最新初三数学期中考后易错知识总结二次函数

合集下载

【最新】初三数学期中考试考后易错知识总结二次函数

【最新】初三数学期中考试考后易错知识总结二次函数

初三数学期中考后易错知识总结二次函数1.定义:一般地,如果是常数,,那么叫做的二次函数.2.二次函数的性质(1)抛物线的顶点是坐标原点,对称轴是轴.(2)函数的图像与的符号关系.①时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点3.二次函数的图像是对称轴平行于(包括重合)轴的抛物线.4.二次函数用配方法可化成:的形式,其中.5.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.6.抛物线的五要素:开口方向、对称轴、顶点、与x轴交点、与y轴交点.①决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同;越大,开口越小。

②平行于轴(或重合)的直线记作.特别地,轴记作直线.③求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方法将抛物线的解析式化为的形式,得到顶点为(,),对称轴是.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.④抛物线与x轴有无交点的判定情况⑤抛物线与y轴的交点()★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★9.抛物线中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧. (左同右异)(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.10.几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标11.用待定系数法求二次函数的解析式(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.1。

中考数学易错题系列解决二次函数与一元二次方程中的常见错误

中考数学易错题系列解决二次函数与一元二次方程中的常见错误

中考数学易错题系列解决二次函数与一元二次方程中的常见错误在中考数学考试中,二次函数与一元二次方程是一个重要的知识点,也是学生易犯错误的地方。

为了帮助同学们更好地掌握这部分内容并避免错误,本文将针对二次函数与一元二次方程的常见错误进行解析和解决方案,希望能为同学们在中考数学中的备考提供帮助。

一、二次函数中的常见错误及解决方法1.错误:对二次函数的顶点和轴线的理解不准确。

二次函数的一般形式为f(x)=ax²+bx+c,其中二次项的系数a不为零。

顶点坐标为(-b/2a,f(-b/2a)),轴线方程为x=-b/2a。

很多同学在计算顶点时,容易弄错符号或漏掉除以2a的步骤,导致计算结果出现错误。

解决方法:在计算顶点坐标时,要注意对符号和运算的准确性。

如此题f(x)=2x²+4x+3,则计算顶点坐标的步骤为:x=-4/(2×2)=-1,代入函数得f(-1)=2×(-1)²+4×(-1)+3=1-4+3=0,所以顶点坐标为(-1,0)。

2.错误:对二次函数的图像特征理解不准确,如开口朝上还是朝下、图像与x轴的交点等。

二次函数的开口方向由二次项的系数a的正负确定,开口朝上(a>0)或朝下(a<0);图像与x轴的交点对应于方程f(x)=0的解,即求解一元二次方程的根。

解决方法:首先要理解二次函数图像的开口方向是由二次项的系数决定的。

例如f(x)=3x²-2x+1,由于a=3>0,所以图像开口朝上。

其次,在求解交点时,要将二次函数转化为一元二次方程,并应用求根公式或配方法求解。

典型案例:已知二次函数f(x)=x²-4x+3,求解方程f(x)=0的解。

解:将f(x)=0代入二次函数得x²-4x+3=0,该方程为一元二次方程,可以使用因式分解或求根公式求解。

方法一:因式分解法根据观察,可以将方程对应的二次函数写成(x-3)(x-1)=0的形式,再分别令两个因式为零,即得到方程的解为x=3和x=1。

九年级二次函数知识点总结

九年级二次函数知识点总结

九年级二次函数知识点总结一、二次函数的基本形式二次函数一般写为y=ax^2+bx+c(a≠0),其中a、b、c为常数,x为自变量,y为因变量。

其中a决定了抛物线开口的方向,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

b决定了抛物线的位置,c决定了抛物线与y轴的交点。

二、二次函数的图像1. 抛物线的开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 抛物线的顶点:抛物线的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。

3. 抛物线的对称轴:抛物线的对称轴方程为x=-b/2a。

4. 抛物线的焦点:抛物线没有焦点。

5. 抛物线的焦距:抛物线没有焦距。

三、二次函数的性质1. 零点:二次函数的零点即为其实根,求零点的方法可以通过求解二次方程ax^2+bx+c=0来得到。

2. 正负性:当a>0时,抛物线上方为正区间,下方为负区间;当a<0时,抛物线上方为负区间,下方为正区间。

3. 单调性:当a>0时,函数单调递增;当a<0时,函数单调递减。

4. 极值:当a>0时,抛物线的最小值为f(-b/2a);当a<0时,抛物线的最大值为f(-b/2a)。

四、二次函数的相关应用1. 最值问题:通过求解二次函数的极值来解决相关的最值问题,如求解最大值、最小值等。

2. 零点问题:通过求解二次函数的零点来解决相关的方程问题,如求解方程ax^2+bx+c=0的解。

3. 切线问题:通过求解二次函数的导数来得到其切线的斜率,从而解决相关的切线问题。

4. 抛物线运动问题:通过二次函数的图像特点,解决相关的抛物线运动问题,如抛体的运动轨迹、最大高度、飞行时间等。

五、二次函数的解题方法1. 求解零点:通过求解二次方程ax^2+bx+c=0来得到函数的零点。

2. 求解极值:通过求解函数的导数来得到函数的极值点,并求解其极值。

九年级数学二次函数重点归纳总结(中考复习重要资料)

九年级数学二次函数重点归纳总结(中考复习重要资料)

二次函数知识点总结一、定义与定义表达式一般地,自变量x 和因变量y 之间存在如下关系: y =ax 2+bx +c (a ≠0),则称y 为x 的二次函数。

二、二次函数的三种表达式一般式:y =ax 2+bx +c (a ≠0)顶点式:y =a (x -h ) 2+k (a ≠0),此时抛物线的顶点坐标为P (h ,k )交点式:y =a (x -x 1)(x -x 2)(a ≠0)仅用于函数图像与x 轴有两个交点时,x 1、x 2为交点的横坐标,所以两交点的坐标分别为A (x 1,0)和 B (x 2,0)),对称轴所在的直线为x=2x 21+ 注:在3种形式的互相转化中,有如下关系: h =-a 2b ,k =a 4b -4ac 2 ; x 1, x 2=a24ac -b b -2± ;x 1+x 2=-a 2b 三、二次函数的图像从图像可以看出,二次函数的图像是一条抛物线,属于轴对称图形。

四、抛物线的性质1.抛物线是轴对称图形,对称轴为直线 x = -a2b ,对称轴与抛物线唯一的交点是抛物线的顶点P 。

特别地,当b =0时,抛物线的对称轴是y 轴(即直线x =0)2.抛物线有一个顶点P ,坐标为P (-a 2b ,a 4b -4ac 2)。

当x =-a 2b 时,y 最值=a4b -4ac 2,当a >0时,函数y 有最小值;当a <0时,函数y 有最大值。

当-a 2b =0时,P 在y 轴上(即交点的横坐标为0);当Δ= b 2-4ac =0时,P 在x 轴上(即函数与x 轴只有一个交点)。

3.二次项系数a 决定抛物线的开口方向和大小(即形状)。

当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。

|a |越大,则抛物线的开口越小。

对于两个抛物线,若形状相同,开口方向相同,则a 相等;若形状相同,开口方向相反,则a 互为相反数。

4.二次项系数a 和一次项系数b 共同决定对称轴的位置,四字口诀为“左同右异”,即: 当对称轴在y 轴左边时,a 与b 同号(即ab >0);当对称轴在y 轴右边时,a 与b 异号(即ab <0)。

中考数学复习专项知识总结—二次函数(中考必备)

中考数学复习专项知识总结—二次函数(中考必备)

中考数学复习专项知识总结—二次函数(中考必备)1、定义:一般的,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数。

其中x是自变量,a、b、c分别是函数解析式的二次项系数、一次项系数、常数项。

2、二次函数的图象是一条抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大。

3、二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的联系:(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数值是0,因此x=x0是方程ax2+bx+c=0的一个根;(2)抛物线与x轴的交点和一元二次方程的根的关系1、通过对实际问题的分析,体会二次函数的意义。

2、会用描点法画出二次函数的图象,通过图象了解二次函数的性质。

3、会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题。

4、会利用二次函数的图象求一元二次方程的近似解。

1、二次函数的基本概念。

2、结合已知条件确定二次函数的表达式,利用待定系数法求二次函数的解析式。

3、根据二次函数的图象及性质解决相关问题,如不等式、一元二次方程。

4、二次函数图象的平移。

5、二次函数与实际问题,二次函数与综合问题(与几何、函数、方程等的综合)。

1、下列各点中,在函数y =-x 2图象上的点是( )A 、(-2,4)B 、(2,-4)C 、(-4,2)D 、(4,-2)2、二次函数y =(3m -2)x 2+mx +1的图象开口向上,则m 的取值范围是 。

3、抛物线21(3)52y x =---的开口方向 ,对称轴是 ,顶点坐标是 ,与x 轴的交点个数是 个。

4、二次函数21522y x x =+-的图象的顶点坐标是 。

5、二次函数y =2(x -1)2+5图象的对称轴和顶点P 的坐标分别是( ) A 、直线x =-1,P(-1,5) B 、直线x =-1,P(1,5) C 、直线x =1,P(1,5) D 、直线x =1,P(-1,5) 6、把抛物线y =-4x 2向上平移2个单位,再向左平移3个单位,得到的抛物线是( )A 、y =-4(x +3)2+2B 、y =-4(x +3)2-2C 、y =-4(x -3)2+2D 、y =-4(x -3)2-27、在平面直角坐标系中,将二次函数y =-2(x -1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点变为( )A 、(0,0)B 、(1,-2)C 、(0,-1)D 、(-2,1)8、二次函数y=(x-1)2+2的最小值是()A、2B、1C、-1D、-29、已知二次函数y=3x2+2x+a与x轴没有交点,则a的取值范围是。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是初中数学的重要内容之一,也是中考数学的重点和难点。

它不仅在数学领域有着广泛的应用,在物理、经济等其他学科中也经常出现。

下面我们来详细总结一下二次函数的相关知识点。

一、二次函数的定义一般地,形如\(y = ax^2 + bx + c\)(\(a\)、\(b\)、\(c\)是常数,\(a ≠ 0\))的函数,叫做二次函数。

其中\(x\)是自变量,\(a\)叫做二次项系数,\(b\)叫做一次项系数,\(c\)叫做常数项。

需要注意的是,二次函数的最高次必须是二次,并且二次项系数\(a\)不能为\(0\)。

如果\(a = 0\),那么函数就变成了一次函数。

二、二次函数的图象二次函数的图象是一条抛物线。

抛物线的形状由二次项系数\(a\)决定:1、当\(a > 0\)时,抛物线开口向上;当\(a < 0\)时,抛物线开口向下。

2、\(|a|\)越大,抛物线的开口越窄;\(|a|\)越小,抛物线的开口越宽。

抛物线是轴对称图形,对称轴为直线\(x =\frac{b}{2a}\)。

二次函数的顶点式为\(y = a(x h)^2 + k\),其中\((h, k)\)是抛物线的顶点坐标。

当抛物线的顶点坐标已知时,通常使用顶点式来表示二次函数,这样可以更方便地求出函数的最值等性质。

四、二次函数的一般式与顶点式的转化由一般式\(y = ax^2 + bx + c\)通过配方法可以转化为顶点式:\\begin{align}y&=ax^2 + bx + c\\&=a(x^2 +\frac{b}{a}x) + c\\&=a(x^2 +\frac{b}{a}x +\frac{b^2}{4a^2} \frac{b^2}{4a^2})+ c\\&=a(x +\frac{b}{2a})^2 \frac{b^2}{4a} + c\\&=a(x +\frac{b}{2a})^2 +\frac{4ac b^2}{4a}\end{align}\所以顶点坐标为\((\frac{b}{2a},\frac{4ac b^2}{4a})\)。

初中数学二次函数知识点总结

初中数学二次函数知识点总结

初中数学二次函数知识点总结一、二次函数的定义和性质:二次函数是形如f(x) = ax² + bx + c(a ≠ 0)的函数,其中a、b、c为常数,且a 的值决定了抛物线的开口方向。

1. 二次函数的图像是一条抛物线,可以分为三种情况:a)当a > 0时,抛物线开口向上,函数的最小值为c;b)当a < 0时,抛物线开口向下,函数的最大值为c;c)当a = 0时,函数为线性函数,图像为一条直线。

2. 抛物线的对称轴方程为x = -b/(2a)。

3. 抛物线的顶点坐标为对称轴上的点,可以通过对称轴方程求得。

4. 当抛物线开口向上时,函数的值随着x的增大而增大;当抛物线开口向下时,函数的值随着x的增大而减小。

5. 当二次函数与x轴交点时,即f(x) = 0,可以通过因式分解、配方法或求根公式求得x的值。

二、二次函数的图像及其性质的应用:1. 求解二次不等式:可以通过函数图像的性质进行解题,即判断图像与x轴的交点的情况。

2. 求解实际问题:如抛物线模型、最值问题等,将实际问题转化为二次函数的问题,再通过函数图像的性质求解。

三、二次函数的基本变形:1. y = a(x - h)² + k:顶点坐标为(h, k),对称轴方程为x = h,图像开口方向与a 的正负有关。

2. y = ax² + bx + c + d:在基本函数的基础上进行平移,平移量为(d, d)。

3. y = a(x - h)² + k + d:在基本函数的基础上进行平移和伸缩,平移量为(d, d),伸缩量为a。

4. y = a(x - h)² + k + d:在基本函数的基础上进行平移、伸缩和翻转,平移量为(d, d),伸缩量为a,翻转轴为直线x = h。

四、二次函数的相关概念:1. 零点:即函数与x轴交点的横坐标,可以通过因式分解、配方法或求根公式求得。

2. 最值:当二次函数开口向上时,函数的最小值为c;开口向下时,函数的最大值为c。

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理一、基本概念1. 二次函数的定义:二次函数是形如y=ax²+bx+c(a≠0)的函数。

2.二次函数的系数a与开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

3. 二次函数的零点:二次函数的零点即函数的解,即满足方程y=ax²+bx+c=0的x的值。

4.二次函数的顶点:二次函数的顶点是函数图像的最低点(a>0,开口向上)或最高点(a<0,开口向下)。

二、图像与性质1. 平移变换:对于二次函数y=ax²+bx+c,若将函数向左平移h个单位,记作y=a(x-h)²+bx+c;向上平移k个单位,记作y=a(x-h)²+bx+(c+k)。

2. 对称轴:对于二次函数y=a(x-h)²+bx+c,其对称轴为x=h。

3.最值:当二次函数开口向上时,最小值等于顶点的纵坐标;当二次函数开口向下时,最大值等于顶点的纵坐标。

4.单调性:若a>0,则二次函数是单调递增的;若a<0,则二次函数是单调递减的。

1. 因式分解:二次函数可以通过因式分解的方法求解,对于形如y=x²+bx+c的二次函数,可以通过找到满足(x+p)(x+q)=0的p和q来求解。

2. 二次方程的解与二次函数的零点:对于二次函数y=ax²+bx+c,当y=0时,可以得到ax²+bx+c=0,即二次方程。

所以二次函数的零点就是二次方程的根。

3.二次函数与坐标变换:二次函数可以通过坐标变换的方法进行图像的绘制与分析。

根据函数中的系数和平移变化,我们可以找到相关的坐标点,进而绘制出图像。

四、易错点1.没有注意二次函数系数与开口方向之间的关系,导致图像的绘制错误。

2.对于二次函数的平移变换不够熟练,不能正确确定平移的方向和单位。

3.没有理解二次函数的最值和单调性,导致在题目中的应用出现错误。

中考复习二次函数知识点总结

中考复习二次函数知识点总结

中考复习二次函数知识点总结二次函数是中考数学中的重要知识点之一、下面我将从函数的定义、图像特征、解析式以及一些常见题型进行总结,希望对中考复习有所帮助。

一、函数的定义:函数是数学中最基本的概念之一,它是描述两个集合之间对应关系的规则。

在二次函数中,我们通常用y来表示函数的值,用x表示自变量。

二、图像特征:1.开口方向:二次函数的图像在x轴上开口的方向可以通过二次项的系数(即a的正负性)来判断。

当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

2.对称轴:二次函数的图像总是关于一个垂直于x轴的直线对称。

这条直线称为二次函数的对称轴,它的方程为x=-b/(2a)。

3.顶点坐标:对称轴与二次函数图像的交点称为顶点,它的坐标为:(-b/(2a),f(-b/(2a)))4.单调性:当a>0时,二次函数图像在对称轴左侧递减,在对称轴右侧递增;当a<0时,二次函数图像在对称轴左侧递增,在对称轴右侧递减。

注意:二次函数的图像开口向上时,在对称轴上有一个最小值,反之开口向下时,在对称轴上有一个最大值。

三、解析式:一般情况下,二次函数的解析式可以写成:y=ax^2+bx+c,其中a、b、c为常数,且a≠0。

特殊情况下,二次函数的解析式还有以下两种形式:1.完全平方式:y=a(x-p)^2+q,其中p、q为常数。

此时,二次函数的对称轴的方程为x=p,顶点的坐标为(p,q)。

2.二次项因式可能性:y=a(x-h)(x-k),其中h、k为常数。

此时,二次函数的对称轴的方程为x=(h+k)/2,顶点的坐标为((h+k)/2,a(h+k)/4)。

四、常见题型:1.求顶点坐标:根据二次函数的解析式,可以直接读出顶点的坐标。

2.求对称轴方程:根据二次函数的解析式,可以直接读出对称轴的方程。

3.求图像开口方向:判断二次项的系数a的正负性即可。

4.求单调性:根据图像特征可以判断。

5. 求零点:令y=0,解方程ax^2+bx+c=0即可。

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理《二次函数》是中考数学中的重要知识点之一,也是考试中容易出错的部分。

为了帮助同学们复习和避免常见错误,下面将对《二次函数》的知识点进行梳理,详细介绍其中的易错点。

《二次函数》是形如y = ax² + bx + c的函数,其中a、b和c是常数,并且a ≠。

它的图像是一个开口向上或向下的抛物线。

下面我们来逐个讲解常见易错点。

1.函数的定义域和值域:在解析式中,x可以取任意实数值,所以函数的定义域是全体实数集R。

而在图像上,如果a>,则函数的值域是[,+∞);如果a<,则函数的值域是(-∞,]。

错误经常出在对值域的判断上,容易忽略函数的开口方向。

2.抛物线的开口和对称轴:当a>时,抛物线开口向上,对称轴是x=-b/2a;当a<时,抛物线开口向下,对称轴是x=-b/2a。

易错点在于判断抛物线的开口方向和对称轴的判断。

3.抛物线的顶点和轴对称性:顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax² + bx + c。

抛物线与对称轴关于顶点具有轴对称性,即对称轴上的点到顶点的距离与对称轴上的点到抛物线的距离相等。

4.求解方程和不等式:与二次函数相关的方程和不等式是中考数学考试中的常见题型。

对于二次方程ax² + bx + c = ,可以使用因式分解、配方法和求根公式等方法求解。

对于二次不等式ax² + bx + c > 或ax² + bx + c < ,可以通过画图法或求解方程法来确定解集。

5.函数的增减性和极值:二次函数的增减性与a的正负有关,当a>时,函数递增;当a<时,函数递减。

相应地,函数的极值与抛物线的开口方向相反,开口向上时有最小值,开口向下时有最大值。

6.函数与坐标轴的交点:函数与x轴的交点称为零点,可以通过求解方程ax² + bx + c = 来求得。

二次函数知识点、易错点、解题技巧

二次函数知识点、易错点、解题技巧

二次函数知识点、易错点、解题技巧第一部分知识点总结第二部分学习口诀二次函数图像与性质口诀二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a 相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

第三部分易错分析函数是初中数学知识的主线,而二次函数是这条主线上的高潮.我们通过探索二次函数与方程的关系,让我们领悟到事物之间相互联系的辨证关系.我们能够利用二次函数解决实际问题,培养数学建模的能力.【知识结构】【知识梳理】3、性质注意:二次函数的性质要结合图象,认真理解,灵活应用,不要死记硬背.4、二次函数与一元二次方程的关系【易错点剖析】一、忽略二次项系数不等于0二、忽略隐含条件三、忽略数形结合思想方法的应用四、求顶点坐标时混淆符号五、忽视根的判别式的作用第四部分巧选解析式二次函数解析式的确定是中考的高频考点,在压轴题的第一问就难倒了不少小伙伴。

那么如何巧选表达式来确定二次函数的解析式呢?【小试牛刀】【几种特殊情况】第五步法动态最值专题第六部分解题技巧学好函数还是有诀窍的,要结合图像说性质,结合性质画图像,正所谓数形结合,函数无敌!第七部分变式13解在初中三年数学学习中,二次函数一直是重难点,正是因为很多学生都没学会,因此让出题老师们钻了空子,在中考中最喜欢出二次函数的题,不管是选择,填空还是大题压轴题。

老师最喜欢给学生出难题,可是学生们就该叫苦不迭了,趁着中考前这段时间,多复习这一类知识,再做一个巩固加深印象。

以二次函数进行考查的题目,命题形式都是比较固定的,一般都是给一个含有字母系数的二次函数,通过给出条件确定解析式,然后讨论交点问题,往往看着简单的题目,最不容易做出来,出题稍微有点变化,学生就看不出来。

第22章二次函数易错点汇总

第22章二次函数易错点汇总

第22章二次函数易错点汇总易错点一、配方时,不能直接除去(或丢掉)二次项系数,同时在提出二次项系数后,不能在括号内加,同时在括号外减去所加的常数.【例1】求二次函数y=-2x2+8x-2图象的顶点坐标.二、对于抛物线的平移问题,要么对“括号内左加右减,括号外上加下减”掌握不透,导致图象的平移方向出错,要么未将一般式化为顶点式,而将平移规律直接错误地运用到一般式中.【例2】将抛物线y=-x2+2x向左平移2个单位后,得到的抛物线的解析式是什么?三、对于含有字母系数的函数,要仔细审题,分类讨论,合理取舍,寻求准确答案.【例3】当a为何值时,函数y=ax2-3x+1的图象与x轴只有一个交点?四、利用二次函数模型解决实际问题时,忽略所得二次函数中自变量的取值范围,将实际问题的图象看成了一条完整的抛物线,导致所求的解不符合实际问题的意义.【例4】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯. 已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(物价部门规定,这种节能灯的销售单价不得高于25元)学以致用1. 用配方法求y=2x2-8x-10的对称轴和顶点坐标.2. (2017贵港)将如图M22-1所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A. y=(x-1)2+1B. y=(x+1)2+1C. y=2(x-1)2+1D. y=2(x+1)2+13. 已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A. k<4B. k≤4C. k<4且k≠3D. k≤4且k≠34. (2017营口)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务. 为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元. (1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围;(2)若每台空调的成本价(日生产量不超过50台时)为2 000元,订购价格为每台2 920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.。

初中数学 二次函数 知识点 易错题精选(含答案)

初中数学 二次函数 知识点 易错题精选(含答案)

数学数学二次函数知识点+易错题精选一、二次函数基本概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵ a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:y=ax2的性质:a 的绝对值越大,抛物线的开口越小。

2. y=ax2+c的性质:(上加下减)3. y=a(x-h)2的性质:(左加右减)4. y=a(x-h)2+k的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴将抛物线解析式转化成顶点式y=a(x-h)2+k,确定其顶点坐标(h,k);⑵保持抛物线y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:2. 平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数y=a(x-h)2+k与y=ax2+bx+c的比较从解析式上看,y=a(x-h)2+k与y=ax2+bx+c是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数y=ax2+bx+c图象的画法五点绘图法:利用配方法将二次函数y=ax2+bx+c化为顶点式y=a(x-h)2+k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0,c)、以及(0,c)关于对称轴对称的点(2h,c)、与x轴的交点(x1,0),(x2,0)(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.六、二次函数y=ax2+bx+c的性质七、二次函数解析式的表示方法1. 一般式:y=ax2+bx+c(a,b,c为常数,a≠0);2. 顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0);3. 两根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b2-4ac≥0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数y=ax2+bx+c中,a作为二次项系数,显然a≠0.⑴当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵当a<0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,∣a∣的大小决定开口的大小.2. 一次项系数b3. 常数项c⑴当c>0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c=0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当c<0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况):一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.图象与x轴的交点个数:2. 抛物线y=ax2+bx+c的图象与y轴一定相交,交点坐标为(0,c)3. 二次函数常用解题方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数y=ax2+bx+c中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数易错题精选一、选择题1.已知二次函数y=2(x+1)(x﹣a),其中a>0,且对称轴为直线x=2,则a的值是( )A.3B.5C.7D.不确定2.将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A.y=-2(x+1)2B.y=-2(x+1)2+2C.y=-2(x-1)2+2D.y=-2(x-1)2+13.若二次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,则m的值必为( )A.-1或3B.-1C.3D.-3或14.如图,二次函数y=ax2+bx+c(a>0)的图象与直线y=1交点坐标为(1,1),(3,1),则不等式ax2+bx+c﹣1>0的解集为()A.x>1B.1<x<3C.x<1或x>3D.x>35.下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项的正确是()A.1.6<x<1.8B.1.8<x<2.0C.2.0<x<2.2D.2.2<x<2.46.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y=5x2-3x+4与y=4x2-x+3的图像交点个数有 ( )A.0个B.1个C.2个D.无数个7.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x29.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个 B.2个 C.3个 D.4个10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C纵坐标为y,能表示y与x的函数关系图象大致是()11.已知二次函数y=a(x-2)2+c,当x=x时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达1式正确的是()A.y1+y2>0B.y1﹣y2>0C.a(y1﹣y2)>0D.a(y1+y2)>012.如图,正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1 cm/s 的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( B )二、填空题13.如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.14.抛物线y=2x2+x-3与x轴交点个数为_____个.15.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.16.如图是某公园一圆形喷水池,水流在各个方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处M(1,2.25),如果不考虑其他因素,那么水池的半径至少要m,才能使喷出的水流不至落到池外.17.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.18.如图,抛物线y=ax2+bx+c的对称轴是x=-1.且过点(0.5,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a ﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)三、解答题19.如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.(1)求出抛物线与x轴的两个交点A,B的坐标.(2)试确定抛物线的解析式.20.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成面积为45平方米的花圃,AB的长为多少米?21.设抛物线y=mx2-2mx+3(m≠0)与x轴交于点A(a,0)和B(b,0).(1)若a=-1,求m,b的值;(2)若2m+n=3,求证:抛物线的顶点在直线y=mx+n上;(3)抛物线上有两点P(x1,p)和Q(x2,q),若x1<1<x2,且x1+x2>2,试比较p与q的大小.22.已知二次函数y=ax2-4x+c的图象过点(-1, 0)和点(2,-9).(1) 求该二次函数的解析式并写出其对称轴;(2) 已知点P(2 , -2),连结OP , 在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).23.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连结OA。

二次函数(最全的中考二次函数知识点总结

二次函数(最全的中考二次函数知识点总结

二次函数(最全的中考二次函数知识点总结二次函数是中学数学中的一个重要内容,它在中考中也是一个常见的考点。

下面是一个最全的中考二次函数知识点总结。

1. 二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为常数,且a≠0。

2.二次函数的图像:二次函数的图像是一条开口朝上或朝下的抛物线,a的符号决定了抛物线的开口方向。

3. 二次函数的顶点坐标:顶点坐标为(-b/2a, f(-b/2a)),其中f(x) = ax^2 + bx + c。

4.二次函数的对称轴:对称轴为x=-b/2a。

5. 二次函数的判别式:判别式Δ = b^2 - 4ac,可以用来判断二次函数的性质。

6.二次函数的零点:二次函数的零点是指函数图像与x轴的交点,即f(x)=0的解。

7.二次函数的单调性:当a>0时,二次函数是开口朝上的,是递增函数;当a<0时,二次函数是开口朝下的,是递减函数。

8. 定比分点:对于二次函数y = ax^2 + bx + c,若存在一点(x1,y1),使得x1 = -b/2a + t 且 y1 = f(x1),其中t为常数,则称(x1,y1)为定比分点。

9.定比分点与顶点的关系:二次函数的定比分点与顶点的横坐标之差等于m倍的a的倒数,即x1-(-b/2a)=m/a。

10. 二次函数的平移变换:对于二次函数y = ax^2 + bx + c,当a 不等于1时,二次函数的平移变换可以通过替换x变量来实现,平移后的函数为y = a(x-h)^2 + k。

11.二次函数与一次函数的关系:当a=0时,二次函数退化为一次函数。

12.二次函数的最值:当a>0时,二次函数的最小值为f(-b/2a);当a<0时,二次函数的最大值为f(-b/2a)。

13.二次函数与根的关系:如果二次函数有两个不相等的根,那么函数图像必定与x轴有两个交点;如果二次函数有两个相等的根,那么函数图像必定与x轴有一个相切的交点;如果二次函数没有实数根,那么函数图像与x轴没有交点。

二次函数知识点总结九年级

二次函数知识点总结九年级

二次函数知识点总结九年级二次函数知识点总结二次函数是数学中非常重要的一个概念,它在几何、物理等领域都有广泛的应用。

在九年级数学学习中,我们学习了许多与二次函数相关的知识点,本文将对这些知识进行总结。

一、二次函数的定义与性质二次函数是指一元二次方程所对应的函数。

一元二次方程的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a≠0。

二次函数的图像通常是一个开口向上或向下的抛物线。

其主要性质包括:1. 抛物线的开口方向由二次系数a的正负决定:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 抛物线的顶点坐标为(-b/2a, f(-b/2a)),其中f(-b/2a)为该点的纵坐标。

3. 抛物线与x轴交点数目由判别式Δ=b^2-4ac的正负决定。

若Δ>0,则抛物线与x轴有两个交点;若Δ=0,则抛物线与x轴有一个交点,此时抛物线是切线;若Δ<0,则抛物线与x轴没有交点。

二、二次函数的图像和性质1. 抛物线的对称轴与顶点坐标有关。

对称轴的方程为x=-b/2a。

2. 抛物线的平移:对于一般形式y=a(x-h)^2+k,抛物线的顶点坐标为(h, k),表示抛物线向左平移h个单位,向上或向下平移k个单位。

3. 抛物线的特殊情况:当b=0时,抛物线的对称轴与y轴重合,此时抛物线为关于y轴对称的。

当c=0时,抛物线过原点。

三、二次函数的函数值与因式分解1. 函数值:给定一元二次方程y=ax^2+bx+c,我们可以通过将x的值代入方程,计算出对应的函数值y。

这些值构成了二次函数的图像。

2. 因式分解:对于一元二次方程y=ax^2+bx+c,可以使用因式分解的方法将其写成两个一次因子的乘积形式。

这种形式可以更方便地求解方程的根。

四、解二次方程与判别式1. 解二次方程:对于一元二次方程ax^2+bx+c=0,我们可以使用求根公式来计算出方程的根。

求根公式为x=(-b±√Δ)/2a,其中Δ=b^2-4ac称为判别式。

二次函数知识点总结与重难点精析

二次函数知识点总结与重难点精析

二次函数知识点总结与重难点精析一、引言本文旨在总结九年级数学中的二次函数知识点,重点探讨二次函数的基本概念、图象与性质,以及相关应用。

希望通过本文的阅读,能够帮助同学们更好地理解和掌握二次函数的相关知识,提高数学学科的成绩和兴趣。

二、二次函数的基本概念1.二次函数定义:一般地,形如y = ax²+ bx + c(a、b、c为常数,a≠0)的函数,叫做二次函数。

其中,x为自变量,y为因变量。

2.二次函数图象:二次函数的图象是一条抛物线,其顶点坐标为(-b/2a,(4ac-b²)/4a),对称轴为x=-b/2a。

三、y=ax²的图象与性质1.定义域:对于y=ax²,其定义域为全体实数。

2.值域:当a>0时,值域为[0. +∞);当a<0时,值域为(0. +∞)。

3.奇偶性:当a=0时,既是奇函数又是偶函数;当a≠0时,是偶函数。

4.对称性:二次函数y=ax²的图象关于y轴对称。

5.增减性:当a>0时,在区间(-∞,0)上单调递减,在区间(0.+∞)上单调递增;当a<0时,在区间(-∞,0)上单调递增,在区间(0.+∞)上单调递减。

6.最值:当a>0时,有最小值0;当a<0时,有最大值0.四、重难点分析1.重点掌握y=ax²的图象与性质。

包括抛物线的形状、对称轴、顶点坐标、增减性、最值等。

2.理解并掌握二次函数的定义域、值域和奇偶性等基本性质。

3.能够根据二次函数的图象和性质进行分类讨论,准确地确定函数的单调性和最值。

4.能够运用二次函数的知识解决实际问题,如利用二次函数的最值求最优化问题等。

五、知识点应用1.求二次函数的最大(小)值:要结合函数的图象和性质,首先确定函数的对称轴和开口方向,然后根据函数的单调性求出最大(小)值。

2.求二次函数的零点:通过观察函数的图象和性质,找到函数与x轴的交点坐标,即为函数的零点。

初三数学二次函数知识点总结

初三数学二次函数知识点总结

初三数学二次函数知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就不是二次函数了。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b / 2a 。

抛物线的顶点坐标为(b / 2a ,(4ac b²) / 4a)。

例如,对于二次函数 y = 2x² 4x + 1,其中 a = 2 > 0,抛物线开口向上,对称轴为 x =(-4) /(2×2) = 1,顶点坐标为(1,-1)。

三、二次函数的平移二次函数的平移遵循“上加下减,左加右减”的原则。

“上加下减”指的是在函数表达式后面直接加上或减去一个常数,影响抛物线的上下移动。

比如,将 y = x²向上平移 2 个单位,得到 y = x²+ 2;向下平移 3 个单位,得到 y = x² 3 。

“左加右减”指的是在自变量 x 上加上或减去一个常数,影响抛物线的左右移动。

例如,将 y =(x 1)²向左平移 2 个单位,得到 y =(x 1 + 2)²=(x + 1)²;向右平移 3 个单位,得到 y =(x 1 3)²=(x 4)²。

四、二次函数的最值当 a > 0 时,抛物线开口向上,函数有最小值,在顶点处取得,即y 最小值=(4ac b²) / 4a 。

当 a < 0 时,抛物线开口向下,函数有最大值,同样在顶点处取得,即 y 最大值=(4ac b²) / 4a 。

例如,对于二次函数 y = x²+ 2x 3,因为 a =-1 < 0,所以函数有最大值。

初三二次函数总结归纳

初三二次函数总结归纳

初三二次函数总结归纳哎呀,今天咱们来聊聊二次函数,真是个既简单又复杂的话题,听起来就像一碗杂烩,有点什么都有。

想想看,二次函数其实就是形如 (y = ax^2 + bx + c) 的那种方程。

哇,里面的字母可真多,不过别紧张,其实就像咱们平时说的,东西放在哪里,位置不一样,结果也不一样,简单得很。

先说说这个“a”,如果“a”是个正数,那这个抛物线就像微笑的脸,张着嘴,弯弯的;要是“a”是负数,那就变成了愁眉苦脸,头低着,弯曲得跟个香蕉似的。

看吧,数学也可以有情绪,挺有意思的吧?然后我们就得聊聊顶点了。

顶点就是抛物线最高点或最低点,真是个神奇的地方,像宝藏一样藏在里面。

这个顶点的坐标怎么找呢?别担心,公式简单得跟小学生的数学题一样,顶点的横坐标 (x) 可以用 (frac{b{2a) 来算。

你可能会想,怎么就这么简单呢?哈哈,数学就是这样,有时候看起来复杂,其实背后是一片平静的湖水,轻轻一抚,就能看到底下的秘密。

再来聊聊这个“b”,它决定了抛物线的位置。

你想啊,假如你在大街上走,突然发现一辆车停在你面前,那个车的方向就是“b”的感觉。

它让抛物线往左或往右移动。

更有趣的是,常常有人把“c”看作是起点的高度。

比如说,抛物线的起点在天空中飞,可能就是“c”给它的。

好了,咱们再聊聊二次函数的图像吧。

大家都知道,图像就像是二次函数的名片,画得好,别人一眼就能认出你。

抛物线的开口朝上或者朝下,完全取决于“a”的符号。

要是“a”是正的,抛物线就开口朝上,想想,像一朵盛开的花,给人一种温暖的感觉。

反之,开口朝下,就像阴天的乌云,给人一种压抑的感觉。

再说到二次函数的零点,哎呀,这个可真有意思。

零点就是函数值为零的点,简单来说,就是抛物线和x轴的交点。

找零点的方式有很多,最常见的就是使用求根公式,或者直接把 (ax^2 + bx + c = 0) 给它解决掉。

这就像是解密游戏,一层一层拨开,最后找到那把钥匙,打开宝藏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年初三数学期中考后易错知识总结
二次函数
1.定义:一般地,如果是常数,,那么叫做的二次函数.
2.二次函数的性质
(1)抛物线的顶点是坐标原点,对称轴是轴.
(2)函数的图像与的符号关系.
①时抛物线开口向上顶点为其最低点;
②当时抛物线开口向下顶点为其最高点
3.二次函数的图像是对称轴平行于(包括重合)轴的抛物线.
4.二次函数用配方法可化成:的形式,其中
.
5.二次函数由特殊到一般,可分为以下几种形式:
①;②;③;④;⑤.
6.抛物线的五要素:开口方向、对称轴、顶点、与x轴交点、与y轴交点.
①决定抛物线的开口方向:
当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同;越大,开口越小。

②平行于轴(或重合)的直线记作.特别地,轴记作直线.
③求抛物线的顶点、对称轴的方法
(1)公式法:,∴顶点是,
对称轴是直线.
(2)配方法:运用配方法将抛物线的解析式化为的形式,得到顶点为(,),对称轴是.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线
的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
④抛物线与x轴有无交点的判定情况
⑤抛物线与y轴的交点 ()
★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★
9.抛物线中,的作用
(1)决定开口方向及开口大小,这与中的完全一样.
(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:
①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;
③(即、异号)时,对称轴在轴右侧. (左同右异)
(3)的大小决定抛物线与轴交点的位置.
当时,,∴抛物线与轴有且只有一个交点(0,):
①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .
10.几种特殊的二次函数的图像特征如下:
函数解析式开口方向对称轴顶点坐标
11.用待定系数法求二次函数的解析式
(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.
(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.。

相关文档
最新文档