(新课标)2014届中考数学查漏补缺第一轮基础复习_第18讲_三角形的边角关系课件
备战2014年数学中考————[夺分天天练2012版]中考数学第一轮复习精品讲解第四单元三角形
[解析] 这个角为180°-36°35′=143°25′.
·新课标
第18讲 │ 归类示例
两个角是否互为余角或互为补角,与位置无关,只要看它们 的和是否等于 90°或 180°.
·新课标
第18讲 │ 归类示例
如图 18-4, AB∥CD, 分别探讨下面四个图形中∠APC 与 ∠PAB、∠PCD 的关系,请你从所得到的关系中任选一个加以证明.
·新课标
第18讲 │ 考点随堂练
考点3 相交线
相等 直角 垂线段
内错角
同旁内角
只有
·新课标
第18讲 │ 考点随堂练
10.下面四个图形中, ∠1 与∠2 是对顶角的图形的个数是( B )
A.0 C.2
图 18-8 B.1 D.3
[解析] 第(3)个图中的∠1 和∠2 是对顶角.
·新课标
第18讲 │ 考点随堂练
[解析] ∠A 与∠B 互为补角,则∠A+∠B=180° ,所以 ∠B=180° -∠A,则∠B 的余角为=90° -(180° -∠A)= 1 1 ∠A-90° =∠A- (∠A+∠B)= (∠A-∠B). 2 2
·新课标
第18讲 │ 考点随堂练
7. 如图 18-5, 甲从 A 点出发向北偏东 70° 方向走 50 m 至点 B, 乙从 A 出发向南偏西 15° 方向走 80 m 至点 C, 则∠BAC 的度数 125° 是______________ .
图 18-12
[解析] 要使 OD′∥AC,则∠A=∠BOD′,∠BOD′=70° , 所以∠DOD′=82° -70° =12° .
·新课标
第18讲 │ 考点随堂练
15.[2011· 怀化]如图 18-13,已知直线 a∥b,∠1=40° , ∠2=60° ,则∠3 等于( A ) A.100° B.60° C.40° D.20° 图 18-13
中考数学尖子生培优竞赛压轴题专题辅导第一章直角三角形的边角关系18页
第一章直角三角形的边角关系8卷1 (考点整合与提升)考点一:锐角三角函数的定义如图,在月必中,ZC为直角,则锐角力的各三角函数的左义如下:A(1)角力的正弦:锐角>1的对边与斜边的比叫做Z力的正弦,记作sinA即Siib4=-・c(2)角/!的余弦:锐角力的邻边与斜边的比叫做Z/1的余弦,记作cos/l,即cos/l=£.(3)角力的正切:锐角>1的对边与邻边的比叫做Z力的正切,记作tan A. KPtan>l=-・b例1:在△/18C中,ZC90° , AB=n, BC=5.求Z力的正弦值、余弦值和正切值.答案:siiL4=— > cos/!=—* tan/1=—13 13 12★ ★变式1:在锐角ZV1〃C中,月8=15, 〃0=14,血丛=84.求:(1)tanC的值:(2)siib4 的值.答案:解:(1)过/!作/W 丄于D •: Szc=丄8G4D=84,・・・2+14+/1D=84,・"D=12, AB2 12= 15,:•••仞=14一9=5・在Rt^ADC中,AC=\^AtanO= —=—: DC 5168(2)过点〃作BELAC于点E TSkk 丄力©防=8, :.BE= — . •'•sinZ旳Q=竺二旦=竺・2 13 AB 15 654★ ★变式2:如图,点P是Z R的边04上的一点,已知点P的横坐标为6, sino=-・5(1)求点P的纵坐标:(2)求Zajt他的三角函数值.4PM 4解:(1)过P作Mix轴于M 则皿70=90°, •••点P横坐标为6. sino= —, •••——=一,OM=b・设5OP 5PM=4x, PO=5x.由勾股泄理得62+ (4Q 2=(5Q 2.解得x=2(负值舍去),刊/=8, OP = 10, .'.P点纵坐标是8.<2)•••在Rl^OMP中,"1/0=90° , R?=10. PM=S. OM=& :.C osa=- = — = -,tana= OP 10 5 PM _ 8 _ 4————■ OP 6 3考点二:坡度坡度:坡而的铅直高度力与水平宽度/的比叫做坡度(或坡比),常用字母i表示,HPi=y.坡角:坡而与水平而的夹角叫做坡角,用字母a表示,则tan«=i=y .例2:如图,某校教学楼月〃后方有一斜坡,已知斜坡仞的长为12米,坡角a为60° .根据有关部门的规左,Z 底39。
专题4.2三角形中考数学第一轮总复习课件
EF=c,则AD的长为( D ) A.a+c B.a-b+c C.b+c D.a+b-c
11.如图,∠AOE=∠BOE=15º,EF∥OB,EC⊥OB于C,若EC=1,则OF=__2_.
A
C
HE
B
B
D
CA
E FD
H
强化训练
三角形及其性质
提升能力
84º
B
D
E
A
C
B
A
DE
B
CP
A
H
强化训练
三角形及其性质
提升能力
1.将一副直角三角板按如图所示的位置放置,点C在FD的延长线上,点B在ED
上,AB∥CF,∠F=∠ACB=90º,∠E=45º,∠A=60º,AC=10,则CD=__15___5__3_.
2.如图,线段AB,BC的垂直平分线l1,l2相交于点O,若∠1=39º,则∠AOC=_7_8_º.
3.如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于的E,连接
中位 作△ABC的边AB,AC的中点D,E,连接三角形两边中点D,E,得到的线段DE
线 即为△ABC的中位线.
特征 三角形三条高(中线、角平分线)所在的直线相交于一点;
典例精讲
三角形的重要线段
知识点一
【例1】如图,在△ABC中,AD⊥BC,AE平分∠BAC.若∠B=72º,∠C=30º,
求∠DAE的度数;
为DE.如果∠A=α,∠CEA´=β,∠BDA´=γ,那么下列式子中正确的是( A )
A.γ=2α+β B.γ=α+2β C.γ=α+β A
D.γ=180º-α-β
中考数学直角三角形的边角关系的综合复习及答案
中考数学直角三角形的边角关系的综合复习及答案一、直角三角形的边角关系1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin37°=cos 53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截.【解析】【分析】(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可.【详解】(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=.在Rt ABC V 中,sin AC B AB =,所以3sin 3725155AC AB ︒=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM V 中,4sin 15125CM AC CAM =⋅∠=⨯=,3cos 1595AM AC CAM =⋅∠=⨯=. 在Rt ADM △中,tan MD DAM AM∠=, 所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =+=+==-=,.设缉私艇的速度为v海里/小时,则有2491716=,解得617v=.经检验,617v=是原方程的解.答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.【点睛】此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.【答案】解:(1)2.(2)如图,在斜边AC上截取AB′=AB,连接BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.则线段B′F的长即为所求 (点到直线的距离最短) .在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,∴.∴BE+EF的最小值为【解析】试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.∴∠C′AE=45°.又AC为圆的直径,∴∠AEC′=90°.∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=2.∴AP+BP的最小值是22(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE,则线段B′F的长即为所求.4.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=13x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.(1)求边EF的长;(2)将正方形EFGH沿射线FB的方向以每秒10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).①当点F1移动到点B时,求t的值;②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340kb⎧=-⎪⎨⎪=⎩,∴y =﹣43x+40, 直线AB 与直线DE 的交点P (21,12),由题意知F (30,15),∴EF =15;(2)①易求B (0,5),∴BF =1010,∴当点F 1移动到点B 时,t =101010÷=10; ②当点H 运动到直线DE 上时,F 点移动到F'10,在Rt △F'NF 中,NF NF '=13,∴FN =t ,F'N =3t ,∵MH'=FN =t ,EM =NG'=15﹣F'N =15﹣3t ,在Rt △DMH'中,43MH EM '=,∴41533tt =-,∴t =4,∴EM =3,MH'=4,∴S =1451023(12)11248⨯+⨯=;当点G 运动到直线DE 上时,F 点移动到F'的距离是10t , ∵PF =310,∴PF'=10t ﹣310,在Rt △F'PK 中,13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.5.如图1,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =-x -与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F .(1)请直接写出OE 、⊙M 的半径r 、CH 的长;(2)如图2,弦HQ 交x 轴于点P ,且DP : PH =3 : 2,求cos ∠QHC 的值;(3)如图3,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT交x 轴于点N .是否存在一个常数a ,始终满足MN·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.【答案】(1)OE=5,r=2,CH=2(2);(3)a=4【解析】【分析】(1)在直线y=-x-中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH 是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长;(2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QPD,从而求得DQ的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值;(3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论.【详解】(1)OE=5,r=2,CH=2(2)如图1,连接QC、QD,则∠CQD =90°,∠QHC =∠QDC,易知△CHP∽△DQP,故,得DQ=3,由于CD=4,;(3)如图2,连接AK,AM,延长AM,与圆交于点G,连接TG,则,由于,故,;而,故在和中,;故△AMK∽△NMA;即:故存在常数,始终满足常数a="4"解法二:连结BM,证明∽得6.如图,公路AB为东西走向,在点A北偏东36.5︒方向上,距离5千米处是村庄M,在点A北偏东53.5︒方向上,距离10千米处是村庄N;要在公路AB旁修建一个土特产收购站P(取点P在AB上),使得M,N两村庄到P站的距离之和最短,请在图中作出P的位置(不写作法)并计算:(1)M,N两村庄之间的距离;(2)P到M、N距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)【答案】(1) M,N两村庄之间的距离为29千米;(2) 村庄M、N到P站的最短距离和是55千米.【解析】【分析】(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.求出DN,DM,利用勾股定理即可解决问题.(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.【详解】解:作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站的位置.(1)在Rt△ANE中,AN=10,∠NAB=36.5°∴NE=AN•sin∠NAB=10•sin36.5°=6,AE=AN•cos∠NAB=10•cos36.5°=8,过M作MC⊥AB于点C,在Rt△MAC中,AM=5,∠MAB=53.5°∴AC=MA•sin∠AMB=MA•sin36.5°=3,MC=MA•cos∠AMC=MA•cos36.5°=4,过点M作MD⊥NE于点D,在Rt△MND中,MD=AE-AC=5,ND=NE-MC=2,∴MN=22+=29,52即M,N两村庄之间的距离为29千米.(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.DN′=10,MD=5,在Rt△MDN′中,由勾股定理,得MN′=22+=55(千米)510∴村庄M、N到P站的最短距离和是55千米.【点睛】本题考查解直角三角形,轴对称变换等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.7.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=4.理由见解析.3【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH⊥MN于H.先证△ABE≌△EHF,得到对应边相等,从而推出△CHF是等腰直角三角形,∠FCH的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.8.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73≈≈).【答案】【小题1】73.2【小题2】超过限制速度.【解析】解:(1)100(31)AB=-73.2 (米).…6分(2) 此车制速度v==18.3米/秒9.如图,正方形ABCD的边长为2+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,(1)求证:△ABF∽△ACE;(2)求tan∠BAE的值;(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为 .22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC =EH ,∴BE =EH =HC ,设BE =HE =HC =x ,则EC =2x , ∵BC =2+1, ∴x+x =2+1, ∴x =1,在Rt △ABE 中,∵∠ABE =90°, ∴tan ∠EAB =1221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC =22AB BC +=2+2, ∴OA =OC =OB =12AC =222+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •(2﹣1)=22, ∴HM =OH+OM =22+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+.. 【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.10.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.11.如图,在自动向西的公路l上有一检查站A,在观测点B的南偏西53°方向,检查站一工作人员家住在与观测点B的距离为7132km,位于点B南偏西76°方向的点C处,求工作人员家到检查站的距离AC.(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)【答案】工作人员家到检查站的距离AC的长约为92 km.【解析】分析:过点B作BH⊥l交l于点H,解Rt△BCH,得出CH=BC•sin∠CBH=274,BH=BC•cos∠CBH=2716.再解Rt△BAH中,求出AH=BH•tan∠ABH=94,那么根据AC=CH-AH计算即可.详解:如图,过点B作BH⊥l交l于点H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7132km,∴CH=BC•sin∠CB H≈225242732254⨯=,BH=BC•cos∠CBH≈225627 322516⨯=.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=2716,∴AH=BH•tan∠ABH≈27491634⨯=,∴AC=CH﹣AH=2799442-=(km).答:工作人员家到检查站的距离AC的长约为92 km.点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.如图,△ABC是边长为6cm的等边三角形,点D从B点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC 上运动,当D到达A点后,D、E运动停止,运动时间为t(秒).(1)如图1,若a=b=1,点E从C出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0<t<6时:①求∠AFC的度数;②求222AFFC BFAF FC+-⋅的值;(2)如图2,若a=1,b=2,点E从B点出发沿B→C方向运动,E点到达C点后再沿C→B 方向运动.当t≥3时,连DE,以DE为边作等边△DEM,使M、B在DE两侧,求M点所经历的路径长.【答案】(1)①120°;②1;(2)当3≤t≤6时,M点所经历的路径长为3.【解析】【分析】(1)①如图1,由题可得BD=CE=t,易证△BDC≌△CEA,则有∠BCD=∠CAE,根据三角形外角的性质可求得∠EFC=60°,即可得到∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2,易证△FAG 是等边三角形,结合△ABC是等边三角形可证到△AGB≌△AFC,则有GB=FC,∠AGB=∠AFC=120°,从而可得∠BGF=60°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中运用直角三角形的性质可得BH3,GH=12y,从而有FH=x﹣12y.在Rt△BHF中根据勾股定理可得BF2=x2﹣xy+y2,代入所求代数式就可解决问题;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得∠BEN=30°,BD=t,CE=2t﹣6,从而有BE=12﹣2t,BN=6﹣t,进而可得DN=EC.由△DEM是等边三角形可得DE=EM,∠DEM=60°,从而可得∠NDE=∠MEC,进而可证到△DNE≌△ECM,则有∠DNE=∠ECM=90°,故M点运动的路径为过点C垂直于BC的一条线段.然后只需确定点M的始点和终点位置,就可解决问题.【详解】(1)如图1,由题可得BD=CE=t.∵△ABC是等边三角形,∴BC=AC,∠B=∠ECA=60°.在△BDC和△CEA中,BD CEB ECABC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BDC≌△CEA,∴∠BCD=∠CAE,∴∠EFC=∠CAE+∠ACF=∠BCD+∠ACF=∠ACB=60°,∴∠AFC=120°;②延长FD到G,使得FG=FA,连接GA、GB,过点B作BH⊥FG于H,如图2.∵∠AFG=180°﹣120°=60°,FG=FA,∴△FAG是等边三角形,∴AG=AF=FG,∠AGF=∠GAF=60°.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠GAF=∠BAC,∴∠GAB=∠FAC.在△AGB和△AFC中,AG AFGAB FACAB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AGB≌△AFC,∴GB=FC,∠AGB=∠AFC=120°,∴∠BGF=60°,∴∠GBH=30°.设AF=x,FC=y,则有FG=AF=x,BG=CF=y.在Rt△BHG中,GH=12y,BH=3y,∴FH=FG﹣GH=x﹣12y.在Rt△BHF中,BF2=BH2+FH2=(32y)2+(x﹣12y)2=x2﹣xy+y2,∴222AF FC BFAF FC+-⋅=2222x y x xy yxy+--+()=1;(2)过点E作EN⊥AB于N,连接MC,如图3,由题可得:∠BEN=30°,BD=1×t=t,CE=2(t﹣3)=2t﹣6,∴BE=6﹣(2t﹣6)=12﹣2t,BN=12BE=6﹣t,∴DN=t﹣(6﹣t)=2t﹣6,∴DN=EC.∵△DEM是等边三角形,∴DE=EM,∠DEM=60°.∵∠NDE+∠NED=90°,∠NED+∠MEC=180°﹣30°﹣60°=90°,∴∠NDE=∠MEC.在△DNE和△ECM中,∵DN ECNDE CEMDE EM=⎧⎪∠=∠⎨⎪=⎩,∴△DNE≌△ECM,∴∠DNE=∠ECM=90°,∴M点运动的路径为过点C垂直于BC的一条线段.当t=3时,E在点B,D在AB的中点,此时CM=EN=CD=BC•sin B=6×32=33;当t=6时,E在点C,D在点A,此时点M在点C;∴当3≤t≤6时,M点所经历的路径长为33.【点睛】本题主要考查了等边三角形的判定与性质、全等三角形的判定与性质、锐角三角函数、特殊角的三角函数值、勾股定理、三角形外角的性质等知识,综合性比较强,有一定的难度;构造旋转型全等三角形(由共顶点的两个等边三角形组成)是解决第1(2)小题的关键,证到∠ECM=90°是解决第(2)小题的关键.。
2014年中考数学一轮复习讲义:直角三角形
2014年中考数学一轮复习讲义:直角三角形【考纲要求】1.了解直角三角形的有关概念,掌握其性质与判定.2.掌握勾股定理与逆定理,并能用来解决有关问题.【命题趋势】直角三角形是中考考查的热点之一,题型多样,多以简单题和中档难度题出现,主要考查直角三角形的判定和性质的应用,以及运用勾股定理及其逆定理来解决实际问题的能力.【知识梳理】一、直角三角形的性质1.直角三角形的两锐角互余.2.直角三角形中,30°角所对的直角边等于斜边的一半.3.直角三角形斜边上的中线等于斜边的一半.4.勾股定理:直角三角形两直角边的平方和等于斜边的平方.二、直角三角形的判定1.有一个角等于90°的三角形是直角三角形.2.有两角互余的三角形是直角三角形.3.如果三角形一边上的中线等于这边的一半,则该三角形是直角三角形.4.勾股定理的逆定理:如果三角形一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.题型分类、深度剖析:考点一、直角三角形的判定【例1】如图,在△ABC中,AB=AC,∠BAC=90°,点D为边BC上的任一点,DF⊥AB 于F,DE⊥AC于E,M为BC的中点,试判断△MEF的形状,并证明你的结论.分析:连接AM,可得AM=BM,然后证明△BFM≌△AEM,得到FM=ME,∠EMF=90°.解:△MEF是等腰直角三角形.连接AM,∵∠BAC=90°,AM是斜边BC的中线,∴MA =MB =MC ,MA ⊥BC .∵AB =AC ,∴∠B =∠BAM =∠MAE =45°.∵DF ⊥AB ,DE ⊥AC ,∴∠AFD =∠AED =∠FAE =90°,∴四边形DFAE 是矩形,∴FD =EA .又∵FB =FD ,∴FB =EA ,∴△BFM ≌△AEM (SAS),∴FM =EM ,∠BMF =∠AME .∵∠AMF +∠BMF =90°,∴∠EMF =∠AMF +∠AME =90°,∴△MEF 是等腰直角三角形.方法总结 证明一个三角形是直角三角形的方法比较多,最简捷的方法就是求出一个角等于90°,也可以利用三角形一边上的中线等于这边的一半,或者利用勾股定理的逆定理证得.触类旁通1 具备下列条件的△ABC 中,不能成为直角三角形的是( )A .∠A =∠B =12∠C B .∠A =90°-∠C C .∠A +∠B =∠C D .∠A -∠C =90°考点二、直角三角形的性质【例2】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC ⊥BE .(1)解:图2中△ABE ≌△ACD .证明如下:∵△ABC 与△AED 均为等腰直角三角形,∴AB =AC ,AE =AD ,∠BAC =∠EAD =90°.∴∠BAC +∠CAE =∠EAD +∠CAE ,即∠BAE=∠CAD.又∵AB=AC,AE=AD,∴△ABE≌△ACD.(2)证明:由(1)△ABE≌△ACD知∠ACD=∠ABE=45°.又∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.方法总结直角三角形除具有两锐角互余、两直角边的平方和等于斜边的平方、斜边的中线等于斜边的一半这些性质外,还具有外接圆半径等于斜边的一半,内切圆半径等于两直角边的和与斜边差的一半,它的外心是斜边的中点,垂心是直角顶点等性质.考点三、勾股定理及其逆定理【例3】如图,有一块直角三角形纸片,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.解:设CD长为x cm,由折叠得△ACD≌△AED.∴AE=AC=6 cm,∠AED=∠C=90°,DE=CD=x cm.在Rt△ABC中,AC=6 cm,BC=8 cm,∴AB=AC2+BC2=62+82=10(cm).∴EB=AB-AE=10-6=4 (cm),BD=BC-CD=(8-x) cm,在Rt△DEB中,由勾股定理得DE2+BE2=DB2.∴x2+42=(8-x)2,解得x=3.∴CD的长为3 cm.方法总结1.勾股定理主要的用途是已知直角三角形的两边求第三边,当我们只知道直角三角形的一边时,如果可以找到另外两边的关系,也可通过列方程的方法求出另外两条边.2.勾股定理逆定理主要是已知一个三角形的三边,判断三角形是否为直角三角形.触类旁通2 如图,在四边形ABCD中,∠A=90°,AB=3,AD=4,CD=13,CB=12,求四边形ABCD的面积.考点四、勾股定理及其逆定理的实际应用【例4】如图所示,铁路上A,B两站(视为直线上两点)相距14 km,C,D为两村庄(可视为两个点),DA⊥AB于A,CB⊥AB于B,已知DA=8 km,CB=6 km,现要在铁路上建一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站多少千米处?分析:因为DA⊥AB于A,CB⊥AB于B,在AB上找一点可构成两个直角三角形,我们可想到通过勾股定理列方程进行求解.解:设E站应建在距A站x km处,根据勾股定理有82+x2=62+(14-x)2,解得x=6.所以E站应建在距A站6 km处.方法总结勾股定理及其逆定理的实际应用,是把实际问题转化为数学问题,建立勾股定理或逆定理的数学模型.通过解决数学问题,使实际问题得以解决.触类旁通3 有一块直角三角形的绿地,量得两直角边的长分别为6 m,8 m,现在要将绿地扩充成等腰三角形,且扩充部分是以8 m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.。
(精品)2014中考数学三角函数知识点总结及中考真题讲解
锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
A90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 C A90B 90∠-︒=∠︒=∠+∠得由B A8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)9、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。
备战2014中考数学第一轮复习资料-18.doc
第15讲 等腰三角形考纲要求命题趋势1.了解等腰三角形的有关概念,掌握其性质及判定. 2.了解等边三角形的有关概念,掌握其性质及判定. 3.掌握线段垂直平分线的性质及判定.4.掌握角平分线的性质及判定.等腰三角形的概念、性质、判定是中考的重点内容,在选择题、填空题、解答题中均有出现;等边三角形、线段的垂直平分线及角的平分线在中考中也经常考查.知识梳理一、等腰三角形1.等腰三角形的有关概念及分类有两边相等的三角形叫做等腰三角形,三边相等的三角形叫做等边三角形,也叫做正三角形;等腰三角形分为腰和底______的等腰三角形和______三角形.2.等腰三角形的性质(1)等腰三角形的两个底角相等(简称为“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”);(3)等腰三角形是轴对称图形.3.等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”). 二、等边三角形的性质与判定 1.等边三角形的性质(1)等边三角形的内角相等,且都等于________;(2)等边三角形的三条边都________. 2.等边三角形的判定(1)________相等的三角形是等边三角形;(2)________相等的三角形是等边三角形;(3)有一个角为________的等腰三角形是等边三角形.三、线段的垂直平分线1.概念:经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫________.2.性质:线段垂直平分线上的点到这条线段两个端点的距离________.3.判定:到一条线段的两个端点__________的点在线段的垂直平分线上,线段的垂直平分线可以看作是到线段两端点距离相等的点的集合.四、角的平分线1.性质:角平分线上的点到角的两边的距离________.2.判定:角的内部到角的两边距离相等的点在角的______上,角的平分线可以看作是到角的两边距离相等的点的集合.自主测试1.等腰三角形的周长为14,其中一边长为4,那么,它的底边长为__________. 2.如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,AD =5,AC =4,则D 点到AB 的距离是__________.3.等腰三角形一腰长为5,一边上的高为3,则底边长为__________.4.等腰三角形的底和腰是方程x2-6x+8=0的两根,则这个三角形的周长为( )A.8 B.10C.8或10 D.不能确定考点一、等腰三角形的性质与判定【例1】已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图甲,若点O在边BC上,求证:AB=AC;(2)如图乙,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.解:(1)证明:过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC,∴∠B=∠C,从而AB=AC.(2)证明:过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=O F.在Rt△OEB和Rt△OFC中,∵OE=OF,OB=OC,∴Rt△OEB≌Rt△OFC.∴∠OBE=∠OCF.又由OB=OC知∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC.(3)不一定成立.当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如示例图.方法总结1.要证明一个三角形为等腰三角形,须证明这个三角形的两条边相等或两个角相等,两种方法往往都需要证明三角形全等.2.若三角形中出现了高线、中线或角平分线,有时可以延长某些线段,构造出等腰三角形,然后用“三线合一”性质去处理.触类旁通1 如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.考点二、等边三角形的性质与判定【例2】(1)如图甲,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小.(2)如图乙,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.分析:解决等边三角形问题时,要充分利用等边三角形三边相等、三个角都等于60°的性质.全等是解决这类问题最常见的方法.解:(1)如图甲.图甲∵△DOC和△ABO都是等边三角形,且点O是线段AD的中点,∴OD=OC=OB=OA,∠1=∠2=60°,∴∠4=∠5.又∵∠4+∠5=∠2=60°,∴∠4=30°.同理,∠6=30°.∵∠AEB=∠4+∠6,∴∠AEB=60°.(2)如图乙.图乙∵△DOC和△ABO都是等边三角形,∴OD=OC,OB=OA,∠1=∠2=60°.又∵OD=OA,∴OD=OB,OA=OC,∴∠4=∠5,∠6=∠7.∵∠DOB=∠1+∠3,∠AOC=∠2+∠3,∴∠DOB=∠AOC.∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,∴2∠5=2∠6,∴∠5=∠6.又∵∠AEB=∠8-∠5,∠8=∠2+∠6,∴∠AEB=∠2+∠5-∠5=∠2,∴∠AEB=60°.方法总结1.等边三角形的各边相等,各角相等,所以常利用其证明三角形全等或线段及角相等.2.等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心.(四心合一) 触类旁通2 已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.考点三、线段的垂直平分线【例3】如图,△ABC的周长为30 cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4 cm,则△ABD的周长是( )A.22 cm B.20 cm C.18 cm D.15 cm解析:由题意可知DE为AC的垂直平分线,所以AD=CD,AC=2AE=8 cm.因为△ABC的周长为30 cm,所以AB+BC+AC=30 cm,所以AB+BC=22 cm.所以△ABD的周长为AB+BD+AD=AB+BC =22 cm.答案:A方法总结1.线段垂直平分线的性质有两个:(1)线段垂直平分线上的点到线段两个端点的距离相等;(2)线段垂直平分线垂直、平分这条线段.2.线段垂直平分线的性质定理在中考中常以选择题、填空题的形式出现,且常与三角形的周长结合命题.触类旁通3 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.考点四、角的平分线【例4】如图,已知CD⊥AB于点D,BE⊥AC于点E,且CD,BE相交于点O.求证:(1)当∠1=∠2时,OB=OC;(2)当OB=OC时,∠1=∠2.证明:(1)∵∠1=∠2,CD⊥AB,BE⊥AC,∴OE=OD.∵∠3=∠4,∠CEO=∠BDO=90°,∴△OEC≌△ODB.∴OB=OC.(2)∵∠3=∠4,∠CEO=∠BDO=90°,OB=OC,∴△OEC≌△ODB.∴OE=OD.∵CD⊥AB,BE⊥AC,∴OA平分∠CAB.∴∠1=∠2.方法总结在解决有关角平分线的问题时通常做法是过角平分线上一点作角的两边的垂线.触类旁通4 如图,OP平分∠AOB,PA⊥OA,PB⊥O B,垂足分别为A,B.下列结论中不一定成立的是( )A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP1.(2012贵州铜仁)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )A.6 B.7 C.8 D.92.(2012江西南昌)若等腰三角形的顶角为80°,则它的底角是( )A.20° B.50° C.60° D.80°3.(2012浙江宁波)如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=______度.4.(2012广东广州)如图,在等边△ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为________.5.(2012湖南益阳)如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.6.(2012湖北随州)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.1.如图,坐标平面内有一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2 B.3 C.4 D.52.如图所示,A,B,C分别表示三个村庄,AB=1 000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在( )A.AB中点 B.BC中点C.AC中点 D.∠C的平分线与AB的交点3.在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为( )A.9 B.8 C.7 D.64.如图,P,Q是△ABC边BC上的两点,且QC=AP=AQ=BP=PQ,则∠BAC=( )A.125° B.130° C.90° D.120°5.如图,在△ABC中,BC=8,AB的中垂线交BC于点D,AC的中垂线交BC于点E,则△ADE 的周长等于__________.6.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E=__________度.7.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是__________.8.如图所示,在△ABC中,D,E分别是边AC,AB上的点,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情况);(2)选择第(1)小题中的一种情况,证明△ABC是等腰三角形.参考答案导学必备知识自主测试1.4或6 如果腰长为4,则底边长为14-2×4=6;如果底边长为4,则两腰分别为5,5.2.3 ∵在Rt△ADC中,CD=AD2-AC2=3,∴D点到AB的距离=CD=3.3.8或10或3104.B 解方程x2-6x+8=0得x1=2,x2=4,当腰为2时,2+2=4(舍去),当腰为4时,周长为4+4+2=10.探究考点方法触类旁通1.证明:(1)∵AC⊥BC,BD⊥AD,∴∠D=∠C=90°.在Rt△ACB和Rt△BDA中,AB=BA,AC=BD,∴△ACB≌△BDA(HL).∴BC=AD.(2)由△ACB≌△BDA得∠CAB=∠DBA.∴△OAB是等腰三角形.触类旁通2.证明:(1)∵BF=AC,AB=AE,∴FA=EC.∵△DEF是等边三角形,∴EF=DE.又∵AE=CD,∴△AEF≌△CDE.(2)由△AEF≌△CDE,得∠FEA=∠EDC.∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF,△DEF是等边三角形,∴∠DEF=60°,∴∠BCA=60°.同理可得∠BAC=60°.∴△ABC中,AB=BC.∴△ABC是等边三角形.触类旁通3.解:∵AD平分∠CAB,∴∠CAD=∠BAD.∵DE垂直平分AB,∴AD=BD,∠B=∠BAD.∴∠CAD=∠BAD=∠B.∵在Rt △ABC 中,∠C =90°, ∴∠CAD +∠DAE +∠B =90°. ∴∠B =30°. 触类旁通4.D 品鉴经典考题1.D ∵∠ABC ,∠ACB 的平分线相交于点E , ∴∠MBE =∠EBC ,∠ECN =∠ECB .∵MN ∥BC ,∴∠EBC =∠MEB ,∠NEC =∠ECB ,∴∠MBE =∠MEB ,∠NEC =∠ECN ,∴BM =ME ,EN =CN . ∴MN =ME +EN ,即MN =BM +CN . ∵BM +CN =9,∴MN =9,故选D.2.B 因为等腰三角形的顶角为80°,所以底角=(180°-80°)÷2=50°. 3.40 ∵AB =BC ,∴∠ACB =∠BAC .∵∠ACD =110°,∴∠ACB =∠BAC =70°,∴∠B =∠40°. ∵AE ∥BD ,∴∠EAB =∠B =40°.4.2 在等边三角形ABC 中,AB =6,∴BC =AB =6.∵BC =3BD ,∴BD =13BC =2.∵△ABD 绕点A 旋转后得到△ACE ,∴△ABD ≌△ACE ,∴CE =BD =2. 5.证明:∵AE 平分∠DAC ,∴∠1=∠2.∵AE ∥BC ,∴∠1=∠B ,∠2=∠C ,∴∠B =∠C , ∴AB =AC .6.证明:(1)在△ABD 和△ACD 中, ∵D 是BC 的中点,⎭⎪⎬⎪⎫∴BD =CD ∵AB =AC AD =AD ⇒△ABC ≌△ACD (SSS). (2)由(1)知△ABD ≌△ACD , ∴∠BAD =∠CAD , 即∠BAE =∠CAE . 在△ABE 和△ACE 中,⎭⎪⎬⎪⎫AB =AC∠BAE =∠CAD AE =AE ⇒△ABE ≌△ACE (SAS).∴BE =CE .研习预测试题1.C 因为x 轴负半轴有一个点,x 轴正半轴有三个点,所以符合条件的动点P 的个数为4. 2.A3.A ∵BF 平分∠ABC ,如图,∴∠ABF =∠CBF . ∵CF 平分∠ACB , ∴∠ACF =∠BCF . ∵DF ∥BC ,∴∠DFB =∠CBF ,∠EFC =∠BCF . ∴∠ABF =∠DFB ,∠ACF =∠EFC . ∴BD =DF ,EF =CE .∴DE =DF +EF =BD +CE =9. 4.D5.8 因为△ADE 的周长=AD +DE +AE =BD +DE +EC =8. 6.157.52<x <5 由三角形的三边关系得⎩⎪⎨⎪⎧10-2x <2x ,10-2x >0, 解得52<x <5.8.解:(1)①③;②③. (2)①③.证明:∵∠EBO =∠DCO ,∠EOB =∠DOC ,BE =CD , ∴△BEO ≌△CDO .∴OB =OC .∴∠OBC =∠OCB .∴∠EBO +∠OBC =∠DCO +∠OCB , 即∠ABC =∠ACB .∴AB =AC . ∴△ABC 为等腰三角形.。
2014年全国各地中考数学试卷解析版分类汇编-三角形的边与角
三角形的边与角一、选择题1.〔2014•威海,第9题3分〕如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论中不正确的选项是〔〕A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°考点:角平分线的性质;三角形角和定理分析:根据三角形的角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DA C.解答:解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项结论正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项结论错误;∵CD平分∠ACE,∴∠ACD=〔180°﹣60°〕=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项结论正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=〔180°﹣70°〕=55°,故D选项结论正确.应选B.点评:此题考查了角平分线的性质,三角形的角和定理,角平分线的定义,熟记定理和概念是解题的关键.2. 〔2014•,第3题3分〕如图,l1∥l2,∠A=40°,∠1=60°,那么∠2的度数为〔〕A.40°B.60°C.80°D.100°考点:平行线的性质;三角形的外角性质.分析:根据两直线平行,错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个角的和列式计算即可得解.解答:解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.应选D.点评:此题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个角的和的性质,熟记性质并准确识图是解题的关键.3. 〔2014•,第6题3分〕如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,那么∠C的度数为〔〕A.30°B.40°C.45°D.60°考点:等腰三角形的性质分析:先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.应选B.点评:此题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.4.〔2014•,第6题4分〕以下命题中,假命题...是【】A.对顶角相等B.三角形两边和小于第三边C.菱形的四条边都相等D.多边形的角和等于360°4.5.6.7.8.二、填空题1.〔2014•威海,第15题3分〕直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,那么∠2= 40°.考点:平行线的性质;三角形角和定理分析:根据两直线平行,同位角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个角的和求出∠4,然后根据对顶角相等解答.解答:解:∵l1∥l2,∴∠3=∠1=85°,∴∠4=∠3﹣45°=85°﹣45°=40°,∴∠2=∠4=40°.故答案为:40°.点评:此题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个角的和的性质,熟记性质是解题的关键.2.〔2014•,第15题,3分〕如图,在△ABC中,∠A=30°,∠B=50°,延长BC到D,那么∠ACD=80°.考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个角的和列式计算即可得解.解答:解:∵∠A=30°,∠B=50°,∴∠ACD=∠A+∠B=30°+50°=80°.故答案为:80.点评:此题考查了三角形的一个外角等于与它不相邻的两个角的和,熟记性质是解题的关键.3. 〔2014•,第14题3分〕如图,A、B两地间有一池塘阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB的中点D、E.假设DE的长度为30m,那么A、B两地的距离为60m.考点:三角形中位线定理.专题:应用题.分析:根据三角形中位线求出AB=2DE,代入求出即可.解答:解:∵D、E分别是AC、BC的中点,DE=30m,∴AB=2DE=60m故答案为:60.点评:此题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半.4.〔2014•,第11题3分〕中,,,那么的外角的度数是_____.【考点】三角形外角【分析】此题主要考察三角形外角的计算,,那么的外角为【答案】5.〔2014•,第12题3分〕是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点,,那么PE的长度为_____.【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】10。
2014届数学中考三角形边角关系
三 角 形三角形在2014中考中的地位仍然是核心之一,下面我们来研究三角形的边角关系,常考的知识点总结一下,有以下几个热点:知识点1、三角形中的相关概念例01.如图,AD 是ABC ∆的中线;BE 是ABC ∆的角平分线,CF 是ABC ∆的高,则=BD _____21=_______;∠=∠ABE ________∠=21______;∠______∠=______︒=90.例02.如图,︒=∠90ACB ,AB CD ⊥于D ,则BC 边上的高是______,AC 边上的高是_______, AB 边上的高是_______,三条高的交点是________.说明 在直角三角形中,有两条高恰好是它的两条边.例03.下面说法中错误的是( )(A )三角形的三条中线都在形内; (B )三角形的三条高线都在形内;(C )三角形的三条内角平分线都在形内; (D )直角三角形有两条高线与直角边重合.说明 钝角三角形三条高中,钝角边上的两条高在三角形外。
例04.⑴三角形的一条高是( )A.直线B.射线C.垂线 .D.垂线段 ⑵下列说法中正确的是( )A .如图1,由AB 、BC 、DE 三角形线段组成的图形是三角形.B .如图2,已知CAD BAD ∠=∠,则射线AD 是ABC ∆的角平分线. C .如图,已知点D 为BC 的中点,则线段AE 为ABC ∆的中线.D .如图,已知ABC ∆中,BC AD ⊥于点D ,则线段AD 是ABC ∆的高. 说明 三角形的中线、高线、角平分线都是一些相应的线段而不是射线。
例05.下列每个图形中各有哪些三角形.说明: 数三角形的个数容易少数或多数,故必须按照一定的顺序去数. 先数出个数后,再写出是哪些三角形.例06.已知AD 、AE 分别为ABC ∆的中线、高线,且cm AB 5=,cm AC 3=,则ABD ∆与ACD ∆的周长之差为_______,ABD ∆与ACD ∆的面积关系为_______.说明:⑴⑵等底同高的三角形面积相等 例07.的长,求于,=,于,=,=中,已知如图在BE E AC BE 5AD D BC AD 6BC 8AC ABC ⊥⊥∆说明:通过三角形的面积公式,用“等面积法”来求线段长度是一种常见的方法。
2014届中考数学第一轮复习课件2
课本:91页10.
练一练
8.在△ABC中, (1)∠B=100°,∠A=∠C,则∠C= 40° ; (2)2∠A=∠B+∠C,则∠A= 60° 。
∠ADB 9.如图,______是△ACD的外角,
35° ∠ADB= 115°,∠CAD= 80°则∠C =___ . A
B
D
C
10、在△ABC中,∠A是∠B的2倍,∠C比∠A+∠B还 大30°,则∠C的外角为_____度,这个三角形是 75° 钝角 ____三角形
三角形角平分线的定义:
三角形一个角的平分线与它的对边相交,这 个角的 顶点与交点 之间的线段叫做三角形的 角平分线。
三角形的中线定义
连结三角形一个 顶点与它对边中点 的线段 叫做三角形的中线。
17、如图,已知△ABC。 (1)画中线AD。 (2)画△ABD的高BE及△ACD的高CF。 (3)量一量,比较BE和CF的大小。
7. 三角形外角和定理 三角形的外角和等于3600
7 木工师傅做完门框后,为防止变形,通 常在角上钉一斜条,根据是 ; 三角形具有稳定性
8. 三角形的外角与内角的关系
三角形的一个外角等于与它不相邻的 两个内角的和。
三角形的一个外角大于与它不相邻的 任何一个内角。
4.求下列图形中X的值
解:(1). X 50 90 180
课本:91页7.8.
数学思想: 整体思想和转化思想
在一个图形中同时出现两条角平分线时, 常常要用到整体思想. 运用转化思想将复杂的问题转化为简单 的问题,将未知的问题转化为已知的问 题,是常用的数学方法.
9.已知.1 2, 3 4, A 100 , 求X的值。
2014年各地中考数学真题分类解析汇编(20)三角形的边与角
2014年各地中考数学真题分类解析汇编(20)三角形的边与角D4.(2014·台湾,第18题3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M 为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.5.(2014·台湾,第20题3分)如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D 点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD、AE、BE、CD的大小关系,下列何者正确?()A.AD=AE B.AE<AE C.BE=CDD.BE<CD分析:由∠C<∠B利用大角对大边得到AB<AC,进一步得到BE+ED<ED+CD,从而得到BE<C D.解:∵∠C <∠B ,∴AB <AC ,即BE +ED <ED +CD ,∴BE <C D .故选D .点评:考查了三角形的三边关系,解题的关键是正确的理解题意,了解大边对大角.6.(2014·云南昆明,第5题3分)如图,在△ABC 中,∠A =50°,∠ABC =70°,BD 平分∠ABC ,则∠BDC 的度数是( )A .85°B . 80°C . 75°D . 70° 考点: 角平分线的性质,三角形外角性质. 分析: 首先角平分线的性质求得AB D ∠的度数,然后利用三角形外角性质求得∠BDC 的度数即可.解答:解: ∠ABC =70°,BD 平分∠ABC∴ 35ABD =∠ ∠A =50°D C B A∴∠BDC 853550ABD A =+=∠+∠=故选A .点评: 本题考查了三角形角平分线的性质和三角形外角性质.,属于基础题,比较简单.7. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A . 1,2,3B . 1,1,C . 1,1,D . 1,2,考点: 解直角三角形 专题: 新定义. 分析: A 、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B 、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C 、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解答: 解:A 、∵1+2=3,不能构成三角形,故选项错误; B 、∵12+12=()2,是等腰直角三角形,故选项错误;C 、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D .点评: 考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.二.填空题1. ( 2014•福建泉州,第15题4分)如图,在△ABC 中,∠C =40°,CA =CB ,则△ABC 的外角∠ABD= 110 °.考点: 等腰三角形的性质. 分析: 先根据等腰三角形的性质和三角形的内角和定理求出∠A ,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.解答: 解:∵CA =CB ,∴∠A =∠ABC , ∵∠C =40°,∴∠A =70°∴∠ABD =∠A +∠C =110°.故答案为:110.点评: 此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.2. (2014•扬州,第10题,3分)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.考点:等腰三角形的性质;三角形三边关系.分析:题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为35.点评:此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3. (2014•扬州,第15题,3分)如图,以△ABC 的边BC 为直径的⊙O 分别交AB 、AC 于点D 、E ,连结OD 、OE ,若∠A =65°,则∠DOE =50° .(第2题图)考点: 圆的认识;三角形内角和定理;等腰三角形的性质.分析:首先根据三角形内角和求得∠B +∠C 的度数,然后求得其二倍,然后利用三角形的内角和求得∠BOD +∠EOC ,然后利用平角的性质求得即可.解答: 解:∵∠A =65°,∴∠B +∠C =180°﹣65°=115°,∴∠BDO =∠DBO ,∠OEC =∠OCE , ∴∠BDO +∠DBO +∠OEC +∠OCE =2×115°=230°,∴∠BOD +∠EOC =2×180°﹣230°=130°,∴∠DOE =180°﹣130°=50°,故答案为:50°.点评: 本题考查了圆的认识及三角形的内角和定理等知识,难度不大.三.解答题1. (2014•益阳,第15题,6分)如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°.求∠C 的度数.(第1题图)考点: 平行线的性质. 分析: 根据两直线平行,同旁内角互补求出∠BAF ,再根据角平分线的定义求出∠CAF ,然后根据两直线平行,内错角相等解答.解答: 解:∵EF ∥BC ,∴∠BAF =180°﹣∠B =100°, ∵AC 平分∠BAF ,∴∠CAF =∠BAF =50°,∵EF ∥BC ,∴∠C =∠CAF =50°.点评: 本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.。
2024年云南省中考数学一轮复习 第18讲 解直角三角形课件
∴AF=0.70x=8.4(cm).∴新生物A处到皮肤的距离约为8.4 cm.
混淆锐角三角函数的定义或特殊角的三角函数值而出错
1.若关于 x 的方程 x - x+cos α=0 有两个相等的实数根,则锐角α为( C )
2
A.30°
B.45°
C.60°
开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数
据,并利用数据计算出新生物到皮肤的距离,方案如下:
课题
检测新生物到,新生物在A处,先在皮肤上选择最大限度地避开器官的
说明
B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择
距离B处 9 cm 的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.
∴DP∥AM,∠DPC=90°.∴∠CDP=∠CAM=40°.
∵AD=10 cm,∴CD=AC-AD=50-10=40(cm).
∴DP=CD×cos 40°≈40×0.77=30.8(cm).
∵DF=80 cm,∠EDF=140°,FN⊥ED,
∴∠N=90°,∠FDN=180°-∠EDF=40°.
∴FN=DF×sin 40°≈80×0.64=51.2(cm).
100 m,则河宽度为 50( +1) m(结果保留根号).
模型观念
如图(1)所示是一把折叠躺椅,其示意图如图(2)所示,其中DE平行地
面,人们可通过调整∠FDE和∠DEG的大小来满足不同需求,经测量两只
脚AB=AC=50 cm,支点D在AC上且AD=10 cm,椅背DF=80 cm,躺椅打开时
圆满成功,3名航天员顺利进驻中国空间站.如图所示的照片展示了中
2014年最新三角形知识点梳理(内含点,线,角,全等三角形,辅助线的运用)
第一部分:点、线、角一、线1、直线2、射线3、线段二、角1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。
一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
2.角的平分线3、角的度量:度量角的大小,可用“度”作为度量单位。
把一个圆周分成360等份,每一份叫做一度的角。
1度=60分;1分=60秒。
4. 角的分类:(1)锐角(2)直角(3)钝角(4)平角(5)周角5. 相关的角:(1)对顶角(2)互为补角(3)互为余角6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
7、角的性质(1)对顶角相等(2)同角或等角的余角相等(3)同角或等角的补角相等。
三、相交线1、斜线2、两条直线互相垂直3、垂线,垂足4、垂线的性质(l)过一点有且只有一条直线与己知直线垂直。
(2)垂线段最短。
四、距离1、两点的距2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。
五、平行线1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.第二部分:三角形知识点:一、关于三角形的一些概念1、三角形的角平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第18讲┃ 归类示例
[解析] 四条木棒的所有组合: 3,4,7和3,4,9和3, 7,9和4,7,9;只有3,7,9和4,7,9能组成三角形.故 选B.
第18讲┃ 归类示例
►
类型之二
三角形的重要线段的应用
命题角度: 1. 三角形的中线、角平分线、高线; 2. 三角形的中位线.
第18讲┃ 归类示例
第18讲┃ 归类示例 ► 类型之三 三角形内角与外角的应用
命题角度: 1. 三角形内角和定理; 2. 三角形内角和定理的推论. 如图 18-2,∠ACD 是△ABC 的外角,∠ABC 的
平分线与∠ACD 的平分线交于点 A1,∠A1BC 的平分线与 ∠A1CD 的平分线交于点 A2,…,∠An-1BC 的平分线与∠An -1CD 的平分线交于点 An. 设∠A=θ. θ θ n 则(1)∠A1=________; (2)∠An=________. 2 2
如图 18-1,在△ABC 中, D、E 分别是边 AB、AC 的中点,∠B=50°.现将△ABC 沿 DE 折叠,点 A 落在三角形 所在平面内的点 A1,则∠BDA1 的度数为________.80°
图 18-1
第18讲┃ 归类示例
[解析] 由折叠的性质可知 AD=A1D,根据中位线的性 质得 DE∥BC;然后由两直线平行,同位角相等推知∠ADE =∠B=50°;最后由折叠的性质知∠ADE=∠A1DE,所以 ∠BDA1=180°-2∠B=80°.
第18讲┃ 考点聚焦 考点3 三角形的中位线
中点 的线段叫三角形的中位线 定义 连接三角形两边的______ 三角形的中位线______ 平行 于第三边,并且等于它的 定理 一半 ______ (1)一个三角形有三条中位线; (2)三角形的中位线分 总结 得三角形两部分的面积比为 1∶3
第18讲┃ 考点聚焦 考点4 三角形的三边关系
定理 推理 三角形的 稳定性
三角形的两边之和________ 大于 第三边 三角形的两边只差________ 小于 第三边 三条线段组成三角形后, 形状理及推理
定理 三角形的内角和等于________ 180° 1.三角形的一个外角等于和它 __________________ 不相邻的两个内角 的和 2.三角形的一个外角大于任何一个和它 ________________ 的内角 不相邻 3.直角三角形的两个锐角________ 互余 4.三角形的外角和为________ 360° 在任意一个三角形中,最多有三个锐 角, 最少有两个锐角; 最多有一个钝角, 最多有一个直角
第18讲┃ 归类示例
综合运用三角形的内角和定理与外角的性质、角平分线 的性质,灵活地运用这些基础知识,合理地推理,可以灵活 的解决内外角的关系,得到结论.
重要线段 交点位置 中线 三角形的三条中线的交点在三角形的______ 内 部 三角形的三条角平分线的交点在三角形的 角平分线 内 部 ______ 锐角 三角形的三条高的交点在三角形的内 ______ 直角三角形的三条高的交点是直角顶点; 部;____ 高 钝角 三角形的三条高所在直线的交点在三角 ______ 形的外部
推论
拓展
第18讲┃ 归类示例
归类示例
► 类型之一 三角形三边的关系
命题角度: 1. 判断三条线段能否组成三角形; 2. 求字母的取值范围; 3. 三角形的稳定性.
现有 3 cm,4 cm,7 cm,9 cm 长的四根木棒,任 取其中三根组成一个三角形, 那么可以组成的三角形的个数 B 是 ( ) A.1 B.2 C.3 D.4
第18讲┃ 三角形的边角关系
第18讲┃ 考点聚焦
考点聚焦
考点1 三角形的分类
1.按角分: 直角三角形 锐角三角形 三角形 斜三角形 钝角三角形 2.按边分: 不等边三角形 底边和腰不相等的等腰三角形 三角形 等腰三角形 等边三角形
第18讲┃ 考点聚焦 考点2 三角形中的重要线段
图 18-2
第18讲┃ 归类示例
[解析]
1 (1)根据角平分线的定义可得∠A1BC= ∠ABC, 2
1 ∠A1CD= ∠ACD,再根据三角形的一个外角等于与它不相邻 2 的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC +∠A1,整理即可得解;
第18讲┃ 归类示例
(2)与 (1)同理求出∠ A2,可以发现后一个角等于前一个角的 1 ,根据此规律再结合脚码即可得解. 2 ∵ A1B是∠ ABC的平分线, A1C是∠ ACD的平分线, 1 1 ∴∠ A1BC= ∠ ABC,∠ A1CD= ∠ ACD. 2 2 又∵∠ ACD=∠ A+∠ ABC,∠ A1CD=∠ A1BC+∠ A1, 1 ∴ (∠ A+∠ ABC)=∠ A1BC+∠ A1, 2 θ 1 ∴∠ A1= ∠ A.∵∠ A= θ,∴∠ A1= ; 2 2 θ θ 1 1 1 同理可得∠ A2= ∠ A1= · θ = 2 ,所以∠ An= n . 2 2 2 2 2