2020年秋季陕西省西安市莲湖区期中统考九年级数学试题 PDF版无答案
2020年秋学期初三数学期中试卷及答案
2020年秋学期期中考试九年级数学试卷分值:150分 时间:120分钟一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1、-2的倒数是( )A .1-2 B .12C .-2D .2 2、2017年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列。
477万用科学记数法表示正确的是( )A . 4.77×105B . 47.7×105C .4.77×106D .0.477×105 3、抛物线y=x 2+2x+3的对称轴是( )A .直线x=1B .直线x=﹣1C .直线x=﹣2D .直线x=2 4、△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( )A .1:2B .1:3C .1:4D .1:165、将抛物线y=3x 2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A. 23(2)3y x =++ B.23(2)3y x =-+ C.23(2)3y x =+- D.23(2)3y x =-- 6、如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( )7、如图,在△AB C 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切, 则⊙O 的半径为( )A. 2.3B. 2.4C. 2.5D. 2.6 8、如图,将函数y=12(x-2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12 (x −2)2−2 B .y =12 (x −2)2+7 C .y =12 (x −2)2−5 D .y =12(x −2)2+4二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9、若式子x +1在实数范围内有意义,则x 的取值范围是 . 10、抛物线y=﹣2x 2﹣1的顶点坐标是 .11、若函数y=x 2+2x+m 的图象与x 轴有且只有一个交点,则m 的值为 ..12、已知圆锥的底面半径是3,母线长是5,则圆锥的侧面积是 .13.如图,抛物线y=ax 2与直线y=bx+c 的两个交点坐标分别为A (﹣2,4),B (1,1),则方程ax 2=bx+c 的解是 . 14、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA = 1:25,则S △BDE 与S △CDE 的比是_____________15,如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加 m .16.如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =55,则BD 的长为_______.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17、(本题满分6分)计算:121420152-⎛⎫--+-⎪⎝⎭18.(本题满分6分)解不等式组:⎩⎨⎧->->+.521,042x x 并把解集在数轴上表示出来.19、(本题满分8分)已知抛物线y =x 2+bx +6经过x 轴上两点A ,B ,点B 的坐标为(3,0),与y 轴相交于点C.(1)求抛物线的表达式;(2)求△ABC 的面积.20、(本题满分8分)如图:等腰直角△ABC 放置在直角坐标系中, ∠BAC=90°,AB=AC ,点A 在x 轴上,点B 的坐标是(0,3),点 C 在第一象限内,作CD ⊥x 轴.(1)求证:△AOB ≌△CDA ; (2)若点C 恰好在双曲线x10y =上,求点C 的坐标.21、 (本题满分10分) 随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A 、B 、C 、D 、E 等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A 景点所对应的圆心角的度数是 ,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E 景点旅游?(3)甲、乙两个旅行团在A 、B 、D 三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.22、(本题满分8分)已知矩形ABCD 的一条边AD=8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连结AP 、OP 、OA .(1)求证:△OCP ∽△PDA ;(2)若21AB O B ,求边AB 的长.23、(本题满分10分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x (元)和游客居住房间数y (间)的信息,乐乐绘制出y 与x 的函数图象如图所示:(1)求y 与x 之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?24、(本题满分10分)锐角△ABC 中,BC=6,BC 边上的高AD=4,两动点M ,N 分别在边AB ,AC 上滑动(M 不与A 、B 重合),且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y (y >0).(1)当x 为何值时,PQ 恰好落在边BC 上 (如图1);(2)当PQ 在△ABC 外部时(如图2),求y 关于x 的函数关系式(注明x 的取值范围)并求出x 为何值时y 最大,最大值是多少?25、(本题满分10分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E .(1)求证:∠BDC=∠A ;(2)若CE=4,DE=2,求AD 的长.26、(本题满分12分)如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:的值为 :(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=2,则BC= .27、(本题满分14分)如图,已知抛物线y=﹣41x 2+bx+c 交x 轴于点A (2,0)、B (﹣8,0),交y 轴于点C ,过点A 、B 、C 三点的⊙M 与y 轴的另一个交点为D .(1)求此抛物线的表达式; (2)求⊙M 的圆心M 的坐标;(3)设P 为弧BC 上任意一点(不与点B ,C 重合),连接AP 交y 轴于点N ,请问:AP•AN 是否为定值,若是,请求出这个值;若不是,请说明理由;(4)延长线段BD 交抛物线于点E ,设点F 是线段BE 上的任意一点(不含端点),连接AF .动点Q 从点A 出发,沿线段AF 以每秒1个单位的速度运动到点F ,再沿线段FB 以每秒5个单位的速度运动到点B 后停止,问当点F 的坐标是多少时,点Q 在整个运动过裎中所用时间最少?答案13. x1=﹣2,x2=1.15. 42﹣4.16.19. 解:(1)y=x2-5x+6(2)∵抛物线的表达式y=x2-5x+6,∴A(2,0),B(3,0),C(0,6),∴S△ABC =12×1×6=320.(1)证明:∵∠BAC=90°,∴∠1+∠2=90°,∵CD⊥x轴,∴∠2+∠4=90°,∴∠1=∠4,∠2=∠3,∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA);(2)解:∵△AOB≌△ACD,∴OA=CD,AD=OB=3,设OA=m,∴C(m+3,m),∵点C在反比例函数y=的图象上,∴m(m+3)=10,解得m1=2,m2=﹣5(舍去),∴点C的坐标为(5,2).21.解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:故答案为:50,108°;(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率==.22.(1)证明:∵四边形ABCD为矩形,∴∠B=∠C=∠D=90°.由折叠,可知:∠APO=∠B=90°,∴∠APD+∠CPO=90°.∵∠APD+∠DAP=90°,∴∠DAP=∠CPO,∴△OCP∽△PDA;(2)解:由折叠,可知:∠APO=∠B=90°,AP=AB,PO=BO,==.∵△OCP∽△PDA,∴===.∵AD=8,∴CP=4.设BO=x,则CO=8﹣x,PD=2(8﹣x),∴AB=2x=CD=PD+CP=2(8﹣x)+4,解得:x=5,∴AB=10.23.解:(1)设y与x之间的函数关系式为y=kx+b,,得,即y与x之间的函数关系式是y=﹣0.5x+110;(2)设合作社每天获得的利润为w元,w=x(﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x2+120x﹣2200=﹣0.5(x﹣120)2+5000,∵60≤x≤150,∴当x=120时,w取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.24.(1)当PQ恰好落在边BC上时,∵MN∥BC,∴△AMN∽△ABC.∴,即,x=;(2)设BC分别交MP,NQ于E,F,则四边形MEFN为矩形.设ME=NF=h,AD交MN于G(如图2)GD=NF=h,AG=4﹣h.∵MN∥BC,∴△AMN∽△ABC.∴,即,∴h=﹣x+4.∴y=MN•NF=x(﹣x+4)=﹣x2+4x(2.4<x<6),配方得:y=﹣(x﹣3)2+6.∴当x=3时,y有最大值,最大值是6.25.(1)略(2)626.解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.27.解:(1)将点A(1,0),B(7,0)代入抛物线的解析式得:74970474a ba b⎧++=⎪⎪⎨⎪++=⎪⎩,解得:a=14,b=﹣2,∴抛物线的解析式为217244y x x =-+.(2)存在点M ,使得S △ABM =9S △ABC . 理由:如图所示:过点C 作CK ⊥x 轴,垂足为K .∵△ABC 为等边三角形,∴AB =BC =AC =6,∠ACB =60°.∵CK ⊥AB ,∴KA =BK =3,∠ACK =30°,∴CK =∴S △ABC =12AB •CK =12×6×3=∴S △ABM×12.设M (a ,217244a a -+),∴12AB •|y |=12,即12×6×(217244a a -+)=12,解得:a 1=9,a 2=﹣1,∴点M 的坐标为(9,4)或(﹣1,4). (3)①结论:AF =BE ,∠APB =120°.∵△ABC 为等边三角形,∴BC =AB ,∠C =∠ABF .在△BEC 和△AFB 中,∵BC =AB ,∠C =∠ABF ,CE =BF ,∴△BEC ≌△AFB ,∴AF =BE ,∠CBE =∠BAF ,∴∠F AB +∠ABP =∠ABP +∠CBE =∠ABC =60°,∴∠APB =180°﹣60°=120°.②当AE ≠BF 时,由①可知点P 在以AB 为直径的圆上,过点M 作ME ⊥AB ,垂足为E .∵∠APB =120°,∴∠N =60°,∴∠AMB =120°.又∵ME⊥AB,垂足为E,∴AE=BE=3,∠AME=60°,∴AM=∴点P运动的路径=120180π⨯=3.当AE=BF时,点P在AB的垂直平分线上时,如图所示:过点C作CK⊥AB,则点P运动的路径=CK的长.∵AC=6,∠CAK=60°,∴KC=P运动的路径为综上所述,点P运动的路径为.11。
每日一学:陕西省西安市莲湖区2020届九年级上学期数学期中考试试卷_压轴题解答
每日一学:陕西省西安市莲湖区2020届九年级上学期数学期中考试试卷_压轴题解答答案陕西省西安市莲湖区2020届九年级上学期数学期中考试试卷_压轴题~~ 第1题 ~~(2020莲湖.九上期中) 【定义学习】定义:如果四边形有一组对角为直角,那么我们称这样的四边形为“对直四边形”.(1) 【判断尝试】在A 、矩形;B 、菱形;C 、正方形中;一定是“对直四边形”的是.(填字母序号)(2) 【操作探究】在菱形ABCD 中,AB=2,∠B=60°,AE ⊥BC 于点E,请用尺规作图法在边AD 和CD 上各找一点F ,使得由点A 、E 、C 、F 组成的四边形为“对直四边形”,连接EF ,并直接写出EF 的长.(保留作图痕迹,不写作法)①当点F 在边AD 上时.②当点F 在边CD 上时.(3) 【实践应用】某加工厂有一批四边形板材,形状如图所示,已知AB=3米,AD=1米,∠C=45°,∠A=∠B=90°.现根据客户要求,需将每张四边形板材进一步分割成两个等腰三角形板材和一个“对直四边形”板材,且这两个等腰三角形的腰长相等,要求充分利用材料且无剩余,求分割后得到的等腰三角形的腰长.考点: 等腰直角三角形;含30度角的直角三角形;菱形的性质;矩形的性质;作图—复杂作图;~~ 第2题 ~~(2020莲湖.九上期中) 如图,用两张等宽的纸条交叉叠放在一起,重叠部分为四边形ABCD.若两张矩形纸条的长度均为8,宽度均为2,则四边形ABCD 的周长的最大值为________.~~ 第3题~~(2020莲湖.九上期中) 如图,是一张平行四边形纸片ABCD ,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC ,作AC 的中垂线交AD 、BC 于E 、F,则四边形AFCE 是菱形.乙:分别作 与 的平分线AE 、BF ,分别交BC 于点E ,交AD 于点F ,则四边形ABEF 是菱形.对于甲、乙两人的作法,可判断( )A . 甲正确,乙错误B . 甲错误,乙正确C . 甲、乙均正确D . 甲、乙均错误陕西省西安市莲湖区2020届九年级上学期数学期中考试试卷_压轴题解答~~ 第1题 ~~答案:解析:答案:解析:~~ 第3题 ~~答案:C解析:。
2020-2021学年西安市莲湖区九年级上学期期中数学试卷(含解析)
2020-2021学年西安市莲湖区九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.将方程3(2x2−1)=(x+√3)(x−√3)+3x+5化成一般形式后,其二次项系数,一次项系数,常数项分别为()A. 5,3,5B. 5,−3,−5C. 7,√3,2D. 8,6,12.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()A. AH=2DFB. HE=BEC. AF=2CED.DH=DF3.如图,一个可以自由转动的转盘被平均分成7个大小相同的扇形,每个扇形上分别写有“中”、“国”、“梦”三个字指针的位置固定,转动转盘停止后,指针指向“中”字所在扇形的概率是()A. 47B. 37C. 17D. 134.如图,菱形ABCD中,对角线AC与BD相交于点O,OE//DC且交BC于点E,AD 6cm,则OE的长为()A. 6cmB. 4cmC. 3cmD. 2cm5.下列方程中有两个相等实数根的是()A. x2−1=0B. (x+2)2=0C. x2+3=0D. (x−3)(x+5)=06.一个不透明的盒子中放着标有数字1,2,3,4的四个乒乓球,这四个乒乓球除标号外其余均相同,将乒乓球充分混合后随机抽取一个,记下标号后放回混在一起,再随机抽取一个,记下标号,则两次抽取的乒乓球数字之和等于5的概率是()A. 12B. 13 C. 14D. 157.已知:如图,ABCD为正方形,边长为a,以B为圆心,以BA为半径画弧,则阴影部分面积为()A. (1−π)a2B. 1−πC. 4−π4D. 4−π4a28.一个三角形的两条边分别为3cm和7cm,第三边为整数,这样的三角形有()A. 4个B. 5个C. 6个D. 7个9.因为(x−1)2≥0,所以x2−2x+1≥0,即x2+1≥2x,由此可得出结论:若x为实数,则x2+1≥2x,运用这个结论求代数式xx2+1的最大值为()A. 0B. 12C. 1 D. 3210.如图,一块长和宽分别为30cm和20cm的矩形铁皮,要在它的四角截去四个边长相等的小正方形,折成一个无盖的长方体盒子,使它的侧面积为272cm2,则截去的正方形的边长是()A. 4cmB. 8.5cmC. 4cm或8.5cmD. 5cm或7.5cm二、填空题(本大题共4小题,共12.0分)11.菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC,CE,则△ACE的面积为______.12.某县为发展教育事业,加强了对教育经费的投入,2010年投入3000万元,预计2012年投入5000万元.设教育经费的年平均增长率为x,则列出的方程______.13.有三张大小、形状完全相同的卡片.卡片上分别写有数字1,2,3,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是______ .14.如图,两张等宽的纸条交叉叠放在一起,若重叠都分构成的四边形ABCD中,AB=3,BD=4.则AC的长为______.三、解答题(本大题共11小题,共78.0分)15.解方程:(1)2x2−4x−9=0(用配方法解)(2)2x2−7x−2=0.16.如图,已知AB=AE,BC=ED,AF⊥CD于F,CF=DF.(1)求证:AC=AD;(2)求证:∠B=∠E.17.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边是有理数,另外两边长是无理数.18.已知一元二次方程x2+mx+3=0的一个根为−1.求:(1)m的值;(2)方程的另一个根.19.如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.(1)试确定四边形ADCE的形状,并说明理由.(2)若AB=16,AC=12,求四边形ADCE的面积.(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.20.有四根小木棒长度分别是1,3,5,7,若从中任意抽出三根木棒组成三角形,(1)下列说法正确的序号是______ .①第一根抽出木棒长度是3的可能性是14②抽出的三根木棒能组成三角形是必然事件③抽出的三根木棒能组成三角形是随机事件④抽出的三根木棒能组成三角形是不可能事件(2)请你直接列举任意抽出的三根木棒的所有情况,并求出能组成三角形的概率.21.某超市推出如下优惠方案:(1)一次购物不超过100元不享受优惠;(2)每次购物超过100元、但不超过300元一律9折;(3)一次购物超过300元一律八折.王波两次购物分别付款80元,252元,求:(1)王波第2次购买的商品原价是多少元?(2)王波一次性购买比分两次购买可节省多少钱?22.如图所示,口袋中有5张完全相同的卡片,分别写有2cm,4cm,6cm,8cm和10cm,口袋外有两张卡片,分别写有6cm和10cm,现随机从袋内取出一张卡片,与口袋外两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,求这三条线段能构成等腰三角形的概率.23.如图,平面直角坐标系中,已知点A(a−b,2√3),B(a+b,0),AB=4,且√a−3b+(a+b−4)2=0,C为x轴上点B右侧的动点,以AC为腰作等腰△ACD,使AD=AC,∠CAD=∠OAB,直线DB交y轴于点P.(1)求证:AO=AB;(2)求证:∠AOC=∠ABD;(3)当点C运动时,点P在y轴上的位置是否发生改变,为什么?(提示:在直角三角形中,若两直角边分别为a、b,斜边为c,则有a2+b2=c2)24.如图,某校广场有一段25米差个的旧围栏,现打算利用该围栏的一部分(或全部)为一边,围成一块100平方米的长方形草坪(如图CDEF,CD<CF)已知整修旧围栏的价格是每米1.75元,建新围栏的价格是4.5元.若CF=x米,计划修建费为y元.(1)求y与x的函数关系式,并指出x的取值范围;(2)若计划修建费为150元,能否完成该草坪围栏的修建任务?若能完成,请算出利用旧围栏多少米;若不能完成,请说明理由.25.如图,将△ABC沿线段AB向右平移得到△DEF,此时AD=BD,连接CF,CD,BF.(1)求证:四边形CDBF是平行四边形;(2)①若∠ACB=90°,求证:四边形CDBF是菱形;②若AC=BC,求证:四边形CDBF是矩形;③若∠ACB=90°,AC=BC,求证:四边形CDBF是正方形.参考答案及解析1.答案:B解析:解:先将方程化成一般形式:3(2x2−1)=(x+√3)(x−√3)+3x+5可化为5x2−3x−5=0.故其二次项系数,一次项系数,常数项分别为5,−3,−5.故选:B.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.要确定一次项系数和常数项,首先要把法方程化成一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.2.答案:A解析:解:∵∠BAC=45°,BD⊥AC,∴∠CAB=∠ABD=45°,∴AD=BD,∵AB=AC,AE平分∠BAC,BC,∠CAE=∠BAE=22.5°,AE⊥BC,∴CE=BE=12∴∠C+∠CAE=90°,且∠C+∠DBC=90°,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,∴△ADF≌△BDC(AAS)∴AF=BC=2CE,故选项C不符合题意,∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,∴AG=BG,DG⊥AB,∠AFD=67.5°∴∠AHG=67.5°,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意,连接BH,∵AG=BG,DG⊥AB,∴AH=BH,∴∠HAB=∠HBA=22.5°,∴∠EHB=45°,且AE⊥BC,∴∠EHB=∠EBH=45°,∴HE=BE,故选项B不符合题意,故选:A.通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.本题考查了全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,角平分线的性质,灵活运用这些性质是本题的关键.3.答案:B解析:解:∵转盘分为7个面积相等的扇形,其中“中”字占3个扇形,∴转动转盘停止后,指针指向“中”字所在扇形的概率是3.7故选B.直接利用概率公式求解可得.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.4.答案:C解析:本题考查菱形的性质及三角形中位线定理,难度较小.由题意得AB=AD=6cm,O为AC的中点,因为OE//DC交BC于点E,所以OE为△ABC的中位线,根据三角形中位线定理可得OE=AB=3cm,故此题选C.5.答案:B解析:解:A、x2−1=0中x=1或x=−1,错误;B、(x+2)2=0中x=−2,正确;C、方程x2+3=0无实数根,错误;D、(x−3)(x+5)=0中x=3或x=−5,错误;故选:B.分别求出每个方程的根即可判断.本题主要考查解方程的能力,根据方程的特点灵活选择解方程的方法是解题的关键.6.答案:C解析:解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况,∴两次摸出的小球的标号之和等于5的概率是416=14,故选:C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和等于5的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.7.答案:D解析:解:∵ABCD是正方形,边长为a,∴S阴影面积=S正方形−S扇形BAC=a2−90πa2360=4−π4a2.故选:D.S阴影面积=S正方形−S扇形BAC,然后根据扇形和正方形的面积公式进行计算即可.本题考查了扇形的面积公式:S=nπr2360,其中n为扇形的圆心角的度数,R为圆的半径),或S=12lR,l为扇形的弧长,R为半径.也考查了正方形的面积.8.答案:B解析:解:∵7−3=4,7+3=10,∴4<第三边<10,∵第三边为整数,∴第三边可以为:5,6,7,8,9共5个,故选B .根据三角形任意两边之和大于第三边,两边之差小于第三边解答.此题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和.9.答案:B解析:解:∵x 2+1≥2x ,要求代数式x x 2+1的最大值,∴x 必须大于0,∴x x 2+1≤x 2x ,即x x 2+1≤12, ∴x x 2+1的最大值为12, 故选:B .由x 2+1≥2x ,要求代数式x x 2+1的最大值,推出x 必须大于0,可得x x 2+1≤x 2x ,即x x 2+1≤12; 本题考查数与式,完全平方公式等知识,理解题意,灵活运用所学知识解决问题. 10.答案:C解析:此题考查了一元二次方程的应用,本题的关键在于理解题意,找出等量关系:侧面积为272cm 2,列出方程求解即可.可设截去正方形的边长为xcm ,对于该长方形铁皮,四个角各截去一个边长为x 厘米的小正方形,长方体底面的长和宽分别是(30−2x)厘米和(20−2x)厘米,侧面积为2x[(30−2x)+(20−2x)]cm 2,现在要求长方体的侧面积为272cm 2,令二者相等求出x 的值即可.解:设截去正方形的边长为xcm ,依题意有2x[(30−2x)+(20−2x)]=272,解得x 1=4,x 2=8.5.答:截去正方形的边长是4cm 或8.5cm .故选C .11.答案:9或9(√3+1)解析:解:①如图1,延长EA 交DC 于点F ,∵菱形ABCD 的周长为24,∴AB=BC=6,∵∠ABC=60°,∴三角形ABC是等边三角形,∴∠BAC=60°,当EA⊥BA时,△ABE是等腰直角三角形,∴AE=AB=AC=6,∠EAC=90°+60°=150°,∴∠FAC=30°,∵∠ACD=60°,∴∠AFC=90°,∴CF=12AC=3,则△ACE的面积为:12AE×CF=12×6×3=9;②如图2,过点A作AF⊥EC于点F,由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,∴∠BEC=∠BCE=15°,∴∠AEF=45°−15°=30°,∠ACE=60°−15°=45°,∴AF=12AE,AF=CF=√22AC=3√2,∵AB=BE=6,∴AE=6√2,∴EF=√AE2−AF2=3√6,∴EC=EF+FC=3√6+3√2则△ACE的面积为:12EC×AF=12×(3√6+3√2)×3√2=9(√3+1).故答案为:9或9(√3+1).分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.12.答案:3000×(1+x)2=5000解析:解:设教育经费的年平均增长率为x,则2011的教育经费为:3000×(1+x)2012的教育经费为:3000×(1+x)2.那么可得方程:3000×(1+x)2=5000.故答案为:3000×(1+x)2=5000.增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据2010年投入3000万元,预计2012年投入5000万元即可得出方程.本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.13.答案:23解析:解:列表如下,由上图可知,共有6种等可能结果,其中两次抽出数字之和为奇数的有4种结果,∴两次抽出数字之和为奇数的概率为46=23,故答案为:23.列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14.答案:2√5解析:解:如图,过点D作DE⊥AB于点E,DF⊥BC于点F,连接AC,DB交于点O,则DE=DF,由题意得:AB//CD,BC//AD,∴四边形ABCD是平行四边形∵S▱ABCD=BC⋅DF=AB⋅DE.又∵DE=DF.∴BC=AB,∴四边形ABCD是菱形;∴OB=OD=2,OA=OC,AC⊥BD.∴AO=√AB2−BO2=√5∴AC=2AO=2√5故答案为:2√5过点D作DE⊥AB于点E,DF⊥BC于点F,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得OB的长,从而可得到BD的长.本题考查了菱形的判定、解直角三角形以及四边形的面积,证得四边形为菱形是解题的关键.15.答案:解:(1)2x2−4x−9=02x2−4x=9x2−2x=92x2−2x+1=92+1(x−1)2=112x−1=±√222x1=1+√222,x2=1−√222.(2)2x2−7x−2=0,a =2,b =−7,c =−2,b 2−4ac =49+16=65,x =7±√654x 1=7+√654,x 2=7−√654.解析:(1)利用配方法求得方程的解即可;(2)利用公式法求得方程的解.此题考查用公式法和配方法解一元二次方程,掌握解方程的步骤与方法是解决问题的关键. 16.答案:证明:(1)∵AF ⊥CD 于F ,CF =DF ,∴△ACD 为等腰三角形.∴AC =AD .(2)∵AC =AD ,AB =AE ,BC =ED ,∴△ABC≌△AED(SSS).∴∠B =∠E .解析:(1)已知AF ⊥CD 于F ,CF =DF ,则可以判定△ACD 为等腰三角形,即AC =AD .(2)由第一问知AC =AD ,则可以利用SSS 判定△ABC≌△AED ,根据全等三角形的对应角相等,即可得到:∠B =∠E .17.答案:解:(1)如图①中,△ABC 即为所求作.(2)如图②中,△DEF 即为所求作.解析:(1)画边长分别为3,4,5的直角三角形即可.(2)画边长为2√2,2√2,4的直角三角形即可.本题考查作图−应用与设计,无理数,勾股定理以及勾股定理的逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.答案:解:(1)把x =−1代入x 2+mx +3=0,得:1−m +3=0,∴m=4;(2)把m=4代入x2+mx+3=0,即x2+4x+3=0,(x+3)(x+1)=0,解得:x1=−3,x2=−1.解析:(1)将x=−1代入可得关于m的方程,解方程即可得出答案;(2)将m代入方程,解方程即可得出答案.本题主要考查一元二次方程的解的定义和解一元二次方程的能力,熟练掌握方程的解得定义和解方程的方法是解题的关键.19.答案:证明:(1)∵平行四边形DBCE,∴CE//BD,CE=BD,∵D为AB中点,∴AD=BD,∴CE//AD,CE=AD,∴四边形ADCE为平行四边形,又BC//DE,∴∠AFD=∠ACB=90°,∴AC⊥DE,故四边形ADCE为菱形;(2)在Rt△ABC中,∵AB=16,AC=12,∴BC=4√7,∵D为AB中点,F也为AC的中点,∴DF=2√7,∴四边形ADCE的面积=AC×DF=24√7;(3)应添加条件AC=BC.证明:∵AC=BC,D为AB中点,∴CD⊥AB(三线合一的性质),即∠ADC=90°.∵四边形BCED为平行四边形,四边形ADCE为平行四边形,∴DE=BC=AC,∠AFD=∠ACB=90°.∴四边形ADCE为正方形.(对角线互相垂直且相等的四边形是正方形)解析:(1)由题意容易证明CE平行且等于AD,又知AC⊥DE,所以得到四边形ADCE为菱形;(2)根据解三角形的知识求出AC和DF的长,然后根据菱形的面积公式求出四边形ADCE的面积;(3)应添加条件AC=BC,证明CD⊥AB且相等即可.本题主要考查正方形的判定、菱形的判定与性质和勾股定理等知识点,此题是道综合体,有一定的难度,解答的关键还是要能熟练掌握各种四边形的基本性质.20.答案:解:(1)①③(2)从1、3、5、7中任意抽出三根木棒有:1、3、5;1、3、7;3、5、7;1、5、7,共4种情况,.而能组成三角形有3、5、7一种情况,所以抽出的三根木棒恰好能组成三角形的概率是14解析:;抽出的三根木棒恰好能组成三角形是随机事件.解:(1)第一根抽出的是3的可能性是14故答案为:①③;(2)见答案(1)根据概率公式和随机事件的定义进行判断;(2)用列举法得到从1、3、5、7中任意抽出三根木棒共有4种可能,根据三角形三边的关系得到其中3种可组成三角形,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.21.答案:解:(1)设王波第2次购买的商品原价是x元.当100<x≤300时,0.9x=252,解得:x=280;当x>300时,0.8x=252,解得:x=315.答:王波第2次购买的商品原价是280元或315元.(2)第2次购买的商品原价是280元时,80+252−(80+280)×0.8=44(元);第2次购买的商品原价是315元时,80+252−(80+315)×0.8=16(元).答:王波一次性购买比分两次购买可节省44元或16元.解析:(1)设王波第2次购买的商品原价是x元,分100<x≤300和x>300两种情况,根据付款金额=原价×折扣率,即可得出关于x的一元一次方程,解之即可得出结论;(2)分第2次购买的商品原价是280元及第2次购买的商品原价是315元两种情况,利用节省的钱数=分两次购买所需费用−一次性购买所需费用,即可求出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,列式计算.22.答案:解:共有5种可能的结果数,它们是:2、6、10;4、6、10;6、6、10;8、6、10;10、6、10,其中这三条线段能构成等腰三角形的结果数2种,分别是6、6、10和10、6、10, 所以这三条线段能构成等腰三角形的概率是25.解析:利用列举法展示所有可能的结果数,根据等腰三角形的判定找出结果数,然后根据概率公式计算即可.本题考查的是概率公式及等腰三角形的判定定理,熟记概率公式是解答此题的关键. 23.答案:解:(1)∵√a −3b +(a +b −4)2=0,∴{a −3b =0a +b −4=0, 解得{a =3b =1, ∴A(2,2√3),B(4,0),∴AO =√22+(2√3)2=4,又∵AB =4,∴AO =AB ;(2)∵∠CAD =∠OAB ,∴∠CAD +∠BAC =∠OAB +∠BAC ,即∠OAC =∠BAD ,在△OAC 和△BAD 中,{OA =AB ∠OAC =∠BAD AC =AD,∴△OAC≌△BAD(SAS),∴∠AOC =∠ABD ;(3)点P 在y 轴上的位置不发生改变.证明:由(1)可得,AB =BO =AO =4,∴∠AOB=∠ABO=60°,由(2)知△AOC≌△ABD,∴∠ABD=∠AOB=60°,∴∠OBP=60°,∵∠POB=90°,∴∠OPB=30°,∴Rt△BOP中,BP=2OB=8,∴OP=√82−42=4√3,即OP长度不变,∴点P在y轴上的位置不发生改变.解析:(1)根据算术平方根和平方的非负性质即可求得a、b的值,进而求得A,B点坐标,求得OA,AB 长度即可;(2)易证∠OAC=∠BAD,即可证明△OAC≌△BAD,根据全等三角形的性质,可得对应角相等;(3)点P在y轴上的位置不发生改变,先判定△AOB是等边三角形,易证∠OBP=60°,根据OB长度固定和∠OPB=30°,即可求得OP的长为定值.本题属于三角形综合题,主要考查了全等三角形的判定,等边三角形的判定与性质以及全等三角形对应边相等的性质的运用,本题中熟知全等三角形的判定定理,判定△OAC≌△BAD是解题的关键.×2+x),24.答案:解:(1)y=1.75x+4.5(100x+4.5x,=1.75x+900x=6.25x+900(0<x≤25);x=150(2)当y=150时,6.25x+900x整理得:x2−24x+144=0解得:x1=x2=12经检验,x=12是原方程的解,且符合题意.答:应利用旧围栏12米.×2+x)米,根据新旧围栏的价格已解析:(1)设利用旧围栏CF的长度为x米,那么新围栏就有(100x知,可求出y与x的函数关系式.(2)y=150代入(1)的函数式可求出x.本题考查了一元二次方程的应用,理解题意能力,关键是根据面积已知,新旧围栏钱数已知,设出旧围栏数为x,可列出y于x的函数式,然后把y=150代入可求结果.25.答案:证明:(1)∵将△ABC沿线段AB向右平移得到△DEF,∴AB=DE,AD=BE=CF,AB//CF,∵AD=BD,∴BD=CF,∵AB//CF,∴四边形CDBF是平行四边形;(2)①∵∠ACB=90°,AD=BD,AB=AD=BD,∴CD=12由(1)知四边形CDBF是平行四边形,∴四边形CDBF是菱形;②∵AC=BC,AD=BD,∴CD⊥BD,∠CDB=90°,由(1)知四边形CDBF是平行四边形,∴四边形CDBF是矩形;③∵∠ACB=90°,AD=BD,AB=AD=BD,∴CD=12∵AC=BC,AD=BD,∴CD⊥BD,∠CDB=90°,由(1)知四边形CDBF是平行四边形,∴四边形CDBF是正方形.解析:(1)根据平移的性质和平行四边形的判定解答即可;(2)①根据菱形的判定解答即可;②根据矩形的判定解答即可;③根据正方形的判定解答即可.此题考查四边形综合题,关键是根据平行四边形、矩形、菱形和正方形的判定解答.。
2020年陕西省中考数学试卷(附答案与解析)
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2020年陕西省初中学业水平考试数 学一、选择题(本大题10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)1.18-的相反数是( )A .18B .18-C .118D .118-2.若23A =︒∠,则A ∠余角的大小是( )A .57︒B .67︒C .77︒D .157︒3.2019年,我国国内生产总值约为990 870亿元,将数字990 870用科学记数法表示为( )A .59.908710⨯B .49.908710⨯C .499.08710⨯D .399.08710⨯4.如图,是A 市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是( )A .4℃B .8℃C .12℃D .16℃5.计算:3223x y ⎛⎫-= ⎪⎝⎭( )A .632x y -B .63827x y C .63827x y -D .54827x y -6.如图,在33⨯的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是ABC △的高,则BD 的长为( )ABCD7.在平面直角坐标系中,O 为坐标原点.若直线3y x =+分别与x 轴、直线2y x =-交于点A 、B ,则AOB △的面积为( )A .2B .3C .4D .68.如图,在ABCD 中,5AB =,8BC =.E 是边BC 的中点,F 是ABCD 内一点,且90BFC =︒∠.连接AF 并延长,交CD 于点G .若EF AB ∥,则DG 的长为 ( )A .52B .32C .3D .29.如图,ABC △内接于O ,50A =︒∠.E 是边BC 的中点,连接OE 并延长,交O 于点D ,连接BD ,则D ∠的大小为( )A .55︒B .65︒C .60︒D .75︒10.在平面直角坐标系中,将抛物线()()211y x m x m m =--+>沿y 轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )A .第一象限B .第二象限C .第三象限D .第四象限二.填空题(共4小题,每小题3分,共12分)11.计算:(22=________.12.如图,在正五边形ABCDE 中,DM 是边CD 的延长线,连接BD ,则BDM ∠的度数是________.13.在平面直角坐标系中,点()2,1A -,()3,2B ,()6,C m -分别在三个不同的象限.若毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题---------------无-----------效------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)反比例函数()0ky k x=≠的图象经过其中两点,则m 的值为________. 14.如图,在菱形ABCD 中,6AB =,60B ∠=︒,点E 在边AD 上,且2AE =.若直线l 经过点E ,将该菱形的面积平分,并与菱形的另一边交于点F ,则线段EF 的长为________.三.解答题(共11小题,共78分,解答应写出过程)15.解不等式组:()36,25 4.x x ⎧⎨-⎩>>16.解分式方程:2312x x x --=-.17.如图,已知ABC △,AC AB >,45C ∠=︒.请用尺规作图法,在AC 边上求作一点P ,使45PBC =︒∠.(保留作图痕迹.不写作法)18.如图,在四边形ABCD 中,AD BC ∥,B C =∠∠.E 是边BC 上一点,且DE DC =.求证:AD BE =.19.王大伯承包了一个鱼塘,投放了2 000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:数学试卷 第5页(共22页) 数学试卷 第6页(共22页)(1)这20条鱼质量的中位数是________,众数是________. (2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN .他俩在小明家的窗台B 处,测得商业大厦顶部N 的仰角∠1的度数,由于楼下植物的遮挡,不能在B 处测得商业大厦底部M 的俯角的度数.于是,他俩上楼来到小华家,在窗台C 处测得大厦底部M 的俯角2∠的度数,竟然发现∠1与2∠恰好相等.已知A ,B ,C 三点共线,CA AM ⊥,NM AM ⊥,31m AB =,18m BC =,试求商业大厦的高MN .21.某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm 时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y (cm )与生长时间x (天)之间的关系大致如图所示.(1)求y 与x 之间的函数关系式;(2)当这种瓜苗长到大约80cm 时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率; (2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题---------------无-----------效------------数学试卷 第7页(共22页) 数学试卷 第8页(共22页)23.如图,ABC △是O 的内接三角形,75BAC =︒∠,45ABC =︒∠.连接AO 并延长,交O 于点D ,连接BD .过点C 作O 的切线,与BA 的延长线相交于点E . (1)求证:AD EC ∥;(2)若12AB =,求线段EC 的长.24.如图,抛物线2y x bx c =++经过点()3,12和()2,3--,与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l . (1)求该抛物线的表达式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P 、D 、E 为顶点的三角形与AOC △全等,求满足条件的点P ,点E 的坐标.25.问题提出(1)如图1,在Rt ABC △中,90ACB =︒∠,AC BC >,ACB ∠的平分线交AB 于点D .过点D 分别作DE AC ⊥,DF BC ⊥.垂足分别为E ,F ,则图1中与线段CE 相等的线段是________. 问题探究(2)如图2,AB 是半圆O 的直径,8AB =.P 是AB 上一点,且2PB PA =,连接AP ,BP .APB ∠的平分线交AB 于点C ,过点C 分别作CE AP ⊥,CF BP ⊥,垂足分别为E ,F ,求线段CF 的长. 问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知O 的直径70m AB =,点C 在O 上,且CA CB =.P 为AB 上一点,连接CP 并延长,交O 于点D .连接AD ,BD .过点P 分别作PE AD ⊥,PF BD ⊥,垂足分别为E ,F .按设计要求,四边形PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP 的长为x (m ),阴影部分的面积为y (2m ). ①求y 与x 之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP 的长度为30m 时,整体布局比较合理.试求当30m AP =时,室内活动区(四边形PEDF )的面积.数学试卷 第9页(共22页) 数学试卷 第10页(共22页)2020年陕西省初中学业水平考试数学答案解析一、 1.【答案】A【解析】直接利用相反数的定义得出答案。
2020-2021学年陕西省西安市莲湖区九年级(上)期中数学试卷 (解析版)
2020-2021学年陕西省西安市莲湖区九年级第一学期期中数学试卷一、选择题(共10小题).1.(3分)用公式法解一元二次方程3x2﹣3x=1时,化方程为一般式,当中的a、b、c依次为()A.3,﹣3,1B.3,﹣3,﹣1C.3,3,﹣1D.3,3,12.(3分)如图,△ABC中,∠ACB=90°,AD=DB,CD=4,则AB等于()A.8B.6C.4D.23.(3分)抛掷一枚质地均匀的硬币,“反面朝上”的概率为,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.每两次必有1次反面朝上B.可能有50次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上4.(3分)菱形ABCD的边长是5cm,一条对角线AC的长是8cm,则此菱形的面积为()A.40cm2B.48cm2C.24cm2D.24cm25.(3分)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k=±4D.k=±26.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向3的概率为()A.B.C.D.7.(3分)如图,正方形ABCD中,在BA延长线上取一点,使BE=BD,连接DE,则∠EDA的度数为()A.10°B.15°C.30°D.22.5°8.(3分)已知一元二次方程x2﹣8x+12=0的两根恰好是某等腰三角形的两边长,则该等腰三角形的底边长为()A.2B.6C.8D.2或69.(3分)若x2+mx+20=(x﹣4)2﹣n,则m﹣n的值是()A.﹣16B.﹣12C.﹣4D.410.(3分)如图1,有一张长32cm,宽16cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2所示的有盖纸盒.若纸盒的底面积是130cm2,则纸盒的高为()A.2cm B.2.5cm C.3cm D.4cm二、填空题(共4个小题,每小题3分,共12分)11.(3分)如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.12.(3分)某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共送贺卡156张,设这个小组的同学共有x人,可列方程:.13.(3分)从2,﹣2,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是.14.(3分)有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH的周长为.三、解答题(本大题共11个小题,共78分.解答应写出文字说明、证明过程或演算步骤)15.(5分)解方程:x2+6x﹣16=0.16.(5分)如图,四边形ABCD是菱形,E、F是直线AC上两点,AF=CE.求证:四边形FBED是菱形.17.(5分)在三角形ABC中,∠C=90°,请用尺规作图的方法,以AB为对角线作一个矩形(保留作图痕迹,不写作法).18.(5分)若一元二次方程x2﹣2x=1的两个实数根分别为x1,x2,求(x1﹣1)(x2﹣1)的值.19.(7分)已知,如图,在Rt△ABC中,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.20.(7分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字为偶数的概率;(2)随机抽取一张卡片,记下数字后放回,洗匀后再随机抽取一张卡片,请用列表或画树状图的方法求出两次数字和为5的概率.21.(7分)如图,在Rt△ABC中,∠B=90°,AB=8cm,BC=10cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C 移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,AP=CQ?(2)经过几秒后,△PBQ的面积等于15cm2?22.(7分)一个不透明的口袋中装有若干个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球恰好摸到红球的概率是,则红球有个;(2)在(1)的条件下,从袋中任意摸出2个球,请用画树状图或列表的方法求摸出的球是一个红球和一个白球的概率.23.(8分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.(1)求证:BE=BC;(2)若AB=1,∠ABE=60°,求DE的长;(3)若BE=DC+DE,求∠BEC的度数.24.(10分)西安某特产商店将进价为每件20元的礼盒的售价确定为每件40元.(1)中秋期间,该商店进行降价促销活动,预备将原来售价进行两次降价,降价后该礼盒现价为32.4元.若该商品两次降价的降价率相同,求这个降价率;(2)经调查,该商品每降价2元,即可多销售100件.已知该商品售价40元时每月可销售500件,若该商店希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?25.(12分)(1)如图1,在正方形ABCD中,AE、DF相交于点O且AE⊥DF则AE和DF的数量关系为.(2)如图2,在正方形ABCD中,E、F、G分别是边AD、BC、CD上的点,BG⊥EF,垂足为H.求证:EF=BG.(3)如图3,在正方形ABCD中,E、F、M分别是边AD、BC、AB上的点,AE=2,BF=5,BM=1,将正方形沿EF折叠,点M的对应点恰好与CD边上的点N重合,求CN的长度.参考答案一、选择题(共10小题).1.(3分)用公式法解一元二次方程3x2﹣3x=1时,化方程为一般式,当中的a、b、c依次为()A.3,﹣3,1B.3,﹣3,﹣1C.3,3,﹣1D.3,3,1解:∵方程3x2﹣3x=1化为一般形式为:3x2﹣3x﹣1=0,∴a=3,b=﹣3,c=﹣1.故选:B.2.(3分)如图,△ABC中,∠ACB=90°,AD=DB,CD=4,则AB等于()A.8B.6C.4D.2解:∵∠ACB=90°,AD=BD,∴AB=2CD=2×4=8.故选:A.3.(3分)抛掷一枚质地均匀的硬币,“反面朝上”的概率为,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.每两次必有1次反面朝上B.可能有50次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,故选:B.4.(3分)菱形ABCD的边长是5cm,一条对角线AC的长是8cm,则此菱形的面积为()A.40cm2B.48cm2C.24cm2D.24cm2解:如图所示:∵菱形ABCD的边长为5cm,对角线AC=8cm,∴AB=5cm,AO=CO=4cm,OB=OD,AC⊥BD,∴OB===3(cm),∴BD=2OB=6cm,∴此菱形的面积为×8×6=24(cm2).故选:D.5.(3分)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k=±4D.k=±2解:∵一元二次方程x2﹣kx+4=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×4=0,解得:k=±4.故选:C.6.(3分)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向3的概率为()A.B.C.D.解:列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)∵共有16种等可能的结果,两个转盘的指针都指向3的只有1种结果,∴两个转盘的指针都指向3的概率为,故选:D.7.(3分)如图,正方形ABCD中,在BA延长线上取一点,使BE=BD,连接DE,则∠EDA的度数为()A.10°B.15°C.30°D.22.5°解:∵四边形ABCD是正方形,∴∠ABD=45°=∠ADB,∵BE=BD,∴∠BDE=67.5°,∴∠EDA=∠BDE﹣∠ADB=22.5°,故选:D.8.(3分)已知一元二次方程x2﹣8x+12=0的两根恰好是某等腰三角形的两边长,则该等腰三角形的底边长为()A.2B.6C.8D.2或6解:方程x2﹣8x+12=0,因式分解得:(x﹣2)(x﹣6)=0,解得:x=2或x=6,若2为腰,6为底,2+2<6,不能构成三角形;若2为底,6为腰,此时可以构成三角形.故选:A.9.(3分)若x2+mx+20=(x﹣4)2﹣n,则m﹣n的值是()A.﹣16B.﹣12C.﹣4D.4解:(x﹣4)2﹣n=x2﹣8x+16﹣n,∵x2+mx+20=(x﹣4)2﹣n,∴x2+mx+20=x2﹣8x+16﹣n.∴m=﹣8,16﹣n=20.∴m=﹣8,n=﹣4.∴m﹣n=﹣8﹣(﹣4)=﹣8+4=﹣4.故选:C.10.(3分)如图1,有一张长32cm,宽16cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2所示的有盖纸盒.若纸盒的底面积是130cm2,则纸盒的高为()A.2cm B.2.5cm C.3cm D.4cm解:设当纸盒的高为xcm时,纸盒的底面积是150cm2,依题意,得:(32﹣2x)/2×(16﹣2x)=130,化简,得:x2﹣24x+63=0,解得:x1=3,x2=21.当x=3时,16﹣2x=10>0,符合题意;当x=21时,16﹣2x=﹣26<0,不符合题意,舍去,答:若纸盒的底面积是130cm2,纸盒的高为3cm.故选:C.二、填空题(本大题共4个小题,每小题3分,共12分)11.(3分)如图,菱形ABCD中,∠ACD=40°,则∠ABC=100°.解:∵四边形ABCD是菱形,∴AB∥CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°﹣80°=100°;故答案为:100.12.(3分)某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共送贺卡156张,设这个小组的同学共有x人,可列方程:x(x﹣1)=156.解:设这个小组的同学共有x人,则每人送(x﹣1)张贺卡,根据题意得:x(x﹣1)=156,故答案为:x(x﹣1)=156.13.(3分)从2,﹣2,0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是.解:列表得:﹣220﹣2﹣﹣﹣(2,﹣2)(0,﹣2)2(﹣2,1)﹣﹣﹣(0,2)0(﹣2,0)(2,0)﹣﹣﹣所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率==;故答案为:.14.(3分)有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH的周长为.解:由题意得:矩形ABCD≌矩形BEDF,∴∠A=90°,AB=BE=7,AD∥BC,BF∥DE,AD=11,∴四边形BGDH是平行四边形,∴平行四边形BGDH的面积=BG×AB=BH×BE,∴BG=BH,∴四边形BGDH是菱形,∴BH=DH=DG=BG,设BH=DH=x,则AH=11﹣x,在Rt△ABH中,由勾股定理得:72+(11﹣x)2=x2,解得:x=,∴BG=,∴四边形BGDH的面积=BG×AB=×7=,故答案为:.三、解答题(本大题共11个小题,共78分.解答应写出文字说明、证明过程或演算步骤)15.(5分)解方程:x2+6x﹣16=0.解:a=1,b=6,c=﹣16∵b2﹣4ac=62﹣4×1×(﹣16)=36+64=100>0∴即x1=2,x2=﹣816.(5分)如图,四边形ABCD是菱形,E、F是直线AC上两点,AF=CE.求证:四边形FBED是菱形.【解答】证明:连接BD交AC于O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵AF=CE,∴OF=OE,∴四边形FBED是菱形.17.(5分)在三角形ABC中,∠C=90°,请用尺规作图的方法,以AB为对角线作一个矩形(保留作图痕迹,不写作法).解:如图,四边形ACBD即为所求的矩形.18.(5分)若一元二次方程x2﹣2x=1的两个实数根分别为x1,x2,求(x1﹣1)(x2﹣1)的值.解:方程化为x2﹣2x﹣1=0,则x1+x2=2,x1x2=﹣1,所以(x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1=﹣1﹣2+1=﹣2.19.(7分)已知,如图,在Rt△ABC中,E是两锐角平分线的交点,ED⊥BC,EF⊥AC,垂足分别为D,F,求证:四边形CDEF是正方形.【解答】证明:过E作EM⊥AB,∵AE平分∠CAB,∴EF=EM,∵EB平分∠CBA,∴EM=ED,∴EF=ED,∵ED⊥BC,EF⊥AC,△ABC是直角三角形,∴∠CFE=∠CDE=∠C=90°,∴四边形EFDC是矩形,∵EF=ED,∴四边形CDEF是正方形.20.(7分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字为偶数的概率;(2)随机抽取一张卡片,记下数字后放回,洗匀后再随机抽取一张卡片,请用列表或画树状图的方法求出两次数字和为5的概率.解:(1)∵四张正面分别标有数字1,2,3,4,其中数字为偶数的有2和4两个数,∴随机抽取一张卡片,求抽到数字为偶数的概率是=;(2)根据题意画图如下:共有16种的可能的情况数,其中两次数字和为5的有4种,则两次数字和为5的概率实数=.21.(7分)如图,在Rt△ABC中,∠B=90°,AB=8cm,BC=10cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C 移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,AP=CQ?(2)经过几秒后,△PBQ的面积等于15cm2?解:(1)设经过x秒后,AP=CQ,则AP=xcm,CQ=(10﹣2x)cm,依题意,得:x=10﹣2x,解得:x=.答:经过秒后,AP=CQ.(2)设经过y秒后,△PBQ的面积等于15cm2,则BP=(8﹣y)cm,BQ=2ycm,依题意,得:(8﹣y)×2y=15,化简,得:y2﹣8y+15=0,解得:y1=3,y2=5.答:经过3秒或5秒后,△PBQ的面积等于15cm2.22.(7分)一个不透明的口袋中装有若干个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球恰好摸到红球的概率是,则红球有2个;(2)在(1)的条件下,从袋中任意摸出2个球,请用画树状图或列表的方法求摸出的球是一个红球和一个白球的概率.解:(1)设袋中红球有x个,根据题意,得:=,解得x=2,经检验x=2是分式方程的解,∴袋中红球有2个,故答案为:2.(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中摸出的球是一个红球和一个白球的有4种可能,所以摸出的球是一个红球和一个白球的概率为=.23.(8分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.(1)求证:BE=BC;(2)若AB=1,∠ABE=60°,求DE的长;(3)若BE=DC+DE,求∠BEC的度数.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC.(2)解:∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=60°,∴AE=,BE=2,∴AD=BC=BE=2,∴DE=AD﹣AE=2﹣.(3)∵四边形ABCD是矩形,∴AB=CD,AD=BC,AD∥BC,∴∠DEC=∠ECB,∵EC平分∠BED,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BC=BE,∵BE=DC+DE,∴AD=DE+DC,∴AE=DC,∴AB=AE,∴∠ABE=45°,∴∠EBC=45°,∴∠BEC=.24.(10分)西安某特产商店将进价为每件20元的礼盒的售价确定为每件40元.(1)中秋期间,该商店进行降价促销活动,预备将原来售价进行两次降价,降价后该礼盒现价为32.4元.若该商品两次降价的降价率相同,求这个降价率;(2)经调查,该商品每降价2元,即可多销售100件.已知该商品售价40元时每月可销售500件,若该商店希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?解:(1)设这个降价率为x,依题意,得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:这个降价率为10%.(2)设降价y元,则每件的利润为(40﹣y﹣20)元,每月可销售500+y=(500+50y)件,依题意,得:(40﹣y﹣20)(500+50y)=10000,化简,得:y2﹣10y=0,解得:y1=10,y2=0,∵要尽可能扩大销售量,∴y=10.答:该商品在原售价的基础上,再降低10元.25.(12分)(1)如图1,在正方形ABCD中,AE、DF相交于点O且AE⊥DF则AE和DF的数量关系为AE=DF.(2)如图2,在正方形ABCD中,E、F、G分别是边AD、BC、CD上的点,BG⊥EF,垂足为H.求证:EF=BG.(3)如图3,在正方形ABCD中,E、F、M分别是边AD、BC、AB上的点,AE=2,BF=5,BM=1,将正方形沿EF折叠,点M的对应点恰好与CD边上的点N重合,求CN的长度.解:(1)∵∠DAO+∠BAE=90°,∠DAO+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS),∴AE=DF,故答案为AE=DF;(2)如图1,故点E作EM⊥BC于点M,则四边形ABME为矩形,则AB=EM,在正方形ABCD中,AB=BC,∴EM=BC,∵EM⊥BC,∴∠MEF+∠EFM=90°,∵BC⊥EM,∴∠CBG+∠EFM=90°,∴∠CBG=∠MEF,在△BCG和△EMF中,,∴△BCG≌△EMF(ASA),∴BG=EF;(3)如图2,连接MN,∵M、N关于EF对称,∴MN⊥EF,过点E作EH⊥BC于点H,过点M作MG⊥CD于点G,则EH⊥MG,由(2)同理可得:△EHF≌△MGN(ASA),∴NG=HF,∵AE=2,BF=5,∴NG=HF=5﹣2=3,又∵GC=MB=1,∴NC=NG+CG=3+1=4.。
『精选』2020年陕西省西安市莲湖区九年级上学期数学期中试卷及解析
2018学年陕西省西安市莲湖区九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题目要求的)1.(3分)已知=,则的值是()A.B.C.D.2.(3分)将如图的Rt△ABC绕直角边旋转一周,所得几何体的正投影是()A.直角三角形B.等腰三角形C.等边三角形D.圆3.(3分)一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.30 C.40 D.504.(3分)a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为05.(3分)人以肚脐为界,下身与身高比例符合“黄金分割”比例,在人的视觉里看,是最完美的比例,身高为170cm的人,满足“黄金分割”比例的腿长约为()A.100cm B.104cm C.105cm D.112cm6.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC 面积的一半,若BC=4,则△ABC移动的距离是()A.2 B.2 C.1 D.4﹣27.(3分)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.6米,求A、B、C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=12米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得GE=2米,小明身高EF=1.6米,则凉亭的高度AB约为()A.9米 B.9.6米C.10米D.10.2米8.(3分)在如图3×4网格中,每个小正方形都一样,其中5个小正方形染色,现从其余的小正方形中任取一个染色,把染色的小正方形剪下来,能折叠成正方体的概率是()A.B.C.D.9.(3分)如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为BD=9.6米,留在墙上的影长CD=2米,则旗杆的高度()A.9米 B.9.6米C.10米D.10.2米10.(3分)如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①DE平分∠ADB②BE=2﹣③四边形AEGF是菱形④BC+FG=1.5其中正确的结论是()A.①②B.②③C.①③④D.①②③二、填空题(共4小题,每小题3分,计12分,其中12题为选做题,任选一题作答)11.(3分)如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为.12.(3分)请从以下两个小题中任选一个作答,若多选,则按照第一题记分.A.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是B.一元二次方程x2﹣10x+5=0配方可变形为.13.(3分)如图,在等边△ABC中,D为边AB上的一点,且AD:DB=1:4,将△ABC沿EF折叠,使点C与D重合,点E、F分别在AC和BC上,则CE:CF=.14.(3分)▱ABCD在平面直角坐标系中的位置如图所示,OB=4,D(2,2),点P是对角线OC上一个动点,E(0,﹣2),当EP+BP最短时,点P的坐标为.三、解答题(共11小题,计78分,解答时写出过程)15.(5分)解方程:+3=.16.(5分)创新数学兴趣小组利用太阳光线测量旗杆的高度,如图,高1m的标杆AB竖直放置在水平地面上,其影长为BC=1.2m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=12m,请求出旗杆DE的高度.17.(5分)乐智玩具车根据市场调查得出如下结论:某种玩具每个按90元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为60元,为了减少库存,问这种玩具的销售单价为多少元时,厂家每天仍可获利润3600元?18.(6分)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.(1)根据以上尺规作图的过程,证明四边形ABEF是菱形;(2)若菱形ABEF的边长为4,AE=4,求菱形ABEF的面积.19.(6分)如图,某公园有路灯AB,李彦在水平地面C处测得自己的影子CD的长为1.2米,继续笔直往前走3米到达E处时,测得影子EF的长为2.4米,已知李彦的身高是1.6米,那么路灯AB的高度是多少?20.(6分)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)求x取不等式组的所有整数解中任意一个,且使得关于y的方程﹣1=的解为负数的概率.21.(8分)如图,在正方形ABCD的边BC,AB上截取BF=CE,连接DE,过点E作EG⊥DE,使得EG=DE,连接FG,FC,判断四边形ECFG的形状并证明.22.(8分)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”(1)解方程x2+2x﹣8=0,并判断是否时“倍根方程”,写出一个“倍根方程”(2)若关于x的方程x2+ax+2=0是倍根方程,求a的值;(3)若关于x的方程ax2﹣6ax+c=0(a≠0)是“倍根方程”,求a和c的关系.23.(8分)某校初一年级随机抽取30名学生,对5种活动形式:A、跑步,B、篮球,C、跳绳,D、乒乓球,E、武术,进行了随机抽样调查,每个学生只能选择一种运动行驶,调查统计结果,绘制了不完整的统计图.(1)将条形图补充完整;(2)如果初一年级有900名学生,估计喜爱跳绳运动的有多少人?(3)某次体育课上,老师在5个一样的乒乓球上分别写上A、B、C、D、E,放在不透明的口袋中,每人每次摸出一个球并且只摸一次,然后放回,按照球上的标号参加对应活动,小明和小刚是好朋友,请用树状图或列表法的方法,求他俩恰好是同一种活动形式的概率.24.(9分)如图,在平面直角坐标系中xOy中,直线AC:y=﹣x+3与x轴交于点C,直线AD:y=x+1交于x轴于点B,交y轴于点D,若点E是直线AB上一动点(不与B点重合),当△BOD 与△BCE相似时,求点E的坐标.25.(12分)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化到△ADF中即可判断.(1)AB、AD、DC之间的等量关系为;(2)完成(1)的证明.问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.2018学年陕西省西安市莲湖区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题目要求的)1.(3分)已知=,则的值是()A.B.C.D.【解答】解:由等式的性质,得b=a,==,故选:B.2.(3分)将如图的Rt△ABC绕直角边旋转一周,所得几何体的正投影是()A.直角三角形B.等腰三角形C.等边三角形D.圆【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,而圆锥的正投影(主视图)是等腰三角形,故选:B.3.(3分)一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.30 C.40 D.50【解答】解:由题意可得,×100%=30%,解得,n=40(个).所以估计盒子中小球的个数为40,故选:C.4.(3分)a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,∴ac<0.在方程ax2+bx+c=0中,△=b2﹣4ac≥﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.故选:B.5.(3分)人以肚脐为界,下身与身高比例符合“黄金分割”比例,在人的视觉里看,是最完美的比例,身高为170cm的人,满足“黄金分割”比例的腿长约为()A.100cm B.104cm C.105cm D.112cm【解答】解:设满足“黄金分割”比例的腿长约为xcm,根据题意得:=,解得:x≈105,答:满足“黄金分割”比例的腿长约为105cm;故选:C.6.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC 面积的一半,若BC=4,则△ABC移动的距离是()A.2 B.2 C.1 D.4﹣2【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=4,∴EC=2,∴BE=BC﹣EC=4﹣2.故选:D.7.(3分)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.6米,求A、B、C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=12米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得GE=2米,小明身高EF=1.6米,则凉亭的高度AB约为()A.9米 B.9.6米C.10米D.10.2米【解答】解:由题意∠AGC=∠FGE,∵∠ACG=∠FEG=90°,∴△ACG∽△FEG,∴AC:EF=CG:GE,∴=,∴AC=9.6米,∴AB=AC+BC=9.6+0.6=10.2米.故选:D.8.(3分)在如图3×4网格中,每个小正方形都一样,其中5个小正方形染色,现从其余的小正方形中任取一个染色,把染色的小正方形剪下来,能折叠成正方体的概率是()A.B.C.D.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,9.(3分)如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为BD=9.6米,留在墙上的影长CD=2米,则旗杆的高度()A.9米 B.9.6米C.10米D.10.2米【解答】解:作CE⊥AB于E点,如图,则四边形BDCE为矩形,BD=CE=9.6,BE=CD=2,根据题意得=,即=,解得AE=8,所以AB=AE+BE=8+2=10(m).答:旗杆的高度为10m.故选:C.10.(3分)如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①DE平分∠ADB②BE=2﹣③四边形AEGF是菱形④BC+FG=1.5其中正确的结论是()A.①②B.②③C.①③④D.①②③【解答】解:∵正方形ABCD的边长为1,∴∠BCD=∠BAD=90°,∠CBD=45°,BD=,AD=CD=1.由旋转的性质可知:∠HGD=BCD=90°,∠H=∠CBD=45°,BD=HD,GD=CD,∴HA=BG=﹣1,∠H=∠EBG=45°,∠HAE=∠BGE=90°,∴△HAE和△BGE均为直角边为﹣1的等腰直角三角形,∴AE=GE.在Rt△AED和Rt△GED中,,∴Rt△AED≌Rt△GED(HL),∴∠AED=∠GED=(180°﹣∠BEG)=67.5°,AE=GE,∠ADE=∠GDE,∴∠AFE=180°﹣∠EAF﹣∠AEF=180°﹣45°﹣67.5°=67.5°=∠AEF,DE平分∠ADB,故①正确;∵HA=﹣1,∠H=45°,∴AE=﹣1,∴BE=1﹣(﹣1)=2﹣,故②正确;∵AE=AF,AE=GE,AF⊥BD,EG⊥BD,∴AF=GE且AF∥GE,∴四边形AEGF为平行四边形,∵AE=GE,∴平行四边形AEGF是菱形,故③正确;∵四边形AEGF是菱形,∴FG=AE=﹣1,∴BC+FG=1+﹣1=,故④错误.故选:D.二、填空题(共4小题,每小题3分,计12分,其中12题为选做题,任选一题作答)11.(3分)如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为(,).【解答】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC边长的倍,∴点F的坐标为(1×,×),即(,),故答案为:(,).12.(3分)请从以下两个小题中任选一个作答,若多选,则按照第一题记分.A.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是k >且k≠0B.一元二次方程x2﹣10x+5=0配方可变形为(x﹣5)2=20.【解答】解:A.∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,∴△>0且k﹣1≠0,即22﹣4(k﹣1)×(﹣2)>0且k≠1,解得k>且k≠1,故答案为:k>且k≠1;B.∵x2﹣10x+5=(x﹣5)2﹣20,∴方程可配方为(x﹣5)2=20,故答案为:(x﹣5)2=20.13.(3分)如图,在等边△ABC中,D为边AB上的一点,且AD:DB=1:4,将△ABC沿EF折叠,使点C与D重合,点E、F分别在AC和BC上,则CE:CF=2:3.【解答】解:设AD=k,则DB=4k,∵△ABC为等边三角形,∴AB=AC=5k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由折叠,得CE=DE,CF=DF,∴△AED的周长为:AE+ED+AD=5k+k=6k,△BDF的周长为:BD+DF+BF=4k+5k=9k,∴△AED与△BDF的相似比为6:9,∴CE:CF=DE:DF=2:3.故答案为:2:3.14.(3分)▱ABCD在平面直角坐标系中的位置如图所示,OB=4,D(2,2),点P是对角线OC上一个动点,E(0,﹣2),当EP+BP最短时,点P的坐标为(4﹣6,4﹣2).【解答】解:连接DE,交OC于P,则此时EP+BP最短,∵OB=4,D(2,2),四边形ABCD是平行四边形,∴DC=OB=4,∴C点的坐标为(6,2),设直线DE的解析式为y=kx+b,把E(0,﹣2),D(2,2)代入得:,解得:k=1+,即直线DE的解析式为y=(1+)x﹣2,设直线OC的解析式为y=ax,把C(6,2)代入得:a=,即直线OC的解析式为y=x,解方程组得:,所以点P的坐标为(),故答案为:().三、解答题(共11小题,计78分,解答时写出过程)15.(5分)解方程:+3=.【解答】解:两边乘(x+1)(x﹣1)得到,4(x+1)+3(x2﹣1)=(x﹣1)2,∴4x+4+3x2﹣3=x2﹣2x+1x=0,经检验:x=0是分式方程的解.16.(5分)创新数学兴趣小组利用太阳光线测量旗杆的高度,如图,高1m的标杆AB竖直放置在水平地面上,其影长为BC=1.2m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=12m,请求出旗杆DE的高度.【解答】解:(1)连结AC,过D点作DG∥AC交BC于G点,影子EG如图所示;(2)∵DG∥AC,∴∠G=∠C,∴Rt△ABC∽△Rt△DGE,∴=,即=,解得DE=10m,∴旗杆的高度为10m.17.(5分)乐智玩具车根据市场调查得出如下结论:某种玩具每个按90元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为60元,为了减少库存,问这种玩具的销售单价为多少元时,厂家每天仍可获利润3600元?【解答】解:设这种玩具的销售单价为x元时,厂家每天仍可获利润3600元.由题意:(x﹣60)[160+2(90﹣x)]=3600解得:x=80或150(舍弃),答:这种玩具的销售单价为80元时,厂家每天仍可获利润3600元.18.(6分)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.(1)根据以上尺规作图的过程,证明四边形ABEF是菱形;(2)若菱形ABEF的边长为4,AE=4,求菱形ABEF的面积.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的边长为4,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,AE⊥BF,∴∠AGF=90°,GF==2,∴BF=2GF=4,∴菱形ABEF的面积=•AE•BF=××4=8.19.(6分)如图,某公园有路灯AB,李彦在水平地面C处测得自己的影子CD的长为1.2米,继续笔直往前走3米到达E处时,测得影子EF的长为2.4米,已知李彦的身高是1.6米,那么路灯AB的高度是多少?【解答】解:由题意可知:CG=EH=1.6米,CD=1.2米,CE=3米,EF=2.4米,AB∥CG∥EH,∴△DGC∽△DAB,△FHE∽△FAB,∴,即,∴,解得:BC=3,∴,解得:AB=5.6,答:路灯的高度是5.6米.20.(6分)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)求x取不等式组的所有整数解中任意一个,且使得关于y的方程﹣1=的解为负数的概率.【解答】解:(1)解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为:﹣3<x≤1,∴它的所有整数解为:﹣2,﹣1,0,1;(2)解方程﹣1=,得y=,∵关于y的方程﹣1=的解为负数,∴<0,∴x<﹣1.2,∴只有当x=﹣2时,y的值是负数,∴P(y为负数)=.21.(8分)如图,在正方形ABCD的边BC,AB上截取BF=CE,连接DE,过点E作EG⊥DE,使得EG=DE,连接FG,FC,判断四边形ECFG的形状并证明.【解答】解:四边形ECFG是平行四边形,理由如下:过点G作GH⊥CB的延长线于点H,如图1所示:则GH∥BF,∠GHE=90°,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE,∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;∴四边形ECFG是平行四边形.22.(8分)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”(1)解方程x2+2x﹣8=0,并判断是否时“倍根方程”,写出一个“倍根方程”(2)若关于x的方程x2+ax+2=0是倍根方程,求a的值;(3)若关于x的方程ax2﹣6ax+c=0(a≠0)是“倍根方程”,求a和c的关系.【解答】解:(1)方程x2+2x﹣8=0,可化为(x+4)(x﹣2)=0,解得x=﹣4或2,∴不是“倍根方程”“倍根方程”:x2+9x+18=0.(2)∵原方程是“倍根方程”,可以假设方程的两根分别为m,2m.则有,解得m=±1,a=±3.(3))∵原方程是“倍根方程”,可以假设方程的两根分别为n,2n.则有,解得n=2,=8,∴c=8a.23.(8分)某校初一年级随机抽取30名学生,对5种活动形式:A、跑步,B、篮球,C、跳绳,D、乒乓球,E、武术,进行了随机抽样调查,每个学生只能选择一种运动行驶,调查统计结果,绘制了不完整的统计图.(1)将条形图补充完整;(2)如果初一年级有900名学生,估计喜爱跳绳运动的有多少人?(3)某次体育课上,老师在5个一样的乒乓球上分别写上A、B、C、D、E,放在不透明的口袋中,每人每次摸出一个球并且只摸一次,然后放回,按照球上的标号参加对应活动,小明和小刚是好朋友,请用树状图或列表法的方法,求他俩恰好是同一种活动形式的概率.【解答】解:(1)D类型的人数为30﹣(4+6+9+3)=8(人),补全条形图如下:(2)900×=270(人),答:估计喜爱跳绳运动的有270人;(2)画树状图如下:由树状图可知,共有25种等可能结果,其中他俩恰好是同一种活动形式的有5种,.∴他俩恰好是同一种活动形式的概率为.24.(9分)如图,在平面直角坐标系中xOy中,直线AC:y=﹣x+3与x轴交于点C,直线AD:y=x+1交于x轴于点B,交y轴于点D,若点E是直线AB上一动点(不与B点重合),当△BOD 与△BCE相似时,求点E的坐标.【解答】解:在直线y=x+1中,令y=0得0=x+1,x=﹣2,∴B(﹣2,0).令x=0,得y=1,∴D(0,1).在直线y=﹣x+3中,令y=0,得﹣x+3=0,x=3,∴C(3,0).∴BD==.∵∠DOB=90°,要使△BOD与△BCE相似,则△BEC必有一个角是90°,显然∠CBE≠90°.①当∠CEB=∠DOB=90°,且==时,△BOD∽△BEC,即==.解得CE=BE=2.过点E作EF⊥BC于F,则根据△BEC的面积得到:×2×=×5EF,EF=2,∴E(2,2).②当∠ECB=∠DOB=90°,满足=时,△BOD∽△BCE,即=,解得CE=,E(3,)综上所述,点E的坐标是(2,2)或(3,).25.(12分)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化到△ADF中即可判断.(1)AB、AD、DC之间的等量关系为AD=AB+DC;(2)完成(1)的证明.问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,∵,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
陕西省2020届九年级上学期数学期中考试试卷(I)卷
陕西省2020届九年级上学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)对于二次根式,以下说法不正确的是()A . 它是一个正数B . 是一个无理数C . 是最简二次根式D . 它的最小值是32. (1分)德育处王主任将10份奖品分别放在10个完全相同的不透明礼盒中,准备将它们奖给小明等10位获“科技节活动先进个人”称号的同学.这些奖品中有5份是学习文具,3份是科普读物,2份是科技馆通票.小明同学从中随机取一份奖品,恰好取到科普读物的概率是()A .B .C .D .3. (1分)抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A . 先向左平移2个单位,再向上平移3个单位B . 先向左平移2个单位,再向下平移3个单位C . 先向右平移2个单位,再向下平移3个单位D . 先向右平移2个单位,再向上平移3个单位4. (1分)如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:(1)DE=1;(2)△ADE∽△ABC;(3)△ADE的面积与△ABC的面积之比为1:4.其中正确的有()A . 0个B . 1个C . 2个D . 3个5. (1分)(2018·阳信模拟) 已知a,b,c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c =0的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 没有实数根D . 无法判断6. (1分)(2016·慈溪模拟) 用配方法解方程x2-4x+1=0时,配方后所得的方程是()A . (x-2)2=1B . (x-2)2=-1C . (x-2)2=3D . (x+2)2=37. (1分) (2019九上·硚口月考) 已知点,在函数的图象上,则下列说法正确的是()A .B .C .D .8. (1分)如图,ΔABC中,∠C=90°,CD⊥AB,DE⊥AC,则图中与ΔABC相似的三角形有()A . 4个B . 3个C . 2个D . 1个9. (1分) (2020九上·遂宁期末) 如图,河堤横断面迎水坡AB的坡比是,堤高BC=10m,则坡面AB 的长度是()A . 15mB .C . 20mD .10. (1分)如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A . 8tan20°B . 6cos15°C . 8tan15°D . 6cot15°二、填空题 (共5题;共5分)11. (1分) (2017九上·安图期末) 若 = ,则 =________.12. (1分)(2017·农安模拟) 如图,在平面直角坐标系中,正方形ABCD的三个顶点A、B、D均在抛物线y=ax2﹣4ax+3(a<0)上.若点A是抛物线的顶点,点B是抛物线与y轴的交点,则AC长为________.13. (1分)已知AM是△ABC中BC边上的中线,P是△ABC的重心,过P作EF(EF∥BC),分别交AB、AC于E、F,则 =________.14. (1分) (2017八下·重庆期中) 如图,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD 的周长为16cm,则△DOE的周长是________ cm.15. (1分) (2017八上·罗山期末) 将一张宽为6cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是________ cm2 .三、解答题 (共8题;共15分)16. (2分)计算:(1)x(2)()×(3)(7﹣4)2006(7+4)2008 .17. (2分)集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小、形状、质量完全相同的白球20只,且每一个球上都写有号码(1﹣20号)和1只红球,规定:每次只摸一只球.摸前交1元钱且在1﹣﹣20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元.(1)你认为该游戏对“摸彩”者有利吗?说明你的理由.(2)若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元?18. (3分)如图,△ABC在方格纸中.(1)请建立平面直角坐标系.使A、C两点的坐标分别为(2,3)、C(5,2),则点B的坐标________.(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′.(3)计算△A′B′C′的面积S.19. (1分)(2017·南关模拟) 为了测量出大楼AB的高度,从距离楼底B处50米的点C(点C与楼底B在同一水平面上)出发,沿倾斜角为30°的斜坡CD前进20米到达点D,在点D处测得楼顶A的仰角为64°,求大楼AB的高度(结果精确到1米)(参考数据:sin64°≈0.9,cos64°≈0.4,tan64°≈2.1,≈1.7)20. (2分) (2018九下·盐都模拟) 如图①,一次函数 y=x - 2 的图像交 x 轴于点 A,交 y 轴于点 B,二次函数 y=x2 + bx + c的图像经过 A、B 两点,与 x 轴交于另一点 C.(1)求二次函数的关系式及点 C 的坐标;(2)如图②,若点 P 是直线 AB 上方的抛物线上一点,过点 P 作PD∥x 轴交 AB 于点 D,PE∥y 轴交 AB 于点 E,求 PD+PE 的最大值;(3)如图③,若点 M 在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点 M的坐标.21. (2分)(2018·通城模拟) 如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE 相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:________.22. (1分) (2019八下·大庆期中) 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?23. (2分)(2017·成武模拟) 数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD (∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t=________参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共15分)16-1、17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、23-3、。
2019-2020学年陕西省西安市莲湖区九年级(上)期中数学试卷(解析版)
2019-2020学年陕西省西安市莲湖区九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)下列方程中,是关于x 的一元二次方程的是( )A .20ax bx c ++=B .21120x x ++=C .231y x +=D .23(1)2(1)x x +=+2.(3分)如图,矩形ABCD 的对角线交于点O .若55BAO ∠=︒,则AOD ∠等于( )A .110︒B .115︒C .120︒D .125︒3.(3分)已知关于x 的一元二次方程240x x k -+=有一个根是5,则该方程的另一个根是( )A .1-B .0C .1D .5-4.(3分)正方形具有而矩形不具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相垂直5.(3分)一元二次方程2810x x --=配方后可变形为( )A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=6.(3分)定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( )A .14B .310C .12D .347.(3分)若关于x 的一元二次方程240ax bx -+=的解是2x =,则20192a b +-的值是( )A .2015B .2017C .2019D .20218.(3分)随着人们环保意识的不断增强,延安市家庭电动自行车的拥有量逐年增加.据统计,某小区2016年底拥有家庭电动自行车125辆,2018年底家庭电动自行车的拥有量达到180辆.若该小区2016年底到2018年底家庭电动自行车拥有量的平均增长率相同且均为x ,则可列方程为( )A .2125(1%)180x +=B .2(125%)180x +=C .125(1)(12)180x x ++=D .2125(1)180x += 9.(3分)我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线长分别为6和8的菱形,它的中点四边形的对角线长是( )A .5B .52C .6D .1010.(3分)如图,四边形ABCD 是一张平行四边形纸片,张老师要求学生利用所学知识作出一个菱形.甲、乙两位同学的作法如下:甲:如图1,连接AC ,作AC 的中垂线交BC 、AD 于点E 、F ,则四边形AECF 是菱形.乙:如图2,分别作A ∠与B ∠的平分线AE 、BF ,分别交BC 于点E ,交AD 于点F ,则四边形ABEF 是菱形.则关于甲、乙两人的作法,下列判断正确的是( )A .仅甲正确B .仅乙正确C .甲、乙均正确D .甲、乙均错误二、填空题(共4小题,每小题3分,计12分)11.(3分)若m ,n 是关于x 的一元二次方程220x x --=的两个实数根,则m n += .12.(3分)一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入3个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.7左右,则袋中红球约有 个.13.(3分)在实数范围内定义一种运算“*”,其规则为22*a b a b =-,根据这个规则,方程(1)*20x +=的解为 .14.(3分)如图,用两张等宽的纸条交叉叠放在一起,重叠部分为四边形ABCD .若两张矩形纸条的长度均为8,宽度均为2,则四边形ABCD 的周长的最大值为 .三、解答题(共9小题,计78分.解答应写出过程)15.(7分)解方程:2120x x --=.16.(7分)已知关于x 的一元二次方程22(21)40x m x m +++-=有实数根,求m 的取值范围.17.(8分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AM BE ⊥,垂足为M ,AM 与BD 相交于点F .求证:OE OF =.18.(8分)小云的书包里只放了4A 纸大小的试卷共4张,其中语文1张、数学2张、英语1张.(1)若随机地从书包中抽出1张,则抽出的试卷是数学试卷的概率为 .(2)若随机地从书包中抽出2张,用画树状图的方法,求抽出的试卷中有数学试卷的概率.19.(8分)如图,在ABC ∆中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,同时点Q 从点B 开始沿BC 这向点C 以2/cm s 的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x 秒(0)x >(1)求几秒后,PQ 的长度等于5cm ;(2)运动过程中,PQB ∆的面积能否等于8cm ?说明理由.20.(8分)如图,菱形ABCD对角线交于点O,//AE BD,EO与AB交于点F.BE AC,//(1)试判断四边形AEBO的形状,并说明你的理由;(2)若5CD=,求OE的长.21.(10分)甲、乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲、乙两人抽得的两个数字之积,若积为奇数则甲胜,若积为偶数则乙胜.(1)用列表的方法,列出甲、乙两人抽得的数字所有可能出现的情况.(2)请判断该游戏对甲、乙双方是否公平?并说明理由.22.(10分)“十一黄金周”期间,晋华旅行社推出了“三晋文化游”项目的团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元,(但每人收费不低于700元),设有x人参加这一旅游项目的团购活动.(1)当35x=时,每人的费用为元;(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区共有多少人参加此次“三晋文化游”?23.(12分)【定义学习】定义:如果四边形有一组对角为直角,那么我们称这样的四边形为“对直四边形”【判断尝试】在①梯形;②矩形;③菱形中,是“对直四边形”的是.(填序号)【操作探究】在菱形ABCD 中,2AB =,60B ∠=︒,AE BC ⊥于点E ,请在边AD 和CD 上各找一点F ,使得以点A 、E 、C 、F 组成的四边形为“对直四边形”,画出示意图,并直接写出EF 的长.【实践应用】 某加工厂有一批四边形板材,形状如图所示,若3AB =米,1AD =米,45C ∠=︒,90A B ∠=∠=︒.现根据客户要求,需将每张四边形板材进一步分割成两个等腰三角形板材和一个“对直四边形”板材,且这两个等腰三角形的腰长相等,要求材料充分利用无剩余求分割后得到的等腰三角形的腰长.2019-2020学年陕西省西安市莲湖区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)下列方程中,是关于x 的一元二次方程的是( )A .20ax bx c ++=B .21120x x ++=C .231y x +=D .23(1)2(1)x x +=+【分析】根据一元二次方程的定义解答.【解答】解:A 、0a =,0b ≠时,是一元一次方程,故A 错误; B 、是分式方程,故B 错误;C 、是二元二次方程,故C 错误;D 、是一元二次方程,故D 正确;故选:D .【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(3分)如图,矩形ABCD 的对角线交于点O .若55BAO ∠=︒,则AOD ∠等于( )A .110︒B .115︒C .120︒D .125︒【分析】根据矩形的性质可得55BAO ABO ∠=∠=︒,再依据三角形外角性质可知5555110AOD BAO ABO ∠=∠+∠=︒+︒=︒.【解答】解:四边形ABCD 是矩形,OA OB ∴=.55BAO ABO ∴∠=∠=︒.5555110AOD BAO ABO ∴∠=∠+∠=︒+︒=︒.故选:A .【点评】本题主要考查了矩形的性质,矩形中对角线互相平分且分成的四条线段都相等.3.(3分)已知关于x 的一元二次方程240x x k -+=有一个根是5,则该方程的另一个根是( )A .1-B .0C .1D .5-【分析】设方程的另一根为2x ,根据根与系数的关系12b x x a+=-列式计算即可得出答案. 【解答】解:设方程的另一根为2x ,则254x +=,解得:21x =-;故选:A .【点评】本题考查了根与系数的关系,要知道,一元二次方程20(0)ax bx c a ++=≠的根与系数的关系为:12b x x a +=-,12c x x a=. 4.(3分)正方形具有而矩形不具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相垂直【分析】根据正方形的性质、矩形的性质即可判断.【解答】解:正方形和矩形都具有的性质是对边相等,对角相等,对角线相等,对角线互相垂直是正方形具有矩形不具有的性质,故选:D .【点评】本题考查正方形的性质、矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(3分)一元二次方程2810x x --=配方后可变形为( )A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=【分析】常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:281x x -=,2816116x x ∴-+=+,即(4)217x -=,故选:C .【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.6.(3分)定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是()A.14B.310C.12D.34【分析】首先根据题意画出树状图,由树状图即可求得所有等可能的结果与与2组成“V数”的情况,利用概率公式即可求得答案.【解答】解:画树状图得:可以组成的数有:321,421,521,123,423,523,124,324,524,125,325,425,其中是“V数”的有:423,523,324,524,325,425,∴从1,3,4,5中任选两数,能与2组成“V数”的概率是:61 122=.故选:C.【点评】此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.7.(3分)若关于x的一元二次方程240ax bx-+=的解是2x=,则20192a b+-的值是( )A.2015B.2017C.2019D.2021【分析】把2x=代入已知方程求得2a b-的值,然后将其整体代入所求的代数式并求值即可.【解答】解:关于x的一元二次方程240ax bx-+=的解是2x=,4240a b∴-+=,则22a b-=-,201922019(2)2019(2)2017a b a b∴+-=+-=+-=.故选:B.【点评】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.8.(3分)随着人们环保意识的不断增强,延安市家庭电动自行车的拥有量逐年增加.据统计,某小区2016年底拥有家庭电动自行车125辆,2018年底家庭电动自行车的拥有量达到180辆.若该小区2016年底到2018年底家庭电动自行车拥有量的平均增长率相同且均为x ,则可列方程为( )A .2125(1%)180x +=B .2(125%)180x +=C .125(1)(12)180x x ++=D .2125(1)180x += 【分析】设该小区2016年底到2018年底家庭电动自行车拥有量的平均增长率相同且均为x ,则增长2次以后的车辆数是2125(1)x +.【解答】解:由题意,得2125(1)180x +=.故选:D .【点评】本题考查了由实际问题抽象出一元二次方程.增长率问题:若原数是a ,每次增长的百分率为x ,则第一次增长后为(1)a x +;第二次增长后为2(1)a x +,即 原数(1⨯+增长百分率)2=后来数.9.(3分)我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.现有一个对角线长分别为6和8的菱形,它的中点四边形的对角线长是( )A .5B .52C .6D .10【分析】顺次连接这个菱形各边中点所得的四边形是矩形,且矩形的边长分别是菱形对角线的一半,问题得解.【解答】解:顺次连接对角线互相垂直的四边形的各边中点所得的图形是矩形, 理由如下: E 、F 、G 、H 分别为各边中点,////EF GH AC ∴,12EH FG DB ==, 12EF HG AC ==,////EH FG BD DB AC ⊥,EF EH ∴⊥,∴四边形EFGH 是矩形,132EH BD ==,142EF AC ==,5HF ∴==.故选:A .【点评】本题考查菱形的性质,菱形的四边相等,对角线互相垂直,连接菱形各边的中点得到矩形,且矩形的边长是菱形对角线的一半以及勾股定理的运用.10.(3分)如图,四边形ABCD 是一张平行四边形纸片,张老师要求学生利用所学知识作出一个菱形.甲、乙两位同学的作法如下:甲:如图1,连接AC ,作AC 的中垂线交BC 、AD 于点E 、F ,则四边形AECF 是菱形.乙:如图2,分别作A ∠与B ∠的平分线AE 、BF ,分别交BC 于点E ,交AD 于点F ,则四边形ABEF 是菱形.则关于甲、乙两人的作法,下列判断正确的是( )A .仅甲正确B .仅乙正确C .甲、乙均正确D .甲、乙均错误【分析】首先证明()AOM CON ASA ∆≅∆,可得MO NO =,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM 是平行四边形,再由AC MN ⊥,可根据对角线互相垂直的四边形是菱形判定出ANCM 是菱形;四边形ABCD 是平行四边形,可根据角平分线的定义和平行线的定义,求得AB AF =,所以四边形ABEF 是菱形.【解答】解:甲的作法正确;四边形ABCD 是平行四边形,//AD BC ∴,DAC ACN ∴∠=∠, MN 是AC 的垂直平分线,AO CO ∴=,在AOM ∆和CON ∆中,MAO NCO AO COAOM CON ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM CON ASA ∴∆≅∆,MO NO ∴=,∴四边形ANCM 是平行四边形,AC MN ⊥,∴四边形ANCM 是菱形;乙的作法正确;//AD BC ,12∴∠=∠,67∠=∠, BF 平分ABC ∠,AE 平分BAD ∠,23∴∠=∠,56∠=∠,13∴∠=∠,57∠=∠,AB AF ∴=,AB BE =,AF BE ∴=//AF BE ,且AF BE =,∴四边形ABEF 是平行四边形,AB AF =,∴平行四边形ABEF 是菱形;故选:C .【点评】本题考查的是作图-复杂作图,熟知平行四边形的性质及菱形的判定定理是解答此题的关键.二、填空题(共4小题,每小题3分,计12分)11.(3分)若m ,n 是关于x 的一元二次方程220x x --=的两个实数根,则m n += 1 .【分析】根据方程的系数结合两根之和等于b a-,即可求出结论. 【解答】解:m ,n 是关于x 的一元二次方程220x x --=的两个实数根,1b m n a∴+=-=. 故答案为:1.【点评】本题考查了根与系数的关系,牢记两根之和等于b a-是解题的关键. 12.(3分)一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入3个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.7左右,则袋中红球约有 7 个.【分析】根据口袋中有3个白球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【解答】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.7左右,口袋中有3个白球,假设有x 个红球, ∴0.73x x =+, 解得:7x =,∴口袋中有红球约有7个.故答案为:7.【点评】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.13.(3分)在实数范围内定义一种运算“*”,其规则为22*a b a b =-,根据这个规则,方程(1)*20x +=的解为 3-或1 .【分析】根据规定运算,将方程(1)*20x +=转化为一元二次方程求解.【解答】解:根据规定运算,方程(1)*20x +=可化为22(1)20x +-=,移项,得2(1)4x +=,两边开平方,得12x +=±,解得11x =,23x =-,故答案为:3-或1.【点评】本题考查了直接开方法解一元二次方程.用直接开方法求一元二次方程的解的类型有:2(0)x a a =…;2(ax b a =,b 同号且0)a ≠;2()(0)x a b b +=…;2()(a x b c a +=,c 同号且0)a ≠.法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.14.(3分)如图,用两张等宽的纸条交叉叠放在一起,重叠部分为四边形ABCD .若两张矩形纸条的长度均为8,宽度均为2,则四边形ABCD 的周长的最大值为 17 .【分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形;设菱形的边长为x ,根据勾股定理求出周长即可.【解答】解:由题意得://AB CD ,//AD BC ,∴四边形ABCD 是平行四边形,用两张等宽的纸条交叉叠放在一起,重叠部分为四边形ABCD ,ABCD S BC =⨯宽CD =⨯宽,BC CD ∴=,∴四边形ABCD 是菱形.当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm ,在Rt MBC ∆中,由勾股定理:222(8)2x x =-+, 解得:174x =, 417x ∴=,即菱形的最大周长为17cm .【点评】本题利用了菱形的判定和平行四边形的面积公式,勾股定理等知识;熟练掌握菱形的判定和勾股定理是解题的关键.三、解答题(共9小题,计78分.解答应写出过程)15.(7分)解方程:2120x x --=.【分析】方程左边利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:分解因式得:(3)(4)0x x +-=,可得30x +=或40x -=,解得:13x =-,24x =.【点评】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.16.(7分)已知关于x 的一元二次方程22(21)40x m x m +++-=有实数根,求m 的取值范围.【分析】根据方程的系数结合根的判别式△0…,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【解答】解:关于x 的一元二次方程22(21)40x m x m +++-=有实数根,∴△22(21)41(4)0m m =+-⨯⨯-…, 解得:174m -…. 【点评】本题考查了根的判别式,牢记“当△0…时,方程有实数根”是解题的关键. 17.(8分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AM BE ⊥,垂足为M ,AM 与BD 相交于点F .求证:OE OF =.【分析】根据正方形的性质对角线垂直且平分,得到OB OA =,根据AM BE ⊥,即可得出90MEA MAE AFO MAE ∠+∠=︒=∠+∠,从而证出Rt BOE Rt AOF ∆≅∆,得到OE OF =.【解答】证明:四边形ABCD 是正方形.90BOE AOF ∴∠=∠=︒,OB OA =.又AM BE ⊥,90MEA MAE AFO MAE ∴∠+∠=︒=∠+∠,MEA AFO ∴∠=∠.()BOE AOF AAS ∴∆≅∆.OE OF ∴=.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.18.(8分)小云的书包里只放了4A 纸大小的试卷共4张,其中语文1张、数学2张、英语1张.(1)若随机地从书包中抽出1张,则抽出的试卷是数学试卷的概率为 12 . (2)若随机地从书包中抽出2张,用画树状图的方法,求抽出的试卷中有数学试卷的概率.【分析】(1)由概率公式即可得出答案;(2)先画出树状图展示所有12种等可能的结果数,再找出抽出的试卷中有数学试卷的结果数,然后根据概率公式求解.【解答】解:(1)若随机地从书包中抽出1张,则抽出的试卷是数学试卷的概率为2142=; 故答案为:12. (2)画树状图如下:共有12种等可能的结果,其中抽出的试卷中有数学试卷的结果数为10, 所以抽出的试卷中有数学试卷的概率为105126=.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.19.(8分)如图,在ABC ∆中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,同时点Q 从点B 开始沿BC 这向点C 以2/cm s 的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x 秒(0)x >(1)求几秒后,PQ 的长度等于5cm ;(2)运动过程中,PQB ∆的面积能否等于8cm ?说明理由.【分析】(1)根据5PQ =,利用勾股定理222BP BQ PQ +=,求出即可;(2)通过判定得到的方程的根的判别式即可判定能否达到28cm .【解答】解:(1)当5PQ =时,在Rt PBQ ∆中,222BP BQ PQ +=,222(5)(2)5t t ∴-+=,25100t t -=,(510)0t t -=,10t =,22t =,∴当0t =或2时,PQ 的长度等于5cm .(2)设经过x 秒以后PBQ ∆面积为8,1(5)282x x ⨯-⨯= 整理得:2580x x -+=△253270=-=-<∴∆的面积不能等于2PQB8cm.【点评】此题主要考查了一元二次方程的应用,解题的关键是找到等量关系,列出方程并解答.20.(8分)如图,菱形ABCD对角线交于点O,//AE BD,EO与AB交于点F.BE AC,//(1)试判断四边形AEBO的形状,并说明你的理由;(2)若5CD=,求OE的长.【分析】(1)由菱形的性质可证明90∠=︒,然后再证明四边形AEBO为平行四边形,BOA从而可证明四边形AEBO是矩形;(2)依据矩形的性质可得到EO BA=,然后依据菱形的性质可得到AB CD=.【解答】解:(1)四边形AEBO是矩形.证明://AE BDBE AC,//∴四边形AEBO是平行四边形.又菱形ABCD对角线交于点O∠=︒.AOB∴⊥,即90AC BD∴四边形AEBO是矩形.(2)四边形AEBO是矩形∴=,EO AB在菱形ABCD中,AB DC=.EO DC∴==.5【点评】本题主要考查的是菱形的性质判定、矩形的性质和判定,熟练掌握相关图形的性质是解题的关键.21.(10分)甲、乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲、乙两人抽得的两个数字之积,若积为奇数则甲胜,若积为偶数则乙胜.(1)用列表的方法,列出甲、乙两人抽得的数字所有可能出现的情况.(2)请判断该游戏对甲、乙双方是否公平?并说明理由.【分析】(1)根据题意列出图表得出所有等可能的情况数即可;(2)分别求出甲乙两人获胜的概率,比较即可得到结果.【解答】解:(1)列表如下.所有等可能的情况有9种,分别为(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),(6分)(2)该游戏对甲、乙双方不公平,理由:积为奇数的情况有4种,积为偶数的情况有5种,∴(甲)PP<(乙),则该游戏对甲、乙双方不公平.【点评】此题考查了游戏的公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.(10分)“十一黄金周”期间,晋华旅行社推出了“三晋文化游”项目的团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元,(但每人收费不低于700元),设有x人参加这一旅游项目的团购活动.(1)当35x=时,每人的费用为800元;(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区共有多少人参加此次“三晋文化游”?【分析】(1)当35x=时,根据“若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元,(但每人收费不低于700元)”可得每人的费用为1000(3525)20800--⨯=元;(2)该社区共支付旅游费用27000元,显然人数超过了25人,设该社区共有x 人参加此次“三晋文化游”,则人均费用为[100020(25)]x --元,根据旅游费=人均费用⨯人数,列一元二次方程求x 的值,结果要满足上述不等式.【解答】解:(1)当35x =时,每人的费用为1000(3525)20800--⨯=元.故答案为800;(2)设该社区共有x 人参加此次“三晋文化游”,27000100025>⨯,25x ∴>.由题意,得:[100020(25)]27000x x --=,解得130x =,245x =,检验:当30x =时,人均旅游费用为100020(3025)900700-⨯-=>,当45x =时,人均旅游费用为100020(4525)600700-⨯-=<,不合题意,舍去, 30x ∴=.答:该社区共有30人参加此次“三晋文化游”.【点评】本题考查了一元二次方程的应用.关键是设旅游人数,表示人均费用,根据旅游费=人均费用⨯人数,列一元二次方程.23.(12分)【定义学习】定义:如果四边形有一组对角为直角,那么我们称这样的四边形为“对直四边形”【判断尝试】在①梯形;②矩形;③菱形中,是“对直四边形”的是 ② .(填序号)【操作探究】在菱形ABCD 中,2AB =,60B ∠=︒,AE BC ⊥于点E ,请在边AD 和CD 上各找一点F ,使得以点A 、E 、C 、F 组成的四边形为“对直四边形”,画出示意图,并直接写出EF 的长.【实践应用】 某加工厂有一批四边形板材,形状如图所示,若3AB =米,1AD =米,45C ∠=︒,90A B ∠=∠=︒.现根据客户要求,需将每张四边形板材进一步分割成两个等腰三角形板材和一个“对直四边形”板材,且这两个等腰三角形的腰长相等,要求材料充分利用无剩余求分割后得到的等腰三角形的腰长.【分析】【判断尝试】直接根据“对直四边形”定义可得:矩形是“对直四边形”;【操作探究】①F 在边AD 上时,如图1,作CF AD ⊥,得矩形AECF ,根据勾股定理可得EF 的长; ②F 在边CD 上时,如图2,作AF CD ⊥,证明AEF ∆是等边三角形,可得EF 的长;【实践应用】存在两种情况:①如图3,矩形ABED ,F 是DC 的中点,②如图4,90A BFD ∠=∠=︒,E 是BC 的中点,根据直角三角形斜边中线等于斜边一半可得结论.【解答】解:【判断尝试】在①梯形;②矩形;③菱形中,是“对直四边形”的是②;故答案为:②【操作探究】①F 在边AD 上时,如图1,90AEC AFC ∠=∠=︒,Rt ABE ∆中,60B ∠=︒,30BAE ∴∠=︒,2AB BC ==,1BE ∴=,211CE ∴=-=,//AD BC ,AE BC ⊥,CF AD ⊥,AE CF ∴=2EF ∴=;②F 在边CD 上时,如图2,AF CD ⊥,四边形ABCD 是菱形,AB AD ∴=,60B D ∠=∠=︒,90AEB AFD ∠=∠=︒,()ABE ADF AAS ∴∆≅∆,AE AF ∴=,30BAE DAF ∠=∠=︒,120303060EAF ∴∠=︒-︒-︒=︒,AEF ∴∆是等边三角形,EF AE ∴==故答案为:2【实践应用】①如图3,矩形ABED ,F 是DC 的中点,Rt DEC ∆中,45C ∠=︒,DEC ∴∆是等腰直角三角形,且3DE EC ==,DC ∴=DF CF EF ∴=== ②如图4,90A BFD ∠=∠=︒,E 是BC 的中点,同理得BFC ∆是等腰直角三角形,4BC =,2EF BE CE ∴===,即此时分割后得到的等腰三角形的腰长为2米.【点评】此题是四边形综合题,主要考查了新定义“对直四边形”的理解、掌握和运用,同时还考查了等腰直角三角形的性质和判定、勾股定理、直角三角形斜边中线的性质,解本题的关键是作出图形,还考查了分类讨论的数学思想.。
2020-2021西安市初三数学下期中试卷附答案
2020-2021西安市初三数学下期中试卷附答案一、选择题1.已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .2.P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC,如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P 为AC 的中点时,过点P 的△ABC 的“相似线”最多有几条?( )A .1条B .2条C .3条D .4条 3.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .14.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似5.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.6.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:47.观察下列每组图形,相似图形是()A.B.C.D.8.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=9.在同一直角坐标系中,函数kyx=和y=kx﹣3的图象大致是()A.B.C.D .10.已知2x =3y ,则下列比例式成立的是( )A .B .C .D .11.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:912.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-二、填空题13.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.14.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y =﹣4x图象上的两个点,则y 1与y 2的大小关系为__________. 15.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.16.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.17.如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .18.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .19.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).20.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.三、解答题21.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在它的北偏东60°方向上,在A 的正东200米的B 处,测得海中灯塔P 在它的北偏东30°方向上.问:灯塔P 到环海路的距离PC 约等于多少米?(取1.732,结果精确到1米)22.如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF是⊙O的切线;(2)若,且,求⊙O的半径与线段的长.23.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.24.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.25.如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.2.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C .3.D解析:D【解析】 因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 4.B解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、斜边与一条直角边对应成比例的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意; 故选B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.5.B解析:B【解析】当k >0时,直线从左往右上升,双曲线分别在第一、三象限,故A 、C 选项错误; ∵一次函数y=kx-1与y 轴交于负半轴,∴D 选项错误,B 选项正确,故选B .6.A解析:A【解析】试题解析:∵ED ∥BC ,.DOE COB AED ACB ∴V V V V ∽,∽:4:9DOE BOC DOE COB S S V V Q V V ∽,,=:2:3.ED BC ∴=AED ACB QV V ∽,::.ED BC AE AC ∴=:2:3,?::ED BC ED BC AE AC Q ,==:2:3AE AC ∴=,:2:1.AE EC ∴=故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.7.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A 、两图形形状不同,故不是相似图形;B 、两图形形状不同,故不是相似图形;C 、两图形形状不同,故不是相似图形;D 、两图形形状相同,故是相似图形;故选:D .【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.8.D解析:D【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立; C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D 选项,因为相似三角形的周长比等于相似比,所以D 选项一定成立.故选D.9.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.10.C解析:C【解析】【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.故选C.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.11.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B .【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.12.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得42AP == .故选A. 二、填空题13.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个. 点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.14.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y 随x 的增大而增大∵A(-4y1)B (-1y2)解析:y 1<y 2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0, ∴在每个象限内,y 随x 的增大而增大, ∵A (-4,y 1),B (-1,y 2)是反比例函数y=-4x 图象上的两个点,-4<-1, ∴y 1<y 2,故答案为:y 1<y 2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.15.或2【解析】【分析】由折叠性质可知BF=BF△BFC 与△ABC 相似有两种情况分别对两种情况进行讨论设出BF=BF=x 列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF 设BF=BF=x 故 解析:127或2 【解析】 【分析】 由折叠性质可知B’F=BF ,△B’FC 与△ABC 相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x ,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF ,设B’F=BF=x ,故CF=4-x当△B’FC ∽△ABC ,有'B F CF AB BC =,得到方程434x x -=,解得x=127,故BF=127; 当△FB’C ∽△ABC ,有'B F FC AB AC =,得到方程433x x -=,解得x=2,故BF=2; 综上BF 的长度可以为127或2. 【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 16.【解析】试题解析:连接CE 如图:∵△ABC 和△ADE 为等腰直角三角形∴AC=ABAE=AD ∠BAC=45°∠DAE=45°即∠1+∠2=45°∠2+∠3=45°∴∠1=∠3∵∴△ACE ∽△ABD ∴∠解析:42【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD== ∴△ACE ∽△ABD , ∴∠ACE=∠ABC=90°,∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,,当点D 运动到点C 时,,∴点E 移动的路线长为cm .17.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF ∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF ∴△ACF ∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.18.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y 轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====g 三角形 ,∴2k=,∵0k <,∴2k =-,故答案为:-2.【点睛】本题考查了反比例函数系数k 的几何意义,明确1•=12ABC S AB OB =V 是解题的关键. 19.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA 然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式解析:4()5n 【解析】【分析】根据正方形的对边平行证明△BDF ∽△BCA ,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n 个正方形的边长.【详解】 解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x 解得x 2=x 12同理可得,113231,-=-x x x x x解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭n n x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系. 20.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b=4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.三、解答题21.173米【解析】【分析】由外角的性质可以得到∠PAC=∠APB ,从而有PB=AB=200,在Rt △PBC 中,由三角函数定义可以求出PC 的长.【详解】解:由题意,可得∠PAC=30°,∠PBC=60°.∴∠APB=∠PBC=∠PBC -∠PAC=30°.∴∠PAC=∠APB .∴PB=AB=200.在Rt △PBC 中,∠PCB=90°,∠PBC=60°,PB=200,∴PC=PBsin ∠PBC=400346.4==≈173(米). 答:灯塔P 到环海路的距离PC 约等于173米.考点:解直角三角形的应用-方向角问题.22.(1)证明参见解析;(2)半径长为154,AE =6. 【解析】【分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长.【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.23.(1)见解析 (2) △ABD ∽△ACE【解析】分析:(1)由∠BAD=∠CAE 易得∠BAC=∠DAE ,这样结合∠ABC=∠ADE ,即可得到△ABC ∽△ADE .(2)由(1)中结论易得AB AC AD AE =,从而可得: AB AD AC AE=,这样结合∠BAD=∠CAE 即可得到△ABD ∽△ACE 了.详解;(1)∵∠BAD=∠CAE ,∴∠BAC=∠DAE ,∵∠ABC=∠ADE ,∴△ABC∽△ADE.(2)△ABD∽△ACE,理由如下:由(1)可知△ABC∽△ADE,∴AB AC AD AE=,∴AB AD AC AE=,又∵∠BAD=∠CAE,∴△ABD∽△ACE.点睛:这是一道考查“相似三角形的判定与性质的题目”,熟悉“相似三角形的判定定理和性质”是解答本题的关键.24.(1)证明见解析;(2).【解析】【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到 CE=AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【详解】(1)证明:∵AC 平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点 E 为 AB 的中点,∴CE=AE= AB= ,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点睛】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.(1) FD=5; (2)证明见解析.【解析】【分析】(1)利用三角形中位线的性质得出DE∥AB,进而得出∠DEC =∠B,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠A=∠CED=∠CDE,即可得出∠CDE=∠F,即可得出△CDE∽△DFE.【详解】解:(1)∵D、E分别是AC、BC的中点,∴DE//AB,DE=12AB=5又∵DE//AB,∴∠DEC= ∠B.而∠F= ∠B,∴∠DEC =∠B,∴FD=DE=5;(2)∵AC=BC,∴∠A=∠B.又∠CDE=∠A,∠CED= ∠B,∴∠CDE=∠B.而∠B=∠F,∴∠CDE=∠F,∠CED=∠DEF,∴△CDE∽△DFE.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.。
2020年陕西省西安市莲湖区中考数学第二次统考试卷(含答案解析)
2020年陕西省西安市莲湖区中考数学第二次统考试卷一、选择题(本大题共10小题,共30.0分)1.−(−3)2的值为()A. 6B. −6C. −9D. 92.如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.3.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3cm,则点D到AB的距离DE是()A. 5cmB. 4cmC. 3cmD. 2cm4.直线y=2x向下平移2个单位长度得到的直线是()A. y=2(x+2)B. y=2(x−2)C. y=2x−2D. y=2x+25.下列计算正确的是()A. 2x2⋅2xy=4x3y4B. 3x2y−5xy2=−2x2yC. x−1÷x−2=x−1D. (−3a−2)(−3a+2)=9a2−46.如图,AB//CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为()A. 20°B. 30°C. 40°D. 60°7.若一个正比例函数的图象经过A(3,−6),B(m,−4)两点,则m的值为()A. 2B. 8C. −2D. −88.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是()A. 1.6B. 2.5C. 3D. 3.49.如图,在半径为√13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A. 2√6B. 2√10C. 2√11D. 4√310.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点.现有以下四个结论:①该抛物线的对称轴一定在y轴的左侧;②a−b+c≥0;③关于x的方程ax2+bx+c=2一定无实的最小值是3,其中正确结论的个数是()数根;④a+b+cb−aA. 1B. 2C. 3D. 4二、填空题(本大题共4小题,共12.0分)11.比较大小√10______3√2(填“>”、“<”或“=”);12.如图,在正五边形ABCDE中,以BC为一边,在形内作等边△BCF,连结AF.则∠AFB的大小是______度.13. 如图,四边形ABCD 为菱形,点A 在y 轴正半轴上,AB//x 轴,点B ,C 在反比例函数y =3x 上,点D 在反比例函数y =−12x 上,那么点D 的坐标为________。
陕西省西安市莲湖区2023-2024学年九年级上学期期中数学试题
陕西省西安市莲湖区2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题B.(7.2x-A.35B.二、填空题9.若m是一元二次方程x10.国庆假期,智慧(6)班的一项创造性设计作业有主学习”三个主题,若智慧(小诗和小语恰好选择同一个主题的概率是11.如图,在正方形ABCD2,6DG CH==,则正方形12.若关于x的一元二次方程等的实数根,则m的值为13.如图,四边形ABCD是正方形,三、解答题14.解方程:220x x -=.15.解方程:22530x x +-=.16.如图,在ABC 中,DE BC ∥,且4=AD ,6DB =,5EC =,求AE 的长.17.如图,ABC 为锐角三角形,请用尺规作图,在AC 上求作一点P ,使得BP 最短.18.如图,在ABC 中,BE 平分ABC ∠,DE BC ∥2EFC ABE ∠=∠.求证:四边形DBFE 是菱形.19.已知关于x 的一元二次方程()22120x m x -+-=.(1)求证:无论m 为何值,方程总有两个不相等的实数根.(2)若方程的两个实数根12,x x 满足12121x x x x ++=,求m 的值.20.杭州亚运会吉祥物“琮琮”“连莲”和“宸宸”,是一组承载深厚底蕴和充满时代活力的机器人,组合名为“江南忆”,出自唐朝诗人白居易的名句“江南忆,最忆是杭州”.三个吉祥物的设计灵感分别来自杭州的三大世界文化遗产——良渚古城遗址、西湖和京杭大运河.小婷同学购买了一些杭州亚运会吉祥物,她想把其中的两只送给小琪和小雨同学,于是,她把“琮琮”“莲莲”和“宸宸”分别写在三张卡片上,三张卡片除了吉祥物的名字以外,其他全部相同,每张卡片被抽到的可能性相同,且每次抽出以后放回,将卡片洗匀继续抽取.请你用画树状图或列表的方法求出小琪和小雨同学抽到不同吉祥物的概率.21.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点C 作CE OB ∥,且CE OB ,连接DE .求证:四边形OCED 是矩形.22.国庆假期,小西和同学小婷去大唐不夜城玩,漂亮的团扇吸引了她们的注意力,团扇上不止有唯美的图案,更有古诗,她们喜欢的四把团扇上印的古诗分别是李白的《闻王昌龄左迁龙标遥有此寄》、《渡荆门送别》,杜甫的《春望》以及崔颢的《黄鹤楼》.因为都非常美,她们想通过随机抽选的方法来确定买哪个,具体方案如下:她们把四首古诗分别写在四张卡片的正面,记为A ,B ,C ,D (这四张卡片的背面都相同),将这四张卡片背面朝上,洗匀.(1)从中随机抽取一张,抽得的卡片所代表的古诗是《黄鹤楼》的概率是______.(2)若小西从这四张卡片中随机抽取一张,不放回,小婷再从剩余的三张中随机抽取一张,请利用画树状图或列表的方法,求这两张卡片所代表的古诗均为李白所写的概率.23.情满月圆,举国同庆.为了让利顾客,某超市计划将进价是每千克16元的莆蛓在双节期间进行降价销售.经过统计分析发现,当售价为每千克26元时,每天可售出320千克.如果每千克每降价1元.那么每天的销售量将会增加80千克.如果超市每天想要获得销售利润3600元,又要尽可能让顾客得到更多实惠,葡萄的售价应为每千克多少元?。
陕西省西安市莲湖区2020届九年级中考模拟数学答案
!1!Z[6'&$+*
7''&+3'&+*! XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX !W 6'&3+'
7''+&3''&+ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX #W
7''+&3'&+*! XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX (W
)+)3+* :%+&) \%+&* ]('&+)3'&+*
*+&3+&
1 !"#$%&'(1 !)!! *+"*
#$%$"%&'!$()
7%+&)+%+&*:-: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "W
7)&3*&!XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX .W
#(!P!#!$Y1"¨©/+"6+( // +ª«"
7'/+(32$5"7'/+*4'(+*32$5! XXXXXXXXXXXXXXXXX !W
6'('+3'/'*"/(-)*"
2020-2021西安市九年级数学下期中一模试题(附答案)
2020-2021西安市九年级数学下期中一模试题(附答案)一、选择题1.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.67B.3037C.127D.60372.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则反比例函数的表达式为()A.y=12xB.y=24xC.y=32xD.y=40x3.在函数y=21ax(a为常数)的图象上有三个点(﹣1,y1),(﹣14,y2),(12,y3),则函数值y1、y2、y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y24.已知两个相似三角形的面积比为 4:9,则周长的比为 ( )A.2:3B.4:9C.3:2D.2:35.观察下列每组图形,相似图形是()A.B.C.D.6.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A .(4,4)B .(3,3)C .(3,1)D .(4,1)7.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则x y 的值为( )A .51-B .51+C .2D .21+ 8.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变10.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是( )A .B .C .D .11.在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B . C . D .12.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <2二、填空题13.如图,已知AD 为ABC ∆的角平分线,DE AB ∥,如果23AE EC =,那么AE AB=______.14.如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.15.已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y =﹣4x图象上的两个点,则y 1与y 2的大小关系为__________. 16.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;17.如图,直立在点B 处的标杆AB =2.5m ,站立在点F 处的观测者从点E 看到标杆顶A ,树顶C 在同一直线上(点F ,B ,D 也在同一直线上).已知BD =10m,FB =3m,人的高度EF =1.7 m,则树高DC 是________.(精确到0.1 m)18.如图,Rt ABC V 中,90ACB ∠=︒,直线EF BD P ,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S V 四边形,=则CF AD= .19.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.20.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是_____cm.三、解答题21.如图,AD是△ABC的中线,tan B=13,cos C=22,AC=2.求:(1)BC的长;(2)sin ∠ADC的值.22.如图,在△ABC中,∠B=90°,AB=4,BC=2,以AC为边作△ACE,∠ACE=90°,AC=CE,延长BC至点D,使CD=5,连接DE.求证:△ABC∽△CED.23.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.24.如图,一次函数y=kx+2的图象与反比例函数y=mx的图象交于点P,点P在第一象限.P A⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,12 OCOA=.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.25.如图,在△ABC中,DE∥BC,23ADAB=,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC=12AB•BC=12AC•BP,∴BP=·341255 AB BCAC⨯==.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴DE BQ AC BP=.设DE=x,则有:1251255xx-=,解得x=60 37,故选D.2.C解析:C【解析】【分析】过A作AM⊥x轴于M,过B作BN⊥x轴于N,根据菱形性质得出OA=BC=AB=OC,AB ∥OC,OA∥BC,求出∠AOM=∠BCN,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN,求出BN=AM=4,CN=OM=3,ON=8,求出B点的坐标,把B的坐标代入y=kx求出k即可.【详解】过A作AM⊥x轴于M,过B作BN⊥x轴于N,则∠AMO=∠BNC=90°,∵四边形AOCB是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.3.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y 1,y 2,y 3的大小关系即可.【详解】∵反比例函数的比例系数为a 2+1>0,∴图象的两个分支在一、三象限,且在每个象限y 随x 的增大而减小.∵﹣114-<<0,∴点(﹣1,y 1),(14-,y 2)在第三象限,∴y 2<y 1<0. ∵12>0,∴点(12,y 3)在第一象限,∴y 3>0,∴y 2<y 1<y 3. 故选A .【点睛】 本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.4.A解析:A【解析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【详解】∵两个相似三角形的面积之比为4:9,∴两个相似三角形的相似比为2:3,∴这两个相似三角形的周长之比为2:3.故选:A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.5.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.6.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7.B解析:B【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:x y y y x -=∴x y故选B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.8.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.9.D解析:D【解析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得CE=32,CF=32,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以EF=102,而EM=52;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于EC•CF=2x×2y=2xy,其值为定值.【详解】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图像得x=3,y=3,则反比例解析式为y=9x.A、当x=3时,y=3,即BC=CD=3,所以CE=2BC=32,CF=2CD=32,C点与M点重合,则EC=EM,所以A选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以EC=2,EF=102,EM=52,所以B选项错误;C、因为EC•CF=2x•2y=2×xy=18,所以,EC•CF为定值,所以C选项错误;D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选:D.【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.10.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C.11.B解析:B【解析】【分析】根据反比例函数kyx中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=4.故选B.【点睛】主要考查了反比例函数kyx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.12.C 解析:C 【解析】【分析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题13.【解析】【分析】由证得【详解】∵∴△CED∽△CAB∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出解析:3 5【解析】【分析】由DE AB∥证得【详解】∵DE AB∥,∴△CED∽△CAB,∴DE CEAB AC =, ∵23AE EC =, ∴35DE CE AB AC ==, ∵AD 为ABC ∆的角平分线,DE AB ∥, ∴∠ADE=∠BAD=∠DAE,∴AE AB =35DE CE AB AC ==, 故填:35.【点睛】此题考查相似三角形的判定与性质,根据平行线证得三角形相似,由此得到边的比值关系,推导出AEAB的值. 14.【解析】【详解】如图过点P 作PA ⊥x 轴于点A ∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值 解析:513【解析】 【详解】如图,过点P 作PA ⊥x 轴于点A , ∵P(5,12), ∴OA=5,PA=12,由勾股定理得OP=222251213OA PA +=+=, ∴5cos 13OA OP α==, 故填:513.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值.15.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.16.【解析】【分析】作AH⊥BC交CB的延长线于H根据反比例函数解析式求出A的坐标点B的坐标求出AHBH根据勾股定理求出AB根据菱形的面积公式计算即可【详解】作AH⊥BC交CB的延长线于H∵反比例函数y解析:42【解析】【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB =2222+ =22, ∵四边形ABCD 是菱形, ∴BC =AB =22,∴菱形ABCD 的面积=BC×AH =42, 故答案为42. 【点睛】本题考查的是反比例函数的系数k 的几何意义、菱形的性质,根据反比例函数解析式求出A 的坐标、点B 的坐标是解题的关键.17.2m 【解析】【详解】解:过点E 作EM⊥CD 交AB 与点N∴故答案为52m 【点睛】本题是考查相似三角形的判定和性质关键是做出辅助线构造相似三角形利用相似三角形的性质得出结论即可这类题型可以作垂直也可以作解析:2m 【解析】 【详解】解:过点E 作EM ⊥CD,交AB 与点N.∴,EN ANEAN ECM EM CMV V ~∴=30.82.5, 1.7,0.8,10,313AB m EF m AN m BD m FB m CM==∴===∴=Q Q ,()3.47CM m ∴≈ ()1.7 3.47 5.2.CD m ∴=+≈故答案为5.2m . 【点睛】本题是考查相似三角形的判定和性质.关键是做出辅助线,构造相似三角形,利用相似三角形的性质得出结论即可.这类题型可以作垂直也可以作平行线,构造相似三角形.18.【解析】【分析】先证△AEG∽△ABC△AGF∽△ACD 再利用相似三角形的对应边成比例求解【详解】解:∵EF∥BD∴∠AEG=∠ABC∠AGE=∠ACB∴△AEG∽△ABC 且S△AEG=S 四边形EB 解析:12【解析】 【分析】先证△AEG ∽△ABC ,△AGF ∽△ACD 再利用相似三角形的对应边成比例求解. 【详解】解:∵EF∥BD∴∠AEG=∠ABC,∠AGE=∠ACB,∴△AEG∽△ABC,且S△AEG=13S四边形EBCG∴S△AEG:S△ABC=1:4,∴AG:AC=1:2,又EF∥BD∴∠AGF=∠ACD,∠AFG=∠ADC,∴△AGF∽△ACD,且相似比为1:2,∴S△AFG:S△ACD=1:4,∴S△AFG1=3S四边形FDCGS△AFG1=4S△ADC∵AF:AD=GF:CD=AG:AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF:AD=1:2.19.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD=xAD=12-x∵DE∥CF∴∠AD解析:60 17.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=60 17,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.20.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O连接OBOC交AB于D∴OC⊥ABBD=AB由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.三、解答题21.(1)BC=4;(2)sin ∠ADC=2 2.【解析】(1)如图,作AE⊥BC,∴CE=AC•cos C=1,∴AE=CE=1,1 tan3B=,∴BE=3AE=3,∴BC=4;(2)∵AD是△ABC的中线,∴DE=1,∴∠ADC=45°,∴2 sin ADC∠=22.证明见解析【解析】【分析】由已知易证∠BAC=∠ECD,在Rt△ABC中由已知可得2225AB BC+=,结合AB=4,CD=5,可证得AB CEAC CD=,由此即可由“两边对应成比例,且夹角相等的两三角形相似”得到△ABC∽△CED.【详解】∵∠B=90°,AB=4,BC=2,∴ 2225 AC AB BC=+=∵ CE=AC,∴ 5CE=∵ CD=5,∴ AB ACCE CD=.∵∠B=90°,∠ACE=90°,∴∠BAC+∠BCA=90°,∠BCA+∠DCE=90°.∴∠BAC=∠DCE.∴△ABC∽△CED.23.路灯杆AB的高度是6m.【解析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答. 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴,CD DF FE FGAB BF AB BG ==, 又∵CD =EF ,∴DF FGBF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,∴3437DB BD =++, ∴BD =9,BF =9+3=12,∴1.5312AB =, 解得AB =6.答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果. 24.(1)D (0,2); (2)22y x =+;12y x=;(3)2x > 【解析】 【分析】(1)在y=kx+2中,只要x=0得y=2即可得点D 的坐标为(0,2). (2)由AP ∥OD 得Rt △PAC ∽Rt △DOC ,又12OC OA =,可得13OD OC AP AC ==,故AP=6,BD=6-2=4,由S △PBD =4可得BP=2,把P (2,6)分别代入y=kx+2与my x=可得一次函数解析式为y=2x+2反比例函数解析式为12y x=; (3)当x >0时,一次函数的值大于反比例函数的值的x 的取值范围由图象能直接看出x >2.解:(1)在y=kx+2中,令x=0得y=2,∴点D的坐标为(0,2)(2)∵AP∥OD,∴∠CDO=∠CPA,∠COD=∠CAP,∴Rt△PAC∽Rt△DOC,∵12OCOA=,即13OD OCAP AC==,∴13 OD OC AP AC==∴AP=6,又∵BD=6-2=4,∴由142PBDS BP BD=⋅=V,可得BP=2,∴P(2,6)(4分)把P(2,6)分别代入y=kx+2与m yx =可得一次函数解析式为:y=2x+2,反比例函数解析式为:12 yx =(3)由图可得x>2.【点睛】考查反比例函数和一次函数解析式的确定、图形的面积求法、相似三角形等知识及综合应用知识、解决问题的能力.有点难度.25.(1)2(2)8【解析】【分析】(1)首先根据DE∥BC得到△ADE和△ABC相似,求出AC的长度,然后根据CE=AC-AE求出长度;(2)根据△ABC的面积求出△ABM的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN的面积.【详解】解:(1)∵DE∥BC∴△ADE∽△ABC∴23 AE AD AC AB==∵AE=4∴AC=6∴EC=AC-AE=6-4=2(2)∵△ABC的面积为36,点M为BC的中点∴△ABM的面积为:36÷2=18∵△ADN 和△ABM 的相似比为23∴:4:9ADN ABM S S ∆∆= ∴ADN S V =8 考点: 相似三角形的判定与性质。
【精品】2020年陕西省西安市莲湖区九年级上学期数学期中试卷及解析
2017学年陕西省西安市莲湖区九年级(上)期中数学试卷一、选择题(共10小题,小题3分,计30分,每小题只有一个选项是符合题目要求的)1.(3分)下列方程是一元二次方程的是()A.3x2﹣7=5y+1 B.x﹣=x2+xC.2x2﹣7y﹣2=0 D.3x2﹣5x+7=3x2+6x﹣42.(3分)已知=,则的值是()A.B.C.D.3.(3分)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.4.(3分)把2米长的线段进行黄金分割,则分成的较短线段的长为()A.3﹣B.﹣1 C.1+D.2﹣5.(3分)下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相平分且相等的四边形是矩形6.(3分)已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上三点,且x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1<0<y2<y3B.y1>0>y2>y3C.y1<0<y3<y2D.y1>0>y3>y27.(3分)如图,下列条件不能判定△ABC与△ADE相似的是()A.=B.∠B=∠ADE C.=D.∠C=∠AED8.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠19.(3分)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A、B、E在x轴上,若正方形BEFG的边长为6,则点C的坐标为()A.(2,2) B.(3,1) C.(3,2) D.(4,2)10.(3分)如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有()=AB2.①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ADEA.1个 B.2个 C.3个 D.4个二、填空题(共4个小题,每小题3分,共12分,其中第12题为选做题,任选一题作答)11.(3分)若(m﹣1)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图1,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=度.B.如图,l1∥l2∥l3,AM=2,MB=3,CD=4.5,则ND=,CN=.13.(3分)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是.14.(3分)已知双曲线y=与直线y=x相交于A、B两点,第一象限上的点M(m,n)(在A点左侧)是双曲线的动点,过点B作BD∥于y轴于点D,过N(﹣,﹣n)作NC∥x轴交双曲线于点E,交BD于点C.若B是CD的中点,四边形OBCE的面积为4,则直线CM的解析式为.三、解答题(共11小题,计78分,解答时写出过程)15.(6分)解方程:(1)2x2﹣4x﹣3=0(配方法)(2)x(x+2)=2+x.16.(4分)如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.17.(4分)为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均10m2提高到12.1m2,若每年的年增长率相同,求未来两年年平均增长率是多少?18.(4分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.19.(6分)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.(1)如果AB=6,BC=8,DF=21,求DE的长;(2)如果DE:DF=2:5,AD=9,CF=14,求BE的长.20.(8分)已知正比例函数y1=ax(a≠0)与反比例函数y2=(k≠0)的图象在第一象限内交于点A(2,1)(1)求a,k的值;(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答y1>y2时x的取值范围.21.(8分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.22.(8分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.23.(8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和为7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的小立方块,点数和:两枚骰子朝上的点数之和)24.(10分)如图,四边形是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)如图,连接DF、CE,探究线段DF与CE的关系并证明.25.(12分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数y=(k≠0)在第一象限内的图象经过点D,与AB相交于点E,且点B(4,2).(1)求反比例函数y=的关系式;(2)求四边形OAED的面积;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,若GH=,求直线GH的函数关系式.2017学年陕西省西安市莲湖区九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,小题3分,计30分,每小题只有一个选项是符合题目要求的)1.(3分)下列方程是一元二次方程的是()A.3x2﹣7=5y+1 B.x﹣=x2+xC.2x2﹣7y﹣2=0 D.3x2﹣5x+7=3x2+6x﹣4【解答】解:A、是二元二次方程,故A不符合题意;B、是一元二次方程,故B符合题意;C、是二元二次方程,故C不符合题意;D、是一元一次方程,故D不符合题意;故选:B.2.(3分)已知=,则的值是()A.B.C.D.【解答】解:由=,得b=a.==,故选:C.3.(3分)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选:A.4.(3分)把2米长的线段进行黄金分割,则分成的较短线段的长为()A.3﹣B.﹣1 C.1+D.2﹣【解答】解:把2米长的线段进行黄金分割,则分成的较长线段的长为×2=﹣1,则较短线段的长为:2﹣(﹣1)=3﹣,故选:A.5.(3分)下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相平分且相等的四边形是矩形【解答】解:A、对角线平分且互相垂直的四边形是菱形,故错误;B、对角线相等的平行四边形是矩形,故错误;C、对角线互相平分且相等的四边形是矩形,故错误;D、对角线互相平分且相等的四边形是矩形,正确,符合题意,故选:D.6.(3分)已知(x1,y1),(x2,y2),(x3,y3)是反比例函数y=的图象上三点,且x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1<0<y2<y3B.y1>0>y2>y3C.y1<0<y3<y2D.y1>0>y3>y2【解答】解:∵k=﹣4<0,故反比例函数图象的两个分支在第二四象限,且在每个象限内y 随x的增大而增大,又∵(x2,y2),(x3,y3)是双曲线y=上的两点,且0<x2<x3,∴0>y3>y2,又∵x1<0,故(x1,y1)在第二象限,y1>0,∴y1>0>y3>y2.故选:D.7.(3分)如图,下列条件不能判定△ABC与△ADE相似的是()A.=B.∠B=∠ADE C.=D.∠C=∠AED【解答】解:(B)∵∠A=∠A,∠B=∠ADE,∴△ABC∽△ADE,故B可以判断,(C)∵∠A=∠A∴△ABC∽△ADE,故C可以判断,(D)∵∠A=∠A,∠C=∠AED,∴△ABC∽△ADE,故D可以判断,故选:A.8.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,∴△=22﹣4(k﹣1)×(﹣2)>0,解得k>;且k﹣1≠0,即k≠1.故选:C.9.(3分)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A、B、E在x轴上,若正方形BEFG的边长为6,则点C的坐标为()A.(2,2) B.(3,1) C.(3,2) D.(4,2)【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,==,即=,=,解得,OB=3,CD=2,∴点C的坐标为(3,2),故选:C.10.(3分)如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有()=AB2.①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ADEA.1个 B.2个 C.3个 D.4个【解答】解:∵四边形ABCD为菱形,∴AD=AB,且∠A=60°,∴△ABD为等边三角形,又∵E、F分别是AB、AD的中点,∴DE⊥AB,BF⊥AD,∴∠GFA=∠GEA=90°,∴∠BGD=∠FGE=360°﹣∠A﹣∠GFA﹣∠GEA=120°,∴①正确;∵四边形ABCD为菱形,∴AB∥CD,AD∥BC,∴∠CDG=∠CBG=90°,在Rt△CDG和Rt△CBG中,,∴Rt△CDG≌Rt△CBG(HL),∴DG=BG,∠DCG=∠BCG=∠DCB=30°,∴DG=BG=CG,∴DG+BG=CG,∴②正确;在Rt△BDF中,BD为斜边,在Rt△CGB中,CG为斜边,且BD=BC,在Rt△CGB中,显然CG>BC,即CG>BD,∴△BDF和△CGB不可能全等,∴③不正确;∵△ABD为等边三角形,=AB2,∴S△ABD∴S=S△ABD=AB2,△ADE∴④不正确;综上可知正确的只有两个,故选:B.二、填空题(共4个小题,每小题3分,共12分,其中第12题为选做题,任选一题作答)11.(3分)若(m﹣1)x m(m+2)﹣1+2mx﹣1=0是关于x的一元二次方程,则m的值是﹣3.【解答】解:由题意,得m(m+2)﹣1=2且m﹣1≠0,解得m=﹣3,故答案为:﹣3.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图1,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=15度.B.如图,l1∥l2∥l3,AM=2,MB=3,CD=4.5,则ND= 2.7,CN= 1.8.【解答】解:A.连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.B.解:∵l1∥l2∥l3,∴=,即=,∴CN=1.8,∴ND=4.5﹣1.8=2.7.故答案为2.7,1.8.13.(3分)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是4.【解答】解:由主视图可得有2列,根据左视图和俯视图可得每列的方块数如图,则搭成这个几何体的小正方体的个数是2+1+1=4个.故答案为:4.14.(3分)已知双曲线y=与直线y=x相交于A、B两点,第一象限上的点M(m,n)(在A点左侧)是双曲线的动点,过点B作BD∥于y轴于点D,过N(﹣,﹣n)作NC∥x轴交双曲线于点E,交BD于点C.若B是CD的中点,四边形OBCE的面积为4,则直线CM的解析式为y=x+.【解答】解:设B点坐标为(x1,﹣),代入y=x得,﹣=x1,x1=﹣2n;∴B点坐标为(﹣2n,﹣).因为BD∥y轴,所以C点坐标为(﹣2n,﹣n).因为四边形ODCN的面积为2n•n=2n2,三角形ODB,三角形OEN的面积均为,四边形OBCE 的面积为4.则有2n2﹣k=4﹣﹣﹣①;又因为2n•=k,即n2=k﹣﹣﹣②②代入①得,4=2k﹣k,解得k=4;则解析式为y=;又因为n2=4,故n=2或n=﹣2.M在第一象限,n>0;将M(m,2)代入解析式y=,得m=2.故M点坐标为(2,2);C(﹣4,﹣2);设直线CM解析式为y=kx+b,则,解得∴一次函数解析式为:y=x+.故答案为:y=x+.三、解答题(共11小题,计78分,解答时写出过程)15.(6分)解方程:(1)2x2﹣4x﹣3=0(配方法)(2)x(x+2)=2+x.【解答】解:(1)x2﹣2x=,x2﹣2x+1=+1,(x﹣1)2=,x﹣1=±,所以x1=1+,x2=1+;(2)x(x+2)﹣(x+2)=0,(x+2)(x﹣1)=0,、x+2=0或x﹣1=0,所以x1=﹣2,x2=1.16.(4分)如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.【解答】证明:∵矩形ABCD中,AB∥CD,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D=90°.(5分)∴△ABF∽△EAD.(6分)17.(4分)为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均10m2提高到12.1m2,若每年的年增长率相同,求未来两年年平均增长率是多少?【解答】解:设年增长率为x,根据题意列方程得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不符合题意舍去).答:未来两年年平均增长率是10%.18.(4分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:(1)△ABE≌△ADF;(2)∠AEF=∠AFE.【解答】证明:(1)∵ABCD是菱形,∴AB=AD∠B=∠D.又∵BE=DF,∴△ABE≌△ADF.(2)∵△ABE≌△ADF,∴AE=AF,∴∠AEF=∠AFE.19.(6分)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.(1)如果AB=6,BC=8,DF=21,求DE的长;(2)如果DE:DF=2:5,AD=9,CF=14,求BE的长.【解答】解:(1)∵AD∥BE∥CF,∴,∵AB=6,BC=8,DF=21,∴,∴DE=9.(2)过点D作DG∥AC,交BE于点H,交CF于点G,则CG=BH=AD=9,∴GF=14﹣9=5,∵HE∥GF,∴,∵DE:DF=2:5,GF=5,∴,∴HE=2,∴BE=9+2=11.20.(8分)已知正比例函数y1=ax(a≠0)与反比例函数y2=(k≠0)的图象在第一象限内交于点A(2,1)(1)求a,k的值;(2)在直角坐标系中画出这两个函数的大致图象,并根据图象直接回答y1>y2时x的取值范围.【解答】解:(1)将A(2,1)代入正比例函数解析式得:1=2a,即a=,故y1=x;将A(2,1)代入双曲线解析式得:1=,即k=2,故y2=;(2)如图所示:由图象可得:当y1>y2时,﹣2<x<0或x>2.21.(8分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.【解答】解:(1)由题意有△=(2m﹣1)2﹣4m2≥0,解得,∴实数m的取值范围是;(2)由两根关系,得根x1+x2=﹣(2m﹣1),x1•x2=m2,由x12﹣x22=0得(x1+x2)(x1﹣x2)=0,若x1+x2=0,即﹣(2m﹣1)=0,解得,∵>,∴不合题意,舍去,若x1﹣x2=0,即x1=x2∴△=0,由(1)知,故当x12﹣x22=0时,.22.(8分)如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.【解答】解:(1)设条纹的宽度为x米.依题意得2x×5+2x×4﹣4x2=×5×4,解得:x1=(不符合,舍去),x2=.答:配色条纹宽度为米.(2)条纹造价:×5×4×200=850(元)其余部分造价:(1﹣)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)答:地毯的总造价是2425元.23.(8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和为7,求小轩随机掷两枚骰子一次,胜小峰的概率.(骰子:六个面分别刻有1、2、3、4、5、6个小圆点的小立方块,点数和:两枚骰子朝上的点数之和)【解答】解:(1)随机掷骰子一次,所有可能出现的结果如表:∵表中共有36种可能结果,其中点数和为2的结果只有一种.…..(3分)∴P(点数和为2)=.…(5分)(2)由表可以看出,点数和大于7的结果有15种.∴P(小轩胜小峰)==.…(8分)24.(10分)如图,四边形是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)如图,连接DF、CE,探究线段DF与CE的关系并证明.【解答】解:(1)证明:∵DE⊥AG于点E,BF∥DE且交AG于点F,∴BF⊥AG于点F,∴∠AED=∠BFA=90°,∵四边形ABCD是正方形,∴AB=AD且∠BAD=∠ADC=90°,∴∠BAF+∠EAD=90°,∵∠EAD+∠ADE=90°,∴∠BAF=∠ADE,在△AFB和△DEA中,,∴△AFB≌△DEA(AAS),∴BF=AE;(2)DF=CE且DF⊥CE.理由如下:∵∠FAD+∠ADE=90°,∠EDC+∠ADE=∠ADC=90°,∴∠FAD=∠EDC,∵△AFB≌△DEA,∴AF=DE,又∵四边形ABCD是正方形,∴AD=CD,在△FAD和△EDC中,,∴△FAD≌△EDC(SAS),∴DF=CE且∠ADF=∠DCE,∵∠ADF+∠CDF=∠ADC=90°,∴∠DCE+∠CDF=90°,∴DF⊥CE.25.(12分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数y=(k≠0)在第一象限内的图象经过点D,与AB相交于点E,且点B(4,2).(1)求反比例函数y=的关系式;(2)求四边形OAED的面积;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,若GH=,求直线GH的函数关系式.【解答】解:(1)∵B(4,2),点D为对角线OB的中点,∴D(2,1),∵点D在反比例函数y=(k≠0)上,∴k=2×1=2,∴反比例函数的关系式为:y=;(2)∵反比例函数的关系式为y=,四边形OABC是矩形,B(4,2),∴E(4,),∴BE=2﹣=,∵D(2,1),=S△OAB﹣S△BDE=×4×2﹣××2=4﹣=;∴S四边形OAED(3)设点F(a,2),H(b,0),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=,∴G(0,),∵GH=,∴OG2+OH2=GH2,即()2+b2=()2,解得b=或b=﹣(舍去),∴H(,0).设直线GH的解析式为y=kx+c(k≠0),∵G(0,),H(,0).∴,解得,∴直线GH的解析式为y=﹣x+.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。