are commonly used to achieve optimal power-performance trade-offs. Furthermore, employing low-power design architectures such as pipelining, parallelism, and data gating helps in reducing power consumption without compromising performance.3. Circuit-Level Optimization:Circuit-level optimizations focus on reducing both dynamic and static power dissipation. Techniques like clock gating, where parts of the circuit are selectively shut down when not in use, effectively reduce dynamic power consumption. Additionally, optimizing transistor sizing, using low-leakage transistors, and implementing efficient power gating techniques help in minimizing static power dissipation.4. Advanced Power Management Techniques:As ICs become more complex, advanced power management techniques are crucial. This includes sophisticated power gating strategies like multi-threshold CMOS (MTCMOS), where different parts of the chip can operate at different voltages or shut down independently. Furthermore, the integration of power islands allows certain blocks of the IC to operate autonomously, enabling further power savings.5. Verification and Validation:Throughout the design process, verification of power-related optimizations is essential to ensure they meet design goals. Techniques such as power-aware simulation and formal verification help in validating power reduction strategies early in the design cycle, thereby minimizing costly redesigns later.6. Post-Silicon Power Analysis:Post-silicon power analysis involves measuring actual power consumption on fabricated chips. This step validates earlier estimations and optimizations, providing feedback for future design iterations and improvements.In conclusion, the analysis and optimization of power consumption in IC design involve a comprehensive approach spanning from early architectural decisions to post-silicon validation. By employing advanced modeling, architectural optimizations, circuit-level techniques, and rigorous verification, designers can effectively meet stringent power constraints while maintaining optimal performance. This holistic approach not only enhances the efficiency and longevity of electronic devices but also contributes to sustainable and eco-friendly design practices in the semiconductor industry.。

1PON常识-阅读篇

1PON常识-阅读篇

光纤是如此的“便宜又好用”,因此FTTx(Fiber T o The X,光纤接入)作为新一代宽带解决方案被广泛应用,为用户提供高带宽、全业务的接入平台。

而FTTH(Fiber T o The Home,光纤到户<GQDH>,将光纤直接接至用户家)更是被称为是最理想的业务透明网络,是接入网发展的最终方式。

而FTTx是如何实现的呢?在多种方案中,点到多点(P2MP)的光纤接入方式PON (Passive Optical Network,无源光纤网络)是最佳选择。

PON是一种应用于接入网,局端设备(OLT)与多个用户端设备(ONU/ONT)之间通过无源的光缆、光分/合路器等组成的光分配网(ODN)连接的网OLT(Optical Line T erminal,光线路终端)ONU(Optical Network Unit,光网络单元)ONT(Optical Network T erminal,光网络终端)ODN(Optical Distribution Network,光分配网)ONU和ONT都属于用户端设备,它们的区别在于ONT直接位于用户端,而ONU与用户之间还有其它网络,如以太网。

“无源”的关键是在OLT和ONU之间的ODN是没有任何有源电子设备的光接入网,正因为此“无源”特性,使得PON这种纯介质网络可以避免外部设备的电磁干扰和雷电影响,减少线路和外部设备故障率,提高了系统可靠性,同时减少了维护成本。

PON技术是从20世纪90年开始发展,ITU(国际电信联盟)从APON(155 M)开始,发展BPON(622 M),以及到GPON(2.5 G);同时在本世纪出,由于以太网技术的广泛应用,IEEE也在以太网技术上发展了EPON技术。

目前用于宽带接入的PON技术主要有EPON和GPON,两者采用不同标准。

未来的发展是更高带宽,比如EPON/GPON技术上发展了10 G EPON/10 G GPON,带宽得到更高的提升。

METHODS FOR REDUCING POWER CONSUMPTION OF A COMMUN

METHODS FOR REDUCING POWER CONSUMPTION OF A COMMUN

专利名称:METHODS FOR REDUCING POWERCONSUMPTION OF A COMMUNICATIONAPPARATUS AND A COMMUNICATIONAPPARATUS UTILIZING THE SAME发明人:Zhen ZOU,Jianwei ZHANG,Chih-Chieh LAI,Min LEI,Wenze QU申请号:US17270255申请日:20180830公开号:US20210337466A1公开日:20211028专利内容由知识产权出版社提供专利附图:摘要:A communication apparatus includes an antenna module, a radio transceiver and a processor. The radio transceiver transmits or receives wireless radio frequency signals to or from an air interface via the one or more antennas of the antenna module. The processor is configured to determine an actual communication capability of the communication apparatus, determine a reduced communication capability of the communication apparatus according to the actual communication capability, and report the reduced communication capability instead of the actual communication capability as a communication capability of the communication apparatus to a network device. A corresponding value of the reduced communication capability is smaller than a corresponding value of the actual communication capability.申请人:MediaTek Singapore Pte. Ltd.地址:Singapore SG国籍:SG更多信息请下载全文后查看。

如何在集成电路设计中实现低功耗与高性能

如何在集成电路设计中实现低功耗与高性能

如何在集成电路设计中实现低功耗与高性能English Answer:In the field of integrated circuit design, achieving low power consumption and high performance is a crucial goal. This can be accomplished through various techniques and strategies.One effective approach is to optimize the power management techniques. Power gating, clock gating, and dynamic voltage and frequency scaling are commonly used methods to reduce power consumption. Power gating involves turning off power to idle or unused circuit blocks, while clock gating selectively stops the clock to idle circuit blocks. Dynamic voltage and frequency scaling adjusts the operating voltage and clock frequency based on the workload, thus reducing power consumption.Another important aspect is the use of advanced transistor technologies. FinFET, for example, is a three-dimensional transistor structure that provides better control over leakage current and reduces power consumption. It also allows for higher performance due to improved electrostatic control.Moreover, optimizing the system architecture can greatly impact power consumption and performance. By using multiple power domains and clock domains, different parts of the system can operate at different power levels and frequencies, depending on their requirements. This allows for better power management and overall efficiency.In addition, adopting aggressive power management techniques like power gating and clock gating at the subsystem and block levels can further enhance power efficiency. By selectively turning off idle circuit blocks and stopping the clock to unused blocks, power consumption can be minimized while maintaining high performance.Furthermore, efficient circuit design techniques such as pipeline and parallel processing can also contribute to low power consumption and high performance. Pipelining breaks down complex tasks into smaller stages, allowing for better resource utilization and reduced power consumption. Parallel processing, on the other hand,divides the workload among multiple processing units, enabling faster execution and improved performance.To summarize, achieving low power consumption and high performance in integrated circuit design requires a combination of power management techniques, advanced transistor technologies, optimized system architecture, aggressive power gating and clock gating, as well as efficient circuit design techniques like pipeline and parallel processing. By carefully considering these factors, designers can create energy-efficient and high-performance integrated circuits.中文回答:在集成电路设计领域中,实现低功耗和高性能是一个重要的目标。

混动车辆能量管理模块化ECMS框架

混动车辆能量管理模块化ECMS框架

现代电子技术Modern Electronics Technique2023年9月1日第46卷第17期Sep. 2023Vol. 46 No. 170 引 言为了减少二氧化碳排放以缓解全球变暖,各国相继出台严格的污染物排放法规,由此产生汽车制造商之间的强大竞争,促使汽车工业寻求创新的解决方案,以降低汽车的油耗。

最有希望的解决方案之一是混合动力传动系统,它由一个或多个主动力源(例如内燃机)和一个或多个辅助动力源(如电机)组合而成。

混合动力传动系统的优点是能够利用额外的控制自由度优化动力总成部件的工作点,利用辅助动力源回收制动能量,以及减小主动力源的负担。

主动力源和辅助动力源的众多组合产生了多种动力总成拓扑。

这些拓扑中的每一种都需要一种能量管理策略(EMS ),以最佳地利用额外的控制自由度,特别是等效消耗最小策略(ECMS )在降低燃油性能和计算工作量之间取得了很好的折衷,因此经常被使用。

ECMS 中的目标函数是通过燃料消耗量和电池的等效燃料消耗量的总和最小化来定义的。

尽管ECMS混动车辆能量管理模块化ECMS 框架王 魏1, 王 健1, 刘少飞2, 田 毅1, 张晓媛1, 段天宇1, 任子涵1(1.河北金融学院 大数据科学学院, 河北 保定 071051;2.北汽福田汽车股份有限公司工程研究总院, 北京 102206)摘 要: 文中提出一种用于混合动力车辆能量管理实时控制的模块化等效消耗最小化策略(ECMS )框架,可实现能量管理实时控制的分布式开发。

该框架采用Pontryagin 极小值原理求解ECMS 最优控制问题。

首先,将最优控制问题分解为与各个子系统相关的优化问题;其次,通过Hamiltonian 函数将与每个子系统有关的优化问题协调到全局最优;最后,在某款DHT 混合动力车辆验证模块化ECMS ,此车辆模型支持4种操作模式:2种电动模式、并联模式和串联模式。

测试结果表明,模块化ECMS 只需修改能量管理系统中功率平衡方程的连接矩阵,即可解决上述每种操作模式的最优控制问题。

基于性能计数事件的计算机功耗估算模型

基于性能计数事件的计算机功耗估算模型

基于性能计数事件的计算机功耗估算模型I. IntroductionIn recent years, large-scale data centers have emerged as critical infrastructure to support the growing demands of cloud computing, big data analytics, and artificial intelligence. Efficiently managing the power consumption of data centers has become an important issue because power consumption accounts for a significant portion of the operational costs, environmental impacts, and system reliability. In order to optimize the power consumption of data centers, it is essential to develop accurate andefficient models for estimating the power consumption of computer systems.One approach that has gained significant attention is the use of performance counter events, which are hardware level events that monitor the performance of a computer system by counting the number of specific hardware operations performed. These events are often used by system administrators and developers to diagnose performance issues and optimize workloads. In recent years, researchers have also developed models that use performance counter events to estimate the power consumption of computer systems.This paper provides an overview of the use of performance counter events for estimating computer power consumption. Specifically, we review existing research on performance counter models and discuss their advantages and limitations. We also identify future research directions forimproving the accuracy and efficiency of these models.II. BackgroundPerformance counter events are hardware level eventsthat are used to measure the performance of a computer system. These events are often used to diagnose performance issuesand optimize workloads by monitoring the usage of system resources such as the CPU, memory, network, and storage.These events are available on most modern processors,including Intel x86, ARM, and IBM Power architectures, andare accessible through various software tools such as perf, PAPI, and Intel VTune.There are two types of performance counters: fixed-function and programmable counters. Fixed-function countersare predefined by the hardware and are dedicated to specific tasks, such as measuring the number of instructions executedor cache misses. Programmable counters, on the other hand,can be programmed by the user to monitor specific events of interest. These events can include cache misses, TLB misses, branch mispredictions, and memory bandwidth utilization.Performance counter events can be used to estimate the power consumption of a computer system by correlating the number of events with the power consumption of specific components, such as the CPU, memory, or disk. The basic ideais that the power consumption of a component is proportionalto the number of hardware events associated with that component. By measuring the number of events associated with each component, it is possible to estimate the power consumption of the entire system.III. Performance Counter ModelsThere have been several models proposed for estimatingthe power consumption of computer systems using performancecounter events. These models can be broadly classified into two categories: regression-based and sampling-based models.Regression-based models use linear or non-linear regression techniques to model the relationship between the performance counter events and the power consumption of a computer system. These models require a training dataset of performance counter values and corresponding power consumption values. The model is then used to estimate the power consumption of new workloads based on their performance counter values.Sampling-based models use statistical techniques to estimate the power consumption of a computer system by sampling the performance counter events at regular intervals. These models do not require a training dataset and can be applied to any workload.One of the earliest models for estimating power consumption using performance counter events is the Power-Efficiency Profile (PEP) model proposed by Ghose et al. in 2006. This model uses linear regression to model the relationship between the number of hardware events and the power consumption of a computer system. The PEP model has been used in several studies to estimate the power consumption of different workloads, such as web servers, scientific computing, and database systems.Another popular model is the PowerPack model proposed by Wang et al. in 2013. This model uses non-linear regression to model the relationship between the performance counter events and the power consumption of a computer system. The PowerPack model uses multiple regression models to estimate the power consumption of different components, such as the CPU, memory, and disk. The PowerPack model has been used in severalstudies to estimate the power consumption of different workloads, such as web servers, scientific computing, and database systems.Sampling-based models have also been proposed for estimating power consumption. One such model is the PowerSleuth model proposed by Kharya et al. in 2014. This model uses statistical techniques such as mean, standard deviation, and quantiles to estimate the power consumption of a computer system. The PowerSleuth model has been used in several studies to estimate the power consumption ofdifferent workloads, such as web applications and database systems.IV. Advantages and LimitationsOne major advantage of performance counter models is that they do not require external sensors or meters to measure power consumption. This makes them easier to deploy and less expensive. Additionally, performance counter models can be used to estimate the power consumption of different workloads and systems without requiring detailed system specifications.One limitation of performance counter models is that they require a significant amount of data to accurately model the relationship between the performance counter events and power consumption. This data is often obtained through extensive profiling of the system, which can be time-consuming and resource-intensive. Additionally, many of the existing models depend on specific operating systems or hardware architectures, which can limit their applicability to other environments.Another limitation is that performance counter models can be sensitive to the workload and environment in whichthey are used. For example, a model trained on one workload may not accurately estimate the power consumption of another workload with different hardware utilization patterns. This can limit the generalizability of these models.V. Future Research DirectionsThere are several research directions for improving the accuracy and efficiency of performance counter models. One approach is to develop models that can adapt to different workloads and environments. This could involve developing models that can dynamically adjust their parameters based on the characteristics of the workload and environment or developing models that can be trained on a wider variety of workloads and environments.Another approach is to integrate performance counter models with power management systems. This could involve using performance counter models to estimate the power consumption of different components and using this information to dynamically adjust the power states of these components to optimize power consumption. This could improve the energy efficiency of computer systems without sacrificing performance.Finally, there is a need for more research on the accuracy and reliability of performance counter models. This could involve comparing the estimates generated by these models with actual power consumption measurements to determine the accuracy of these models. Additionally, thereis a need for more research on the impact of different performance counter events on power consumption and how this impact varies with different workloads and environments.VI. ConclusionPerformance counter events are a powerful tool formonitoring the performance of computer systems. They can also be used to estimate the power consumption of these systems. Several models have been proposed for estimating power consumption using performance counter events, including regression-based and sampling-based models. These models have several advantages, such as not requiring external sensors or detailed system specifications. However, they also have limitations, such as requiring extensive profiling to obtain accurate data and being sensitive to the workload and environment in which they are used. Future researchdirections include developing models that can adapt to different workloads and environments, integrating performance counter models with power management systems, and improving the accuracy and reliability of these models.。

功耗受限情况下多核处理器能效优化方案

功耗受限情况下多核处理器能效优化方案

功耗受限情况下多核处理器能效优化方案邱晓杰;安虹;陈俊仕;迟孟贤;金旭【摘要】将处理器功耗控制在预算以下有助于降低散热成本和提升系统稳定性,但现有功耗优化方案大多依赖线下分析得到的先验知识,影响实用性,而集中式搜索最优策略的算法也存在复杂度过高的问题.为此,提出功耗优化方案PPCM.利用动态电压频率调整(DVFS)技术控制CPU功耗在预算内以提高处理器能效.同时,将功耗控制和功耗分配解耦合以提高灵活性.采用动态调整的线性模型估计功耗,通过反馈控制技术对其进行调节.以计算访存比为指标在应用间分配功耗,并考虑多线程应用特征进行线程间功耗分配.实验结果表明,PPCM比Priority算法速度平均提高10.7%,能耗平均降低5.1%,能量-延迟积平均降低14.3%.与PCMCA算法相比,其速度平均提高4.5%,能量-延迟积平均降低5.0%.%Keeping processor power consumption under budget can reduce the cost of cooling and improve the system reliability.Most existing energy efficiency optimization schemes are profile-based offline schemes,which may reducepracticality.Furthermore,centralized algorithms which exhaustively search for the optimal configuration may be too complex.In this paper,a power consumption optimization scheme PPCM is proposed,which utilizes Dynamic Voltage and Frequency Scaling(DVFS) to control CPU power consumption under buidget and improve energy efficiency.PPCM decouples power consumption control and power consumption allocation to improve flexibility.It uses a dynamic linear model to estimate power consumption and manages it based on feedback control technology.It uses the ratio of computation to memory access as an indicator to allocatepower consumption among applications,and then considers the features of multithread application and allocates power consumption among threads.Experimental results show that PPCM outperforms Priority algorithm by 10.7% in speed in average,5.1% in energy saving in average and Energy-Delay Product(EDP) is reduced by 14.3% in average.It is superior to PCMCA by 4.5% in speed in average and 5.0% in EDP in average.【期刊名称】《计算机工程》【年(卷),期】2017(043)004【总页数】7页(P39-45)【关键词】功耗控制;功耗分配;能效优化;动态电压频率调整;计算访存比;线程关键度【作者】邱晓杰;安虹;陈俊仕;迟孟贤;金旭【作者单位】中国科学技术大学计算机科学与技术学院,合肥 230027;中国科学技术大学计算机科学与技术学院,合肥 230027;中国科学技术大学计算机科学与技术学院,合肥 230027;中国科学技术大学计算机科学与技术学院,合肥 230027;中国科学技术大学计算机科学与技术学院,合肥 230027【正文语种】中文【中图分类】TP332多核处理器设计和运行面临功耗和温度的挑战。

基于QoS和干扰温度约束的多用户认知无线电网络最优功率分配(英文)

基于QoS和干扰温度约束的多用户认知无线电网络最优功率分配(英文)

基于QoS和干扰温度约束的多用户认知无线电网络最优功率分配(英文)徐勇军;赵晓晖【期刊名称】《中国通信:英文版》【年(卷),期】2013()10【摘要】Power allocation is an important issue for Cognitive Radio Networks(CRNs),since it needs to consider the Quality of Service(QoS) for Secondary Users(SUs) while maintaining the interference power to Primary User(PU) below the Interference Temperature(IT) threshold. In this paper, based on Euclidean projection, we propose a distributed power control algorithm with QoS requirements to minimise the total power consumption of SUs under the time-varying channel scenario. Considering the maximum transmit power constraints and the minimum signal to interference plus noise constraints for each SU, together with the IT constraints for each PU, the power allocation problem is transformed into a convex optimization problem without auxiliary variables, and is solved by the Lagrangian dual method with less information exchange.Simulation results demonstrate that the proposed scheme is superior to the Iterative Water-Filling Algorithm(IWFA).【总页数】10页(P91-100)【关键词】最优功率分配;QoS要求;无线电网络;干扰功率;多用户;度约束;功率控制算法;底图【作者】徐勇军;赵晓晖【作者单位】College of Communication Engineering, Jilin University【正文语种】中文【中图分类】TN929.533;TN929.5【相关文献】1.基于干扰温度模型的认知无线电动态功率分配算法 [J], 席志红;王晓光2.认知无线电网络中基于功率有效性的最优功率分配 [J], 张纬良;张红;郑宝玉;岳文静3.干扰约束的认知网络最优功率分配算法 [J], 许翊;许晓东4.基于SC-FDMA的宽带认知无线电网络中最优功率分配的研究 [J], 王振朝;马明磊;李延5.统计干扰约束的认知无线电网络最优联合功率和频谱分配方法 [J], 冯慧斌;翁鲲鹏;余根坚因版权原因,仅展示原文概要,查看原文内容请购买。

基于RAPL的机群系统功耗限额控制

基于RAPL的机群系统功耗限额控制

基于RAPL的机群系统功耗限额控制刘嵩;刘轶;杨海龙;周彧聪【摘要】The management and control of power has already become a hot issue in the area of management of High Performance Computing(HPC) system and distributed data center.In order to adapt the limited power to the dynamic change of the power supply capacity when the supply of energy is limited in the computer room,it is necessary to control the upper power limit of cluster system.Aiming at this problem,this paper designs and realizes a power capping control system based on RAPL.By constructing the power model of cluster system,utilizing RAPL' s capability of controlling the power consumption limit of CPU and combining the method of measuring the difference of power,it sets the upper limit of energy consumption of cluster system within the previously set power cap.On this basis,it tries to reduce the losses of performance as much as possible.The result of experiment shows that this system can reduce the peak power effectively with slight performance and keep it below the power cap stably.%功耗管控是高性能计算系统和分布式数据中心管理的热点问题.当机房供电受限时需要对机群系统的功耗上限进行控制,使有限的电力适应供电容量的动态变化.为此,设计并实现一个基于RAPL的功耗限额控制系统.建立机群系统功耗模型,利用RAPL对CPU功耗限额的控制能力并结合功耗差额测量方法,将机群系统功耗上限控制在设定限额内,在此基础上尽可能减少程序性能的损失.实验结果表明,在较小的性能损失下,该系统可有效降低峰值功耗并将其稳定在限额内.【期刊名称】《计算机工程》【年(卷),期】2017(043)005【总页数】7页(P40-46)【关键词】高性能计算;分布式数据中心;峰值功耗;功耗限额;差额测量;RAPL技术【作者】刘嵩;刘轶;杨海龙;周彧聪【作者单位】北京航空航天大学计算机学院,北京100191;北京航空航天大学计算机学院,北京100191;北京航空航天大学计算机学院,北京100191;北京航空航天大学计算机学院,北京100191【正文语种】中文【中图分类】TP391随着高性能计算和云计算技术的快速发展,机群系统能耗增长迅速。

混合动力系统能量管理策略的实时优化控制算法

混合动力系统能量管理策略的实时优化控制算法

混合动力系统能量管理策略的实时优化控制算法夏超英;张聪【期刊名称】《自动化学报》【年(卷),期】2015(000)003【摘要】依据最优控制理论得到的混合动力汽车能量管理策略与未来的驾驶需求相关联,无法解决算法的实时性问题。

本文另辟蹊径,结合规则构造二次型性能指标来限制发动机功率的大幅度频繁波动,间接地降低油耗。

为此,在皮混合动力系统近似线性处理的基础上,利用二次型最优跟踪理论推导出定常的反馈控制律,将发动机和电机功率表示成系统当前状态和车速指令的线性函数并应用于非线性实车系统。

仿真结果表明,本文提出的能量管理实时控制算法可以达到良好的节油效果,对不同的道路工况和电池初始荷电状态有良好的适应性。

%Energy management strategies of hybrid electric vehicles (HEVs) based on the optimal control theory are strongly related to future driving conditions and can not solve the real-time problems of algorithms. This paper finds a new way to construct a quadratic performance index combined with rules to restrict frequent large fluctuations of the engine power, so as to indirectly reduce the fuel consumption. On the basis of the approximate linearization of HEV systems, the quadratic optimal tracking theory is utilized to derive a constant feedback control law. The control power of the engine and the motor are expressed as linear functions of current system states and commands, and then applied to the nonlinear HEV. Simulation results show that this real-time control algorithm can achieve a good oil-savingeffect,and can adapt to various typical driving cycles and initial battery state of charge values.【总页数】10页(P508-517)【作者】夏超英;张聪【作者单位】天津大学电气与自动化工程学院天津 300072;天津大学电气与自动化工程学院天津 300072【正文语种】中文【相关文献】1.Plug-In并联式混合动力汽车实时优化能量管理策略 [J], 崔纳新;步刚;吴剑;符晓玲;张承慧2.功率分流式约束活塞混合动力系统能量管理策略研究 [J], 赵玉祥;孙宾宾;张铁柱;葛文庆;李波;赵令聪3.基于MATLAB/Simulink的船舶混合动力系统能量管理策略研究 [J], 于光宇4.基于MATLAB/Simulink的船舶混合动力系统能量管理策略研究 [J], 于光宇5.军用混合动力系统能量管理策略研究综述 [J], 曾繁琦;袁晓静;王旭平;张泽因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

QoS and Power Consumption Analysis of Cooperative Multicast Scheme with Cell ZoomingKyeongMin Lee1, Joohyung Lee2 , GwangHui Park3 and Jun Kyun Choi4 1-4 Department of Electrical Engineering, KAIST Deajeon, Republic of Korea 1-3 {kmlee0922,joohyung08,detectiveks}@kaist.ac.kr 4 jkchoi59@Abstract — As the demand for high-quality multimedia service over wireless networks has increased wireless multicast communication has been researched for many years in efforts to achieve high throughput. Recently, cooperative multicast scheduling scheme was proposed with the goal of achieving high throughput with good fairness. However, although much attention has been directed towards energy efficient communication, energy efficient cooperative multicast design has not received much consideration. Part of the reason for this is that significant relay power consumption is required for user cooperation. In this paper, we model Quality of Service (QoS) of multicast in terms of outage probability when the cooperative multicast scheme is adopted. From the model, we obtain analytical results for QoS and power consumption under a varying number of users and cell coverage of the Base Station (BS). Finally, the analytical models can be used to find the op timal BS's transmission p ower by p redicting system p erformance if system configurations are given. This can help system deployment and system optimization. Keywords- cooperative communication, multicast, QoS, power consumption, cell coveragecommunication multicast with selective relay is the only published work on this aspect [3]. As one solution for green cellular networks, cell zooming was proposed by adjusting cell coverage according to varying traffic load[4]. Here, cell coverage of the BS is an important factor, because it directly affects the BS’s transmission power. In this paper, we analyze a conventional cooperative multicast scheme that employs selective relay and cell zooming. In this model, the number of users in a multicast group and adjustable cell coverage is an important parameter that affects QoS and power consumption. For instance, increasing the number of users is effective in expanding cell coverage through cooperative transmission. It leads to reduced BS transmission power by maintaining the same QoS satisfaction. However, it also causes additional relay power consumption for user cooperation. For this reason we concentrated on this analysis to provide intuition of QoS and power performance when a cooperative multicast is adopted. This paper describes the relationship between the ratio of guaranteeing QoS and power consumption under changing cell coverage and total number of MSs in the multicast group. From this study, the analytical models can be used to find the optimal BS transmission power by predicting system performance if system configurations are given. This can help system deployment and system optimization. The remainder of this paper is organized as follows. Section II introduces the system model. Section III describes the solution of mathematical problems related to the system. Section IV presents the analysis equations for a WiMAX system together with numerical results. Section V concludes the paper. II. SYSTEM MODELI.INTRODUCTIONThe demand for high-quality multimedia services has increased as well as real-time multimedia data such as VoIP (Voice over IP). It is necessary to guarantee Quality of Service (QoS) for successful transfer. In addition, band efficiency should be maximized in order to provide a certain level of service at reasonable prices. The multicast transmission can reduce bandwidth consumption by transmitting the same data to a number of users in a multicast group simultaneously. However, because there is serious bandwidth inefficiency for supporting the worst channel user of the multicast group, the cooperative multicast scheme is considered a promising solution that alleviates this problem with good fairness. Based on a cooperative multicast, it makes it possible to achieve extension of coverage from relay of Mobile Stations (MSs) and can provide more users with guaranteed QoS [1], [2]. However, there has been a lack of consideration of energy efficient cooperative multicast design, despite that it solves the problems of both throughput and fairness. However, significant relay power consumption is required for user cooperation. To the best of our knowledge, our preliminary work regarding an energy efficient cooperativeIn this section, we introduce our system model in a WiMAX system. Fig.1 describes the system model with a cooperative multicast scheme. In this case, R0 is the maximum transmission distance of the BS with limited power. Here, the determined transmission power’s coverage R of the BS is changeable within R0. When the BS transmitted the data, white MSs that are in the cell coverage R receive the data without error (this means that the MS satisfies QoS). Then, if there are black MSs that are not able to receive data from the BS due to a poor channel condition in their coverage r0, they relay the978-1-4673-4728-0/12/$31.00 ©2012 IEEE238APCC 2012A. Path loss model In order to analyze and ev path loss model to obtain distance. In our scheme we shadow fading. The decibel path loss equa of distance [6].TABLE INOTATIONSR0 R r0 n Pbase PmobileMaximum radius of BS Radius of BS Radius of MS The number of MS Transmission power of BS Transmission power of MSTotal power consumption Ptotal is given as the summation of the BS transmission power and the power consumed by all MSs that participated in relay transmission. This can be written asPtotal = Pbase + E[relay ] ´ Pmobile(11)In phase II, MSs that received a lower threshold SNR in phase 1 can receive data with a sufficient SNR from the nearest MS that is transferred completely in phase I. We define Prrelay as the ratio of additional QoS satisfied users in phase 2. Prior to solving Prrelay, however, we must find A(R,r,r0) in Figure 2, as delineated in the following equation [7].A( R, r , r0 ) = p R 2 ´ 2q1 2q + p r0 2 ´ 2 - rR sin q1 2p 2p = R 2q1 + r0 2q 2 - rR sin q1-1Pbase is the transmission power of the base station varying with radius R and Pmobile is a fixed value of the mobile station’s transmission power consumption. To evaluate Ptotal, we must find the value of E[relay] . It is the predicted number of mobile stations that are transmitting data to another nearby mobile station that cannot receive data in phase I. It is affected by variation of the radius R and the total number of mobile stations, n. In order to evaluate E[relay] , we evaluate B(R,r,r0) in Figure 2 as follows:B( R, r , r0 ) = p r0 2 ´ 2f2 2f - p R 2 ´ 1 + rR sin f1 2p 2p = r0 2f2 - R 2f1 + rR sin f12 2 2(7)(12)R 2 + r 2 - r0 2 R sin q1 where, q1 = cos ( ), q 2 = sin -1 ( ) 2 Rr r0When a MS user is far from the BS with distance r (r>R), QoS cannot be satisfied with the receiving data in phase I. Hence, if it wants to receive data from the relay transmission, there must be one or more MS that have already received data in phase I located in the vicinity. Hence, PrA is the probability of finding a relay node when the user is located in r(r>R) and is equal to the probability of there existing one or more mobile users in area A(R,r,r0). We define PrA asæ A( R, r , r0 ) ö PrA = 1 - ç1 ÷ p R0 2 ø èn -1R + r - r0 ) 2 Rr R sin f1 i ) r < R 2 - r0 2 , f2 = sin -1 ( ) r0 where, f1 = cos -1 ( ii ) otherwise;f2 = p - sin -1 (R sin f1 ) r0(8)The predicted number of participating relay MSs can be obtained by multiplying n (total number of MSs) by the pdf of MSs engaged in cooperative communication. From equations (5) and (12), the predicted number of MSs that transfer data for cooperative communication is obtained as follows:Accordingly, PrRelay is the probability not only that a MS exists within the radius r (r>R), but also that it received data from other MSs in phase 2 as follows:PrRelay = ò (Prr ´ PrA )drR R0n -1 é R 2r ì ï æ B( R, r , r0 ) ö ü ï ù E[relay ] = n ´ ê ò 1 1 (13) í ç ÷ ý dr ú 2 2 p R0 ø ï ú ê R-r0 R0 ï î è þ û ëTABLE Ⅱ SYSTEM PARAMETERS=R0òRn -1 2r ì A( R, r , r0 ) ö ü ï æ ï 1 1 í ý dr ç ÷ R0 2 ï è p R0 2 ø ï î þ(9)From equations (6) and (9), PrQoS is the ratio of users who are satisfied with QoS among all users. It can be obtained by the summation of the ratio of users who had guaranteed QoS in phase I and phase II as followsPrQoS = PrBase + PrRelay =R0 2r ì R2 ï æ A( R, r , r0 ) ö + ò 2 í1 - ç1 ÷ 2 R0 R R0 ï è p R0 2 ø î n -1Parameter Frequency Temperature Bandwidth Data rate BS transmission power MS transmission power Path loss exponentvalue 3.5Ghz 300K 10Mhz 300kbps 43dBm 13.3dBm 4IV.PERFORMANCE ANALYSISü ï ý dr ï þ(10)C. Proposed power consumption analysis with varying BS coverageIn this section, we present the numerical results of the proposed analysis in a WiMAX system. We consider streaming service of User Created Content (UCC) at an average speed of 300kbps. Detailed parameters are given in table II. According to the detailed parameters, we set R0 and r0 as 1km and 200m by using equation (4). The detailed calculation is as follows:240Pt = PL( Pathloss ) - PN0 + PR = 40log R - 76.7 (dBm)(4) (14)Power Consum ption dBm 45 40 35 30 25 20 0.0 BS N 10 N 100 N 1000Where, Pt is the transmission power. In this case, we consider a flat-earth model for the path loss model ( g = 4 ). In the same manner, we can extract the value of Pbase according to R. For guaranteeing the QoS, the receiving power must be greater than or equal to -88dBm for supporting the 300kbps streaming service, from equations (2) and (3). However, according to the mobile WiMAX standard, the sensitivity of a MT is around -82dBm [8]. Thus, the threshold value of the receiving power must be greater than or equal to -80dBm in order to guarantee QoS. A. Numerical results of QoS with varying number of users in a multicast groupOutage Probability 1.0 0.8 0.6 0.4 0.2 0.0 n 10000.20.40.60.81.0Fig. 4 Power consumption with varying the cell coverage with different nR 300 m R 500 m R 700 mConsequently, an increase of n results in large power consumption because more MSs must use power to transfer data. However, this does not necessarily mean that increasing n is a waste of power. Through the transmission of data by a MS in phase II, more and more mobile users can receive data with satisfactory QoS. Further analysis is needed to verify this. C. Relationship between QoS and total power consumptionC onsum ption dB m 4540020040060080035B S N 10 100 1000Fig. 3 Outage probability with varying the n with different R30N NOutage probability is ratio of users who cannot receive data during the whole transmission time. Outage probability = 1 – Pr{user with guaranteed QoS} As we can see from Fig.3 above, as the numbers of users becomes larger, the slope of outage probability approaches zero. Hence, if n is sufficiently large, the outage probability will be certain value. When n is small, the effect of cell coverage extension caused by cooperative communication is large. However, as n grows, the effect is diminished, since expanded cell coverage becomes overlapped. As a result, cell coverage will be expanded as much as r0=200m. In Fig.3 R = 300m, 500m, and 700m, and expanded radius of cell coverage will be 500m, 700m, and 900m if n is sufficiently large. As a result, the outage probability will be 0.75, 0.51, and 0.19. B. Numerical results of power analysis with varying cell coverage The following step is an analysis of power consumption. In our model, transmission power is a very important factor for performance evaluation. As can be seen in Fig. 4, we can determine the relationship cell coverage of the BS by summating the power of the BS and MSs.2520 0.00.20.40.60.81.0Fig. 5 Power consumption with QoS level with different nIn Fig. 5 we analyze the power consumption with the ratio of QoS satisfaction level. The key observation form Fig.4 is that even if n is increasing, power consumption does not necessarily rise. Fig. 5 shows that the case where n is 10 and 100 are more efficient as compared with transmission by only the base station. However, a n value of 1000 is too large for expanded cell coverage to keep pace with increasing power consumption, and thus shows poor power efficiency. From this result, the power consumption is reduced in a particular range of n, and we will find this value next. In addition, we can see from Figs. 4 and 5 that when R or the ratio of satisfied QoS is very small or large, the power consumption is similar to case of using only the BS. The reason for this is that when the radius of the BS is small, the probability of users being inside the cell coverage is also very small, and thus only a small amount of MSs transfer data to other MSs. Meanwhile, in the case where R is very large, few MSs are transmitting, as241most users already received data in phase I. The cause of this situation is that our model assumes there are no users outside of R0 coverage. D. Total power consumption within the selected QoSTotal Power Consum ption dBm 44 42 40 38 36 34 32 30 0 200 400 600 800 QoS 0.5 BS Power BS n 1000 M S of M Sthe case of large R. Specifically, as R becomes larger, the power consumption is increased substantially along with an increasing amount of cell coverage. V. CONCLUSIONFig. 6 Power consumption with varying R and n at 50% QoSTotal Power Consum ption dBm 44 42 40 38 36 34 32 30 0 200 400 600 800 QoS 0.8 BS Power BS n 1000 M S of M SThis paper has analyzed the satisfaction of QoS and power consumption constraints in a relay selective cooperative multicast scheme with cell zooming under a varying number of multicast group users and cell coverage of the BS. We obtained analytical results for QoS and power consumption. From the results, if the system configurations are given, we can find the optimal point of power consumption and predict system performance. This will help made decisions on whether the system should operate cooperative communication based on consideration of the users of the multicast group and the assigned BS coverage. From our study, if there is a moderate number of multicast group users, cooperative communication is a good solution to the recent communication problems of power consumption and efficient use of bandwidth. Our future work will study this scheme in greater detail. In order to prevent wasted relay transmission power, a more effective relay selection scheme will proposed. Furthermore, other detailed parameters such as antenna gain and height and shadow fading will be considered. ACKNOWLEDGMENT This work was supported by the IT R&D program of MKE/KEIT. [KI001822, Research on Ubiquitous Mobility Management Methods for Higher Service Availability] and [10039160, Research on Core Technologies for SelfManagement of Energy Consumption in Wired and Wireless Networks] REFERENCES[1] J Jakllari, G. Krishnamurthy, S. V. Faloutsos, M. Krishnamurthy, P. V. Ercetin,O. "A Framework for Distributed Spatio-Temporal Communications in Mobile Ad Hoc Networks” in Proc. Of IEEE INFOCOM 2006. Scaglione, A. Yao-Win Hong “Opportunistic large arrays: cooperative transmission in wireless multihop ad hoc networks to reach far distances” IEEE Transactions on Signal Processing.2003 Volume:51. Page:120-124 Lee, J. Lim, Y. Kim, K. Choi, S. Choi, J. “Energy Efficient Cooperative Multicast Scheme Based on Selective Relay” IEEE Communications Letters.2012 Zhisheng Niu. Yiqun Wu. Jie Gong. Zexi Yang “Cell zooming for costefficient green cellular networks” IEEE, Communications Magazine.2010 Volume:48. Page:74-79 Fen Hou; Cai, L.X. Pin-Han Ho. Xuemin Shen. Junshan Zhang “A cooperative multicast scheduling scheme for multimedia services in IEEE 802.16 networks” IEEE Transactions on Wireless Communications.2009 Volume:8 Page:1508-1519 Erceg, V. Greenstein, L.J. Tjandra, S.Y. Parkoff, S.R. Gupta, A. Kulic, B. Julius, A.A. Bianchi, R. “An empirically based path loss model for wireless channels in suburban environments” IEEE Journal on Selected Areas in Communications.1999 Volume:17 Page:1205-1211 Jee-Young Song. HyeJeong Lee. Dong-Ho Cho. “Power consumption reduction by multi-hop transmission in cellular networks” in Proc. Of IEEE VTC2004-Fall. Zaggoulos, G.; Tran, M. Nix, A “Mobile WiMAX system performance simulated versus experimental results” in Proc. OF IEEE PIMRC 2008Fig. 7 Power consumption with varying R and n at 80% QoSFrom Fig. 6 and Fig. 7 above we can determine values of n that provide a better QoS satisfaction level with lower power consumption. We wish to know what value of n or R provides the most efficient power consumption with the same level of QoS satisfaction. Fig. 6 and Fig. 7 target guarantee QoS satisfaction of 50% and 80% of users. Both figures have a point of optimal energy consumption. In Fig. 6 there is no cooperative communication, and R is approximately 707m. At the optimal point, where less than 4dBm of power is consumed, n is around 120 and the adjusted R is 600m. This means that until this optimal point the effect of cell coverage extension is fine. Afterwards, its efficiency is decreased. If n exceeds 650, the effect of cell coverage extension is worse than only BS transmission due to wasted power caused by too much cooperative transmission. In Fig. 7, the optimal point of n is at around 170 and R is 770m. In addition, the efficiency of cell coverage extension becomes poor from this point. However, in this case, cooperative communication is still useful even though n is 1000. As a result of this analysis, our cooperative multicast scheme is shown to be more effective in[2][3] [4] [5][6][7] [8]242。

相关文档
最新文档