高一数学典型例题分析:正弦函数、余弦函数的图象和性质
三角函数的图象与性质(解析版)
三角函数的图象与性质一、 考情分析1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.二、 知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无[微点提醒] 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.三、 经典例题考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cosx ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8.规律方法 1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法(1)利用三角函数线求解. (2)利用三角函数的图象求解. 考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________. 【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3, 即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.规律方法 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【解析】 令2k π≤x +π6≤2k π+π,k ∈Z , 解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【解析】 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.规律方法 1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.规律方法 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称 (2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称, 所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T=2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ).又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9.规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可. 2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可. [方法技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.4.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.5.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.6.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .四、 课时作业1.(2021·宝鸡中学高一期中)函数π()tan 23f x x ⎛⎫=-⎪⎝⎭的单调递增区间为( ) A .πππ2π,()2623k k k ⎡⎤++∈⎢⎥⎣⎦ZB .πππ5π,()212212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z D .π2ππ,π()63k k k ⎛⎫++∈ ⎪⎝⎭Z 【答案】C 【解析】()π2232k x k k Z ππππ-<-<+∈得:5212212k k x ππππ-<<+,所以函数π()tan 23f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z . 2.(2021·陕西省西安中学高一期中)设函数12sin y x =-,则函数的最大值及取到最大值时的x 取值集合分别为( ) A .3,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭B .1,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭C .3,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭D .1,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【答案】C【解析】由于22sin 2,22sin 2,112sin 3x x x -≤≤-≤-≤-≤-≤, 所以当32,2x k k Z ππ=+∈时,函数12sin y x =-有最大值为3. 3.(2021·吉林省高三其他(文))下列函数中,是奇函数且在其定义域上是增函数的是( ) A .1y x=B .y tanx =C .x x y e e -=-D .2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间, 对于B 选项,由正切函数y tanx =的图像可知不符合题意; 对于C 选项,令()x x f x e e -=-知()x x f x e e --=-, 所以()()0f x f x +-=所以()x x f x e e -=-为奇函数, 又x y e =在定义内单调递增,所以x y e -=-单调递增, 所以函数x x y e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数.4.(2021·武功县普集高级中学高一月考)函数y =)A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】C【解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z . 所以函数2cos 1y x =+的定义域是()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈.5.(2021·武功县普集高级中学高一月考)函数sin y x x =的部分图像是( )A .B .C .D .【答案】A【解析】:因为sin y x x =,所以()f x 为偶函数,其图象关于y 轴对称,故可以排除B ,D.又因为函数()f x 在()0,π上函数值为正,故排除C.6.(2019·呼玛县高级中学高一月考)若函数()sin()(0,0,)2πωϕωϕ=+>><f x A x A 的部分图像如图所示,则函数()f x 的解析式为( )A .()sin(2)6f x x π=+ B .()cos(2)6f x x π=+ C .()cos(2)3f x x π=+D .()sin(2)3f x x π=+【答案】D【解析】由函数的部分图像可知1A =,22T π=,故T π=,所以2ππω=即2ω=.由函数图像的对称轴为12x π=,所以22,122k k Z ππϕπ⨯+=+∈, 因2πϕ<,故3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭,故选D . 7.(2019·呼玛县高级中学高一月考)设cos 12a π=,41sin6b π=,7cos 4c π=,则( ) A .a c b >> B .c b a >> C .c a b >> D .b c a >>【答案】A 【解析】4155b sinsin 6sin sin cos 66663ππππππ⎛⎫==+=== ⎪⎝⎭,7c cos cos 44ππ== 因为3412πππ>>,且y cos 0,2x π=在(,)是单调递减函数,所以a c b >>,故选A8.(2019·延安市第一中学高三月考(理))已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( )A .关于点,012π⎛⎫-⎪⎝⎭对称 B .关于点,012π⎛⎫⎪⎝⎭对称 C .关于直线12x π=-对称D .关于直线12x π=对称 【答案】B【解析】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±, 所以2sin 13πφ⎛⎫+=±⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确.9.(2021·河北省故城县高级中学高一期中)关于函数sin(),2y x π=+在以下说法中正确的是( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]-ππ上是减函数【答案】B【解析】sin()cos 2y x x π=+=,它在[0,]π上是减函数.10.(2021·上海高一课时练习)下列命题中正确的是( ) A .cos y x =在第一象限和第四象限内是减函数 B .sin y x =在第一象限和第三象限内是增函数C .cos y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是减函数 D .sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数 【答案】D【解析】对于cos y x =,该函数的单调递减区间为:[]2,2,k k k Z πππ+∈,故A 错,C 错. 对于sin y x =,该函数的单调递增区间为:2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,故B 错,D 对.11.(2021·陕西省西安中学高三其他(理))关于函数()2sin sin 222x x f x x π⎛⎫=+- ⎪⎝⎭有下述四个结论: ①函数()f x 的图象把圆221x y +=的面积两等分 ②()f x 是周期为π的函数③函数()f x 在区间(,)-∞+∞上有3个零点④函数()f x 在区间(,)-∞+∞上单调递减 其中所有正确结论的编号是( ) A .①③④ B .②④C .①④D .①③【答案】C【解析】f (x )=2sin2x sin (2π+2x )﹣x =2sin 2x cos 2x﹣x =sin x ﹣x , 对于①,因为f (﹣x )=sin (﹣x )﹣(﹣x )=﹣sin x +x =﹣f (x ),所以函数f (x )为奇函数,关于原点对称,且过圆心,而圆x 2+y 2=1也是关于原点对称,所以①正确;对于②,因为f (x +π)=sin (x +π)﹣(x +π)=﹣sin x ﹣x ﹣π≠f (x ),所以f (x )的周期不是π,即②错误;对于③,因为()'f x =cos x ﹣1≤0,所以f (x )单调递减,所以f (x )在区间(﹣∞,+∞)上至多有1个零点, 即③错误; 对于④,()'fx =cos x ﹣1≤0,所以f (x )单调递减,即④正确.12.(2021·山西省高三其他(文))已知()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象关于直线524x π=对称,把()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称,则ω的最小值为( ) A .2 B .3C .4D .6【答案】C【解析】因为()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称, 所以()f x 关于点,03π⎛⎫⎪⎝⎭对称, 又()f x 的图象既关于直线524x π=对称, 设()f x 的最小正周期为T ,则()()2153244k T k N ππ+-=∈, 即()21284k k N ππω+⎛⎫=⋅∈ ⎪⎝⎭,所以()84k k N ω=+∈,取0k =,得4ω=,13.(2021·上海高二课时练习)设直线的斜率(,1][1,)k ∈-∞-⋃+∞,则该直线的倾斜角α满足( ). A .44ππα-B .42ππα<或324ππα< C .04πα或34παπ<D .04πα或34παπ【答案】B【解析】因为tan k α=, 所以当1k ≤-时,324ππα<≤, 当1k时,42ππα≤<,即直线的倾斜角α满足42ππα<或324ππα<, 14.(2021·调兵山市第一高级中学高一月考)方程10sin x x =的根的个数是( ) A .6 B .7C .8D .9【答案】B【解析】分别作函数,10sin y x y x ==图象,如图,由图可得交点个数为7,所以方程10sin x x =的根的个数是715.(2021·福建省高三其他(文))图数()1cos f x x x x ⎛⎫=+ ⎪⎝⎭,[)(],00,x ππ∈-的图象可能为( )A .B .C .D .【答案】A【解析】由题知:()()11cos cos ()f x x x x x f x x x ⎛⎫⎛⎫-=---=-+=- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 为奇函数,故排除B ,D. 又因为02x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故排除C.16.(2021·上海高一期中)函数sin cos y x x =⋅的最小正周期和最大值分别为( ) A .π,1 B .π,12C .2π,1D .2π,12【答案】B【解析】1sin cos =sin 22y x x x =⋅, 函数sin cos y x x =⋅的最小正周期22T ππ==, 1sin 21x -≤≤,∴111sin 2222x -≤≤, ∴函数sin cos y x x =⋅的最大值为12. 17.(2021·山西省高三其他(文))对于函数()()1122f x sinx cosx sinx cosx =+--.有下列说法:①()f x 的值城为[]1,1-;②当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值;③函数()f x 的最小正周期是π;④当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >.其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】因为()()1122cosx sinx cosx f x sinx cosx sinx cosx sinx sinx cosx≥⎧=+--=⎨<⎩,,,作出函数()f x 的图象,如图所示:所以,()f x 的值城为22⎡-⎢⎣⎦,①错误; 函数()f x 的最小正周期是2π,③错误; 当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值,②正确;当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >,④正确. 18.(多选题)(2021·海南省海南中学高三月考)已知函数()()sin f x A x =+ωϕ(0,0A ω>>)在1x =处取得最大值,且最小正周期为2,则下列说法正确的有( ). A .函数()1f x -是奇函数B .函数()1f x +是偶函数C .函数()2f x +在[]0,1上单调递增D .函数()3f x +是周期函数【答案】BCD【解析】因为()()sin f x A x =+ωϕ在1x =处取得最大值, 所以有2()2k k Z πωϕπ+=+∈,又因为()()sin f x A x =+ωϕ的最小正周期为2, 所以有22,0πωωπω=>∴=,因此()()sin sin 2cos 2f x A x A x k A x πωϕπππ⎛⎫=+=+-=- ⎪⎝⎭.选项A :设()()1cos[(1)]cos g x f x A x A x ππ=-=--=, 因为()cos[()]cos ()g x A x A x g x ππ-=-==, 所以()()1g x f x =-是偶函数,故本选项说法不正确; 选项B :设()()1cos[(1)]cos h x f x A x A x ππ=+=-+= 因为()cos[()]cos ()h x A x A x h x ππ-=-==, 所以()()1h x f x =+是偶函数,故本选项说法正确;选项C :设()()2cos[(2)]cos m x f x A x A x ππ=+=-+=-,因为[]0,1x ∈,所以[]0,x ππ∈,又因为0A >,所以函数()()2m x f x =+在[]0,1上单调递增,故本选项说法正确;选项D :设()()3cos[(3)]cos n x f x A x A x ππ=+=-+=, 函数()n x 最小正周期为:22ππ=,所以本选项说法正确.19.(2021·山东省微山县第一中学高一月考)已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则( )A .2π为()f x 的一个周期B .()y f x =的图象关于直线43x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D .()f x π+的一个零点为3π【答案】AD【解析】根据函数()6f x cos x π⎛⎫=+⎪⎝⎭知最小正周期为2π,A 正确.当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误;函数()6f x cos x π⎛⎫=+ ⎪⎝⎭在5,26ππ⎛⎫ ⎪⎝⎭上单调递减,在5,6ππ⎛⎫⎪⎝⎭上单调递增,故C 错误; ()76f x cos x ππ⎛⎫+=+⎪⎝⎭,73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.20.(2021·山东省高一期中)将函数()2sin 2f x x x =+12π个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,则下列说法中正确的是( )A .()f xB .()g x 是奇函数C .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称 D .()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减 【答案】CD【解析】函数2()sin 2sin 22sin(2)3f x x x x x x π=+=+,把函数图象向左平移12π个单位,得到2sin[2()]2sin(2)2cos 21232y x x x πππ=++=+=, 再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到()2cos g x x =. ①故()f x 函数的最大值为2,故选项A 错误. ②函数()2cos g x x =为偶函数,故选项B 错误. ③当6x π=-时,2sin 20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故选项C 正确.④由于()2cos g x x =,在[]2,2k k πππ+,()k Z ∈上单调递减,故函数()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减.故选项D 正确.21.(2021·上海高一期中)函数()tan 6f x x π=的单调递增区间为________【答案】(63,63)k k -+,k ∈Z 【解析】由622x k k πππππ-+<<+,k Z ∈,解得6363k x k -<<+,k Z ∈,故函数的单调增区间为()63,63k k -+,k Z ∈,22.(2021·河北省故城县高级中学高一期中)已知函数()sin()f x x π=-,()cos()g x x π=+,有以下结论:①函数()()y f x g x =的最小正周期为π; ②函数()()y f x g x =的最大值为2;③将函数()y f x =的图象向右平移2π个单位后得到函数()y g x =的图象; ④将函数()y f x =的图象向左平移2π个单位后得到函数()y g x =的图象.其中正确结论的序号是____________. 【答案】①④【解析】()sin()sin f x x x π=-=-,()cos()cos g x x x π=+=-. 因为1()()(sin )(cos )sin cos sin 22y f x g x x x x x x ==-⋅-=⋅=, 所以1()()sin 22y f x g x x ==的最小正周期为:22ππ=,故结论①正确; 因为1()()sin 22y f x g x x ==的最大值为12,所以结论②不正确;因为函数()y f x =的图象向右平移2π个单位后得到函数的解析式为: ()sin()cos 22y f x x x ππ=-=--=,所以结论③不正确;因为函数()y f x =的图象向左平移2π个单位后得到函数的解析式为: ()sin()cos ()22y f x x x g x ππ=+=-+=-=,所以结论④正确.23.(2021·宝鸡中学高一期中)函数()sin()f x A x B ωϕ=++的一部分图象如图所示,其中0A >,0>ω,π||2ϕ<.(1)求函数()y f x =解析式;(2)求[0,π]x ∈时,函数()y f x =的值域; (3)将函数()y f x =的图象向右平移π4个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递减区间.【解析】(1)根据函数()sin()f x A x B ωϕ=++的一部分图象,其中0A >,0>ω,π||2ϕ<, ∵40A B A B +=⎧⎨-+=⎩,∴22A B =⎧⎨=⎩;∵12π5ππ44126T ω=⋅=-,∴2ω=, 再根据π46f ⎛⎫= ⎪⎝⎭,可得ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z ,∵π||2ϕ<,∴π6ϕ=,∴函数()y f x =的解析式为π()2sin 226f x x ⎛⎫=++ ⎪⎝⎭; (2)∵[]0,πx ∈,∴ππ13π2,666x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 2[1,1]6x ⎛⎫+∈- ⎪⎝⎭, ∴函数()y f x =的值域为[]0,4; (3)将函数()y f x =的图象向右平移π4个单位长度, 得到函数πππ()2sin 222sin 22463g x x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,对于函数π()2sin 223g x x ⎛⎫=-+ ⎪⎝⎭, 令ππ3π2π22π232k x k +≤-≤+,k ∈Z , 求得5π11πππ1212k x k +≤≤+,k ∈Z , 故函数()g x 的单调减区间为5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z .24.(2021·山西省平遥中学校高一月考)已知函数()4sin cos 3f x x x π⎛⎫=+ ⎪⎝⎭. (1)求函数()f x 的最小正周期及单调增区间; (2)求函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域和取得最大值时相应的x 的值.【解析】(1)()4sin cos cos sin sin 33f x x x x ππ⎛⎫=- ⎪⎝⎭22sin cos x x x =-)sin 21cos 2x x =-+sin 2x x =2sin 23x π⎛⎫=+ ⎪⎝⎭.∴22T ππ==. 由222232k x k πππππ-+≤+≤+,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈ ∴单调增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)∵46x ππ-≤≤,∴22633x πππ-≤+≤. ∴1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,即12sin 223x π⎛⎫-≤+≤ ⎪⎝⎭.∴函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域为[]1,2- 且当232x ππ+=,即12x π=时,()max 2f x =. 25.(2021·武功县普集高级中学高一月考)在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 【解析】(1)依题意,由最低点为2,23M π⎛⎫-⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-.。
高一数学(必修一)《第五章 正弦函数、余弦函数的性质》练习题及答案解析-人教版
高一数学(必修一)《第五章 正弦函数、余弦函数的性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()sin 0f x x ωω=>的最小正周期为2π,则ω的值为( ) A .4B .2C .1D .122.设函数()2sin()3f x x π=+,若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1﹣x 2|的最小值是( )A .4πB .2πC .πD .2π 3.下列函数中,既是偶函数又在()0,∞+上单调递增的是( )A .y =B .cos y x =C .3x y =D .ln y x =4.函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数的一个充分条件( )A .6π=ϕ B .6πϕ=-C .3πϕ=D .3πϕ=-5.已知α是第四象限角,且23sin 8cos αα=,则2021cos 2πα⎛⎫+= ⎪⎝⎭( )A .B .13-C D .136.已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是( )A . ,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈ZB . ,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈ZC . 2,63k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z D . ,2k k πππ⎡⎤-⎢⎥⎣⎦()k ∈Z7.已知函数()()()2sin 00πf x x ωϕωϕ=+><<,的部分图象如图所示,点(0A 和π,03B ⎛⎫⎪⎝⎭,则下列说法中错误的是( )A .直线π12x =是图象的一条对称轴 B .()f x 的图象可由()2sin2g x x = 向左平移π3个单位而得到C .的最小正周期为πD .在区间ππ-,312⎛⎫⎪⎝⎭上单调递增8.已知定义在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意()(),2x R f x f x ∈=-;③当[]0,1x ∈时,则()32f x x =;若过点()1,0-的直线l 与函数()f x 的图象在[]0,4x ∈上恰有4个交点,则直线l 的斜率k 的取值范围是( ) A .60,11⎛⎫ ⎪⎝⎭B .30,5⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .30,8⎛⎫ ⎪⎝⎭9.已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x 和[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π10.将函数()sin(2)(0)f x x ϕϕπ=+<<的图象向右平移6π个单位长度得到()g x 的图象,若()g x 的图象关于直线3x π=对称,则6g π⎛⎫= ⎪⎝⎭( )A .B .12-C .0D .12二、填空题11.函数321,0,()1211,0,2xx x x f x x x ⎧+->⎪=⎨⎛⎫--+≤⎪ ⎪⎝⎭⎩,则[(2)]f f -=___________. 12.已知函数()f x 是在R 上连续的奇函数,其导函数为()f x '.当x >0时,则()()20xf x f x '+>,且()11f =,则函数()()21g x f x x =-的零点个数为______. 13.()()11sin cos cos sin 22f x x x x x =+--,下列说法错误的是______. ①()f x 的值域是[]1,1-; ②当且仅当222k x k πππ<<+(k Z ∈)时,则()0f x >;③当且仅当24x k ππ=+(k Z ∈)时,则()f x 取得最小值;④()f x 是以π为最小正周期的周期函数.14.设函数(),12,1x x a x f x x -+<⎧=⎨≥⎩的最小值为2,则实数a 的取值范围是______.15.若偶函数()f x 在[)0,∞+上单调递减,且()10f =,则不等式()2330f x x -+≥的解集是____________.三、解答题16.已知幂函数()f x x α=的图象经过点1(8,)2,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.17.比较下列各组数的大小.(1)cos870,cos890︒︒;(2)37π49πsin ,sin 63⎛⎫- ⎪⎝⎭. 18.已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =和()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.19.已知函数()21cos cos 2f x x x x =⋅-.(1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值. 20.已知函数()1sin 62f x x π⎛⎫=+- ⎪⎝⎭.(1)若函数()f x 在区间[]0,a 上是严格增函数,求实数a 的取值范围; (2)求函数()f x 在区间[]0,2π上的所有零点.21.已知函数()2x f x x =. (1)判断并证明函数()f x 的奇偶性;(2)判断函数()f x 在区间[)0,+∞上的单调性(不用证明),并解不等式()()221f x f x +>-.22.已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件②、条件③这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π; 条件②:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件③:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分. 23.已知某海滨浴场的海浪高度是时间t (h )(024t ≤≤)的函数,记作()y f t =.下表是某日各时的浪高数据.经长期观测,()y f t =的曲线可近似地看成是函数cos y A t b ω=+.(1)根据以上数据,求出函数cos y A t b ω=+的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8时到晚上20时之间,有多长时间可供冲浪者进行运动?四、双空题24.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,,且2222b c a a +=+,则A = _______,△ABC 的面积的取值范围是 _________ .参考答案与解析1.A【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】由2T πω=∴2242Tππωπ===. 故选:A. 2.C【解析】首先得出f (x 1)是最小值,f (x 2)是最大值,可得|x 1﹣x 2|的最小值为函数的半个周期,根据周期公式可得答案.【详解】函数()2sin()3f x x π=+ ∵对任意x ∈R 都有f (x 1)≤f (x )≤f (x 2) ∴f (x 1)是最小值,f (x 2)是最大值; ∴|x 1﹣x 2|的最小值为函数的半个周期 ∵T =2π∴|x 1﹣x 2|的最小值为π 故选:C. 3.D【分析】根据基本初等函数的奇偶性与单调性判断即可.【详解】解:对于A :y =[)0,∞+,函数为非奇非偶函数,故A 错误; 对于B :cos y x =为偶函数,但是函数在()0,∞+上不具有单调性,故B 错误;对于C :3x y =为非奇非偶函数,故C 错误;对于D :()ln y f x x ==定义域为{}|0x x ≠,又()()ln ln f x x x f x -=-==故ln y x =为偶函数,又当()0,x ∈+∞时ln y x =,函数在()0,∞+上单调递增,故D 正确; 故选:D 4.A【分析】根据函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数,由,Z 32k k ππϕπ+=+∈求解.【详解】解:若函数()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭为偶函数所以,Z32k k ππϕπ+=+∈则,Z6k k πϕπ=+∈故选:A 5.C【分析】利用三角函数的基本关系式与条件可求得sin α的值,再利用诱导公式化简2021cos 2πα⎛⎫+ ⎪⎝⎭即可求得结果.【详解】因为23sin 8cos αα=,所以429sin 64cos αα=又因为22sin cos 1αα+=,所以2264sin 64cos 64αα+=,即2464sin 9sin 64αα+= 整理得429sin 64sin 640αα+-= 解得28sin 9α=或2sin 8α=- (舍去)又因为α是第四象限角,所以sin 0α<,故sin α=所以2021cos cos 101022ππααπ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭cos sin 2παα⎛⎫=+=- ⎪⎝⎭. 故选:C. 6.B【分析】根据题意可得6f π⎛⎫⎪⎝⎭为函数()f x 的最大值,进而结合()0,2πϕ∈可得π6ϕ=,从而有()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,再求解其单调递增区间即可.【详解】()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则6f π⎛⎫⎪⎝⎭为函数()f x 的最大值,即()π22πZ 62k k πϕ⨯+=+∈,则()π2πZ 6k k ϕ=+∈,又()0,2πϕ∈,所以π6ϕ=,所以()πsin 26f x x ⎛⎫=+ ⎪⎝⎭. 令()πππ22π,2πZ 622x k k k ⎡⎤+∈-+∈⎢⎥⎣⎦,则()πππ,πZ 36x k k k ⎡⎤∈-+∈⎢⎥⎣⎦.故选:B. 7.B【分析】根据五点作图法可得,然后利用正弦函数的性质,代入逐一进行检验即可.【详解】由函数()()2sin (0,0π)f x x ωϕωϕ=+><<部分图象,点(A ,π,03B ⎛⎫ ⎪⎝⎭,故sin ϕ=,由于点A 在单调递增的区间上,π3ϕ=或2π3ϕ= (舍去),再根据五点法作图可得 ππ+=π33ω⋅,求得2ω=,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭ .对于A,令π12x =,求得()2f x =,为最大值,故直线π=12x 是()f x 图象的一条对称轴,故A 正确; 对于B,把()2sin2g x x =向左平移π3个单位,可得2π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,故B 错误;对于C,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为2π=π2,故C 正确; 对于D ,ππ-,312x ⎛⎫∈ ⎪⎝⎭和πππ2-,332x ⎛⎫+∈ ⎪⎝⎭ ,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭单调递增,故D 对.故选:B 8.D【分析】根据条件可知()f x 是周期为2的函数,作出函数图像,数形结合即可得解.【详解】因为函数()f x 的图象关于y 轴对称,所以()f x 为偶函数,即()()f x f x =-,又因为对于任意()(),2x R f x f x ∈=-,所以()()()2f x f x f x =-=-从而()()2f x f x =+,即()f x 是周期为2的函数 结合当[]0,1x ∈时,则()32f x x =,可作出()f x 在[]0,4的图像以及直线l 的图像,如下图所示:当3x =时,则易知()32f x =,则直线MA 的斜率()3032318MA k -==-- 过点()1,0-的直线l 与函数()f x 的图象在[]0,4上恰有4个交点,则只需直线l 斜率k 的取值范围是30,8⎛⎫⎪⎝⎭.故选:D. 9.C【分析】根据函数图象求得()12sin 23f x x π⎛⎫=+ ⎪⎝⎭,再根据图象变换可得()g x 的解析式,结合()()129g x g x =,1x ,[]20,4x π∈,求得21,x x 的值,可得答案.【详解】设()f x 的最小正周期为T ,则由图可知372433T ππ⎛⎫=-- ⎪⎝⎭,得4T π=,则212T πω==,所以()1sin 2f x A x ϕ⎛⎫=+ ⎪⎝⎭又由题图可知()f x 图象的一个对称中心为点2,03π⎛⎫-⎪⎝⎭故1223k πϕπ⎛⎫⨯-+= ⎪⎝⎭,Z k ∈故3k πϕπ=+,Z k ∈ 因为0ϕπ<<,所以3πϕ=,所以()1sin 23f x A x π⎛⎫=+ ⎪⎝⎭.又因为1323f π⎛⎫= ⎪⎝⎭故131135sin sin sin 2323322f A A A A πππππ⎛⎫⎛⎫=⨯+==== ⎪ ⎪⎝⎭⎝⎭ 所以()12sin 23f x x π⎛⎫=+ ⎪⎝⎭;将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度得到()2sin 213g x x π⎛⎫=++ ⎪⎝⎭的图象;因为()()129g x g x =,所以12,x x 同时令()g x 取得最大值3由()2sin 2133g x x π⎛⎫=++= ⎪⎝⎭,可得()11212k x π+=Z k ∈又[]12,0,4x x π∈,要求21x x -的最大值,故令0k =,得112x π=;令3k =,得23712x π=,所以21x x -的最大值为3731212πππ-=故选:C. 10.D【分析】由平移变换写出()g x 的表达式,由()g x 的对称性求得ϕ,然后计算函数值. 【详解】由已知()sin[2()]sin(2)63g x x x ππϕϕ=-+=-+()g x 的图象关于直线3x π=对称,则2,Z 332k k πππϕπ⨯-+=+∈,又0ϕπ<<,所以6π=ϕ 所以()sin(2)6g x x π=-,所以1()sin(2)6662g πππ=⨯-=.故选:D . 11.11【分析】根据函数解析式,先求得(2)f -再求解. 【详解】因为函数321,0,()1211,0,2xx x x f x x x ⎧+->⎪=⎨⎛⎫--+≤⎪ ⎪⎝⎭⎩所以21(2)|2(2)1|122f -⎛⎫-=⨯---+= ⎪⎝⎭ 32(2)22111f =+-=故答案为:11 12.1【分析】函数()()21g x f x x=-的零点就是方程()21x f x =的根, 设()()2h x x f x =,对()h x 求导,结合题意知()h x 为()0,∞+上的增函数,由()()111h f ==,即可得出答案.【详解】()()()22211x f x g x f x x x -=-=则函数()()21g x f x x=-的零点就是方程()21x f x =的根. 设()()2h x x f x =由题意得()()()()()22h x x f x x f x h x -=--=-=-因为()h x 的定义域为R ,所以()h x 为R 上连续的奇函数.易得()()()()()222h x xf x x f x x xf x f x '''=+=+⎡⎤⎣⎦由题知,当x >0时,则()()20xf x f x '+>,则()0h x '> 即函数()h x 为()0,∞+上的增函数又因为()h x 为R 上连续的奇函数,所以()h x 为R 上的增函数.由()11f =,得()()111h f ==,则方程()21x f x =只有一个根故函数()()21g x f x x =-只有1个零点. 故答案为:1. 13.①③④【解析】将函数解析式化简并用分段函数表示出来,画出函数图象,数形结合即可判断. 【详解】解:()()()()sin ,cos sin 11sin cos cos sin cos ,cos sin 22x x x f x x x x x x x x ⎧>⎪=+--=⎨≤⎪⎩则画出函数图象如下:观察函数图象可得:函数的值域为⎡-⎢⎣⎦,故①错误;当且仅当222k x k πππ<<+(k Z ∈)时,则()0f x >,故②正确; 当22x k ππ=-或2x k ππ=+(k Z ∈)时,则()f x 取得最小值,故③错误;函数()f x 是以2π为最小正周期的周期函数,故④错误;故错误的有:①③④故答案为:①③④【点睛】本题主要考查三角函数的性质和三角函数图象的应用,属于中档题.14.[)3,+∞【解析】分别求1≥x 和1x <时函数的值域,再根据题意比较两部分的最小值,求a 的取值范围.【详解】当1≥x 时,则()22x f x =≥,当1x <时,则()1f x a >-由题意知,12a -≥ 3a ∴≥.故答案为:[)3,+∞【点睛】本题考查根据分段函数的最值求参数的取值范围,属于基础题型.15.[]1,2【分析】根据偶函数的性质得到11x -≤≤时()0f x ≥,即可将不等式化为21331x x -≤-+≤,解得即可.【详解】解:因为偶函数()f x 在[)0,∞+上单调递减,所以()f x 在(),0∞-上单调递增又()10f =,所以()()110f f -==,所以当11x -≤≤时()0f x ≥则不等式()2330f x x -+≥等价于21331x x -≤-+≤,解得12x ≤≤ 所以原不等式的解集为[]1,2.故答案为:[]1,216.答案见解析.【分析】根据给定条件求出α值,判断奇偶性,写出单调区间及单调性,画出()f x 的草图作答.【详解】因幂函数()f x x α=的图象经过点1(8,)2,则182α=,即3122α-=,31α=-解得13α=- 所以函数()f x 的解析式为13()f x x -=,其定义域是(,0)(0,)-∞+∞()f x =()()f x f x -===-,()f x 是奇函数函数()f x 在(0,)+∞上单调递减,在(,0)-∞上单调递减函数()f x 的大致图象如图17.(1)cos870cos890︒>︒,(2)37π49πsin sin 63⎛⎫-< ⎪⎝⎭【分析】(1)先利用诱导公式化简,然后利用余弦函数的单调性比较大小(2)先利用诱导公式化简,然后利用正弦函数的单调性比较大小.【详解】(1)cos870cos(2360150)cos150︒=⨯︒+︒=︒cos890cos(2360170)cos170︒=⨯︒+︒=︒∵余弦函数cos y x =在[]0,π上是减函数∴cos150cos170︒>︒,即cos870cos890︒>︒.(2)37πππ49πππsin()sin(6π)sin(),sin sin(16π)sin ,666333-=--=-=+= ∵正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上是增函数 ∴ππsin sin 63⎛⎫-< ⎪⎝⎭,即37π49πsin sin 63⎛⎫-< ⎪⎝⎭. 18.(1),32ππ⎡⎤⎢⎥⎣⎦(2)1,12⎡⎫⎪⎢⎣⎭【分析】(1)根据数量积的坐标表示及三角恒等变换公式将函数化简,再结合余弦函数的性质计算可得; (2)根据三角函数变换规则得到()g x 的解析式,再根据x 的取值范围求出46x π+的取值范围,再根据余弦函数的性质及图象计算可得;(1) 解:因为2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =且()f x m n =⋅所以()22sin 22sin 6f x m n x x π⎛⎫=⋅=-+- ⎪⎝⎭()122cos 21cos 22x x x ⎫=-+--⎪⎪⎝⎭1cos 221cos 2123x x x π⎛⎫=+=++ ⎪⎝⎭ 即()cos 213f x x π⎛⎫=++ ⎪⎝⎭ 令2223k x k ππππ-≤+≤ k Z ∈ 解得236k x k ππππ-≤≤- k Z ∈ 又因为0,2x π⎡⎤∈⎢⎥⎣⎦所以函数()f x 的单调增区间为:,32ππ⎡⎤⎢⎥⎣⎦(2)解:因为()cos 213f x x π⎛⎫=++ ⎪⎝⎭所以将函数()f x 的图象所有的点向右平移12π个单位得到cos 21cos 21121236f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦将所得图象上各点横坐标缩短为原来的 12(纵坐标不变)再向下平移1个单位得到()cos 46g x x π⎛⎫=+ ⎪⎝⎭ 又因为5,824x ππ⎡⎤∈-⎢⎥⎣⎦,所以4,63t x πππ⎡⎤=+∈-⎢⎥⎣⎦ 令4036x ππ-≤+≤,解得824x ππ-≤≤- 令046x ππ≤+≤,解得52424x ππ-≤≤ 即函数()g x 在,824ππ⎡⎤--⎢⎥⎣⎦上单调递增,在5,2424ππ⎡⎤-⎢⎥⎣⎦上单调递减,且1cos 832g ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭ 作出cos 3y t t ππ⎛⎫=- ⎪⎝⎭≤≤图像可得:所以m 的取值范围1,12⎡⎫⎪⎢⎣⎭. 19.(1),36k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ) (2)最大值为1,最小值为-12.【分析】(1)由三角函数降幂公式与二倍角公式,根据辅助角公式,化简函数为单角三角函数,根据正弦函数的单调性,可得答案;(2)利用整体思想,根据正弦函数的图象性质,可得答案.(1)()f x =1cos211cos2sin 22226x x x x x π+⎛⎫-=+=+ ⎪⎝⎭. 因为y =sin x 的单调递增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ) 令22,2622x k k πππππ⎡⎤+∈-+⎢⎥⎣⎦(k ∈Z ),得,36x k k ππππ⎡⎤∈-+⎢⎥⎣⎦(k ∈Z ). 所以()f x 的单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). (2)因为x ∈[0,2π],所以2x +7,666πππ⎡⎤∈⎢⎥⎣⎦. 当2x +6π=2π,即x =6π时,则()f x 最大值为1 当2x +6π=76π,即x =2π时,则()f x 最小值为-12.20.(1)0,3π⎛⎤ ⎥⎝⎦;(2)所有零点是0,23π和2π. 【分析】(1)先求得函数()f x 的在y 轴右侧的包含0的单调递增区间,进而得到实数a 的取值范围; (2)利用正弦函数的性质,利用整体代换法求得函数()f x 的所有零点,进而得到在[]0,2π上的所有零点.【详解】(1)由πππ2π2π262k x k -+++,得2ππ2π2π33k x k -++ k ∈Z 取0k =,可得2ππ33x - ∵函数()π1sin 62f x x ⎛⎫=+- ⎪⎝⎭在区间[]0,a 上是严格增函数 ∴实数a 的取值范围是π0,3⎛⎤ ⎥⎝⎦.【点睛】关键要注意求函数的零点时不要丢根.1πsin 2π+26x x k =⇔=或()5π2π+6x k k Z =∈. 21.(1)()f x 为偶函数,证明见解析 (2)()f x 在[)0,+∞上单调递增,不等式解集为1,33⎛⎫- ⎪⎝⎭【分析】(1)先判断函数定义域是否关于原点对称,然后再检查(),()f x f x -之间的关系;(2)先将函数作简单变型,分析出单调性,再根据单调性来解不等式.(1)()f x 为偶函数.证明如下:依题意,函数()f x 的定义域为R .对于任意x ∈R ,都有()()22x x f x x x f x --=-==,所以函数()f x 是R 上的偶函数.(2)函数())22x x f x x x ==-2x =[)0,+∞上单调递增.因为函数()f x 是R 上的偶函数,所以()()221f x f x +>-等价于()()221f x f x +>-.因为函数()f x 在[)0,+∞上单调递增,所以221x x +>-,即23830x x --<,解得133x -<<,所以不等式()()221f x f x +>-的解集为1,33⎛⎫- ⎪⎝⎭. 22.(1)选择①②:π()sin(2)6f x x =+,()f x 的最小值为1-;选择①③:π1()sin(2)62f x x =++, ()f x 的最小值为12-; (2)选择①②:t 的取值范围是5π11π,1212⎡⎫⎪⎢⎣⎭;选择①③:t 的取值范围是π5π,26⎡⎫⎪⎢⎣⎭. 【分析】(1)首先利用三角恒等变换公式以及辅助角公式化简()f x ,然后根据条件①②或①③求其解析式即可,若选择②③,m 的取值有两个,舍去;(2)根据零点即是函数图像与x 轴的交点横坐标,令()0f x =求出横坐标,即可判断t 的取值范围.(1)由题可知2()cos cos ωωω=+f x x x x m112cos222ωω+++x x m π1sin(2)62ω=+++x m . 选择①②: 因为2ππ2T ω==,所以1ω=. 又因为1(0)12f m =+=,所以12m =-. 所以π()sin(2)6f x x =+. 当ππ22π62x k +=-,k Z ∈即ππ3x k =-,k Z ∈时,则()1f x =-. 所以函数()f x 的最小值为1-.选择①③: 因为2ππ2T ω==,所以1ω=. 又因为函数()f x 的最大值为3322m +=所以0m =. 所以π1()sin(2)62f x x =++. 当ππ22π62x k +=-,k Z ∈即ππ3x k =-,k Z ∈时 πsin(2)16x +=- 所以函数()f x 的最小值为11122. 选择②③: 因为1(0)12f m =+=,所以12m =- 因为函数()f x 的最大值为3322m +=,所以0m =m 的取值不可能有两个,∴无法求出解析式,舍去. (2)选择①②:令πsin(2)06x +=则π2π6x k += k Z ∈ 所以ππ212k x =- k Z ∈ 当1,2k =时,则函数()f x 的零点为5π11π,1212 由于函数()f x 在区间[0,]t 上有且仅有1个零点所以5π11π1212t ≤<. 所以t 的取值范围是5π11π,1212⎡⎫⎪⎢⎣⎭. 选择①③:令π1sin(2)062++=x 则π722π+π66+=x k k Z ∈ 或π1122π+π66+=x k k Z ∈ 所以ππ+2=x k k Z ∈ 或5π+π6=x k k Z ∈.当0k =时,则函数()f x 的零点分别为π5π,26由于函数()f x 在区间[0,]t 上有且仅有1个零点所以π5π26t ≤<. 所以t 的取值范围是π5π,26⎡⎫⎪⎢⎣⎭. 23.(1)T =12,A =0.5 1cos 126y t π=+; (2)一共有6个小时.【分析】(1)根据给定的数表直接求出周期T ,振幅A ,进而求出函数表达式.(2)根据给定条件解不等式1cos 1126t π+>即可计算作答. (1)依题意,观察数表得:最小正周期12T =,最高浪高为1.5米,最低浪高为0.5米 则 1.50.5122A -== 1.50.512b +== 22126T πππω====6π 所以函数解析式为:1cos 126y t π=+ (2)由(1)知,令1cos 1126t π+>,得:22(Z)262k t k k πππππ-<<+∈ 123123Z ()k t k k -<<+∈而820t <<,则1k = 915t <<所以从9点到15点适合对冲浪爱好者开放,一共有6个小时.24. 3π【分析】由2222b c a a +=+结合余弦定理可得cos a bc A =,由△ABC ,可是1sin 2bc A ==,两式结合可求得tan A =A ;利用正弦定理,余弦定理,三角函数等变换的应用可得311sin(2)2264B a π=-+,可求出范围52(,)666B πππ-∈,利用正弦函数的性质可求解a 的范围,进而可求得△ABC 的面积的取值范围【详解】解:因为2222b c a a +=+,所以2222b c a a +-= 所以由余弦定理得2222cos 22b c a a a A bc bc bc+-===,所以cos a bc A =因为△ABC所以1sin 2bc A ===所以1sin cos 2bc A A ==所以tan A 因为(0,)A π∈,所以3A π=因为1cos 2a bc A bc ==所以1sin 2ABC Sbc A ==因为由正弦定理可得b B =,2)3c B π=-和2a bc = 所以2422sin sin()33a a B B π=- 所以311sin(2)2264B a π=-+ 因为△ABC 为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<< 所以52(,)666B πππ-∈ 所以31113sin(2)(,]226424B a π=-+∈ 所以[2,3)a ∈,所以1sin 2ABC Sbc A ==∈ 故答案为:3π。
如何总结高一数学的三角函数图像与性质
如何总结高一数学的三角函数图像与性质在高一数学的学习中,三角函数的图像与性质是一个非常重要的知识点。
要想学好三角函数,深入理解并准确总结其图像与性质是关键。
接下来,咱们就一步步来探讨如何做好这个总结。
首先,咱们得搞清楚三角函数的基本定义。
常见的三角函数有正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
正弦函数表示的是一个角的对边与斜边的比值,余弦函数是邻边与斜边的比值,正切函数则是对边与邻边的比值。
先来说说正弦函数 y = sin x 的图像与性质。
它的图像是一个波浪形的曲线,具有周期性,周期是2π。
也就是说,每隔2π 的长度,图像就会重复出现。
在一个周期内,它的取值范围是-1, 1。
当 x = 0 时,sin x = 0;当 x =π/2 时,sin x 达到最大值 1;当 x =3π/2 时,sin x达到最小值-1 。
余弦函数 y = cos x 的图像和正弦函数有点类似,也是周期性的波浪曲线,周期同样是2π。
在一个周期内,它的取值范围也是-1, 1。
当 x = 0 时,cos x = 1;当 x =π 时,cos x =-1 。
正切函数 y = tan x 的图像就和正弦、余弦函数不太一样了。
它的周期是π,定义域是x ≠ kπ +π/2 (k 为整数)。
它的图像在每个周期内都是单调递增的,没有最大值和最小值。
接着,咱们看看三角函数图像的对称轴和对称中心。
对于正弦函数y = sin x ,对称轴是 x =kπ +π/2 (k 为整数),对称中心是(kπ,0)(k 为整数)。
对于余弦函数 y = cos x ,对称轴是 x =kπ (k 为整数),对称中心是(kπ +π/2,0)(k 为整数)。
再来说说三角函数的单调性。
正弦函数 y = sin x 在π/2 +2kπ,π/2 +2kπ(k 为整数)上单调递增,在π/2 +2kπ,3π/2 +2kπ(k 为整数)上单调递减。
余弦函数 y = cos x 在2kπ π,2kπ(k 为整数)上单调递增,在2kπ,2kπ +π(k 为整数)上单调递减。
高一数学《正弦函数和余弦函数的图象与性质》
y
1
6π
4π
2π
o
2π
制作 06
4π
6π
2010年下学期
x
湖南长郡卫星远程学校
二、正弦、余弦函数的奇偶性: 正弦、余弦函数的奇偶性:
y
1
6π
4π
2π
1
o
2π
4π
6π
x
sin(x) = sin x
y = sin x( x ∈R) 是奇函数
y = cos x( x ∈R)是偶函数
y
1
6π
湖南长郡卫星远程学校
制作 06
2010年下学期
(1) 定义域 y=sinx, y=cosx的定义域为 定义域: 的定义域为R. 的定义域为 (2) 值域 y=sinx, y=cosx的值域为 值域: 的值域为[-1, 1]. 的值域为
湖南长郡卫星远程学校
制作 06
2010年下学期
(1) 定义域 y=sinx, y=cosx的定义域为 定义域: 的定义域为R. 的定义域为 (2) 值域 y=sinx, y=cosx的值域为 值域: 的值域为[-1, 1]. 的值域为 (3) 周期 y=sinx, y=cosx的最小正周期为 周期: 的最小正周期为 2π(一般称为周期 一般称为周期). 一般称为周期
湖南长郡卫星远程学校 制作 06 2010年下学期
(1) sin(
π
π
例2. 求下列函数的单调区间 : (1) y = 2sin(x) π (2) y = 3cos(2x ) 4 1 1 π (3) y = log 1 [ cos( x + )] 3 4 2 2 π (4) y = sin( x + ) 4
高一数学三角函数的图象与性质(二)
三角函数的图象与性质(二)一、基本知识:了解正弦函数、余弦函数、正切函数的图象,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的图象,理解参数A 、ω、φ的物理意义.掌握将函数图象进行对称变换、平移变换、伸缩变换.会根据图象提供的信息,求出函数解析式.二、例题分析:【例1】(2004年某某卷)设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( A )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=【思路串讲】本题主要考查三角函数的图象与性质以及分析问题与解决问题的能力.“会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型”,此类问题的求解一般是先找出周期,定出A 与是的值,最后确定 的值.【标准答案】A【例2】 函数y=Asin (ωx+φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点和最低点横坐标差3π,又图象过点(0,1),求这个函数的解析式.分析 求函数的解析式,即求A 、ω、φ的值.A 与最大、最小值有关,易知A=2,ω与周期有关,由图象可知,相邻最高点与最低点横坐标差3π,即T 2=3π.得 T=6π,所以ω=13.所以y=2sin(x 3+φ),又图象过点(0,1),所以可得关于φ的等式,从而可将φ求出,易得解析式为y=2sin(x 3 +π6).【例3】 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)(2)求这个函数关于直线x=2解:(1)T=13π3- π3=4π.∴ω=2πT = 12.又A=3,由图象可知所给曲线是由y=3sin x2沿x 轴向右平移 π3而得到的.∴解析式为 y=3sin 12 (x -π3).(2)设(x ,y)为y=3sin(12 x -π6 )关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6).点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用. 【例4】 已知函数y=12cos 2x+ 32sinxcosx+1 (x ∈R).(1)当y 取得最大值时,求自变量x 的集合;(2)该函数图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能以及运算能力.解题突破口:利用三角公式进行恒等变形化简为)sin()(ϕω+=t A x f ,(1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化.必须搞清A 、ω、φ和图象的哪些因素有关;y=sin ωx 和y=sin(ωx+φ)两图象间平移变换的方向和平移的单位数量极易搞错,解题时要倍加小心.解 (1)y= 12·1+cos2x 2 + 32·12 sin2x +1= 12sin(2x+π6)+ 54.当2x+π6 =2k π+π2 ,即x=k π+π6,k ∈Z 时,y max = 74.(2)由y=sinx 图象左移π6个单位,再将图象上各点横坐标缩短到原来的12(纵坐标不变),其次将图象上各点纵坐标缩短到原来的12(横坐标不变),最后把图象向上平移 54个单位即可.点评 (1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化. 【例5】已知函数)cos (sin sin 2)(x x x x f +=.(I )函数)(x f 的最小正周期和最大值;(II )在给出的直角坐标系中,画出函数]2,2[)(ππ-=在区间x f y 上的图象.【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能、“五点”法作图以及运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式. 要画出函数]2,2[)(ππ-=在区间x f y 上的图象.主要用“五点”法作图.【标准答案】(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=)42sin(21)4sin 2cos 4cos2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π- 8π-8π 83π 85π y1 21- 1 21+ 1故函数)(x f y =在区间]2,2[ππ-上的图象是【例6】(2003年卷)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期;(Ⅱ)若]2,0[π∈x ,求)(x f 的最大值、最小值.【思路串讲】本题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】(Ⅰ)因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T ……6分(Ⅱ)因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1.所以)(x f 在]2,0[π上的最大值为1,最小值为-.2……13分【例7】(2003年春季卷)已知函数)(,2cos 4sin 5cos 6)(24x f xx x x f 求-+=的定义域,判断它的奇偶性,并求其值域.【思路串讲】本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力.解题突破口:要求函数数)(x f 的定义域,转化为02cos ≠x ,要求函数数)(x f 的值域,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】由Z k k x k x x ∈+≠+≠≠,42,2202cos ππππ解得得.所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且因为)(x f 的定义域关于原点对称,且)2cos(4)(sin 5)(cos 6)(24x x x x f ---+-=-)(),(2cos 4sin 5cos 624x f x f xx x 所以=-+=是偶函数.当xx x x f Z k k x 2cos 4sin 5cos 6)(,,4224-+=∈+≠时ππ1cos 32cos )1cos 3)(1cos 2(222-=--=x xx x ,所以)(x f 的值域为}221211|{≤<<≤-y y y 或. 三、训练反馈:1.将y=cosx 的图象作关于x 轴的对称变换,再将所得的图象向下平移1个单位,所得图象对应的函数是 ( D )A .y=cosx+1B .y=cosx -1C .y=-cosx+1D .y=-cosx -12.函数f(x)=sin3x 图象的对称中心的坐标一定是 ( B ) A . (12k π,0), k ∈Z B .(13k π,0), k ∈ZC .(14k π,0), k ∈ZD .(k π,0),k ∈Z3.函数y=cos(2x+π2)的图象的一个对称轴方程为 ( B )A .x=- π2B .x=- π4C .x= π8 D .x=π4.为了得到函数y=3sin(3x+π4),x ∈R 的图象,只需把函数y=3sin(x+π4)的图象上所有点( B )A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的13倍,纵坐标不变C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的13倍,横坐标不变.5.要得到y=sin(2x -π3)的图象,只需将y=sin2x 的图象 ( D )A .向左平移π3个单位B . 向右平移π3个单位C .向左平移π6个单位D . 向右平移π6个单位6.函数y=12sin(2x+θ)的图象关于y 轴对称的充要条件是 ( B )A .θ=2k π+π2B .θ=k π+π2 C .θ=2k π+πD .θ=k π+π(k ∈Z)7.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( D ) A .y=sin(-2x+π3) B .y=sin(-2x -π3)C .y=sin(-2x+ 2π3)D . y=sin(-2x -2π3)8.右图是周期为2π的三角函数y=f(x)的图象,那么f(x)可以写成 ( D )A .sin(1+x)B . sin(-1-x)C .sin(x -1)D . sin(1-x)9.y=tan(12x -π3)在一个周期内的图象是 (A )10.已知函数y=2cosx(0≤x ≤2π)的图象与直线y=2围成一个封闭的平面图形,则该封闭图形面积是.4π-BACD11.将y=sin(3x -π6)的图象向(左、右)平移个单位可得y=sin(3x+π3)的图像.左,π612.已知函数y=Asin(ωx+φ),在同一个周期内,当x=π9时取得最大值12,当x=4π9时取得最小值- 12,若A >0,ω>0,|φ|<π2,求该函数的解析表达式. y=12 sin(3x+π6)13.已知函数y=3sinx+cosx ,x ∈R .(1)当y 取得最大值时,求自变量x 的取值集合; (2)该函数的图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?(1){x |x=π3+2k π,k ∈Z}; (2)将y=sinx 的图象向左平移π6,得到函数y=sin(x+π6)的图象,再将所得图象上各点横坐标不变,纵坐标伸长到原来的2倍,得到函数y=2sin(x+π6)的图象.word 11 / 11。
高一数学三角函数的图像与性质试题答案及解析
高一数学三角函数的图像与性质试题答案及解析1.已知,函数在上单调递减.则的取值范围()A.B.C.D.【答案】B【解析】结合正弦函数的图象可知,要使函数在上单调递减,需要,解得的取值范围是.【考点】本小题主要考查三角函数图象的应用和由三角函数的单调性求参数的取值范围,考查学生综合应用函数图象解决问题的能力.点评:函数在上单调递减,则应该是函数的单调区间的一个子区间.2.函数的图象()A.关于直线对称B.关于直线对称C.关于轴对称D.关于原点对称【答案】B【解析】令,当时,,所以该函数图象关于直线对称.【考点】本小题主要考查三角函数图象的对称性.点评:正余弦函数图象的对称轴过最值点,所以本小题也可以将选项代入验证求解.3.已知函数(其中)图象的相邻两条对称轴间的距离为,且图象上一个最高点的坐标为.(1)求的解析式;(2)将函数的图象向右平移个单位后,得到函数的图象,求函数的单调递减区间.【答案】; (2)【解析】(1)由题意知,函数的周期为,所以,……2分因为图象上一个最高点的坐标为,所以,所以……7分(2)将函数的图象向右平移个单位后,得到函数,……10分令,解得函数的单调递减区间为. ……14分【考点】本小题主要考查由三角函数图象求三角函数解析式和由解析式求函数的性质,考查学生数形结合思想的应用.点评:求参数时要注意参数的取值范围,求单调区间时要注意不要忘记4. (2010·衡水市高考模拟)设a=log tan70°,b=log sin25°,c=log cos25°,则它们的大小关系为()A.a<c<b B.b<c<aC.a<b<c D.b<a<c【答案】A【解析】∵tan70°>cos25°>sin25°>0,log x为减函数,∴a<c<b.5.已知函数f(x)=2a sin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值.【答案】a=12-6,b=-23+12,或a=-12+6,b=19-12.【解析】∵0≤x≤,∴-≤2x-≤.∴-≤sin≤1.若a>0,则,解得,若a<0,则,解得,综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12.6.要得到函数y=tan x图象,只需将函数y=tan的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】C【解析】将y=tan中的x换作x-可得到y=tan x,故右移个单位.7.函数f(x)=tan的单调递增区间为()A.,k∈ZB.(kπ,kπ+π),k∈ZC.,k∈ZD.,k∈Z【答案】C【解析】∵kπ-<x+<kπ+,k∈Z,∴kπ-<x<kπ+ (k∈Z).8.求函数y=的值域和单调区间.【答案】递增区间是k∈Z;递减区间是k∈Z.【解析】y=,∵(tan x-1)2+1≥1,∴值域是(0,1],递增区间是k∈Z;递减区间是k∈Z.9.如果sinα·tanα<0,且sinα+cosα∈(0,1),那么角α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵sinα·tanα<0,∴α是第二或第三象限角,又∵sinα+cosα∈(0,1),∴α不是一和三象限角,∴α为第二象限角10.已知sin(490°+α)=-,则sin(230°-α)的值为()A.-B.C.-D.【答案】B【解析】∵sin(490°+α)=-,∴sin(490°+α-720°)=-,即sin(α-230°)=-,∴sin(230°-α)=.11.由y=sin x变换成y=-2sin x,则()A.各点右移π个单位,纵坐标伸长到原来2倍B.各点左移π个单位,纵坐标缩短到原来的C.各点右移π个单位,纵坐标缩短到原来的D.各点左移个单位,纵坐标伸长到原来的2倍【答案】A【解析】因为由y=sin x各点右移π个单位得到y=sin(x-π)="-sinx," 纵坐标伸长到原来2倍得到y=-2sin x,因此选A12.化简=________.【答案】1【解析】原式==1.13.作出函数y=2cos的图象,观察图象回答.(1)此函数的最大值是多少?(2)此函数图象关于哪些点中心对称(至少写出2个).【答案】(1)2 (2),.【解析】描点作出图象如图.(1)最大值为2.(2),.14.下列函数中是偶函数的是()A.y=sin2x B.y=-sin xC.y=sin|x|D.y=sin x+1【答案】C【解析】A、B是奇函数,D是非奇非偶函数,C符合f(-x)=sin|-x|=sin|x|=f(x),∴y=sin|x|是偶函数15.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,那么不等式f(x)cos x<0的解集是( )A .(-3,-)∪(0,1)∪(,3) B .(-,-1)∪(0,1)∪(,3)C .(-3,-1)∪(0,1)∪(1,3)D .(-3,-)∪(0,1)∪(1,3)【答案】B【解析】f (x )>0的解集为(-1,0)∪(1,3),f (x )<0的解集为(-3,-1)∪(0,1), 当x ∈(-3,3)时,cos x >0的解集为(-,),cos x <0的解集为(-3,-)∪(,3),∴f (x )·cos x <0的解集为 (-,-1)∪(0,1)∪(,3).16. 函数y =cos x 在区间[-π,a ]上为增函数,则a 的取值范围是________ 【答案】(-π,0]【解析】∵y =cos x 在[-π,0]上是增函数, 在[0,π]上是减函数,∴只有-π<a ≤0时满足条件,故a ∈(-π,0].17. 若函数f (x )=2cos 的最小正周期为T ,且T ∈(1,3),则正整数ω的最大值是_______【答案】6 【解析】∵1<<3,∴<ω<2π,∴正整数ω的最大值是6.18. 已知函数f (x )=sin,其中k ≠0,当自变量x 在任何两个整数间(包括整数本身)变化 时,至少含有一个周期,求最小正整数k 的值. 【答案】63【解析】函数f (x )=sin 的周期为T ==.由题意知T ≤1,即≤1,|k |≥20π≈62.8.所以最小正整数k 的值为63.19. 求下列函数的最大值和最小值,并求出取得最值时自变量x 的值. (1)y =-cos3x +; (2)y =3sin +1.【答案】(1) x =π(k ∈Z)时有,y max=2,x =π(k ∈Z)时,y min =-×1+=1.(2)x =+k π(k ∈Z)时,有y max =3+1=4,x =π+k π(k ∈Z)时,y min =3×(-1)+1=-2.【解析】(1)∵-1≤cos3x≤1,∴当cos x=-1,即3x=π+2kπ,=-×(-1)+=2;x=π(k∈Z)时有,ymax=-×1+=1.当cos3x=1,即3x=2kπ,x=π(k∈Z)时,ymin(2)∵-1≤sin≤1,∴当sin=1,=3+1=4;当sin=-1,即x=π即2x+=+2kπ,x=+kπ(k∈Z)时,有ymax+kπ(k∈Z)时,y=3×(-1)+1=-2.min20.设θ是不等边三角形的最小内角,且cosθ=,求实数a的取值范围.【答案】(-∞,-3)【解析】∵θ是不等边三角形的最小内角,∴0°<θ<60°.由cosθ在内单调递减知:<cosθ<1,即<<1.解得a<-3.故所求实数a的范围为(-∞,-3).本题容易误判θ∈(0°,90°)或用错单调性得出0<cosθ<而致误。
高一数学正弦函数、余弦函数的图像和性质
2
-
-1 -
o
2
-
4
-
6
-
因为终边相同的角的三角函数值相同,所以y=cosx的图象在……, 4 ,2 , 2 ,0, 0,2 , 2 ,4 , …与y=cosx,x∈[0,2π]的图象相同
返回 请单击:
-
x
北京股票配资: 北京股票配资
2 正弦曲线
y
1-
6
-
4
-
2
-
o-1
2
-
4
-
6
-
x
因为终边相同的角的三角函数值相同,所以y=sinx的图象在……, 4 ,2 , 2 ,0, 0,2 , 2 ,4 , …与y=sinx,x∈[0,2π]的图象相同 3余弦曲线(平移得到) 余弦曲线(几何作法)
y sin x, x 0,2
1 2
x
y
0
3
3 2
6
2
2 3
3 2
5 6
1 2
0
7 6
4 3
3 2
5 3
11 6
2
0
1
1 2
3 2
1 23
1 2
0
(2) 描点
y 10
2
-
-
-
-
3 2
2
x
(3) 连线
1 -
4.8 正弦函数.余弦函数的图象和性质
y sin( x
y sin( x
2
2
), x R
)
图象
余弦函数的图像可以通过正弦曲线向左平移 而得到.
高一数学-正弦、余弦函数图像性质
1.以下对正弦函数y=sin x 的图象描述不正确的是( )A .在x ∈[2k π,2k π+2π](k ∈Z )上的图象形状相同,只是位置不同B .介于直线y=1与直线y=-1之间C .关于x 轴对称D .与y 轴仅有一个交点2.用五点法作y=2sin2x 的图象时,首先应描出的五点的横坐标可以是( )A .0,2π,π,32π,2πB .0,4π,2π,34π,πC .0,π,2π,3π,4πD .0,6π,3π,2π,23π3.函数sin(2)3y x π=-在区间,2ππ⎡⎤-⎢⎥⎣⎦的简图是( )4.y =cos x ,x ∈[0,2π]的图象与直线12y =的交点的个数为( ) A .0 B .1 C .2 D .3 5.方程|x|=cos x 在(-∞,+∞)内( )A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根6.要得到函数sin y x =的图象,只需将函数cos()y x π=-3的图象( ).A. 向右平移6π个单位 B. 向右平移3π个单位 C. 向左平移3π个单位D. 向左平移6π个单位7.设函数()sin f x x =,x ∈R ,对于以下三个结论:①函数()f x 的值域是[-1,1] ②当且仅当2x kx π=+(k ∈Z )时,()f x 取得最大值1 ③当且仅当2k π+π<x <2k π+32π(k ∈Z )时,()0f x <. 根据函数的图象判断其中正确结论的个数是( ) A .0 B .1 C .2 D .38.已知k <―4,则函数y=cos 2x+k (cos x ―1)的最小值是( )A .1B .―1C .2k+1D .―2k+1 9.下列函数图象相同的序号是________.①y=cos x 与y=cos (π+x); ②sin 2y x π⎛⎫=-⎪⎝⎭与sin 2y x π⎛⎫=-⎪⎝⎭; ③y=sin x 与y=sin (-x); ④y=sin (2π+x)与y=sin x .10.若2sin x +3=a ,则实数a 的取值范围是________.【要点梳理】要点一:周期函数的定义函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期. 要点诠释:1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足)()(x f T x f =+都不能说T 是)(x f y =的一个周期.2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的要点二:正弦函数、余弦函数的图象和性质要点诠释:(1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域.(2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求sin()y x =-的单调递增区间时,应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先求定义域.要点三:正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>的性质. 函数sin()y A x ωϕ=+与函数cos()y A x ωϕ=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到: (1)定义域:R (2)值域:[],A A -(3)单调区间:求形如sin()y A x ωϕ=+与函数cos()(,0)y A x A ωϕω=+>的函数的单调区间可以ωϕ的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由)(2222Z k k x k ∈+≤+≤-ππϕωππ解出x 的范围所得区间即为增区间,由)(23222Z k k x k ∈+≤+≤+ππϕωππ解出x 的范围,所得区间即为减区间.(4)奇偶性:正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>不一定具备奇偶性.对于函数sin()y A x ωϕ=+,当()k k z ϕπ=∈时为奇函数,当()2k k z πϕπ=±∈时为偶函数;对于函数cos()y A x ωϕ=+,当()k k z ϕπ=∈时为偶函数,当()2k k z πϕπ=±∈时为奇函数.要点诠释:判断函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件.(5)周期:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期与解析式中自变量x 的系数有关,其周期为2T πω=.(6)对称轴和对称中心与正弦函数sin y x =比较可知,当()2x k k z πωϕπ+=±∈时,函数sin()y A x ωϕ=+取得最大值(或最小值),因此函数sin()y A x ωϕ=+的对称轴由()2x k k z πωϕπ+=±∈解出,其对称中心的横坐标()x k k z ωϕπ+=∈,即对称中心为,0()k k z πϕω-⎛⎫∈⎪⎝⎭.同理,cos()y A x ωϕ=+的对称轴由()x k k z ωϕπ+=∈解出,对称中心的横坐标由()2x k k z πωϕπ+=±∈解出.要点诠释:若x R ∉,则函数sin()y A x ωϕ=+和函数cos()y A x ωϕ=+不一定有对称轴和对称中心.【典型例题】类型一:正弦函数、余弦函数的定义域与值域例1.求函数y =举一反三:【变式1】求函数lg(2sin 1)y x =-的定义域例2.求下列函数的值域: (1)y=3―2sin x (2)2sin 23y x π⎛⎫=+ ⎪⎝⎭,,66x ππ⎡⎤∈-⎢⎥⎣⎦; (3)cos 2cos 1x y x -=-.举一反三:【变式1】 求y=cos 2x+4sin x ―2的值域.类型二:正弦函数、余弦函数的单调性例3.(浙江温州期末)设函数()sin(2)3f x a x b π=++(1)若a >0,求f (x )的单调递增区间; (2)当[0,]4x π∈时,f (x )的值域为[1,3],求a ,b 的值.举一反三:【变式1】(河南期中)已知函数1sin()32y x π=- (1)求该函数的周期,并求函数在区间[0,π]上的值域; (2)求该函数在[-2π,2π]上的单调增区间.类型三:正弦函数、余弦函数的奇偶性 例4.判断下列函数的奇偶性:(1)5())2f x x π=+;(2)()f x =;举一反三:【变式】关于x 的函数)(x f =sin(x+ϕ)有以下命题: ①对任意的ϕ,)(x f 都是非奇非偶函数; ②不存在ϕ,使)(x f 既是奇函数,又是偶函数; ③存在ϕ,使)(x f 是奇函数; ④对任意的ϕ,)(x f 都不是偶函数.其中一个假命题的序号是_____.因为当ϕ=_____时,该命题的结论不成立.类型四:正弦函数、余弦函数的对称性例5.(湖南益阳月考)已知函数()2sin(2)4f x x π=-.(1)求函数的最值及相应的x 值集合; (2)求函数的单调区间;(3)求函数f (x )的图象的对称轴与对称中心.举一反三:【变式1】指出下列函数的对称轴与对称中心 (1)sin()4y x =+π;(2)cos(2)3y x =-π.类型五:正弦函数、余弦函数的周期 例6.求下列函数的周期: (1)sin 3y x π⎛⎫=+⎪⎝⎭; (2)cos 2y x =;(3)3sin 23x y π⎛⎫=+⎪⎝⎭; (4)112sin cos 2326y x x ππ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭举一反三:【变式1】判断下列函数是否是周期函数.若是周期函数,求其最小正周期. (1)|sin |y x =; (2)sin ||y x =; (3)sin(2)3y x =-π.类型六:正弦函数、余弦函数性质的综合应用 例7.已知函数12()log |sin |f x x =.(1)求其定义域和值域; (2)判断奇偶性;(3)判断周期性,若是周期函数,求周期; (4)写出单调区间.举一反三: 【变式】已知函数11cos |cos |22y x x =+. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期; (3)指出这个函数的单调增区间.【巩固练习】1.下列函数是以π为周期的函数的是( )A .1sin2y x = B .y=cos2x C .y=1+sin3x D .y=cos3x 2.下列函数中是偶函数的是( )A .y=sin2xB .y=-sin xC .y=sin |x|D .y=sin x+1 3.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是( )A .2π B .4π- C .4πD .34π4.设函数()sin 22f x x π⎛⎫=-⎪⎝⎭,x ∈R ,则()f x 是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 5.下列区间中,使函数y=sin x 为增函数的是( )A .[0,π]B .3,22ππ⎡⎤⎢⎥⎣⎦ C .,22ππ⎡⎤-⎢⎥⎣⎦D .[π,2π] 6.为得到函数sin(3)3y x =-π的图象,可以将函数sin3y x =的图象( ).A . 向左平移π个单位 B . 向右平移π个单位C . 向左平移9π个单位D . 向右平移9π个单位 7.已知a ∈R ,函数()sin ||f x x a =-,x ∈R ,为奇函数,则a 的值为( )A .0B .1C .-1D .±18.(广东揭阳月考)函数y =2sin x 在区间4[,)63ππ的值域是( )A .1[)2B .(2]C .1[2D .[2) 9.函数()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω=________.10.(湖南娄底期末)函数y =________. 11.(黑龙江期末)已知函数cos(2)3,[0,]32y a x x ππ=++∈的最大值为4,则实数a 的值为________.12.(宁夏金凤区月考)求函数y =13.求函数2cos sin y x x =-,[]0,x π∈上的值域.14.(湖南株洲月考)已知定义在[,]62x ππ∈-上的函数()sin(2)f x x π=-. (1)求()f x 的单调递增区间;(2)若方程()f x a =只有一个解,求实数a 的取值范围.15.设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a ,试确定满足1()2f a =的a 的值,并对此时的a 值求y 的最大值.。
高考数学专题复习:正弦函数、余弦函数的图像和性质
高考数学专题复习:正弦函数、余弦函数的图像和性质一、单选题 1.函数()21sin 1xf x x e ⎛⎫=-⎪+⎝⎭的部分图象大致形状是( ) A . B .C .D .2.已知函数()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω的取值范围是( )A .(]0,1B .[]1,2C .71,2⎡⎤⎢⎥⎣⎦D .72,2⎡⎤⎢⎥⎣⎦3.函数()cos 2f x x =的图象中,相邻两条对称轴之间的距离是( ) A .2πB .πC .π2D .π44.下列函数中,周期为π且在区间2ππ⎛⎫⎪⎝⎭,上单调递增的是( )A .cos 2y x =B .sin 2y x =C .1cos 2y x =D .1sin2y x = 5.已知函数()sin 2(0)6f x x πωω⎛⎫=++> ⎪⎝⎭,点P 、Q 、R 是直线()0y m m =>与函数()f x 的图像自左至右的某三个相邻交点,且123PQ QR π==,则m 的值为( )A B C .32D .526.下列函数中,最小正周期为π的奇函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin 24y x π⎛⎫=+ ⎪⎝⎭D .()cos 2y x π=+7.函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象( )A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称8.函数()5sin πlog f x x x =-的零点的个数为( ). A .3B .4C .5D .69.已知函数()cos sin f x x x =+,下列结论正确的是( ). A .函数()f x 的最小正周期为π2,最小值为1B .函数()f x 的最小正周期为π,最小值为0C .函数()f x 的最小正周期为π2,最大值为2D .函数()f x 的最小正周期为π10.若函数()2cos 2(0)3f x x πωω⎛⎫=-> ⎪⎝⎭在区间,62ππ⎛⎫⎪⎝⎭内単调递减.则ω的最大值为( )A .23 B .34 C .43 D .3211.函数()sin cos y x =的图象大致是( )A .B .C .D .12.已知函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭,则下列说法正确的个数为( )①f (x )的最小正周期是π;②f (x )的图象关于的5,012π⎛⎫- ⎪⎝⎭对称;③f (x )在,63ππ⎡⎤⎢⎥⎣⎦上为减函数;④f (x )的一条对称轴是x =12π.A .4个B .3个C .2个D .1个二、填空题13.函数sin 3y x π⎛⎫=- ⎪⎝⎭的单调递增区间为________.14.已知函数()2cos (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,在[]0,π内的值域为⎡-⎣,则ω的取值范围为________.15.函数()212sin y x x R =-∈的值域为________.16.若函数()cos f x a x b =+的最大值是4,最小值是2-,则a b -=________ 三、解答题17.如图为函数()()sin (00)2f x A x A x R πωϕωϕ=+>><∈,,,的部分图象.(1)求函数解析式;(2)已知()[0,]f ααπ≥∈,求α的取值范围; (3)若方程()f x m =在3[0,]4π上有两个不相等的实数根,则实数m 的取值范围.18.已知()()ππsin ,0,,22f x A x B A ωϕωϕ⎛⎫⎛⎫=++>∈- ⎪ ⎪⎝⎭⎝⎭,其图象在一个周期内,当π6x =时,取得最大值5,当2π3x =时,取得最小值1. (1)求()f x ;(2)若ππ,44x ⎡⎤∈-⎢⎥⎣⎦,求()f x 的最值及相应的x 的取值.19.已知定义在R 上的函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭在6x π=时取到最大值()f x 的最小的正的零点为76π. (1)求()f x 的解析式;(2)若关于x 的方程()6f x m π-=在区间[]0,π上有实根,求实数m 的取值范围.20.已知函数()()2cos 2cos 0ωωωω=+>f x x x x 的最小正周期为π. (1)求ω的值和函数()f x 的单调增区间;(2)求函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的取值范围.21.已知函数2()cos 2sin 1f x x x x =-+.(1)若角α的终边与单位圆交于点34,55P ⎛⎫⎪⎝⎭,求()f α的值;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的单调递增区间和值域.22.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示.(1)求()f x 的解析式;(2)若16[],3x m ∈,函数()f x 的值域为3,32⎡⎤-⎢⎥⎣⎦,求m 的取值范围.参考答案1.C 【分析】先判断函数的奇偶性,再求函数的零点,由函数()f x 的符号,利用排除法即可得正确选项. 【详解】()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭定义域为R ,关于原点对称, ()()22e 2e 1s 22in 1sin 1sin 1e 1e 1e x x x x xf x x x x -⎛⎫⎛⎫⎛⎫-=--=--=-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭+- 21si 2n 1e x x ⎛⎫=--- ⎪+⎝⎭21sin 1e x x ⎛⎫=-- ⎪+⎝⎭()21sin 1xx f x e ⎛⎫=-= ⎪+⎝⎭, 所以()f x 是偶函数,图象关于y 轴对称,故排除选项B 、D ; 当0x >时,令()21sin 01xf x x e ⎛⎫=-= ⎪+⎝⎭可得0x =或()πZ x k k =∈, 所以0x >时,两个相邻的零点为0x =和πx =, 当0πx <<时,2101xe -<+,sin 0x >,()21sin 01xf x x e ⎛⎫=-< ⎪+⎝⎭, 故排除选项A , 故选:C. 2.C 【分析】先求出()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭的单调递减区间,进而可知72266,,63k k ππππππωω⎡⎤++⎢⎥⎡⎤⊆⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,从的根据集合的包含关系即可求出结果. 【详解】72266226k k k x k x ππππππωππωω++-+⇒≤≤≤≤, 所以()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭的单调减区间为72266,k k ππππωω⎡⎤++⎢⎥⎢⎥⎢⎥⎣⎦,所以72266,,63k k ππππππωω⎡⎤++⎢⎥⎡⎤⊆⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,所以2667263k k πππωπππω⎧+⎪≤⎪⎪⎨⎪+⎪≥⎪⎩,解得121762k k ωω≥+⎧⎪⎨≤+⎪⎩,且k Z ∈,则712ω≤≤,则ω的取值范围是71,2⎡⎤⎢⎥⎣⎦,故选:C. 3.C 【分析】求出最小正周期可得. 【详解】函数的最小正周期是22T ππ==,因此相邻两条对称轴之间的距离是22T π=. 故选:C . 4.A 【分析】利用正弦函数、余弦函数的周期2T ωπ=以及单调性逐一判断即可.【详解】A ,cos 2y x =,2T ππω==,由余弦函数的单调递增区间可得222,k x k k Z πππ-≤≤∈, 解得,2k x k k Z πππ-≤≤∈,当1k =时,2x ππ≤≤,故A 正确;B ,sin 2y x =,2T ππω==,由余弦函数的单调递增区间可得222,22k x k k Z ππππ-≤≤+∈,解得,44k x k k Z ππππ-≤≤+∈,显然在区间2ππ⎛⎫⎪⎝⎭,上不单调,故B 错误;C ,1cos 2y x =,24T ππω==,故C 错误; D ,1sin 2y x =,24T ππω==,故D 错误; 故选:A 5.D 【分析】 根据123PQ QR π==,得到周期T ,然后计算ω,利用P ,Q 的对称性,求出P 点的横坐标,代入求解即可. 【详解】 解:123PQ QR π==, ||3PQ π∴=,2||3QR π=, 则2|||33T PQ QR πππ=+=+=, 即2ππω=,即2ω=,即()sin(2)26f x x π=++,||3PQ π=,3Q P x x π∴-=,2266P Q x x πππ+++=,得0P x =,此时15sin(2)2sin 226622P m x ππ=++=+=+=.故选:D . 6.A 【分析】由诱导公式化简函数式后确定奇偶性可得. 【详解】四个函数的最小正周期都是π, cos(2)sin 22y x x π=+=-是奇函数,sin(2)cos 22y x x π=+=是偶函数,sin(2)4y x π=+,0x =时,sin 4y π==,函数图象不过原点,也不关于y 轴对称,既不是奇函数也不是偶函数,cos(2)cos 2y x x π=+=-是偶函数.故选:A . 7.D【分析】根据余弦函数的对称中心、对称轴,应用整体代入判断各选项的正误. 【详解】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈, 当1k =时,3x π=,易知C 错误,D 正确;故选:D 8.C【分析】在同个坐标系画出两个函数可得它们交点的个数,即可得出结果. 【详解】函数()f x 的零点个数就是sin y x =π与5log y x =的图像交点的个数, 在同个坐标系中作图,如下,它们共有5个不同的交点,故()f x 的零点个数为5. 故选:C9.A【分析】由题意可得()=()2f x f x π+,故()f x 的最小正周期为2π,根据[0,]2x π∈时,())4f x x π=+∈,进而得到最大值和最小值.【详解】由()cos sin f x x x =+,得()cos()sin()222f x x x πππ+=+++=cos sin ()x x f x +=,()=()2f x f x π+,所以()f x 的最小正周期为2π,故排除B 、D ; 当[0,]2x π∈时,()cos sin cos sin )4f x x x x x x π=+=+=+,由[0,]2x π∈得3[,]444x πππ+∈,所以sin()4x π+∈,所以())4f x x π=+∈,所以一个周期内,()f x 的最小值为1C. 故选:A 10.C 【分析】根据已知条件可得出关于ω的不等式组,解出ω的取值范围,即可得解. 【详解】()2cos 22cos 2(0)33f x x x ππωωω⎛⎫⎛⎫=-=-> ⎪ ⎪⎝⎭⎝⎭当,62x ππ⎛⎫∈ ⎪⎝⎭且0>ω时,23333x πωπππωπω-<-<-, 因为余弦函数cos y x =的单调递减区间为[]()2,2k k k Z πππ+∈,所以,[](),2,2333k k k Z πωπππωπππ⎛⎫--⊆+∈⎪⎝⎭, 所以,23323k k πωππππωππ⎧-≥⎪⎪⎨⎪-≤+⎪⎩,解得()46123k k k Z ω+≤≤+∈,由42613k k +≥+,可得112k ≤,k Z ∈且0>ω,0k ∴=,413ω≤≤. 因此,ω的最大值为43.故选:C11.A【分析】首先判断函数的奇偶性,再根据函数的值域即可判断;【详解】解:根据题意,()sin(cos )f x x =,其定义域为R ,有()sin[cos()]sin(cos )()f x x x f x -=-==,()f x 为偶函数,函数图象关于y 轴对称,排除D , 又由1cos 1x -,则sin1()sin1f x -,即()f x 的值域为[sin1-,sin1],因为012π<<,所以0sin11<<,排除B 、C , 故选:A .12.B【分析】对①,2||T πω=即可得到答案; 对②,将x =512π-代入函数解析式即可判断; 对③,算出23x π+的范围,再结合y =cosx 的减区间即可判断; 对④,将x =12π代入函数解析式即可判断.【详解】 函数f (x )=cos (2x +3π), 对①,f (x )的最小正周期是π,故①正确;对②,当x =512π-时,f (﹣512π)=0,故f (x )的图象关于的(﹣512π,0)对称,故②正确;对③,由于x ∈[,63ππ],所以22,33x πππ⎡⎤+∈⎢⎥⎣⎦,故函数f (x )在该区间上为减函数,故③正确;对④,当x =12π时,f (12π)=0≠±1,故函数的一条对称轴不是x =12π,故④错误. 故选:B.13.52,2,66k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭ 【分析】利用整体代入法求得函数的单调递增区间.【详解】 由22232k x k πππππ-≤-≤+,可得+2266k x k π5π-π≤≤+π, 所以函数的单调递增区间为52,2,66k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭. 故答案为:52,2,66k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭. 14.55,63⎡⎤⎢⎥⎣⎦【分析】 根据余弦函数的图象与性质,结合题意得出1166πππωπ+,从而求出ω的取值范围. 【详解】 解:函数()2cos (0)6f x x πωω⎛⎫=+> ⎪⎝⎭,当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,又()f x ⎡∈-⎣,1cos 6x πω⎛⎫∴-≤+ ⎪⎝⎭,画出图形如图所示;所以1166πππωπ+, 解得5563ω, ω∴的取值范围是55,63⎡⎤⎢⎥⎣⎦. 故答案为:55,63⎡⎤⎢⎥⎣⎦. 15.[]1,1-【分析】根据正弦函数性质,结合二次函数性质可得.【详解】x ∈R ,1sin 1x -≤≤,所以2112sin 1x -≤-≤,值域为[1,1]-.故答案为:[1,1]-.16.2或-4【分析】对0,0a a ><分类讨论,结合余弦函数的有界性,用,a b 表示出()f x 的最值,得到关于,a b 的方程,求解即可.【详解】当0a >时,max min ()4,()2f x a b f x a b =+==-+=-,解得3,1,2a b a b ==-=;当0a <时,max min ()4,()2f x a b f x a b =-+==+=-,解得3,1,4a b a b =-=-=-,综上,2a b -=或4-.故答案为:2或4-.17.(1)()sin(2)3f x x π=+;(2)06πα≤≤;(3)112m ≤-<-1m ≤<. 【分析】(1)由图象结合三角函数的性质求出,,A ωφ即可求解.(2)利用正弦函数的图象可得2222,333k k k Z ππππαπ+≤+≤+∈,解不等式即可. (3)求出函数在区间3[0,]4π上的单调性并作出图象,根据()sin(2)3f x x π=+与y m =有两个交点即可求解.【详解】(1)由题意可知,1,44T A π==,,2πω∴==T 函数过7(1)12π-,点,7sin()16πφ∴+=- 2,,323k k Z πππφπφφ∴=+∈≤∴= ∴()sin(2)3f x x π=+.(2)2()222333f k k πππαπαπ≥∴+≤+≤+,k Z ∈,,[0,],066k k k Z πππαπαπα∴≤≤+∈∈∴≤≤.(3)令222232k x k πππππ-+≤+≤+,k Z ∈ 5,1212k x k k Z ππππ∴-+≤≤+∈ 3[0,]4x π∈,()f x ∴在[0,]12π上为增, 在7[,]1212ππ上为减,在73[,]124ππ上为增. 作出()sin(2)3f x x π=+在区间3[0,]4π上的图象.()f x m =由两个零点,即()sin(2)3f x x π=+与y m =有两个交点.112m ∴-<≤-1m ≤<.18.(1)()π2sin 236f x x ⎛⎫=++ ⎪⎝⎭;(2)最大值为5,此时π6x =;最小值为3此时π4x =-. 【分析】(1)由条件中的最值确定,A B ,由最值点确定周期,求得ω;(2)由(1)可知()π2sin 236f x x ⎛⎫=++ ⎪⎝⎭,先求26x π+的范围,再求函数的最值,以及相应的x 的取值. 【详解】解:(1)5122A -==,5132B +==, 2πππ2ππ22362T T ωω=-=⇒==⇒=. 所以()()2sin 23f x x ϕ=++,由π56f ⎛⎫= ⎪⎝⎭,且ππ,22ϕ⎛⎫∈- ⎪⎝⎭,得π6ϕ=, 所以()π2sin 236f x x ⎛⎫=++ ⎪⎝⎭.(2)因为ππ,44x ⎡⎤∈-⎢⎥⎣⎦,所以ππ2π2363x -≤+≤, 所以函数()f x 在ππ,44⎡⎤-⎢⎥⎣⎦上的最大值为5,此时ππ262x +=,即π6x =;最小值为3ππ263x +=-,即π4x =-.19.(1)15()212f x x π⎛⎫=+ ⎪⎝⎭;(2). 【分析】(1)由周期求得ω,由最大值求得A ,由最大值点坐标求得ϕ,得解析式;(2)求出()6f x π-在[0,]π上的取值范围,则可得m 的范围. 【详解】解:(1)根据题意A =设最小正周期为T ,则4T π=,即24ππω=,因此12ω=.故1()2f x x ϕ⎛⎫=+ ⎪⎝⎭.又1626f ππϕ⎛⎫⎛⎫=⋅+= ⎪ ⎪⎝⎭⎝⎭即sin 112πϕ⎛⎫+= ⎪⎝⎭,则2()122k k Z ππϕπ+=+∈, 52()12k k Z πϕπ=+∈. 又2πϕ≤,故512πϕ=.因此,15()212f x x π⎛⎫=+ ⎪⎝⎭.(2)方程6f x m π⎛⎫-= ⎪⎝⎭,即123x m π⎛⎫+= ⎪⎝⎭,因为[]0,x π∈,所以15,2336x πππ⎡⎤+∈⎢⎥⎣⎦,故123x π⎛⎫+∈ ⎪⎝⎭.因此,m 的取值范围为.20.(1)1ω=,,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)()[]2,3f x ∈. 【分析】(1)利用二倍角公式以及两角和与差的三角函数,化简函数的解析式,然后通过周期得到ω,然后求解单调区间.(2)由x 的取值范围,求出26x π+的取值范围,然后根据正弦函数的性质求解函数的值域即可.【详解】(1)∵()2cos 2cos f x x x x ωωω=+所以()cos 1cos 2f x x x x ωωω=++2cos 212sin 216x x x πωωω⎛⎫=++=++ ⎪⎝⎭ 函数()f x 的最小正周期为22T ππω==,∴1ω=. 所以()2sin 216f x x π⎛⎫=++ ⎪⎝⎭ 由222262k x k πππππ-≤+≤+,k Z ∈得36k x k ππππ-≤≤+,k Z ∈. ∴函数()f x 的单调增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (2)∵03x π≤≤,∴52666x πππ≤+≤,1sin 2126x π⎛⎫≤+≤ ⎪⎝⎭ ∴当0x =或3x π=时,()min 2f x =⎡⎤⎣⎦ 当6x π=时,()min 3f x =⎡⎤⎣⎦∴()[]2,3f x ∈21.(1;(2),,[1,2]66ππ⎡⎤--⎢⎥⎣⎦. 【分析】(1)利用三角函数的定义求出()f α的值;(2)利用三角恒等变换化简解析式,由正弦函数的性质得出单调增区间以及值域.【详解】(1)角α的终边与单位圆交于点34,55P ⎛⎫ ⎪⎝⎭ 43sin ,cos 55αα∴== 22434()cos 2sin 125551f αααα⎛⎫∴=-+=⨯-⨯ ⎝+⎪⎭(2)2()cos 2sin 12cos 22sin 26f x x x x x x x π⎛⎫=-+=+=+ ⎪⎝⎭ 由222,262k x k k Z πππππ-≤+≤+∈得,36k x k k Z ππππ-≤≤+∈又,63x ππ⎡⎤∈-⎢⎥⎣⎦,()f x ∴的单调增区间是,66ππ⎡⎤-⎢⎥⎣⎦ ,63x ππ⎡⎤∈-⎢⎥⎣⎦,52666x πππ∴-≤+≤,1sin 2126x π⎛⎫∴-≤+≤ ⎪⎝⎭ 故函数()f x 的值域为[1,2]-22.(1)()23cos 23f x x ππ⎛⎫=+ ⎪⎝⎭;(2)20,83⎡⎤⎢⎥⎣⎦. 【分析】 (1)利用最高点求出A ,利用4分之一周期长度求出ω,利用函数过4,33⎛⎫- ⎪⎝⎭求出23ϕπ=即可:(2)利用整体换元法求解函数值域即可求解【详解】解:(1)由图可得3A =,474433T ⎛⎫=-+= ⎪⎝⎭. 因为0>ω, 所以22T ππω==, 所以()3cos 2f x x πϕ⎛⎫=+ ⎪⎝⎭. 因为()f x 的图象经过点4,33⎛⎫- ⎪⎝⎭, 所以3cos 33πϕ⎛⎫-+= ⎪⎝⎭, 所以()223k k πϕπ-+=∈Z , 所以()223k k πϕπ=+∈Z . 因为0ϕπ<<,所以23ϕπ=. 故()23cos 23f x x ππ⎛⎫=+ ⎪⎝⎭. (2)因为163x m ≤≤, 所以102232323m x πππππ≤+≤+. 因为()f x 的值域为3,32⎡⎤-⎢⎥⎣⎦, 所以2144233m ππππ≤+≤.解得2083m≤≤.故m的取值范围为20,83⎡⎤⎢⎥⎣⎦.。
高中数学必修一-三角函数图像性质总结(精华版)
(2) /(航+如型三角函数的奇偶性(i ) g (x ) = /沏(颜+如(x€ R)(x)为偶函数匕鼠U 力(而+ 出=j4sin (-<at + 炉)(x W 氏)0 sin 曲匚*0=。
(工 W R )7Tcos 卯=。
=上7T+一1左 e Z )由此得 2 ,同理,式夫4皿皈+双相的 为奇函数 =顺@=0/3=上网海2)(ii )飙# =+劭SwR]妖N = .Aa 式题+钠为偶函数见双t");就= 式以+如为奇函数7T=中=无产+ — (k e Z)3、周期性(1)基本公式(ii) 〃皈+⑺+氏型三角函数的周期竺y =+ G + 5 =加+中出 的周期为何;(一)三角函数的性质1、定义域与值域2、奇偶性(1)基本函数的奇偶性奇函数:y = sinx y= tanx ; 偶函数:y=cosx.(i )基本三角函数的周期的周期为;丁.y=sinx , y=cosx 的周期为 之并 ;y = tanx , y = cotx4-212yy=cotxy=tanx 3-32X 03 27 3,y=cosx-5-4 .7223 2322 5 2“如血的+朗+9=心服如+沟+用的周期为何.(2)认知⑴A =1/W +创型函数的周期y = |月劭(枷+或)| j = A 匚。
5(西+励|(ii )若函数为,(收斗劭 型两位函数之和,则探求周期适于“最小公倍数法”. (iii )探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明.(3)特殊情形研究JT(i ) y = tanx — cotx 的最小正周期为27T(ii ) y=卜由H+|M 幻的最小正周期为,;7T(iii ) y = sin 4x + cos 4x 的最小正周期为,. _由此领悟“最小公倍数法”的适用类型,以防施错对象 .4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期;②写特解:在所选周期内写出函数的增区问(或减区问);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 .揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域(2) y=/(而+初 型三角函数的单调区问的周期为y = (助+切1_r= |达匚祖(姗+阖| 的周期为 7T(ii) > = 1/(耽+如+同3=0)的周期1y 二|金£血(为工卜8]妣+3)+甘¥ = |例如(而+5+上] J = |总二加侬大+的+. 的周期为祠;,7T的周期为:. 均同它们不加绝对值时的周期相同,即对 数的周期不变.注意这一点与(i )的区别.y=八加+◎+上的解析式施加绝对值后,该函此类三角函数单调区间的寻求“三部曲”为 ①换元、分解:令u =z 中,将所给函数分解为内、外两层:y = f (u) , u =®x+卯;②套用公式:根据对复合函数单调性的认知,确定出 f (u)的单调性,而后利用(1)中公 式写出关于u 的不等式;③还原、结论:将u =^+W 代入②中u 的不等式,解出x 的取值范围,并用集合或区间 形成结论.正弦、余弦、正切、余切函数的图象的性质:/y sinx y cosxy tanxy cotxy Asin x(A 、 >0)定义域 R R x | x R 且 x k 1 ,k Zx| x R 且x k ,k ZR值域 [1, 1][1, 1]R RA, A周期性 2 22奇偶性奇函数 偶函数奇函数 奇函数当 0,非奇非偶 当0,奇函数单调性[2 2k , —2k ] 2上为增函 数; [2 2k ,3——2k ] 2上为减函 数(k Z )[2k 1 , 2k ]上为增函 数[2k , 2k 1 ]上为减函数(k Z )一k ,一 k 2 2 上为增函数(k Z )k , k 1上为减函数(k Z )2k2(A),2k -2( A)上为增函数;2k 一------ 2— (A), 2k------ 2——(A)上为减函数(k Z )注意:①y sinx 与y sinx 的单调性正好相反;y cosx 与y cosx 的单调性也同样相反.一般 地,若y f(x)在[a,b ]上递增(减),则y f (x)在[a,b ]上递减(增)y忖n x 与y cosx 的周期是.-(k Z),对称中心(k ,0); y cos( x )的对称轴方); y tan( x )的对称中心(工,0).,02③ y sin( x )或 y cos( x )0)的周期T 2y tan x 的周期为2 2 (T _ T 2,如图,翻折无效)④y sin( x )的对称轴方程是x k 程是x k (k Z ),对称中心(ky cos2x 原点对称 y cos( 2x) cos2x⑤ 当 tan tan 1, k ,(k Z) ; tan tan 1, k ,(k Z).⑥y cosx 与y s in x _ 2k是同一函数,而y ( x )是偶函数,则2 1 、,、y ( x ) sin( x k ) cos( x).2⑦函数y tanx 在R 上为增函数.(耳[只能在某个单调区间单调递增 .若在整个定义域,y tanx 为增函数,同样也是错误的].⑧定义域关于原点对称是f (x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域 关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f( x) f(x),奇函数:f( x) f(x)) 奇偶性的单调性:奇同偶反.例如:y tanx 是奇函数,y tan(x 1)是非奇非偶.(定义域不 3 关于原点对称)奇函数特有性质:若0 x 的定义域,则f(x)一定有f(0) 0. (0 x 的定义域,则无此性质)⑨y sinx 不是周期函数;y sinx 为周期函数(T ); y cosx 是周期函数(如图);y cosx 为周期函数(T );y cos2x1的周期为(如图),并非所有周期函数都有最小正周期,2y f (x) 5 f (x k),k R . ⑩ y a cos bsinVa 2 b 2sin( ) cos b 有 Va 2 b 2 y .、形如y Asin( x )的函数:11、几个物理量:A 一振幅;f 1—频率(周期的倒数);x 一相包; 一初相;2、函数y Asin( x )表达式的确定:A 由最值确定; 由周期确定; 由图象上的特殊点确定,如 f(x) Asin( x )(A 0,0, | 3.函数 y Asin( x ) B (其中 A 0,0)最大值是A B,最小值是B A,周期是T —,最小正周期T 六频率是f「相位是x,初相是;其图象的对称轴是直线x k 7k Z),凡| "^0的图象如图所小,则f (x)(答:f(x)152sin(-2x -));y=| cos2x+1/2|图象是该图象与直线y B 的交点都是该图象的对称中心4、研究函数y Asin( x )性质的方法:类比于研究y sin x 的性质,只需将y Asin( x ) 中的x 看成y sinx 中的x,但在求y Asin( x )的单调区间时,要特别注意 A 和 的 符号,通过诱导公式先将 化正。
正弦函数、余弦函数的图像(基础知识+基本题型)(含解析)
5.4.1 正弦函数、余弦函数的图像(基础知识+基本题型)知识点一 正弦函数的图象 1.正弦曲线的几何作法正弦函数sin ,y x x R 的图象如图,我们把正弦函数的图象叫做正弦曲线.如图,在直角坐标系的x 轴上取一点1O ,以1O 为圆心,单位长为半径作圆,从圆1O 与x 轴的交点A 起,把圆1O 分成12等份(份数越多,画出的图象越精确).过圆1O 上各分点作x 轴的垂线,得到对应于0,,,,,2632等角的正弦线,相应地,再把x 轴上从0到2这一段分成12等份,把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合,再把这些正弦线的终点用光滑曲线连接起来,即得sin ,[0,2]y x x 的图象.2.用“五点法”作sin ,[0,2]y x x 的简图在函数sin ,[0,2]y x x 的图象上,起关键作用的点有五个:(0,0),(,1)2,(,0),3(,1)2,(2,0). 一般地,在精确度要求不高时,我们常常先找出这五个关键点,再用光滑的曲线将它们连接起来,就得到正弦函数在[0,2]上的简图.这种方法叫“五点法”.【提示】(1)“五点法”作三角函数图象的实质是分别找到函数图象的最高点、最低点及三个平衡点,这五个点大致确定了函数图象的位置与形状.(2)用“五点法”作sin ,[0,2]y x x 的图象后,将其向左右平移(每次2个单位长度),可得出sin ,y x x R 的图象.知识点二 余弦函数的图象 1.利用图象变换作余弦函数的图象 由诱导公式六,有cos sin()2y x x .因此,将正弦函数sin ,y x x R 的图象向右平移2个单位长度,就得到函数sin()cos ,2y x x x R 的图象. 我们把余弦函数cos ,y x x R 的图象叫做余弦曲线,如图所示.2.用“五点法”作cos ,[0,2]y x x 的简图在函数cos ,[0,2]y x x 的图象上,起关键作用的点是它与x 轴的交点、函数图象的最高点和最低点,它们的坐标依次为:(0,1),(,0)2,(,1),3(,0)2,(2,1).用光滑的曲线将它们连接起来,就得到余弦函数在[0,2]上的简图.【提示】(1)作余弦函数图象时,可通过正弦函数的图象平移得到,但要注意平移的单位长度. (2)作x R 的余弦函数图象,可由cos ,[0,2]y x x 的图象左右平移得到,也可由 sin ,y x x R 的图象向左平移2个单位长度得到.考点一 通过图象变换作函数的图象 【例1】作函数32sin y x π⎛⎫=+⎪⎝⎭的图象. 解:3sin |cos |2y x x π⎛⎫=+= ⎪⎝⎭cos 22,Z 22,3cos 22,Z .22x k x k k x k x k k ππππππππ⎧⎛⎫-+≤≤+∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<<+∈ ⎪⎪⎝⎭⎩故|cos |y x =的图象实际就是cos y x =的图象在x 轴下方的部分翻折到x 轴上方后得到的图象,如图由于余弦函数的图象是利用诱导公式依据图象变换画出的,故掌握利用诱导公式化简三角函数式也是画三角函数图象的切入点。
正、余弦函数的图象与性质重难点题型
【变式3-2】画出下列函数的图象.
(1) , ,
(2) , , .
【分析】(1)用五点法作出函数y=1+3cosx在一个周期上的简图.
(2)用五点法作出函数y=2sinx﹣1在一个周期上的简图.
【答案】解:(1)列表:
化简可得 ,解得﹣ <x< .
故函数的定义域为(﹣ , ),
故答案为(﹣ , ).
【点睛】本题主要考查求余弦函数的定义域和值域,求对数函数的定义域,属于基础题.
【考点2正、余弦函数的值域】
【例2】(2018秋•启东市校级月考)函数 在区间 上的值域为.
【分析】由题意利用正弦函数的定义域和值域,求得函数f(x)=sin 在区间 上的值域.
要点诠释:
(1)熟记正弦函数、余弦函数图象起关键作用的五点。
(2)若 ,可先作出正弦函数、余弦函数在 上的图象,然后通过左、右平移可得到 和 的图象。
(3)由诱导公式 ,故 的图象也可以将 的图象上所有点向左平移 个单位长度得到。
【知识点2正弦曲线、余弦曲线】
1.定义:正弦函数 和余弦函数 的图象分别叫做正弦曲线和余弦曲线。
1.定义是对I中的每一个 值来说的,只有个别的 值满足 或只差个别的 值不满足 都不能说T是 的一个周期.
2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期.
【知识点5正弦函数、余弦函数的图象和性质】
函数
正弦函数y=sinx
余弦函数y=cosx
【答案】解:令t=sinx,t∈[﹣1,1],
所以: ,
高一数学 三角函数的图像及性质
三角函数一、知识梳理1.正弦函数、余弦函数和正切函数的图象与性质:2.周期函数定义:对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的周期.结论:如果函数)()(k x f k x f -=+对于R x ∈任意的,那么函数()f x 的周期T=2k ;如果函数)()(x k f k x f -=+对于R x ∈任意的,那么函数()f x 的对称轴是k x k k x x =-++=2)()(3.图象的平移对函数y =A sin (ωx +ϕ)+k (A .>.0.,. ω.>.0.,. ϕ.≠0..,. k .≠0..).,其图象的基本变换有: (1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1,伸长;A <1,缩短. (2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长. (3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移. (4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0,下移二、方法归纳1.求三角函数的值域的常用方法:① 化为求代数函数的值域;② 化为求sin()y A x B ωϕ=++的值域; ③ 化为关于sin x (或cos x )的二次函数式;2.三角函数的周期问题一般将函数式化为()y Af x ωϕ=+(其中()f x 为三角函数,0ω>).3.函数sin()y A x ωϕ=+为奇函数k ϕπ⇔=()k ∈Z ; 函数sin()y A x ωϕ=+为偶函数2k πϕπ⇔=+()k ∈Z函数cos()y A x ωϕ=+为偶函数k ϕπ⇔=; 函数cos()y A x ωϕ=+为奇函数2k πϕπ⇔=+()k ∈Z4.函数sin()y A x ωϕ=+(0,0)A ω>>的单调增区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出,单调减区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出; 函数sin()y A x ωϕ=+(0,0)A ω<>的单调增区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出, 单调减区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出.5.对称性:(1)函数sin()y A x ωϕ=+对称轴可由2x k πωϕπ+=+()k ∈Z 解出;对称中心的横坐标是方程x k ωϕπ+=()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法) (2)函数()cos y A x ωϕ=+对称轴可由x k ωϕπ+=()k ∈Z 解出;对称中心的横坐标是方程2x k πωϕπ+=+()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法)(3)函数()tan y A x ωϕ=+对称中心的横坐标可由2kx ωϕπ+=()k ∈Z 解出, 对称中心的纵坐标为0,函数()tan y x ωϕ=+不具有轴对称性.三、课堂例题精讲例1.下列函数中,周期为2π的是( ) A.sin 2x y = B.sin 2y x =C.cos4x y = D.cos 4y x =答案:D例2.已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( ) A.关于点0π⎛⎫ ⎪3⎝⎭,对称B.关于直线x π=4对称 C.关于点0π⎛⎫ ⎪4⎝⎭,对称D.关于直线x π=3对称 答案:A.解析:由题意知2ω=,所以解析式为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,经验证可知它的一个对称中心为,03π⎛⎫⎪⎝⎭.例3.函数的最小正周期和最大值分别为( )A.π,1B.π2C.2π,1D.2π2答案:A.解析:x x x x x y 2cos 232sin 212cos 212cos 232sin =⋅-⋅+⋅+⋅=,∴T =π,y max =1 例4.函数[]()sin 3(π0)f x x x x =∈-,的单调递增区间是( )A.5ππ6⎡⎤--⎢⎥⎣⎦,B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,答案:D.解析:因为⎪⎭⎫ ⎝⎛π-=3sin 2)(x x f ,.0,6656,0),(65262),(22322符合题意由此可得得令得令⎥⎦⎤⎢⎣⎡π-π≤≤π-=∈π+π≤≤π-π∈π+π≤π-≤π-πx k k k x k k k x k Z Z例5.将⎪⎭⎫⎝⎛π+=63cos 2x y 的图象按向量a =⎪⎭⎫⎝⎛-π-2,4平移,则平移后所得图象的解析式为( ) A.243cos 2-⎪⎭⎫⎝⎛π+=x y B. 243cos 2+⎪⎭⎫ ⎝⎛π-=x y C. 2123cos 2-⎪⎭⎫ ⎝⎛π-=x y D. 2123cos 2+⎪⎭⎫⎝⎛π+=x y 答案:A.解析:看向量a =⎪⎭⎫⎝⎛-π-2,4的数据“符号”,指令图象左移和下移,按“同旁相减,异旁相加”的口诀,立可否定B 、C 、D.例6.函数sin y x =的一个单调增区间是( )A.ππ⎛⎫- ⎪44⎝⎭, B.3ππ⎛⎫ ⎪44⎝⎭, C.3π⎛⎫π ⎪2⎝⎭,D.32π⎛⎫π⎪2⎝⎭, 答案:C解析:法一:∵函数sin y x =的一个单调递增区间为⎥⎦⎤⎢⎣⎡π2,0, 又函数sin y x =是以π为周期的函数,∴函数sin y x =的单调递增区间为⎥⎦⎤⎢⎣⎡π+ππ2,k k (k ∈Z ).当k =1时,函数sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C. 法二:作出函数sin y x =的图象,由图易知sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C.法三:将每个选择支中区间的两个端点值代入函数表达式,A 、B 两个选择支的端点值相等,而选择支D 的左端点值大于右端点值, 所以根据单调递增的概念判断,可排除A 、B 、D ,故选C.例7.函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= .答案: ω=3例8.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()2cos 21g x x ϕ=++的图象的对称轴完全相同.若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围是 . 答案:3[-,3]2解析:由题意知,2ω=,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,由三角函数图象知:()f x 的最小值为33sin (-)=-62π,最大值为3sin =32π, 所以()f x 的取值范围是3[-,3]2. 例9.定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图象与y=5tanx 的图象的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图象交于点P 2,则线段P 1P 2的长为 . 答案:23解析“线段P 1P 2的长即为sinx 的值,且其中的x 满足6cosx=5tanx ,解得sinx=23. 故线段P 1P 2的长为23.例10.设函数()f x =·a b ,其中向量(cos2)mx =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫⎪⎝⎭,. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.解析:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1 由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,. 例11. 已知函数()sin(),(0,0)f x x ωϕωϕπ=+>≤≤是R 上的偶函数,其图象关于点M )0,43(π对称,且在区间[0,2π]上是单调函数,求ϕ和ω的值. 解析:由)(x f 是偶函数,得)()(x f x f =-,故sin()sin()x x ωϕωϕ-+=+,cos sin cos sin x x ϕωϕω-=对任意x 都成立, 且0,cos 0.ωϕ>∴=依题设0≤ϕ≤π,cos .2πϕ∴=由)(x f 的图象关于点M 对称,得)43()43(x f x f +-=-ππ取0)43(),43()43(0=∴-==πππf f f x 得 0)43cos(),43cos()243sin()43(=∴=+=x x x f ωωπωπ又0>ω,得......2,1,0,243=+=k k x ππω ...2,1,0),12(32=+=∴k k ω当0=k 时,)232sin()(,32πω+==x x f 在]2,0[π上是减函数.当1=k 时,)22sin()(,2πω+==x x f 在]2,0[π上是减函数. 当k ≥2时,)2sin()(,310πωω+==x x f 在]2,0[π上不是单调函数. 所以,综合得32=ω或2=ω.四、课后作业1.函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A.233ππ⎛⎫ ⎪⎝⎭,B.62ππ⎛⎫ ⎪⎝⎭,C.03π⎛⎫ ⎪⎝⎭,D.66ππ⎛⎫- ⎪⎝⎭,2.已知函数()f x =Acos (x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( ) A.23-B .23 C.32 D. 32-3. 设ω>0,函数f (x )=2sinωx 在]4,3[ππ-上为增函数,那么ω的取值范围是 .4.判断方程sinx=π100x实数解的个数.5.求函数y=2sin )4(x -π的单调区间.6.已知函数()f x =xx x 2cos 1cos 3cos 224+-,求它的定义域和值域,并判断奇偶性.100л7.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.8.设()f x = x x 2sin 3cos 62-, (1)求()f x 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求tan α54的值.9. 求下列函数的值域: (1)y=x x x cos 1sin 2sin -; (2)y=sinx+cosx+sinxcosx ; (3)y=2cos )3(x +π+2cosx.10.已知函数f (x )=-sin 2x+sinx+a ,(1)当f (x )=0有实数解时,求a 的取值范围; (2)若x ∈R ,有1≤f (x )≤417,求a 的取值范围.11.已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (Ⅰ)求()f x 的最大值和最小值;(Ⅱ)若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.12.已知f (x )=2a sin 2x -22a sin x +a +b 的定义域是[0,2π],值域是[-5,1],求a 、b 的值.参考答案: 1.答案:A 2.答案:C 3.答案:203ω<≤ 4.答案:199 解析:方程sinx=π100x 的实数解的个数等于函数y=sinx 与y=π100x 的图象交点个数, ∵|sinx|≤1∴|π100x|≤1, |x|≤100л 当x≥0时,如下图,此时两线共有100个交点, 因y=sinx 与y=π100x都是奇函数,由对称性知当x≤0时,也有100个交点, 原点是重复计数的,所以只有199个交点. 5.解析:y=2sin )4(x -π可看作是由y=2sinu 与u=x -4π复合而成的.又∵u=x -4π为减函数,∴由2k π-2π≤u ≤2k π+2π(k ∈Z ),得-2k π-4π≤x ≤-2k π+43π (k ∈Z ). 即⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z )为y=2sin )4(x -π 的递减区间. 由2k π+2π≤u ≤2k π+23π (k ∈Z ), 得2k π+2π≤4π-x ≤2k π+23π(k ∈Z ), 解得-2k π-45π≤x ≤-2k π-4π (k ∈Z ),即⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z )为y=2sin )4(x -π的递增区间. 综上可知:y=2sin )4(x -π的递增区间为⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z ); 递减区间为⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z ). 6.解析:由题意知cos2x≠0,得2x≠k π+2π, 解得x≠42ππ+k (k ∈Z ). 所以()f x 的定义域为⎭⎬⎫⎩⎨⎧∈+≠∈Z R k k x x x ,42ππ且,. 又()f x =xx x 2cos 1cos 3cos 224+-=x x x 2cos )1)(cos 1cos 2(22--=cos 2x-1=-sin 2x.又定义域关于原点对称, ∴()f x 是偶函数. 显然-sin 2x ∈[-1,0],但∵x≠42ππ+k ,k ∈Z . ∴-sin 2x≠-21.所以原函数的值域为⎭⎬⎫⎩⎨⎧≤<--<≤-021211|y y y 或.7.解析:(Ⅰ)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上增,在区间3π3π84⎡⎤⎢⎥⎣⎦,上减,又π08f ⎛⎫=⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:由图象得函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为3π14f ⎛⎫=- ⎪⎝⎭.8.解析:(Ⅰ)1cos 2()622xf x x +=3cos 223x x =+12sin 232x x ⎫=-+⎪⎪⎭236x π⎛⎫=++ ⎪⎝⎭. 故()f x的最大值为3;最小正周期22T π==π.(Ⅱ)由()3f α=-2336απ⎛⎫++=- ⎪⎝⎭故cos 216απ⎛⎫+=- ⎪⎝⎭. 又由02απ<<得2666απππ<+<π+,故26απ+=π,解得512α=π.从而4tan tan 53απ==.9.解析:(1)y=x x x x cos 1sin cos sin 2-=xx x cos 1)cos 1(cos 22--=2cos 2x+2cosx=22)21(cos +x -21.于是当且仅当cosx=1时取得y max =4,但cosx≠1,∴y <4,且y min =-21,当且仅当cosx=-21时取得. 故函数值域为⎪⎭⎫⎢⎣⎡-4,21. (2)令t=sinx+cosx ,则有t 2=1+2sinxcosx ,即sinxcosx=212-t .有y=f (t )=t+212-t =1)1(212-+t .又t=sinx+cosx=2sin )4(π+x , ∴-2≤t≤2.故y=f (t )=1)1(212-+t (-2≤t≤2), 从而知:f (-1)≤y≤f (2), 即-1≤y≤2+21. 即函数的值域为⎥⎦⎤⎢⎣⎡+-212,1.(3)y=2cos )3(x +π+2cosx=2cos3πcosx-2sin 3πsinx+2cosx=3cosx-3sinx =23⎪⎪⎭⎫⎝⎛-x x sin 21cos 23=23cos )6(π+x . ∵)6cos(π+x ≤1,∴该函数值域为[-23,23].10.解析:(1)f (x )=0,即a=sin 2x -sinx=(sinx -21)2-41∴当sinx=21时,a min =-41,当sinx=-1时,a max =2, ∴a ∈[41-,2]为所求.(2)由1≤f (x )≤47得⎪⎩⎪⎨⎧+-≥+-≤1sin sin 417sin sin 22x x a x x a∵ u 1=sin 2x -sinx+2)21(sin 417-=x +4≥4u 2=sin 2x -sinx+1=43)21(sin 2+-x ≤3 ∴ 3≤a≤4.11.解析:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.12.解析:令sin x =t ,∵x ∈[0,2π],∴t ∈[0,1], 而f (x )=g (t )=2at 2-22at +a +b =2a (t -22)2+b . 当a >0时,则⎩⎨⎧=+-=,,15b a b 解之得a =6,b =-5.当a <0时,则⎩⎨⎧-=+=,,51b a b 解之得a =-6,b =1.。
正、余弦函数图象和性质_典型题型讲解
4
11.关于函数 f ( x) 3 sin( 2 x
3
), x R 有下列命题:
① f ( x) 的表达式可以改写为 y 3 cos( 2 x ③ f ( x) 的图象关于点 ( 其中正确命题的序号是
6
) ;② f ( x) 的最小正周期为 2 ;
④ f ( x) 的图象关于直线 x
时, y max 1 时, y min 1
是周期函数,最小正周期 T 奇函数,图象关于 在[
对称
是周期函数,最小正周期 T 偶函数,图象关于 在[ 在[
对称
],(k Z ) 上
], (k Z ) 上是增函数 ], (k Z ) 上是减函数
单调性
是增函数 在[
], (k Z ) 上是减函数
的 2 倍(纵坐标不变) ,则所得到的图象的解析式为( A. y sin(2 x C. y sin(
x )( x R) 2 12
5 )( x R) 12
B. y sin(
x 5 )( x R ) 2 12 x 5 )( x R ) D. y sin( 2 24
3 4 sin(2 x ); 2 3
(2) y 6sin(2.5 x 2) 2
变式 1:已知函数 f ( x) 2sin x( 0) 在区间 (A)
上的最小值是 2 ,则 的最小值等于( , 3 4
(D)3
)
2 3
(B)
3 2
D. cos 2 x
3.若函数 y cos( x A.
3
) ( 0) 的图象相邻两条对称轴间距离为
6.1(3)正弦函数和余弦函数的图像和性质
(3) y 3 sin x cos x
(4) y 2 sin x 3 sin x 2 (5) y sin x 3 sin x cos x
y a b sin x
2 2
3、换元法
4、降次公式法
2
三、例题与练习
例1 、 求函数 y 2 sin(3x )的最大值和最小值, 3 并求使其取得最大值、 最小值的x的集合. 2k 解:当3x 2k 即x (k Z )时, 3 2 3 18 ymin 2 3 2k 7 当3x 2k 即x (k Z )时, 3 2 3 18 ymax 2 2k 7 取得最大值的x的集合是{x x ,k Z }; 3 18 2k 取得最小值的x的集合是{x x ,k Z }. 3 18
6 并求使其取得最大 值和最小值的x的集合. 解:当2 x 2k 即x k (k Z )时,ymin 2
6 12 5 ymax 4 当2 x 2k 即x k (k Z )时, 6 12 5 取得最大值的x的集合是{x x k ,k Z }; 12 取得最小值的x的集合是{x x k
ex1、求y 1 3 cos(2 x
)的最大值和最小值,
12
,k Z }.
例2、 求下列函数的值域. 2 2 (1) y sin x cos x (2) y sin x cos x
1、将函数化为 y=Asin(ωx+φ)或 y=Acos(ωx+φ) 的形式即可求出函 数的最值或值域.
高一数学正弦函数和余弦函数的图像与性质1(学生版)
【课堂总结】
在求三角函数的单调区间时,要注意复合函数的有关知识,忽略复合函数的条件,是同学们解题中常发生的错误 新疆 王新敞 奎屯
请回顾本节课所讲的内容填写下表
三角函数
y sin x
y cos x
图像 (一个周期内)
定义域 值域
最大(小)值
奇偶性 周期性
单调性
对称中心
对称轴
【课后练习】
1、函数 y=cos2(x- )+sin2(x+ )-1 是( )
对称中心:( k ,0 ); 2
对称轴: x k 最值: x 2k , ymax 1; x 2k , ymin 1
【典型例题分析】
例 1、作下列函数的简图(复习五点作图法)
(1)y=sinx,x∈[0,2π],
(2)y=cosx,x∈[0,2π],
(3)y=1+sinx,x∈[0,2π], (4)y=-cosx,x∈[0,2π],
5 新疆
D x= 王新敞 奎屯 4
3、设条件甲为“y=Asin(ωx+φ)是偶函数”,条件乙为“φ= 3 ”,则甲是乙的( ) 2
A 充分非必要条件 新疆 王新敞 奎屯
B 必要非充分条件 新疆 王新敞 奎屯
C 充要条件 新疆 王新敞 奎屯
D
新疆 王新敞
既不充分也不必要条件
奎屯
4、函数 y=sin4x+cos4x 的最小正周期为
y=sinx
y
-4 -7 -3 2
-5
2 -2 -3 - 2
-2 1 o
-1
2
3
7
2
2
2 5 3 2
4
x
定义域:R
值域: 1,1
最小正周期:T 2 ;
高一数学备课课件正弦函数余弦函数的图象
CHAPTER 05
图形变换及应用
平移变换
平移变换定义
将函数的图象在直角坐标系中沿x轴或y轴方向移动一定的距离,得到新的函数图象。
正弦函数、余弦函数的平移变换规律
过程与方法
通过观察和实验,理解正 弦函数、余弦函数的图象 形状和变化规律,培养数 形结合的思想方法。
情感态度与价值观
感受数学与生活的联系, 体会数学的应用价值,培 养学习数学的兴趣和热情 。
教学内容
正弦函数、余弦函数 的定义域、值域、周 期性等基本性质。
利用正弦函数、余弦 函数的图象解决简单 的实际问题。
对称变换
对称变换定义
将函数的图象在直角坐标系中关于某条直线或某个点进行对称,得到新的函数图象。
正弦函数、余弦函数的对称变换规律
正弦函数、余弦函数的图象关于原点对称,也关于直线x=kπ+π/2(k∈Z)对称。即 函数y=sin(x)或y=cos(x)的图象关于原点对称,得到y=-sin(x)或y=-cos(x)的图象;关
求函数的解析式; 求函数的递增区间;
求使$y leqslant 0$的$x$的取值范围。
例题一:利用正弦、余弦函数图象求解析式
解析
由题意知,函数的周期为$T = 4 times (frac{pi}{3} - frac{pi}{12}) = pi$,从而得到$omega = frac{2pi}{T} = 2$。
例题一:利用正弦、余弦函数图象求解析式
又因为函数的最大值为5,所以振幅 $A = 5$。
所以函数的解析式为$y = 5sin(2x frac{pi}{6})$。
正弦函数余弦函数的图象和性质典型例题分析
正弦函数、余弦函数的图象和性质·典型例题分析例1 用五点法作下列函数的图象(1)y=2-sinx,x∈[0,2π]解 (1)(图2-14)(2)(图2-15)描点法作图:例2 求下列函数的定义域和值域.解 (1)要使lgsinx有意义,必须且只须sinx>0,解之,得 2kπ<x<(2k+1)π,k∈Z.又∵0<sinx≤1,∴-∞<lgsinx≤0.∴定义域为(2kπ,(2k+1)π)(k∈Z),值域为(-∞,0].的取值范围,进而再利用三角函数线或函数图象,求出x的取值范围。
利用单位圆(或三角函数图象)解得(2)由读者自己完成,其结果为例4 求下列函数的最大值与最小值:(2)y=2cos2x+5sinx-4=-2sin2x+5sinx-2∵sinx∈[-1,1],例5 求下列函数的值域.∵|cosx|≤1 ∴cox2x≤1说明上面解法的实质是从已知关系式中,利用|cosx|≤1消去x,从而求出y的范围.例6 比较下列各组数的大小.分析化为同名函数,进而利用增减性来比较函数值的大小.解 (1)sin194°=sin(180°+14°)=-sin14°cos160°=cos(180°-20°)=-cos20°=-sin70°∵0<14°<70°<90°,∴sin14°<sin70°,从而 -sin14°>-sin70°,即sin194°>cos160°.而y=cosx在[0,π]上是减函数,故由0<1.39<1.47<1.5<π可得cos1.5<cos1.47<cos1.39例7 求下列函数的单调区间解(1)设u=2x当u∈[(2k-1)π,2kπ](k∈Z)时,cosu递增;当u∈[2kπ,(2k+1)π](k∈Z)时,cosu递减.例8 下列函数中是奇函数的为∴(D)为奇函数,应选(D).函数不具有奇偶性.说明奇(偶)函数的定义域必须对称于原点,这是奇(偶)函数必须满足的条件,解题时不可忽视.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦函数、余弦函数的图象和性质·典型例题分析
例1 用五点法作下列函数的图象
(1)y=2-sinx,x∈[0,2π]
解 (1)(图2-14)[来源:Z*xx*]
(2)(图2-15)
描点法作图:
[来源:学科网ZXXK] 例2 求下列函数的定义域和值域.[来源:学。
科。
网]
解 (1)要使lgsinx有意义,必须且只须sinx>0,解之,
得 2kπ<x<(2k+1)π,k∈Z.
又∵0<sinx≤1,∴-∞<lgsinx≤0.[来源:学科网ZXXK]
∴定义域为(2kπ,(2k+1)π)(k∈Z),值域为(-∞,0].
[来源:]
[来源:]
的取值范围,进而再利用三角函数线或函数图象,求出x的取值范围。
利用单位圆(或三角函数图象)解得
(2)由读者自己完成,其结果为
例4 求下列函数的最大值与最小值:[来源:学&科&网Z&X&X&K]
(2)y=2cos2x+5sinx-4=-2sin2x+5sinx-2[来源:学§科§网Z§X§X§K]
∵sinx∈[-1,1],
例5 求下列函数的值域.
∵|cosx|≤1 ∴cox2x≤1
说明上面解法的实质是从已知关系式中,利用|cosx|≤1消去x,从而求出y的范围.
例6 比较下列各组数的大小.
分析化为同名函数,进而利用增减性来比较函数值的大小.
解 (1)sin194°=sin(180°+14°)=-sin14°
cos160°=cos(180°-20°)=-cos20°=-sin70°
∵0<14°<70°<90°,
∴sin14°<sin70°,从而 -sin14°>-sin70°,即sin194°>cos160°.
而y=cosx在[0,π]上是减函数,
故由0<1.39<1.47<1.5<π可得
cos1.5<cos1.47<cos1.39
例7 求下列函数的单调区间
[来源:]
解(1)设u=2x
当u∈[(2k-1)π,2kπ](k∈Z)时,cosu递增;
当u∈[2kπ,(2k+1)π](k∈Z)时,cosu递减.
例8 下列函数中是奇函数的为
[来源:学,科,网Z,X,X,K]
∴(D)为奇函数,应选(D).
函数不具有奇偶性.
说明奇(偶)函数的定义域必须对称于原点,这是奇(偶)函数必须满足的条件,解题时不可忽视.。