2016重庆中考22题统计和概率
中考数学一轮复习专题解析—统计与概率
中考数学一轮复习专题解析—统计与概率复习目标1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;考点梳理一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.【特别提醒】这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.例1. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36 人数 1 1 7 18 10 5 2 2 1 1 2⑴求这次抽样测试数据的平均数、众数和中位数;⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【答案】⑴该组数据的平均数众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多数人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为82%.二、数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。
2016年重庆市中考数学试卷-答案
1 / 11
C.
【考点】相似三角形的性质
9.【答案】A
【解析】AB 为直径,ACB 90 , AC BC 2 ,△ACB 为等腰直角三角形,OC AB ,
△AOC 和△BOC 都是等腰直角三角形,S AOC S BOC , OA
2 AC 1, 2
S阴影部分
2
2
【考点】圆周角定理 16.【答案】 1
6
【解析】根据题意画树状图如下
由树形图可知,共有 12 种情况. 正比例函数 y=kx 的图像经过第三、第一象限,k 0 , k mn ,mn 0 , 符合条件的情况共有 2 种,正比例函数 y=kx 的图像经过第三、第一象限的概率是 2 = 1 .
2
2
故选 B.
【考点】解分式方程,解一元一次不等式组
2 / 11
第Ⅱ卷
二、填空题 13.【答案】 6.05104 【解析】 60500 6.05104 . 【考点】科学计数法 14.【答案】3 【解析】 4 (2)0 2 1 3 .
【考点】实数的运算
15.【答案】60
【解析】 ACB 1 AOB 1 120 60 .
2016年重庆市中考数学试卷含答案
()
A. 3
B. 2
C. 3
D. 1
2
2
第Ⅱ卷(非选择题 共 102 分)
二、填空题(本大题 6 个小题,每小题 4 分,共 24 分.请把答案填在题中的横线上) 13.据报道,2015 年某市城镇非私营单位就业人员年平均工资超过 60 500 元,将数 60 500
用科学记数法表示为
.
14.计算: 4 (2)0
数学试卷 第 8页(共 20页)
由.
重庆市 2016 年初中毕业暨高中招生考试
数学答案解析
第Ⅰ卷
一、选择题 1.【答案】A 【解析】2 1 0 2 ,最小的数为-2,故选 A. 【考点】实数的大小比较 2.【答案】D 【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,
数学试卷 第 6页(共 20页)
24.(本小题满分 10 分) 我们知道,任意一个正整数 n 都可以进行这样的分解 n p q ( p , q 是正整数,且 p≤q ),在 n 的所有这种分解中,如果 p , q 两因数之差的绝对值最小,我们就称 p q 是 n 的最佳分解,并规定: F(n) p .例如 12 可以分解成112 , 2 6 或 3 4 ,因为 q 12 1>6 2>4 3 ,所以 3 4 是 12 的最佳分解,所以 F(12) 3 . 4 (1)如果一个正整数 a 是另外一个正整数 b 的平方,我们称正整数 a 是完全平方数.求 证:对任意一个完全平方数 m ,总有 F (m) 1 ; (2)如果一个两位正整数 t , t 10x y (1≤x≤y≤9 , x , y 为自然数),交换其个位上
.
17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1 500
2016年重庆市中考数学试题(A卷)有答案
2016年重庆市中考数学试题(A卷)有答案重庆市2016年初中毕业暨高中招生考试数学试题(A卷)本试卷共五个大题,满分150分,考试时间120分钟。
一、选择题(本大题共12个小题,每小题4分,共48分)1.在-4,-1,3这四个数中,最大的数是()A。
-4 B。
-1 C。
3 D。
无法比较2.下列图形是轴对称图形的是()A。
B。
C。
D。
3.化简12的结果是()A。
43 B。
23 C。
32 D。
264.计算a^2b的结果是()A。
a^6b^3 B。
a^2b^3 C。
a^5b^3 D。
a^6b5.下列调查中,最适合用普查方式的是()A。
调查一批电视机的使用寿命情况B。
调查某中学九年级一班学生视力情况C。
调查重庆市初中学生锻炼所用的时间情况D。
调查重庆市初中学生利用网络媒体自主研究的情况6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,若∠1=135°,则∠2的度数为()A。
65° B。
55° C。
45° D。
35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A。
220 B。
218 C。
216 D。
2098.一元二次方程x^2-2x=0的根是()A。
x1=0.x2=-2 B。
x1=1.x2=2C。
x1=1.x2=-2 D。
x1=0.x2=29.如图,AB是O的直径,点C在O上,AE是O的切线,A为切点,连接BC并延长交AE于点D,若∠AOC=80°,则∠ADB的度数为()A。
40° B。
50° C。
60° D。
20°10.今年“五一”节,XXX外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是()A。
中考数学专题训练—统计与概率综合
2019年中考数学专题训练—统计与概率综合1.某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有名学生,根据调查数据分析,全校约有名学生参加了音乐社团;请你补全条形统计图.2.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2019年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2019年全年阅读中外名著的总本数.3.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.4.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率. 科目 语文 数学 英语 得分 120 146 1405.2019年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.6.双福育才中学为积极响应学校提出的“实现伟大育才梦,建设美丽双福”的号召,面向全校学生开展征文活动,校学生会对七年级各班一周内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)图中投稿篇数为2所对应的扇形的圆心角度数为,并将该条形统计图补充完整.(2)求学校七年级各班在这一周内投稿的平均篇数.(3)若全校共有72个班,请估计全校征文投稿不低于6篇的班级有多少个?7.重庆市巴川中学是全国啦啦操基地,每届学生对啦啦操技巧的掌握都将得到传承,初2019级的同学们本周正在认真学习啦啦操,为庆“六一”表演积极做准备.学校艺体处为了解同学们跳啦啦操的热情和喜爱情况,组织大队委对本年级学生进行随机抽样调查.大队委文艺副部长小王对抽样的同学们对啦啦操的喜爱程度分为四类:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢,并将自己的调查结果绘制成如图的统计图,请你结合图中所给信息解答下列问题:请将条形统计图补充完整;初2019级共有学生2400人,请你用小王的调查结果估计该年级“非常喜欢”和“比较喜欢”跳啦啦操的人数之和有多少人?8.学校教务处为了了解学生下午参加体育活动的情况,采用随机抽样的方式进行问卷调查,调查结果分为“篮球”、“足球”、“乒乓球”、“跳绳”“体育舞蹈”、“其他”六类,分别用A、B、C、D、E、F表示.根据调查结果绘制了如图所示两幅不完整的统计图.结合图中所给出的信息,请补全条形统计图,并根据抽样调查估计全校3600名学生中选择跳绳和体育舞蹈的总人数.9.2019年春节联欢晚会分为A(语言类)、B(歌舞类)、C(魔术类)、D(杂技类)四类节目.为了了解某养老院老人对这几类节目的喜好程度,民政部门在该养老院随机抽取部分老人进行了问卷调查,规定每位老人只能选一类自己最喜欢的节目,并制成了以下两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)补全条形统计图;(2)已知该养老院共有230位老人,请你估计该养老院喜欢语言类节目的老人大约有多少人?10.为丰富我校学生的课余生活,增强学生的综合能力,学校计划在下学年新开设A:国际象棋社;B:皮影社;C:话剧社;D:手语社这四个社团;为了解学生喜欢哪一个社团,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图,请结合图中信息解答下列问题:求样本中喜欢C社团的人数在扇形统计图中的圆心角的度数,并把条形统计图补充完整.11.随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整;(2)扇形统计图中A类所在的扇形的圆心角度数是;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.12.电视节目“了不起的挑战”播出后深受中小学生的喜爱,小刚想知道我校学生最喜欢哪位明星,于是在我校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的明星),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.并将两幅统计图补充完整.(2)若小刚所在学校有3500名学生,请根据图中信息,估计全校喜欢“阮经天”的人数.13.数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.14.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?15.重庆市某超市举行盛大的周年庆庆祝活动,推出“感恩顾客,回馈真情”抽奖活动,活动规定,凡购买商品价值不低于200元的顾客,都能参与一次抽奖活动,奖励的等级分为下列五等:A等级:奖励现金50元,B等级:奖励现金30元;C等级:奖励现金10元;D等级:奖励现金6元;E等级:呵呵,恭喜发财,下次再来(没有奖励)!超市根据部分顾客的抽奖情况,对抽奖结果进行分析,绘制了下列两幅不完整的统计图:根据提供的信息,求扇形统计图中“D等级”所对应的圆心角度数,并求出顾客抽一次奖的平均收益,并补全条形统计图.16.小明参加班委竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是五位评委对小明“演讲答辩”的评分条形统计图及全班50位同学民主测评票数统计表,已知小明“演讲答辩”得分是95分(1)请补全条形统计图;(2)小明的民主测评得分是;(3)请求出小明的综合得分.17.在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.18.食品安全关系千家万户,春节期间,食监部门对某超市的甲、乙两种品牌的菜籽油进行了抽检,共随机抽取了36桶油进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,已知乙种品牌的菜籽油全部合格,统计人员将数据处理后制成了如下的扇形统计图及折线统计图,其中扇形统计图表示甲种品牌菜籽油检测的结果,折线统计图表示甲、乙两种品牌菜籽油检测的结果.(1)甲、乙两种品牌的菜籽油各被抽取了多少桶进行检测?(2)甲、乙两种品牌的菜籽油检测结果中“优秀”各有多少桶?19.近年来,“小组合作学习”成为我区推动课堂教学活动改革,打造高效课堂的重要举措.某中学为了了解“小组合作学习”实施后学生的学习兴趣,随机调查了部分学生,并根据调查结果绘制成如图图表:(1)求调查的学生中学习兴趣“高”的人数的百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)已知该校有750人,请根据调查情况估计全校学习兴趣“极高”的人数是多少?20.某中学上学期开展了以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制如图所示的不完整的统计图,请你根据图中提供的信息补全条形统计图并估计该中学1500名学生中最喜爱律师职业的学生有多少名?21.“六一”儿童节前夕,某县××局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名、7名、8名、10名、12名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有个班级;各班留守儿童人数的中位数是;并补全条形统计图;(2)若该镇所有小学共有65个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.22.《中国足球改革总体方案》提出足球要进校园,为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图;(1)一共调查了名学生,请补全条形统计图;(2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级,现在要从选择“一般”的同学中随机抽取两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.23.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;C类所占百分比为;(2)将图1补充完整;(3)现有6名学生,其中A类三名,B类三名,张华在A类,王雨在B类,从A、B中各选1名学生,请用列表法或树状图法求张华、王雨至少有一个被抽到的概率.24.创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).25.某区教委对部分学校的七年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层次,A 级:对学习很感兴趣,B级:对学习比较感兴趣,C级:对学习不敢兴趣)并将调查结果绘制成图1和图2的统计图(不完整)根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生,图2中C级扇形的圆心角是度.并将图1补充完整.(2)已知A级中有4名数奥尖子学生,其中有2名男生,2名女生,B级中有3名体育尖子学生,其中有2名男生,1名女生,从这4名数奥尖子学生和3名体育尖子生中各选出1名学生,参加学校的“特长学生经验交流会”.利用”树状图“或者”列表”法求所选出的2名学生恰好是一名男生和一名女生的概率.26.我校学生社团下学年将新增四个社团:A.开心农场、B.小小书吧、C.宏帆传媒、D.学生大使团.为了了解学生对四个社团的喜欢情况,学生会干部随机抽取了部分学生进行调查,并将调查结果绘制成下列的统计图,请结合图中的信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)请计算扇形统计图中B的圆心角;并将条形统计图补充完整;(3)为了了解学生喜欢“宏帆传媒”社团的原因,调查到喜欢“宏帆传媒”社团的5个学生中有2个初一的,3个初二的,现在这5个学生中任抽取2名学生参加座谈,请用树状图或列表的方法,求刚好抽到同一年级学生的概率.27.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.28.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.29.经国家体育总局、重庆市××局批准,国家级青少年体育俱乐部-重庆巴蜀青少年体育俱乐部-于2019年12月20日成立.体育老师吴老师为了了解七年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己喜欢的一种球类),请根据这两幅图形解答下列问题:(1)将两个不完整的统计图补充完整;(2)七(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表法或画树状图的方法求出刚好抽到一男一女的概率.30.某公司××部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若B馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.。
重庆市2016年初中毕业暨高中招生考试(文档版,有部分答案)
重庆市2016年初中毕业暨高中招生考试(全真模拟)数学试题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22,对称轴为直线ab x 2-=.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑. 1.在―3,―1,0,2这四数中,最小的数是( ) A .-3B .-1C .0D .22.计算32a a -的结果正确的是( ) A .5a -B .a -C .aD .13.下列四组数分别是三条线段的长度,能构成三角形的是( ) A .1,1,2B .1,3,4C .2,3,6D .4,5,84.已知关于x 的方程250x a --=的解是2x =-,那么a 的值为( ) A .-9B .-1C .1D .95.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=∠2,若∠4则∠3等于( ) A .30°B .50°C .65°D .115°6.若()210x -=,则x y +的值是( ) A .-3 B .-1 C .17.如图,在ABC △中,点D 在边AB 上,B D =2AD ,DE ∥BC 交AC 于点E ,若线段DE =10,那么线段BC 的长为( ) A .15B .20C .30D .408.为了调查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm )为:16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是( ) A .11,11B .12,11C .13,11D .13,169.如图,AB 是⊙O 的直径,弦CD ⊥AB ,DE ⊥CE 于E ,∠AOD =60°,CD =S 阴影=( )A23π B2π CDπ 10.如图,下列图案均是长度相同的火柴并按一定的规律拼接而成:第1个图案需7根火柴,第2个图案需13根火柴,第3个图案需21根火柴,…,依此规律,第8个图案需( )根火柴……第1个图第2个图第3个图 第4个图 A .90B .91C .92D .9311.某超市从一楼到二楼有一自动扶梯,如图是自动扶梯的侧面示意图,已知自动扶梯AB 的坡度为1:2.4,AB 的长度为13米,MN 是二楼楼顶,MN ∥PQ ,C 是MN 上处在自动扶梯顶端B 点正上方的一点,BC ⊥MN ,在自动扶梯底端A 处侧得C 点的仰角为 42°,则二楼的层高BC 约为(精确到0.1米,sin 420.67≈ ,tan 420.90≈ )( )A .10.8米B .8.9米C .8.0米D .5.8米12.如果关于x 的方程2420ax x +-=有两个不相等的实数根,且关于x 的分式方程11222ax x x --=--有正数解,则符合条件的整数a 的值是( ) A .-1 B .0 C .1 D .2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.若一个多边形的内角和为720°,则这个多边形的边数是_________14.计算:212sin 302-⎛⎫-+- ⎪⎝⎭__________15.如图所示,在⊙O 中,∠CBO =45°,∠CAO =15°,则∠AOB 的度数是_________ 16.现有6个质地,大小完全相同的小球上分别标有数字-1,0.5,23,112,1,2.先将标有数字-1,0.5,112的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里,现分别从这两个盒子里各随机取出一个小球,则取出的两个小球上的数字互为倒数的概率为_______17.地铁一号线的列车匀速通过某隧道时,列车在隧道内的长度y (米)与列车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①列车的长度为120米;②列车的速度为30米/秒;③列车整体在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是__________(填正确结论的序号)第15题图 第17题图 第18题图18.如图,已知正方形ABCDAC 、BD 交于点O ,点E 在BC 上,且CE=2BE ,过B 点作BF ⊥AE 于点F ,连接OF ,则线段OF 的长度为 。
中考数学专题训练统计与概率(含解析)
中考数学专题训练统计与概率(含解析)专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2019年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2019·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2019·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2019·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:班级参加人数中位数方差平均分(1)班50 120 103 122(2)班49 121 201 122根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2019·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:成绩/分36 37 38 39 40人数/人 1 2 1 4 2下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分; 排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40- 38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )α30°45°60°sinαcosαtanαA. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.α30°45°60°sinαcosαtanα 114.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是A.平均数B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2019·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( ) A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2019·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:鞋的尺码(单位:cm) 22.5 23 23.5 24 24.5销售量(单位:双) 3 6 12 9 8根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2019·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2019·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2019·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2019·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2019·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2019·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2019·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率. 【解析】(1)平均数中位数方差甲 2乙丙 6(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==. 28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南书法演讲国学诵读征文宁宁书法√演讲√国学诵读√征文√南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2019人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2019×=600(人).(3)列表如下:男1 男2 女1 女2男1 ×(男1,男2) (男1,女1) (男1,女2)男2 (男2,男1) ×(男2,女1) (男2,女2)女1 (女1,男1) (女1,男2) ×(女1,女2)女2 (女2,男1) (女2,男2) (女2,女1) ×画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。
中考数学复习《概率-填空题》专项检测卷-附带答案
中考数学复习《概率-填空题》专项检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、填空题1.有3个外观完全相同的密封且不透明试剂瓶,分别装有稀硫酸、稀盐酸、氯化钠三种溶液,小星从这3个试剂瓶中任意抽取2个,则抽到的2个都是酸性溶液(稀硫酸溶液、稀盐酸溶液)的概率是.2.一个袋中有1个白球,3个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则摸到1个白球和1个蓝球的概率是.3.从1-、-3、1这三个数中任取两个不同的数分别作为点A的横、纵坐标,则点A在第二象限的概率是.4.重庆园博园内桃花盛开,一片春意盎然.周末甲、乙两名同学去游园,园内有A、B、C 三条不同的赏花路线,两名同学每人随机选择一条路线,那么他们选择相同路线的概率是.5.现有分别标有汉字“决”“胜”“中”“考”的四张卡片,它们除汉字外完全相同,若把四张卡片背面朝上,洗匀后放在桌面上,然后随机抽出一张,不放回,再随机抽出一张,两次抽出的卡片上的汉字能组成“决”“胜”的概率是.6.在一个不透明的袋子中装有4张形状大小质地完全相同的卡片.它们上面分别标有数字:-3、-1、0、2,随机抽取一张卡片,记下数字为m,放回后再随机抽取一张卡片,记下数字为n,则(),m n落在第三象限的概率是 .7.有四张正面分别标有汉字“中”、“考”、“必”、“胜”的卡片,它们除汉字外完全相同,将四张卡片背面朝上,洗匀后随机抽取两张,取出的两张卡片上的汉字能组成“必胜”的概率是.8.不透明的盒子中有3个红球,1个白球,这些球除颜色外无其他差别,从中随机摸出一个球不放回,再从中随机摸出一个球,两次摸出的恰好都是红球的概率是.9.一个口袋里有2个红球2个白球,这些球除颜色外都相同.从中随机取出一个球,记下颜色后放回,摇匀后再随机取出一个小球记下颜色,则两次取出小球颜色相同的概率为 .10.不透明的袋子中装了2个红球,1个黑球,1个白球,这些球除颜色外无其它差别,从袋子中随机摸出2个球,摸出1个红球1个黑球的概率为.11.有四张背面完全相同的卡片,正面上分别标有数字1-和13-,0,2,把这四张卡片背面朝上,随机抽取1张将上面的数字记作a,则0a≤的概率是.12.有四张背面完全相同,正面分别是“诚”、“勤”、“立”、“达”的卡牌,洗匀后背面朝上,小明随机抽取一张卡牌后记录卡牌上的汉字并放回,洗匀后再随机抽取一张卡牌,小明第二次抽取的卡牌上的汉字和第一次相同的概率是.13.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有1-,0,1,2这四个数字,从袋子中随机抽取一个小球,记标号为a,不放回,将袋子摇匀,再随机抽取a b在第四象限的概率为.一个小球,记标号为b,则(,)14.将分别标有数字1,2,3的三个小球放入一个不透明的袋子中,这些小球除数字外其他都相同,从中随机摸出一个小球记下数字后放回,再从中随机摸出一个小球并记下数字,则两次摸出的小球数字相同的概率.15.在一个不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-2,-1,0,1这四个数字,从袋子中随机抽取一个小球,记标号为a,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b,则(),a b在第二象限的概率为.16.有三张完全一样正面分别写有“津”、“中”、“人”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字不同的概率是.--,,这三个数中任选两个不同的数作为点A的坐标,则点A在第二象限的概率17.从868为.18.创“平安余姚”是我们每个余姚人的愿望,某小区在摸彩球活动中,将质地大小完全相同,上面标有“平”“安”“余”“姚”的四个彩球放入同一个袋子,某居民在袋子中随机摸出一个彩球后不放回,再摸出一个,摸出的两个彩球能拼成“平安”的概率是.19.甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机抽出一张卡片,抽出的两张卡片上的数字之和是4的概率.20.有四张背面完全相同正面分别写有数字1,2,3,4的卡片.将其背面朝上洗匀,从中随机抽取两张,则抽取的两张卡片上的数字之和等于6的概率是.参考答案:1.1 3【来源】2024学年重庆市求精中学校九年级下学期二调模拟考试数学模拟预测题【分析】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.【详解】解:画树状图为:由树状图可知共有6种等可能结果,其中抽到的2个都是酸性溶液的为2种,即概率为2163=故答案为:13.2.38【来源】重庆市第八中学校2023-2024学年九年级下学期第5次作业月考数学试题【分析】本题考查了用树状图或列表法求概率,画出树状图,根据树状图即可求解,掌握树状图或列表法是解题的关键.【详解】解:画出树状图如下:由树状图可得,共有16种等结果,其中摸到1个白球和1个蓝球的结果有6种∴摸到1个白球和1个蓝球的概率是63 168=故答案为:38.3.1 3【来源】重庆市第十八中学2023-2024学年九年级下学期第一次月考数学试题【分析】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该点在第二象限的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:∵共有6种等可能的结果,该点在第二象限的有2种情况∴该点在第二象限的概率是:21 63 =故答案为13.4.1 3【来源】重庆市巴蜀中学校2023-2024学年九年级下学期期中数学试题【分析】此题考查了用树状图法或列表法求概率树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件,用到的知识点为∶概率所求情况数与总情况数之比.用树状图法得到所有等可能的结果,然后找出符合条件的结果数,再利用概率公式求解即可.【详解】解:列表如下:共有9种等可能的情况,其中两人恰好选择同一条路线(记作事件M )的情况有3种 31()93P M ∴==. 5.16 【来源】2023年重庆实验外国语学校 第三次诊断考试 数学模拟预测题【分析】列表法找出12种等可能的结果数,再找出两次摸出的卡片上的汉字组成“决”“胜”的结果数,然后根据概率公式求解.【详解】解:设标有汉字“决”“胜”“中”“考”的四张卡片分别用A 、B 、C 、D 表示,列表如下:由表格可知一共有12种等可能性的结果数,其中两次抽出的卡片上的汉字能组成“决”“胜”的结果数有2种∴两次抽出的卡片上的汉字能组成“决”“胜”的概率为21126= 故答案为:16. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.6.14/0.25 【来源】2023学年重庆市巴蜀中学九年级下学期模拟数学模拟预测题(5.20))【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:列表如下: 3-1- 0 2 3-(3,3)-- (1,3)-- (0,3)- (2,3)- 1- (3,1)-- (1,1)-- (0,1)-(2,1)- 0 (3,0)- (1,0)- (0,0)(2,0) 2 (3,2)- (1,2)- (0,2) (2,2)由表知,共有16种等可能结果,其中落在第三象限的有4种结果所以落在第三象限的概率为14故答案为:14. 【点睛】此题考查的是树状图法求概率以及随机事件和不可能事件的概念.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.7.16【来源】2023年重庆市铜梁区巴川中学中考数学模拟预测题(二)【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:“中”、“考”、“必”、“胜”的四张卡片分别用A 、B 、C 、D 表示,画树状图如图所示:由树状图可知,共有12种等可能的结果,其中两次抽出的卡片上的汉字能组成“必胜”有2种所以两次抽出的卡片上的汉字能组成“必胜”的概率是21 126=故答案为:16.【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;熟练掌握概率=所求情况数与总情况数之比是解题的关键.8.1 2【来源】2024年重庆市育才中学校九年级下学期中考一诊数学试题【分析】根据题意,画出树状图,展示所有等可能的结果,再利用概率公式,即可求解.【详解】画树状图如下:一共有12种等可能的结果,两次摸出的恰好都是红球有6种∴两次摸出的恰好都是红球的概率=6÷12=1 2故答案是:1 2【点睛】本题主要考查等可能事件的概率,熟练画出树状图,展示所有等可能的结果,是解题的关键.9.12/0.5【来源】重庆市北碚区西南大学附属中学校2023-2024学年九年级下学期3月月考数学试题【分析】本题考查用列表法或树状图法求概率,解题的关键是注意此题是放回实验还是不放回实验.根据题意画出树状图,求得所有等可能的结果和两次取出的小球颜色相同的结果,利用概率公式求得即可.【详解】画出树状图:由图可得,共有16种等可能的结果,其中两次取出的小球颜色相同的结果有8种∴两次取出的小球颜色相同的概率为81 162=故答案为:12.10.1 3【来源】重庆市第八中学校2023-2024学年九年级下学期第二次定时练习题【分析】本题考查了画树状图计算概率,正确画出树状图是解题的关键.【详解】设两个红球分别为A,B,黑球为C,白球为D,根据题意,画树状图如下:.一共有12种等可能性,其中,一红一黑等可能性有4种.故摸出1个红球1个黑球的概率为41 123=故答案为13.11.3 4【来源】2023年重庆市第八中学校中考数学强化训练模拟预测题(四)【分析】本题考查公式法求概率,掌握事件A的概率等于所求事件数与总情况数之比,是解题的关键.直接用概率公式计算即可.【详解】解:四张标有数字1-和13-,0,2,的卡片,摸到每一张的可能性是均等的∵所有等可能的结果有4种,其中0a≤的有3种∴随机抽取1张将上面的数字记作a ,则0a ≤的概率是34. 故答案为:34. 12.1 4【来源】2024学年重庆市第八中学校九年级下学期第一次模拟(学月)考试数学模拟试题【分析】本题考查概率公式,列出全部的情况,利用概率公式计算即可.【详解】解:全部的情况(诚,勤)、(诚,立)、(诚,诚)、(诚,达)、(勤,勤)、(勤,诚)、(勤,立)、(勤,达)、(立,诚)、(立,勤)、(立,立)、(立,达)、(达,诚)、(达,勤)、(达,立)、(达,达)共16种情况其中第一二次卡片汉字相同的有(诚,诚)、(勤,勤)、(立,立)、(达,达)共4种情况故所求的概率为41164=. 故答案为:14. 13.16【来源】重庆市第八中学校2023-2024学年九年级下学期第4次数学试题【分析】此题考查的是用列表法或树状图法求概率. 解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.也考查了象限内点的坐标特征.画树状图,共有12个等可能的结果,则(),a b 在第四象限的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有12个等可能的结果,则(),a b 在第四象限的结果有2个∴(),a b 在第四象限的概率为21126= 故答案为:16.14.13 【来源】2023年重庆市巴川中学校中考一模数学模拟试题【分析】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.画树状图得出所有等可能的结果数以及两次摸出的小球数字相同的结果数,再利用概率公式可得出答案.【详解】解:画树状图如下:共有9种等可能的结果,其中两次摸出的小球数字相同的结果有()1,1,()2,2和()3,3,共3种∴两次摸出的小球数字相同的概率为3193=. 故答案为:13. 15.16【来源】重庆市第八中学2023-2024学年九年级下学期数学月考试题【分析】此题考查的是用列表法或树状图法求概率. 解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.也考查了一次函数的性质.画树状图,共有12个等可能的结果,则(),a b 在第二象限的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有12个等可能的结果,则(),a b 在第二象限的结果有2个∴(),a b 在第二象限的概率为16故答案为:1.616.23【来源】重庆市江津区江津中学校2023-2024学年九年级下学期第一次月考数学试题【分析】此题考查的是用列表法或树状图法求概率.根据列表法求概率即可求解.解题时要注意此题是放回实验还是不放回实验.【详解】解:根据题意列表如下:共有9种等可能的结果数,其中两次抽出的卡片上的字母不相同的有6种情况所以P (抽取的两张卡片上的字母相同)6293=. 故答案为:23.17.13 【来源】重庆市第十八中学2023-2024学年 九年级下学期第一次月考数学试题【分析】本题考查了列举法求概率,先把所以结果列举出来,再算符合题意的结果,运用概率公式计算,即可作答.【详解】解:依题意()()()()()()868886886868--------,,,,,,,,,,,,共有6种结果 满足在第二象限的有()()8868--,,,,这两种结果 ∴则点A 在第二象限的概率为2163= 故答案为:13 18.16【来源】 重庆市万州第二高级中学2023-2024学年九年级下学期第一次月考数学试题【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【详解】解:列表如下:平 安 余 姚 平 安平 余平 姚平安 平安 余安 姚安余 平余 安余 姚余姚 平姚 安姚 余姚由表可知共有12种等可能结果,其中摸出的两个彩球能拼成“平安”的有2种结果 所以摸出的两个彩球能拼成“平安”的概率为:21126= 故答案为:16. 【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.13【来源】2023年重庆市第三十七中学校中考第二次诊断性模拟考试数学模拟试题【分析】根据题意可得到共有9种等可能的结果,数字之和为4的结果有3种,即可得到答案.【详解】解:由题可得可列如下:1 2 3 1 ()11, ()12, ()13,2 ()21, ()22,()23, 3()31, ()32, ()33, ∴由上表可得:共有9种等可能的结果,数字之和为4的结果有3种故摸出两张卡片上的数字之和是4的概率是13.故答案为:13.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率等于所求情况数与总情况数之比.20.1 6【来源】重庆市凤鸣山中学2023-2024学年九年级下学期3月月考数学试题【分析】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.画树状图得出所有等可能的结果数以及两张卡片上的数字之和等于6的结果数,再利用概率公式可得出答案.【详解】解:由题意可得:一共有12种等可能的结果,抽取的两张卡片上的数字之和等于6的2种∴抽取的两张卡片上的数字之和等于6的概率为21 126故答案为:16.。
2016年重庆中考数学真题卷含答案解析
重庆市2016年初中毕业暨高中招生考试数学试题(含答案全解全析)(满分:150分时间:120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a ,4ac-b24a),对称轴为x=-b2a.第Ⅰ卷(选择题,共48分)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D 的四个答案,其中只有一个是正确的.1.在实数-2,2,0,-1中,最小的数是( )A.-2B.2C.0D.-12.下列图形中是轴对称图形的是( )3.计算a3·a2正确的是( )A.aB.a5C.a6D.a94.下列调查中,最适合采用全面调查(普查)方式的是( )A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( )A.120°B.110°C.100°D.80°6.若a=2,b=-1,则a+2b+3的值为( )A.-1B.3C.6D.57.函数y=1x+2中,x的取值范围是( )A.x≠0B.x>-2C.x<-2D.x≠-28.△ABC与△DEF的相似比为1∶4,则△ABC与△DEF的周长比为( )A.1∶2B.1∶3C.1∶4D.1∶169.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=√2,则图中阴影部分的面积是( )A.π4B.12+π4C.π2D.12+π210.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,……,按此规律排列下去,第⑦个图形中小圆圈的个数为( )A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动.如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°.然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树底端D 处,斜面AB 的坡度(或坡比)i=1∶2.4,那么大树CD 的高度约为(参考数据: sin 36°≈0.59,cos 36°≈0.81,tan 36°≈0.73)( )A.8.1米B.17.2米C.19.7米D.25.5米12.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a.若数a 使关于x 的不等式组{13(2x +7)≥3,x -a <0无解,且使关于x 的分式方程x x -3-a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( ) A.-3B.-2C.-32D.12第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60 500元,将数60 500用科学记数法表示为 . 14.计算:√4+(-2)0= .15.如图,OA,OB 是☉O 的半径,点C 在☉O 上,连接AC,BC.若∠AOB=120°,则∠ACB= 度.16.从数-2,-12,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n.若k=mn,则正比例函数y=kx 的图象经过第三、第一象限的概率是 .17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1 500米,先到终点的人原地休息.已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是米.18.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE',点F是DE的中点,连接AF,BF,E'F.若AE=√2,则四边形ABFE'的面积是.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形.19.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.20.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2015年全年阅读中外名著的情况进行调查.整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图.其中阅读了6本的人数占被调查人数的30%.根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.七年级部分学生阅读中外名著本数条形统计图四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形.21.计算:(1)(a+b)2-b(2a+b);(2)(2-2xx+1+x-1)÷x2-xx+1.22.在平面直角坐标系中,一次函数y=ax+b(a ≠0)的图象与反比例函数y=kx (k ≠0)的图象交于第二、第四象限内的A 、B 两点,与y 轴交于C 点.过点A 作AH ⊥y 轴,垂足为H,OH=3,tan ∠AOH=43,点B 的坐标为(m,-2). (1)求△AHO 的周长;(2)求该反比例函数和一次函数的解析式.23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元? (2)5月20日猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉,并规定其销售价在5月20日每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比5月20日提高了110a%,求a 的值.24.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这.例如12种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=pq.可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形.25.在△ABC中,∠B=45°,∠C=30°.点D是BC上一点,连接AD.过点A作AG⊥AD.在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,CG,且GE=DF.(1)若AB=2√2,求BC的长;(2)如图1,当点G 在AC 上时,求证:BD=12CG;(3)如图2,当点G 在AC 的垂直平分线上时,直接..写出ABCG的值.26.如图1,在平面直角坐标系中,抛物线y=-13x 2+2√33x+3与x 轴交于A,B 两点(点A 在点B 左侧),与y轴交于点C,抛物线的顶点为点E. (1)判断△ABC 的形状,并说明理由;(2)经过B,C 两点的直线交抛物线的对称轴于点D,点P 为直线BC 上方抛物线上的一动点,当△PCD 的面积最大时,点Q 从点P 出发,先沿适当的路径运动到抛物线的对称轴上点M 处,再沿垂直于抛物线对称轴的方向运动到y 轴上的点N 处,最后沿适当的路径运动到点A 处停止.当点Q 的运动路径最短时,求点N 的坐标及点Q 经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E 在射线AE 上移动,点E 平移后的对应点为点E',点A 的对应点为点A'.将△AOC 绕点O 顺时针旋转至△A 1OC 1的位置,点A,C 的对应点分别为点A 1,C 1,且点A 1恰好落在AC 上,连接C 1A',C 1E'.△A'C 1E'是否能为等腰三角形?若能,请求出所有符合条件的点E'的坐标;若不能,请说明理由.答案全解全析:一、选择题1.A 在实数中,负数小于正数、0,两个负数,绝对值大的反而小,所以-2,2,0,-1中,最小的数是-2,故选A.2.D 根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,知选项D中的图形是轴对称图形,符合题意,故选D.3.B 根据“同底数幂相乘,底数不变,指数相加”得a3·a2=a3+2=a5.故选B.4.B 事关重大的调查往往选用普查,所以对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查,故选B.评析本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要调查的对象的特征灵活选用.一般来说,对于具有破坏性的调查、无法进行普查的调查、普查的意义或价值不大的调查,应选择抽样调查;对于精确度要求高的调查、事关重大的调查往往选用普查.5.C ∵AB∥CD,∴∠1+∠DFE=180°,∵∠DFE=∠2=80°,∴∠1=180°-80°=100°.故选C.6.B 当a=2,b=-1时,原式=2+2×(-1)+3=3,故选B.7.D 由分式有意义的条件得x+2≠0,解得x≠-2.故选D.8.C 因为△ABC与△DEF的相似比为1∶4,所以由相似三角形周长的比等于相似比,得△ABC与△DEF 的周长比为1∶4,故选C. 9.A ∵AB 为直径,∴∠ACB=90°.又∵AC=BC=√2,∴△ACB 为等腰直角三角形, ∴OC ⊥AB,△AOC 和△BOC 都是等腰直角三角形, ∴S △AOC =S △BOC ,OA=1, ∴S 阴影部分=S 扇形AOC =90·π·12360=π4.故选A.评析 求阴影部分的面积往往都是求不规则图形的面积,所以把不规则图形的面积转化为规则图形的面积是解决这类问题的主要思路.几种常用的方法:(1)将待求面积的图形分割成几个规则图形后,将规则图形的面积相加;(2)将阴影中部分图形等积变形后移位,组成规则图形求解;(3)将待求面积的图形分割后,利用平移、旋转将部分图形移位,最后组成规则图形求解. 10.D 通过观察,第①个图形中小圆圈的个数为(1+2)×22+12=4,第②个图形中小圆圈的个数为(1+3)×32+22=10,第③个图形中小圆圈的个数为(1+4)×42+32=19,第④个图形中小圆圈的个数为(1+5)×52+42=31,以此类推,第个图形中小圆圈的个数为(n+2)(n+1)2+n 2,当n=7时,(7+2)×(7+1)2+72=85,故第⑦个图形中小圆圈的个数为85.故选D. 11.A 作BF ⊥AE 于F,如图所示,易知四边形BDEF 为矩形,则FE=BD=6米,DE=BF, ∵斜面AB 的坡度i=1∶2.4,∴AF=2.4BF, 设BF=x 米,则AF=2.4x 米,在Rt △ABF 中,x 2+(2.4x)2=132,解得x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt △ACE 中,CE=AE ·tan 36°≈18×0.73=13.14米,∴CD=CE-DE=13.14-5≈8.1米,故选A.12.B 由{13(2x +7)≥3,x -a <0解得{x ≥1,x <a , ∵不等式组{13(2x +7)≥3,x -a <0无解,∴a ≤1, 由x x -3-a -23-x =-1,得x=5-a 2, 由题意得x=5-a 2为整数,5-a 2≠3,又a ≤1, ∴在-3,-1,12,1,3中,a 只能取-3或1,∴所有满足条件的a 的值之和是-2,故选B.二、填空题13.答案 6.05×104解析 利用科学记数法表示一个比较大的数就是将该数表示为a ×10n (1≤a<10,n 为正整数)的形式,确定n 时遵循:n 等于原数的整数位数减去1.易知60 500=6.05×104.14.答案 3解析 √4+(-2)0=2+1=3.15.答案 60解析 根据圆周角定理,知∠ACB=12∠AOB=12×120°=60°.16.答案 16解析 画树状图如下:共有12种情况,当正比例函数y=kx 的图象经过第三、第一象限时,k>0,∵k=mn,∴mn>0,∴符合条件的情况有2种,∴正比例函数y=kx 的图象经过第三、第一象限的概率是212=16. 17.答案 175解析 由题图得,甲的速度为75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m-2.5)×(180-30)=75,解得m=3,故乙从起点跑到终点所用的时间为1 5003=500(秒),所以乙到终点时,甲跑的路程是2.5×(500+30)=1 325(米),甲距终点的距离是1 500-1 325=175(米).评析 本题考查了函数图象的应用,求解此类题时要善于从抽象的函数图象中找出实际的量,然后根据实际情况列出方程(组)进行求解.18.答案 6+3√22解析 如图,连接EB 、EE',设EE'交AD 于点N.作EM ⊥AB 于M,易知四边形AMEN 为正方形.∵AE=√2,∴AM=EM=EN=AN=1,∵ED 平分∠ADO,EN ⊥DA,EO ⊥DB,∴EO=EN=1,∴AO=√2+1,∴AB=√2AO=2+√2,∵四边形ABCD 是正方形,∴根据对称性及翻折的性质,得△ADE ≌△ADE'≌△ABE,∴AE=AE',∠DAE=∠DAE'=45°,∴△AEE'为等腰直角三角形,∵AB=2+√2,EM=1,∴S △AEB =12AB ·EM=1+√22, ∴S △AED =S △ADE'=S △AEB =1+√22,∴S △BDE =S △ADB -S △AEB -S △AED =12×(2+√2)2-2×(1+√22)=1+√2,S 四边形AEDE'=2S △AED =2+√2, ∵S △AEE'=12×(√2)2=1,∴S △DEE'=(2+√2)-1=1+√2,∵DF=EF,∴S △EFE'=12S △DEE'=1+√22,∵DF=EF,S △BDE =1+√2,∴S △FEB =12S △BDE =1+√22,∴S 四边形ABFE'=S △AEE'+S △EFE'+S △AEB +S △EFB =1+1+√22+1+√22+1+√22=6+3√22. 评析 本题考查正方形的性质、翻折(轴对称)的性质、全等三角形的性质、角平分线的性质等,解题的关键是转化思想的应用.三、解答题19.证明 ∵CE ∥DF,∴∠ACE=∠D.(3分)在△ACE 和△FDB 中,∵EC=BD,∠ACE=∠D,AC=FD,(5分)∴△ACE ≌△FDB.(6分)∴AE=FB.(7分)20.解析 补全条形统计图,如图所示.七年级部分学生阅读中外名著本数条形统计图(4分)被抽查学生阅读中外名著的本数的平均数为5×20+6×30+7×35+8×15100=6.45(本).七年级800名学生阅读中外名著的总本数约为6.45×800=5 160(本).答:根据调查数据,估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5 160本.(7分)四、解答题21.解析 (1)原式=a 2+2ab+b 2-2ab-b 2(3分)=a 2.(5分)(2)原式=2-2x+(x+1)(x -1)x+1·x+1x (x -1)(7分) =x 2-2x+1x+1·x+1x (x -1)(8分) =(x -1)2x+1·x+1x (x -1)(9分) =x -1x .(10分)22.解析 (1)∵AH ⊥y 轴于H,∴∠AHO=90°.∵tan ∠AOH=AH OH =43,OH=3,∴AH=4.(2分)在Rt △AHO 中,OA=2+OH 22+32分)∴△AHO 的周长为3+4+5=12.(5分)(2)由(1)知,点A 的坐标为(-4,3),∵点A 在反比例函数y=k x (k ≠0)的图象上,∴3=k -4.∴k=-12. ∴反比例函数的解析式为y=-12x .(7分)∵点B(m,-2)在反比例函数y=-12x 的图象上, ∴-12m =-2.∴m=6. ∴点B 的坐标为(6,-2).(8分)∵点A(-4,3),B(6,-2)在一次函数y=ax+b(a ≠0)的图象上,∴{-4a +b =3,6a +b =-2.解这个方程组,得{a =-12,b =1.∴一次函数的解析式为y=-12x+1.(10分)23.解析 (1)设今年年初的猪肉价格为每千克x 元.根据题意,得2.5×(1+60%)x ≥100.(3分)解这个不等式,得x ≥25.∴今年年初猪肉的最低价格为每千克25元.(4分)(2)设5月20日该超市猪肉的销售量为1,根据题意,得40×14(1+a%)+40(1-a%)×34(1+a%)=40(1+110a %). 令a%=y,原方程可化为40×14(1+y)+40(1-y)×34(1+y)=40(1+110y).(7分)整理这个方程,得5y 2-y=0.解这个方程,得y 1=0,y 2=0.2.∴a 1=0(不合题意,舍去),a 2=20.(9分)∴a 的值是20.(10分)24.解析 (1)证明:对任意一个完全平方数m,设m=n 2(n 为正整数).∵|n-n|=0,∴n ×n 是m 的最佳分解.∴对任意一个完全平方数m,总有F(m)=n n =1.(3分) (2)设交换t 的个位上的数与十位上的数得到的新数为t',则t'=10y+x.∵t 为“吉祥数”,∴t'-t=(10y+x)-(10x+y)=9(y-x)=18.∴y=x+2.(6分)∵1≤x ≤y ≤9,x,y 为自然数,∴“吉祥数”有:13,24,35,46,57,68,79.(7分)易知F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179.∵57>23>417>319>223>113>179,∴所有“吉祥数”中F(t)的最大值是57.(10分)五、解答题25.解析 (1)过点A 作AH ⊥BC 于H.∴∠AHB=∠AHC=90°.在Rt △AHB 中,∵AB=2√2,∠B=45°,∴BH=AB ·cos B=2√2×√22=2.AH=AB·sin B=2√2×√2=2.(1分)2在Rt△AHC中,∵∠C=30°,∴AC=2AH=4.=2√3.(2分)∴CH=AC·cos C=4×√32∴BC=BH+CH=2+2√3.(3分)(2)证明:∵AG⊥AD,∴∠DAF=∠EAG=90°.在Rt△DAF和Rt△GAE中,∵AF=AE,DF=GE,∴Rt△DAF≌Rt△GAE.∴AD=AG.(4分)过点A作AP⊥AB交BC于点P,连接PG.∴∠BAP=90°,即∠BAD+∠DAP=90°.∵∠DAG=90°,即∠DAP+∠PAG=90°.∴∠BAD=∠PAG.∵∠B=45°,∠BAP=90°,∴∠APB=∠B=45°.∴AB=AP.在△ABD和△APG中,∵AB=AP,∠BAD=∠PAG,AD=AG,∴△ABD≌△APG.∴BD=PG,∠B=∠APG.(8分)∴∠APG=45°.∴∠BPG=∠APB+∠APG=45°+45°=90°.∴∠CPG=90°.在Rt △CPG 中,∠C=30°.∴PG=12CG.(9分)∴BD=12CG.(10分) (3)AB CG =√3+12.(12分)26.解析 (1)△ABC 为直角三角形.理由如下:当y=0时,-13x 2+2√33x+3=0, 解这个方程,得x 1=-√3,x 2=3√3.∴点A(-√3,0),B(3√3,0).∴OA=√3,OB=3√3.当x=0时,y=3,∴点C(0,3),∴OC=3.在Rt △AOC 中,AC 2=OA 2+OC 2=(√3)2+32=12.在Rt △BOC 中,BC 2=OB 2+OC 2=(3√3)2+32=36.又∵AB 2=[3√3-(-√3)]2=48,12+36=48,∴AC 2+BC 2=AB 2.∴△ABC 为直角三角形.(3分)(2)如图,∵点B(3√3,0),C(0,3),∴直线BC 的解析式为y=-√33x+3.过点P 作PG ∥y 轴交直线BC 于点G.设点P (a ,-13a 2+2√33a +3),则点G (a ,-√33a +3), ∴PG=(-13a 2+2√33a +3)-(-√33a +3)=-13a 2+√3a. 设D 点横坐标为x D ,C 点横坐标为x C .S △PCD =12×(x D -x C )×PG =12×√3×(-13a 2+√3a) =-√36(a -3√32)2+9√38. ∵0<a<3√3,∴当a=3√32时,△PCD 的面积最大, 此时点P (3√32,154).(5分)将点P 向左平移√3个单位至点P',连接AP'交y 轴于点N,过点N 作NM ⊥抛物线对称轴于点M,连接PM.点Q 沿P →M →N →A 运动,所走的路径最短,即最短路径的长为PM+MN+NA 的长.(6分) ∵点P (3√32,154),∴点P'(√32,154). 又∵点A(-√3,0),∴直线AP'的解析式为y=5√36x+52. 当x=0时,y=52,∴点N (0,52).过点P'作P'H ⊥x 轴于点H,则有HA=3√32,P'H=154,AP'=3√374. ∴点Q 运动的最短路径的长为PM+MN+AN=3√374+√3=3√37+4√34.(8分) (3)如图,在Rt △AOC 中,∵tan ∠OAC=OC OA =√3=√3,∴∠OAC=60°.∵OA=OA 1,∴△OAA 1为等边三角形.∴∠AOA 1=60°. ∴∠BOC 1=30°.又由OC 1=OC=3,得点C 1(3√32,32). ∵点A(-√3,0),E(√3,4),∴AE=2√7. ∴A'E'=AE=2√7.∵直线AE 的解析式为y=2√33x+2, 设点E'(a ,2√33a +2),则点A'(a -2√3,2√3a 3-2).(9分) ∴C 1E'2=(a -3√32)2+(2√33a +2-32)2=73a 2-7√33a+7. C 1A'2=(a -2√3-3√32)2+(2√33a -2-32)2=73a 2-35√33a+49.若C 1A'=C 1E',则有C 1A'2=C 1E'2, 即73a 2-7√33a+7=73a 2-35√33a+49. 解这个方程,得a=3√32,∴点E'(3√32,5). 若A'C 1=A'E',则有A'C 12=A'E'2,即73a 2-35√33a+49=28. 解这个方程,得a 1=5√3+√392,a 2=5√3-√392. ∴点E'(5√3+√392,7+√13)或(5√3-√392,7-√13). 若E'A'=E'C 1,则有E'A'2=E'C 12,即73a 2-7√33a+7=28.解这个方程,得a 1=√3+√392,a 2=√3-√392(舍去). ∴点E'(√3+√392,3+√13).综上所述,符合条件的点E'的坐标为3√32,5或5√3+√392,7+√13或5√3-√392,7-√13或 √3+√392,3+√13.(12分)评析 此题是二次函数综合题,主要考查了二次函数的图象与性质,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质.问题(2)先求出当S △PCD 最大时的点P 的坐标,然后判断出点Q 运动的最短路径,最后求最短路径的长,问题(3)主要涉及分类讨论思想,在分类的时候要注意考虑各种情况,不能遗漏.。
备考2021年中考数学复习专题:统计与概率_数据分析_用样本估计总体,填空题专训及答案
备考2021年中考数学复习专题:统计与概率_数据分析_用样本估计总体,填空题专训及答案备考2021中考数学复习专题:统计与概率_数据分析_用样本估计总体,填空题专训1、(2014扬州.中考真卷) 如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有________人.2、(2012苏州.中考真卷) 某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有________人.3、(2017房山.中考模拟) 中国国家邮政局公布的数据显示,2016年中国快递业务量突破313.5亿件,同比增长51.7%,快递业务量位居世界第一,业内人士表示,快递业务连续6年保持50%以上的高速增长,已成为中国经济的一匹“黑马”,未来中国快递业务仍将保持快速增长势头,以下是根据相关数据绘制的统计图,请你预估2017年全国快递的业务量大约为____ ____(精确的0.1)亿元.4、(2017静安.中考模拟) 为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为________人.5、(2017奉贤.中考模拟) 为了解某区3600名九年级学生的体育训练情况,随机抽取了区内200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等级:A级:优秀;良好;及格;不及格,并将测试结果绘成了如图所示的统计图,由此估计全区九年级体育测试成绩可以达到优秀的人数约为________人.6、(2017瑞安.中考模拟) 为了解某校师生捐书情况,随机调查了部分师生,根据调查结果绘制了如图所示的统计图.若该校共有师生1000人,则捐文学类书籍的师生约有________人.7、(2018青岛.中考模拟) 如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有________8、(2018青岛.中考模拟) 某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A.B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为________人.9、(2019黄石.中考模拟) 某校组织了主题为“经典诵读”的小视频征集活动,现从中随机抽取部分作品。
重庆市近10年中考数学考题分析及考点频率统计
四边形相关 运用
17 实数的运算 实数的计算 实数的计算 实数பைடு நூலகம்计算 解分式方程
18
全等三角形 的判定与性 解不等式
质
分式方程的 不等式组的
解答
解法
众数
19
解分式方程
三角形全等 证明
角平分线的 尺规作图
作等边三角 形的尺规作 图
由图形个数 构成的规律
题
20
解直角三角 形
涉及中垂线 的尺规作图
直角三角形 的计算
题型 题号 2017 2016 2015 2014 2013 题型 题号 2012 2011 2010 2009 2008
1
相反数
倒数
绝对值
有理数的 有理数的 大小比较 大小比较
2
轴对称图 形的判定
轴对称图 形的判定
轴对称图 形的判定
整数加减
平行线的 判定与性
质
3
整式的运 算
科学计数 法
统计与概 率的调查
多边形内 角和
解分式方 程
矩形的性 质;翻折
变换
8
相似三角 代数式求 根的判别 矩形的性 切线的性
形的性质 值
式
质
质
1
有理数的大 有理数的大 小比较 小比较
倒数
相反数
倒数
2
轴对称图形
幂的乘方
同底数幂相 同底数幂相 同底数幂相
乘
除
乘
3
幂的乘方与 积的乘方
中心对称判 断
解不等式组
分式有意义 的条件
解不等式
题
实际问题与 一次函数图
像
动点面积与 一次函数图
像
简单随机概 率
中考数学复习《统计与概率》易错题总结
中考数学复习《统计与概率》易错题总结一、选择题1.(重庆中考)下列调查中,最适宜采用全面调查方式(普查)的是(C) A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查【易错分析】对全面调查与抽样调查概念理解不透.普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.2.(邹平期末)某校学生来自甲乙丙三个地区,其人数比为2∶7∶3,如图Y3-1的扇形图表示上述分布情况.如果来自甲地区的有180人,则下列说法错误的是(B)A.该校学生的总数是1 080人B.扇形甲的圆心角是36°C.该校来自乙地区的有630人D.扇形丙的圆心角是90°【易错分析】对扇形统计图所表示的百分比不理解.A.该校学生的总数是180÷22+7+3=1 080(人),正确;B.扇形甲的圆心角是360°×212=60°,故本选项错误;C.该校来自乙地区的人数是:1 080×712=630(人),正确;D.扇形丙的圆心角是360°×312=90°,正确.3.(宜宾中考)今年4月,全国山地越野车大赛在我市某区举行,其中8名选手某项得分如下表:图Y3-1则这8名选手得分的众数、中位数分别是(C)A .85,85B .87,85C .85,86D .85,87【易错分析】 众数和中位数的概念混淆,众数就是一组数据中出现次数最多的数,中位数就是将一组数据按从小到大或从大到小的顺序排列后处在最中间的数(奇数个数)或中间两数的平均数(偶数个数).注意:众数是出现次数最多的数字,不是次数,如本题中是85,不是3.4.(德州中考)经过某十字路口的汽车,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是(C)A.47B.49C.29D.19【易错分析】 不善于列表或树形图,从而求出的可能性不正确.5.(毕节中考)小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是(D)A.12B.13C.14D.18【易错分析】 对这一事件“连续掷了三次”理解不到位,不善于列表或树形图求所有可能的结果数.6.(抚顺模拟)一个不透明的口袋里装有红、黑、绿三种颜色的乒乓球(除颜色外其余都相同),其中红球有2个,黑球有1个,绿球有3个,第一次任意摸出一个球(不放回),第二次再摸出一个球,则两次摸到的都是红球的概率为(D) A.118B.19C.215D.115【易错分析】 列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.注意放回与不放回的区别.列表如下:红红黑绿绿绿红—(红,红)(黑,红)(绿,红)(绿,红)(绿,红)红(红,红)—(黑,红)(绿,红)(绿,红)(绿,红)黑(红,黑)(红,黑)—(绿,黑)(绿,黑)(绿,黑)绿(红,绿)(红,绿)(黑,绿)—(绿,绿)(绿,绿) 绿(红,绿)(红,绿)(黑,绿)(绿,绿)—(绿,绿)绿(红,绿)(红,绿)(黑,绿)(绿,绿)(绿,绿)—所有等可能的情况有30种,其中两次都是红球的情况有2种,则P=230=1 15.二、填空题7.(黄浦区二模)某校八年级共四个班,各班寒假外出旅游的学生人数如图Y3-2所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为__40%__.图Y3-2【易错分析】不会看条形统计图所表示的意义.三班外出旅游学生人数占全年级外出旅游学生人数的百分比为2012+8+20+10×100%=40%.8.在-1,0,13,1,2,3中任取一个数,取到无理数的概率是__13__.【易错分析】找无理数出错.有6种等可能的结果,其中无理数有:2,3共2种情况,则可利用概率公式求解.9.(上海中考)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁)1112131415人数55161512那么“科技创新社团”成员年龄的中位数是__14__岁.【易错分析】利用表中数据计算中位数易错.10.(嘉定区二模)某班40名学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图Y3-3所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是__15__元.【易错分析】不会看折线统计图,把中位数与图Y3-3众数混淆.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.∵捐款的总人数为40,第20个与第21个数据都是15元,∴中位数是15元.11.(河北模拟)已知一组数据1,3,a,6,6的平均数为4,则这组数据的方差为__3.6__.【易错分析】不会对平均数、方差公式进行变形运用,∵数据1,3,a,6,6的平均数为4,∴(1+3+a+6+6)÷5=4,∴a=4,∴这组数据的方差12+(3-4)2+(4-4)2+(6-4)2+(6-4)2]=3.6.5[(1-4)12.(娄底中考)五张分别写有-1,2,0,-4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是__2 5__.【易错分析】对概率的计算公式理解不透,应用模糊.三、解答题13.(漳州中考)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【易错分析】(1)不会用树状图或列表求概率;(2)判断游戏是否公平的原则不明确.解:(1)根据题意画图如答图,第13题答图∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∴P(小明获胜)=412=13;(2)∵P(小明获胜)=1 3,∴P(小东获胜)=1-13=23,∴这个游戏不公平.14.(江宁区二模)一次期中考试中,A,B,C,D,E五位同学的数学、英语成绩有如下信息:A B C D E 平均分方差(1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的方差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=个人成绩-平均成绩标准差;(说明:标准差为方差的算术平方根)从标准分看,标准分大的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?【易错分析】(1)对平均数、方差的概念及计算公式掌握不牢;(2)计算错误.解:(1)数学成绩的平均分为:71+72+69+68+705=70;英语成绩的方差为:15[(88-85)2+(82-85)2+(94-85)2+(85-85)2+(76-85)2]=36;(2)A同学数学标准分为:71-702=22.A同学英语标准分为:88-856=12,因为22>12,所以A同学在本次考试中,数学考得更好.15.(舟山中考)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量作为样本进行统计,绘制了如图Y3-4所示的条形统计图和扇形统计图.(部分信息未给出)图Y3-4请你根据图中提供的信息,解答下列问题;(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角的度数;(3)请估计该市这一年(365天)达到优和良的总天数.【易错分析】读不懂统计图,不能从不同的统计图中得到必要的信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.解:(1)32÷64%=50(天);(2)轻微污染天数是5天,图略;表示优的扇形的圆心角的度数是850×360°=57.6°;(3)8+3250×365=292(天).16.(襄阳中考)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据图Y3-5的不完整的统计图解答下列问题:图Y3-5(1)请补全上面两个统计图(不写过程);(2)该班学生制作粽子个数的平均数是__6__;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树状图的方法求小明献给父母的粽子馅料不同的概率.【易错分析】(1)读不懂统计图,不能从不同的统计图中得到必要的信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(2)不能列表或树状图求概率;(3)不善于把统计与概率综合运用.解:(1)如答图;第16题答图(3)根据题意列表,2M M N N1M MM MN MNM MM MN MN由表格可知,共有12种等可能的结果,小明献给父母的粽子馅料不同的结果有8种,∴P(馅料不同)=812=2 3.。
专题二——统计和概率应用1
专题二 统计和概率应用一、 考点导析现实生活总是会和各种数据、图表等统计知识相联系,通过对数据的统计、分析和处理,进而决策,既能考查学生的分析能力,也能考查学生运用知识解决实际问题的能力. 二、 中考动向统计与概率知识的应用,是近几年中考的热点问题,题目涉及填空、选择及解答题的各个方面,试题属于中等难度,分值在15分左右.本专题就近几年各省市中考题中常见的几种类型题进行探究. 三、 点例解析♦ 题型1:用样本特征估计总体特征. 【考例1】(2006江西)小谢家买了一辆小轿车,小谢连续记录了七天每天行驶路程如下表.请你用统计初步的知识,解答下列问题:(1)小谢家小轿车每月(每月按30天计算)大约要行驶多少千米路程?(2)若每行驶100千米需汽油8升,汽油每升3.45元.请你求出小谢家一年(一年按12个月计算)的汽油费是多少元? 【点拨】(1)先求出这七天平均每天行驶的路程,把这个路程看作小谢家小轿车每天行驶的路程,可求出总路程;(2)先求出每公里用油量,就可求出小谢家一年的汽油费. 【略解】解:(1)这七天中平均每天行驶的路程为: 463936505491347++++++=50(千米).∴30×50=l500(千米),∴小谢家小轿车每月大约要行驶1500千米. (2)小谢一家一年的汽油费用是:150012100⨯×8×3.45=4968元. 【拓展1】(2007贵州)某养鱼专业户与客户签订购销合同,对自己鱼塘中的鱼的重量进行估计,第一次捞出100条鱼,称其重量为186千克,将鱼做好记号放入塘中,当它们完全混合后又捞出200条鱼,称其重量为384千克,且带有记号的鱼有10条,则鱼塘中估计有多少条鱼?鱼塘中鱼共重多少千克? 【略解】(1)设鱼塘中有鱼x 条,则10010x 200=,解之得x=2000,∴鱼塘中有鱼2000条;(2)平均每条鱼重:186384 1.86101.910020010+-⨯≈+-,1.9×2000=3800(千克),∴鱼塘中鱼共重3800千克.题型2:利用图表信息解决实际问题 【考例2】(2007巴中)巴中市进行课程改革已经五年了,为了了解学生对数学实验教材的喜欢程度,现对某中学初中学生进行了一次问卷调查,具体情况如图2-1所示:①已知该校初一共有学生480人,求该校初中学生总数. ②求该校初二学生人数及其扇形的圆心角度数.③请补全统计表,并制作条形统计图来反映统计表中的内容. ④请计算不喜欢此教材的学生的概率,并对不喜欢此教材的同初一 初二 初三图2-1学提出一条建议,希望能通过你的建议让他喜欢上此教材. 【点拨】(1)认真观看图表,从图表中获取信息易得出结论. 【略解】(1)480÷40%=1200(人); (2)1200×(1-40%-28%)=384(人),360°×0.32=115.2°;(3)补全统计表和制作的条形统计图如下;(4)1001120012=≈8.33%, 即不喜欢此教材的学生的概率是8.33%, 建议如:“此教材贴近生活,易学易懂”,“此教材图文并茂,很有情趣”.(答案不唯一). 【拓展2】(2007内江)学习完统计知识后,小兵就本班同学的上学方式进行调查统计.如图2-3是他通过收集数据后绘制的两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)该班共有 名学生;(2)将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是 度;(4)若全年级共1000名学生,估计全年级步行上学的学生有 名;(5)在全班同学中随机选出一名学生来宣读交通安全法规,选出的恰好是骑车上学的学生的概率是 . 【略解】(1)全班学生人数: 20÷50%=40(人);(2)补充图形如图所示;(3) “骑车”部分扇形所对应的圆心角是:360°×(1-20%-50%)=108°;(4) 估计全年级步行上学的学生有1000×20%=200;(5)选出骑车上学的学生的概率是:12÷40=30%.♦ 题型3:游戏的公平性 【考例3】(2006成都)小明、小芳做一个“配色”的游戏,左图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色,同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对小明、小芳公平吗?试说明理由.【点拨】看一个游戏是否公平,只要看游戏的双方是否各有50%的胜率,如果是,游戏就公平,如果不是,游戏就不公平,就有修改游戏规则的必要. 【略解】(1)用列表法表示该游戏所有可能出现的结果如下:喜欢程序 非常喜欢喜欢 不喜欢人 数 600人 500人100人乘车50%步行 20% 骑车 9) 图2-3 20%9乘车 步行 骑车 上学方式人数4 8 121620 拓展2图 图2-4 图2-2由图表可知该游戏所有可能出现的结果有12种;(2)由表可知:配成紫色(即小芳获胜)的概率是31124=,配成绿色(即小明获胜)的概率是212=16,两人获胜的概率不相等,因而不公平,该游戏规则偏向小芳.即小芳获胜的机会更大. 【拓展3】(2007 泸州)在一个不透明的盒子里装着分别标有数字1,2,3,4的四个完全相同的小球,现在甲、乙两位同学做游戏,游戏规则是:“甲先从盒子里随机摸出一个小球,记下小球上的数字后放回,乙再从盒子中随机摸出一个小球,也记下球上的数字放回,则游戏结束.若记下的数字甲比乙大,则甲获胜;若记下的数字甲不比乙大,则乙获胜”. (1)用树状图分析此游戏有多少种可能出现的结果;(2)该游戏规则对甲、乙双方公平吗?说明理由;如果不公平,怎样修改规则,使其对甲、乙双方都公平. 【略解】(1)用树状图分析如图2-5,由图可知,此游戏有16种等可能出现的结果.(2)P (甲比乙大)=63168=,P (甲不比乙大)=105168=,∴该游戏规则不公平.乙获胜的机会较大.可作如下的修改:“…,若记下的数字谁大则谁获胜,若一样大,则不分胜负,重新开始游戏.”这样,甲、乙两人获胜的概率都是38,对双方都公平.小结:通过本专题的探究,使我们进一步懂得数据的分析、处理的常用方法,为解决生活中与我们息息相关的类似问题提供了的范本. ♦ 四、中考真题 1.(2007 德阳)某学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分.其中三位男生的方差为6(分2),两位女生的成绩分别为17分,15分.则这个学习小组5位同学考试分数的标准差为( )B.2D.6答案:B2.(2007 成都)某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时. 答案:2.46,2.5;3.(2007 重庆)为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育5甲乙甲乙12341234123443214321拓展3图锻炼情况绘制成了如图2-5所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为 . 答案:174.(2007 成都)已知小明家五月份总支出共计1200元,各项支出如图2-6所示,那么其中用于教育上的支出是 元. 答案:2165.(2006泸州)江北水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下: (1)计算这10户家庭该月平均用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少立方米? 解答:(1)1021321431721810⨯+⨯+⨯+⨯+=14(m 3),∴这10户家庭该月平均用水量为14m 3;(2)14×500=7000m 3.∴该小区居民每月共用水7000m 3. 6.(2007 绵阳)小明对本班同学上学的交通方式进行了一次调查,他根据采集的数据,绘制了如图2-7所示的统计图1和图2.请你根据图中提供的信息,解答下列问题:(1)计算本班骑自行车上学的人数,补全图1的统计图;(2)在图2中,求出“乘公共汽车”部分所对应的圆心角的度数,补全图2的统计图(要求写出各部分所占的百分比);(3)观察图1和图2,你能得出哪些结论?(只要求写出一条).答案:(1)∵ 小明所在的全班学生人数为14÷28% = 50人,∴ 骑自行车上学的人数为50-14-12-8 = 16人;其统计图如图1.(2)乘公共汽车、骑自行车、步行、其它所占全班的比分别为14÷50,16÷50,12÷50,8÷50即28%,32%,24%,16%,它们所对应的圆心角分别是100.8︒,115.2︒,86.4︒,57.6︒,其统计图如40-21中图2.(3)小明所在的班的同学上学情况是:骑自行车的学生最多;通宿生占全班的绝大多数;住校或家长用车送的占少数.7.(2007 德阳)在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个.已知从中任意摸出1个球是白球的概率为12. (1)求口袋里有多少个红球;(2)求从袋中一次摸出2个球,得一红一白的概率.要求画月用水量(m 3)10 13 14 17 18户数2 23 2 1 图1 图2 图1 图2 图2-7出树状图. 略解:(1)设袋中有x 个红球,据题意得:21212=++x ,解得x=1.∴袋中有红球1个.(2)画树状图如右图所示,∴P (摸得一红一白)41123==.8.(2006眉山)某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图2-8所示的统计图,根据图中所提供的信息,回答下列问题:(1)共抽取了多少名学生的数学成绩进行分析?(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少? 解答:(1)共抽取了30+60×2+45+70+35=300(名). (2)357010035300⨯%%+=,∴该年的优生率大约为35﹪,30060302200015400⨯--=300.∴及格人数大约有15400名 9.(2007 眉山)如图2-9所示,将两个可以自由转动的转盘分别分成面积相等的几个扇形,在分成的扇形上分别标上数字1,2,3,4,5.同时转动两个转盘.(1)用树状图或列表法表示转盘停止后指针所指扇形上的数字可能出现的所有结果(若指针指在分界线上,则重转);(2)如果甲、乙两人分别同时转动两个转盘,并规定:转盘停止后,若两转盘指针所指扇形上的数字之和为偶数,则甲胜;若数字之和为奇数,则乙胜.这个游戏对甲、乙两人公平吗?请说明理由. 答案:(1)树状图和列表分析如右图所示: (2)出现数字之和为偶数和奇数的概率分别为3162=.∴这个游戏对甲、乙两人公平. 五、08展望1.2008年的北京,华光璀璨,广告牌上“北京欢迎你”几个字是霓虹灯,几个字一个接一个地亮起来,直至全部亮起来再循环,则路人一眼望去能够看全的概率是( )A.13B.14C.15D.16答案:C2.抛掷两枚如图2-10所示的正四面体骰子,所得点数之和出现的概率最大的是( ).A.5B.6C.7D.一样大黑红白2白1第2小球第1小球白1 白2 黑白1 白2 红白1 红 黑白2 红 黑图2-8图2-9 443221图2-10答案:A3.甲、乙、丙、丁四名运动员参加4×100米接力赛,•甲必须为第一接力棒或第四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有( ) A .3种 B .4种 C .6种 D .12种 答案:D4.如图2-11-⑴所示,是某城市三月份1至10日的最低气温随时间变化的图象. ⑴ 根据图(1)中提供的信息,在图(2)中补全直方图; ⑵ 这 10天最低气温的众数 是 ℃,最低气温的中位数是 ℃,最低气温的平均数是 ℃. 答案:(1)补图略;(2)2,0,05.小刚与小亮一起玩一种转盘游戏.他们用两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”、“2”、“3”表示.固定指针,同时转动两个转盘,任其自由停止.若两指针指的数字和为奇数,则小刚获胜;否则,小亮获胜.则在该游戏中小刚获胜的概率是( ).A .12B 、49C 、59D 、23答案:B6.某电脑公司的王经理对2008年4月份电脑的销售情况做了调查,情况如下表.请你回答下列问题:(1)2008年4月该电脑公司销售电脑价格的众数是 ,本月平均每天销 售电脑 台;(2)如果你是该公司的经理,根据以上信息,应该如何组织货源?略解:(1)3800元,5;(2)根据表中信息,3800元的电脑卖得最好,说明大家都很喜欢这个价位的电脑,应该多进一些,6000元的销量小,应该少进一些.(答案不唯一) 7.某公司员工的月工资情况统计如下表所示,(1)分别计算该公司员工月工资的平均数,中位数和众数.(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由;(3)请画出一种你认为适合的统计图来表示上面表格中的数据.略解:(1)平均数是:500024000420008150020100087004x 2482084⨯+⨯+⨯+⨯+⨯+⨯=+++++=1800(元),中位数是1500元,众数是1500元;(2)因为中位数和众数反映的是员工工资的中间水平和多数水平.所以用中位数或众数代表该公司员工的月工资水平更为合适,(3)用条形统计图表示上面表格中的数据如下:每台价格(元) 6000 4500 3800 3000 销量(台) 20 40 60 30员工人数 2 4 8 20 8 4月工资(元) 5000 4000 2000 1500 1000 700 第7题图图2-118.雁江一中七年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如图2-13的统计图表,请你根据图表中的信息回答下列问题: (1)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%.请求出参加训练之前的人均进球数. 略解:(1)10%;40;(2)人均进球数8271645748325214782⨯+⨯+⨯+⨯+⨯+⨯==+++++.(3)设参加训练前的人均进球数为x 个,由题意得:(125%)5x +=,解得:4x =.答:参加训练前的人均进球数为4个. 9.有四张背面相同的纸牌A ,B ,C ,D ,其正面分别划有四个不同的稽核图形,如图2-14所示.小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张. (1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A 、 B 、C 、D 表示); (2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.略解:(1)用树状图分析两次摸牌所有可能出现的结果如右;(2)P (两张中心对称图形)=41164=.10.甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图2-15所示,游戏规定,转动两个转盘停止后,•指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由. 略解:(1)用列表分析两转盘所指两数之和的所有情况如下: 由表可知,所以可能结果共有12种,指针所指的两个数字之和为奇数的结果有6种,∴P (和为奇数)=50%,进球数(个) 8 7 6 5 4 3 人 数21478212 3 4第一次摸的牌第二次摸的牌篮球立定跳远长跑 铅球60%20%10% 项目选择情况统计图图2-13图2-14 图2-15(和为偶数)=50%,∴这个游戏规则对双方是公平的。
专题07 统计与概率-2017版[中考15年]重庆市2002-2016年中考数学试题分项(原卷版)
1.【2016中考重庆A4分】下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查2.【2016中考重庆B4分】下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查3.【2015中考重庆A4分】下列调查中,最适合用普查方式的是()A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况4.【2015中考重庆A4分】在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.2095.【2015中考重庆B4分】下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查6.【2015中考重庆B 4分】某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据的中位数是( )A .9.7B .9.5C .9D .8.87.【2014中考重庆A 4分】2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0. 02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( )A .甲B .乙C .丙D .丁8.【2014中考重庆B 4分】某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8.根据以上数据,下列说法正确的是( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定9.【2002中考重庆市4分】已知一组数据,12345x ,x ,x ,x ,x 的平均数是2,方差是31,那么另一组数据123453x 2,3x 2,3x 2,3x 2,3x 2-----的平均数和方差是( )A . 2、31B .2,1C .4,32 D .4,3 10.【2003中考重庆市4分】某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )A .3项B .4项C .5项D .6项11.【2004中考重庆市4分】某班七个合作学习小组人数如下:5、5、6、x 、7、7、8.已知这组数据的平均数是6,则这组数据的中位数是( )A .7B .6C .5.5D .512.【2005中考重庆市课标卷4分】刘翔在出征雅典奥运会前刻苦进行110米跨栏训练,教练对他10次的 训练成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的( )A .众数B .方差C .平均数D .频数13.【2005中考重庆市课标卷4分】下列事件一定为必然事件的是( )A .重庆人都爱吃火锅B .某校随机检查20名学生的血型,其中必有A 型C .内错角相等,两直线平行D .在数轴上,到原点距离相等的点所表示的数一定相等14.【2006中考重庆市4分】观察市统计局公布的“十五”时期重庆市农村居民人均 收入每年比上一年增长率的统计图,下列说法正确的是( )A .2003年农村居民人均收入低于2002年B .农村居民人均收入比上年增长率低于9%的有2年C .农村居民人均收入最多时2004年D .农村居民人均收入每年比上一年的增 长率有大有小,但农村居民人均收入在持续增加15.【2006中考重庆市4分】现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x y ,),那么他们各掷一次所确定的点P 落在已知抛物线2y x 4x =-+上的概率为( )A .118B .112C .19D .1616.【2007中考重庆市4分】甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次.射击成绩统计如下:从射击成绩的平均数评价甲、乙两人的射击水平,则( )A .甲比乙高B .甲、乙一样C .乙比甲高D .不能确定17.【2008中考重庆市4分】数据2,1,0,3,4的平均数是( )A .0B .1C .2D .318.【2008中考重庆市4分】今年5月12日,四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾.某医院要从包括张医生在内的4名外科骨干医生中,随机地抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率是( )A .21B .31C .41D .61 19.【2009中考重庆市4分】下列调查中,适宜采用全面调查(普查)方式的是( )A .调查一批新型节能灯泡的使用寿命B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查20.【2010中考重庆市4分】下列调查中,适宜采用全面调查(普查)方式的是( )A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情况的调查C .对我市市民实施低碳生活情况的调查D .以我国首架大型民用直升机各零部件的检查21.【2011中考重庆市4分】下列调查中,适宜采用抽样方式的是( )A .调查我市中学生每天体育锻炼的时间B .调查某班学生对“五个重庆”的知晓率C .调查一架“歼20”隐形战机各零部件的质量D .调查广州亚运会100米参赛运动员兴奋剂的使用情况22.【2012中考重庆市4分】下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率23.【2013中考重庆市A 4分】某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.21.则下列说法中,正确的是( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人成绩的稳定性相同D .无法确定谁的成绩更稳定24.【2013中考重庆市B 4分】为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是( )A .甲秧苗出苗更整齐B .乙秧苗出苗更整齐C .甲、乙出苗一样整齐D .无法确定甲、乙出苗谁更整齐25.【2016中考重庆A 4分】从数﹣2,12-,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是 .26.【2016中考重庆B 4分】点P 的坐标是(a ,b ),从﹣2,﹣1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是 .27.【2015中考重庆A 4分】从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是 . 28.【2015中考重庆B 4分】从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的概率为 . 29.【2014中考重庆A 4分】从﹣1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组212x a x a +≤⎧⎨-≤⎩有解的概率为 .30.【2005中考重庆市课标卷3分】某市有100万人口,在一次对城市标志性建筑方案的民意调查中,随机调查了1万人,其中有6400人同意甲方案.则由此可估计该城市中,同意甲方案的大约有 ▲ 万人.31.【2005中考重庆市课标卷3分】摩托车生产是我市的支柱产业之一,不少品牌的摩托车畅销国内外.下表是某摩托车厂今年1至5月份摩托车销售量的统计表:(单位:辆)则这5个月销售量的中位数是▲辆.32.【2005中考重庆市课标卷3分】小华与父母一同从重庆乘火车到广安邓小平故居参观.火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是▲.33.【2007中考重庆市3分】某体育训练小组有2名女生和3名男生,现从中任选1人去参加学校组织的“我为奥运添光彩”志愿者活动,则选中女生的概率为▲ .34.【2007中考重庆市3分】为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图.根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为▲ .35.【2008中考重庆市3分】光明中学七年级甲、乙、丙三个班中,每班的学生人数都为40名,某次数学考试的成绩统计如下:(每组分数喊最小值,不含最大值)根据以上图、表提供的信息,则80~90分这一组人数最多的班是 ▲ .36.【2009中考重庆市4分】在平面直角坐标系x O y 中,直线y x 3=-+与两坐标轴围成一个△AOB .现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 ▲ .37.【2010中考重庆市4分】“情系玉树 大爱无疆” .在为青海玉树的捐款活动中,某小组7位同学的捐款数额(元)分别是:5,20,5,50,10,5,10.则这组数据的中位数是 ▲ .38.【2010中考重庆市4分】在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是 ▲ .39.【2011中考重庆市4分】在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是 ▲ .40.【2011中考重庆市4分】有四张正面分别标有数学﹣3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程1ax 12x 22x-+=--错误!未找到引用源。
(最新整理)2016重庆中考15题专题(概率问题)
(完整)2016重庆中考15题专题(概率问题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2016重庆中考15题专题(概率问题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2016重庆中考15题专题(概率问题)的全部内容。
2016重庆中考17题专题(概率问题)一、边界问题:1。
在平面直角坐标系xOy 中,直线3y x =-+与两坐标轴围成一个AOB △.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在AOB △内的概率为 .2.在平面直角坐标系xOy 中,有一抛物线,322--=x x y 与x 轴交于点B 、点C (B 在C 的左侧),点A 在该抛物线上,且横坐标为-2,蓬接AB 、AC 现将背面完全相同,正面分别标有数-2、-1、0、1、2的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数加1作为点P 的纵坐标,则点P 落在ABC ∆内(含边界)的概率为______。
3.有五张卡片,背面颜色,形状,大小完全相同,正面分别写有—1,0,1,2,3,将它们洗匀且背面朝上,随机抽一张卡片,将正面写的数作为点P 的横坐标,再将剩下卡片中任取一张,将正面写的数为点P 的纵坐标,则点P 落在直线=y 2+x 和=y 6+-x 与x 轴围成的三角形内的概率是___________.4。
在平面直角坐标系xOy 中,直线3y x =-+与两坐标轴围成一个△AOB .现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 .4.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是_____________.5.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016中考复习-------(22题)统计与概率
统计与概率结合
【命题规律与趋势】分析近8年11套重庆真题发现,共考查9次(08~09年未考查),属于近6年必考点。
扇形+条形背景考查6次,折线+扇形背景考查4次,题型都为解答题。
第一问设问包括:(1)求样本容量(4次);(2)补全统计图(条形6次,折线4次);(3)求百分比(2次);(4)求数据代表(平均数3次,中位数、众数1次,极差1次),第二问均考查概率的计算。
预计2016年仍会在解答题题位考查统计与概率结合题,设题背景很有可能是折线+扇形,且补全折线统计图。
1、重庆一中将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x <6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图如图1和频数分布直方图(不完整)如图2.规定x≥6.25为合格,x≥9.25为优秀.
(1)这部分男生共有__________人,其中成绩合格的有___________人;
(2)这部分男生成绩的中位数落在_______组,扇形统计图中D组对应的圆心角是_____度;
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.
2.暑假期间,一些同学将要到A,B,C,D四个地方参加夏令营活动,现从这些同学中随机调查了一部
分同学.根据调查结果,绘制成了如下两幅统计图:
(1)扇形A的圆心角的度数为°,若此次夏令营一共有320名学生参加,则前往C地的
学生约有人,并将条形统计图补充完整;
(2)若某姐弟两人中只能有一人参加夏令营,姐弟俩决定用一个游戏来确定参加者:在4张形状、大
小完全相同的卡片上分别写上1
,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张
卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或
树状图分析这种方法对姐弟俩是否公平?
3.为了减少部分学生以零食代替午饭的行为,学校食堂最近增加了“过水鱼”“茄角之恋”“花纤骨”“七星豌豆”这四种新菜.以下分别用A、B、C、D表示。
为了了解全校师生对这四种不同口味的菜式的喜爱情况,特意在学校进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
(1)本次抽样调查的样本容量为;
(2)请将两幅不完整的统计图补充完整;
(3)为了感谢全校师生对此次活动的支持,食堂对每一位配合抽样调查的同学发放了2张免单优惠券。
(每张优惠券可以免费购买任意一份新菜).小王午餐时一次性用2张优惠券随机购买了2份
不同口味的新菜.用列表法或树状图分析他吃到“花纤骨”的概率.
喜欢各种新菜人数的条形统计图喜欢各种新菜人数占被调查总人数半分比的扇形统计图
4、重庆电视台娱乐栏目组要做一档关于元旦的节目,为了解大家主要以什么方式过元旦,随机※※※※光时代广场的行人进行了抽样调查,调查选项有以下五种:“学习充电”,“外出旅游”,“逛街※※乐”,“宅家休闲”,“无安排”,分别记为“A”,“B”,“C”,“D”,“E”,每人从中选※※一种主要的过节方式。
根据调查统计结果绘制了如下两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
(1)请补全拆线统计图;
(2)为感谢大家的参与配合,栏目组对调查结果为“A”,“B”,“C”,“D”的行人分别赠送了20元,35元,25元,30元的某咖啡店的消费券,则赠送的消费券金额的极差为元,这四类行人平均每人获得价值为元的消费券;
(3)栏目组邀请调查结果为“E”的所有人参加金佛山“冰雪奇缘”寻宝游戏的元旦节目录制。
组织者将从调查结果为“E”的男士(无重名)中选两名扮演圣诞老人,请用画树状图或列表法求其中名为王俊,亦阳的两位男士能同时选上的概率。
5、为了解我区初三学生体育达标情况,现对初三部分同学进行了跳绳、立定跳远、实心球三项体育测试,按A (及格),B (良好),C (优秀),D (满分)进行统计,并根据测试的结果绘制了如下两幅不完整的统计图,请你结合所给信息解答下列问题:
(1)本次共调查了 名学生,请补全折线统计图.
(2)我区初三年级有4100名学生,根据这次统计数据,估计全年级有多少同学获得满分?
(3)在接受测试的学生中,“优秀”中有1名是女生,“满分”中有2名是女生,现分别从获得“优秀”和“满分”的学生中各选出一名学生交流经验,请用画树状图或列表的方法求出刚好选中两名男生的概率.
6、某房地产开发商开发了套内面积分别为“120米2”、“100米2”、“80米2”三种房源共200套,售房部将每种房源套数及每平方的价格绘制了表格和直方图如下:
(2)求每平方米售价的平均数,众数和中位数(精确到千元).
(3)不同面积的三种房子都分别设计为甲、乙、丙三种户型,在调控房价和商品交易的“国八条”实施之前,由于该房子所处地段好,物业管理全国一流,所以,购房者十分踊跃。
几乎呈疯抢状态,但购房者都看好甲种户型,售房部为了将各种户型的房子都尽快卖出去,设计了一种规则:一个暗箱里放有标有1,2,3,4数字的四个形状大小完全一样的小球,另一个暗箱里放有标有2,1,1--数字的三个形状大小完全一样的小球,购房者分别从两个箱子中各
35%
A
已入住公租房(套)图2A B C D
40%20%35%各型号竣工公租房套数占已竣工的公租房套数的百分数图1摸一个小球记下数字后放回各自的箱子中,若数字之和为2时选甲户型:若数字之和为1时选乙户型,若数字之和为0时选丙户型,请用列表或树状图求某购房者选购房子时选中甲种户型的概率。
7、重庆市公租房倍受社会关注,2010年竣工的公租房有A 、B 、C 、D 四种型号共500套,B 型号公租房的入住率为40%,A 、B 、C 、D 四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图.
(1)2010年竣工的A 型号公租房套数是多少套;
(2)请你将图1、图2的统计图补充完整;
(3)在安置中,由于D 型号公租房很受欢迎,入住率很高,2010年竣工的D 型公租房中,仅有5套没有入住,其中有两套在同一单元同一楼层,其余3套在不同的单元不同的楼层。
老王和老张分别从5套中各任抽1套,用树状图或列表法求出老王和老张住在同一单元同一楼层的概率.。