基因工程、分子生物学和分子遗传学重要名词解释
分子生物学名词解释
分子生物学:从广义来讲,分子生物学是从分子水平阐明生命现象和生物学规律的一门新兴的边缘学科。
它主要对蛋白质及核酸等生物大分子结构和功能以及遗传信息的传递过程进行研究。
DNA重组技术:DNA重组技术(又称基因工程)是将DNA片段或基因在体外经人工剪接后,按照人们的设计与克隆用载体定向连接起来,转入特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
信号转导:是指外部信号通过细胞膜上的受体蛋白传到细胞内部,并激发诸如离子通透性、细胞形状或其它细胞功能方面的应答过程。
转录因子:是指一群能与基因5′端上游特定序列专一结合,从而保证目的基因以特定强度在特定时间和空间表达的蛋白质分子。
功能基因组:又称后基因组,是在基因组计划的基础上建立起来的,它主要研究基因及其所编码蛋白质的结构和功能,指导人们充分准确地利用这些基因的产物。
结构分子生物学:就是研究生物大分子特定空间结构及结构的运动变化与其生物学功能关系的科学。
生物信息学:是生物科学和信息科学重大交叉的前沿学科,它依靠计算机对所获得数据进行快速高效计算、统计分类以及生物大分子结构功能的预测。
染色体:是指存在于细胞核中的棒状可染色结构,由染色质构成。
染色质是由DNA、RNA和蛋白质形成的复合体。
染色体是一种动态结构,在细胞周期的不同阶段明显不同。
C-值(C-value):一种生物单位体基因组DNA的总量。
C-值矛盾(C-value paradox):基因组大小与机体的遗传复杂性缺乏相关性。
核心DNA(core DNA):结合在核心颗粒而不被降解的DNA。
连接DNA(linker DNA):重复单位中除核心DNA以外的其它DNA。
DNA多态性:指DNA序列中发生变异而导致的个体间核苷酸序列的差异,主要包括单核苷酸多态性和串联重复序列多态性两类。
DNA的一级结构:是指4种核苷酸的排列顺序,表示了该DNA分子的化学组成。
又由于4种核苷酸的差异仅仅是碱基的不同,因此又是指碱基的排列顺序。
遗传学名词解释
遗传学名词解释1. 基因:生物体遗传信息的基本单位,位于染色体上。
基因决定了生物体的遗传特征。
基因:生物体遗传信息的基本单位,位于染色体上。
基因决定了生物体的遗传特征。
2. 染色体:细胞核中的细长结构,携带着遗传物质。
人类有23对染色体,其中一对性染色体决定了个体的性别。
染色体:细胞核中的细长结构,携带着遗传物质。
人类有23对染色体,其中一对性染色体决定了个体的性别。
3. 等位基因:存在于同一基因位点上的不同基因形式。
个体可以携带两个等位基因中的一种。
等位基因:存在于同一基因位点上的不同基因形式。
个体可以携带两个等位基因中的一种。
4. 显性和隐性:显性基因表现出来的特征会掩盖隐性基因的表现。
只有当个体携带两个隐性基因时,该特征才会显现出来。
显性和隐性:显性基因表现出来的特征会掩盖隐性基因的表现。
只有当个体携带两个隐性基因时,该特征才会显现出来。
5. 杂合子和纯合子:杂合子指一个位点上携带两个不同等位基因的个体,而纯合子指携带两个相同等位基因的个体。
杂合子和纯合子:杂合子指一个位点上携带两个不同等位基因的个体,而纯合子指携带两个相同等位基因的个体。
6. 基因型和表型:基因型是指个体在其基因中的特定基因组合,而表型是由基因型和环境共同决定的个体可观察到的特征。
基因型和表型:基因型是指个体在其基因中的特定基因组合,而表型是由基因型和环境共同决定的个体可观察到的特征。
7. 遗传变异:由基因突变引起的遗传信息的变化。
遗传变异是生物进化的基础。
遗传变异:由基因突变引起的遗传信息的变化。
遗传变异是生物进化的基础。
8. 杂交:不同种类或不同个体之间的繁殖,导致遗传物质的重新组合。
杂交有助于增加遗传多样性。
杂交:不同种类或不同个体之间的繁殖,导致遗传物质的重新组合。
杂交有助于增加遗传多样性。
9. 基因工程:利用分子生物学技术对基因进行改变或操控的过程。
基因工程可以创造具有特定遗传特征的生物体。
基因工程:利用分子生物学技术对基因进行改变或操控的过程。
基因工程、分子生物学和分子遗传学重要名词解释
基因工程、分子生物学和分子遗传学重要名词解释基因工程、分子生物学和分子遗传学重要名词解释5’Cap 5’-末端帽:有时简称帽,是在许多真核生物mRNA5`-末端发现的一种由7-甲基-鸟嘌呤核苷-5`-ppp –末端核苷构成的特殊构成的特殊结构。
它是在转录后不久经酶催反应加入到TATA (Hogness)序列的附近,具有保护mRNA稳定性的功能。
在原核生物的mRNA分子中不存在5`-末端帽结构。
A protein A蛋白:他参与λDNA插入噬菌体头部和在粘性末端(cos)位点上裂解多联体DNA的过程。
abortive lysgeny 流产溶原性:温和噬菌体感染敏感的宿主菌后,既不整合进宿主染色体中,也不进行复制,从而使每一个带有噬菌体的宿主菌分裂产生的两个细胞中,只有一个是溶原性的。
abortive transduction 流产转导:这是得到不稳定转导子的一类转导,区别于得到稳定转导子的完全转导。
在流产转导中,转导子分裂产生两个细胞时,只有其中的一个获得供体基因,另一个细胞则仍属受体基因型。
Abundance of an mRNA mRNA丰度:是指每个细胞平均拥有的某一种特定mRNA的分子数,跟据丰度的差异可将分为两种不同的等级:其一是富裕型的,每个细胞拥有的平均考贝数为1000——10000,属于此型的mRNA约有100种;其二是稀少型的,每个细胞拥有平均考贝数仅有1——10个上下,属于这一类行的mRNA达10000多种。
Abzymes 抗体酶: 应用单克隆抗体技术生产的兼具抗体及酶催活性的工程蛋白质。
也就是说,其行为如同蛋白酶一样,能够催化化学反应的一类新型的抗体。
Acceptor splicing site 受体拼接位点: 间隔子的右端和与其相连的表达子的左端之间的接合点。
Acquired immunodeficiency syndrome, AIDS 获得性免疫缺损综合征: 由人类免疫缺损病毒(HIV)引起的一种疾病,他最早于1980年在美国洛杉叽发现。
基因工程名词解释
基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
遗传工程:广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。
狭义:基因工程。
限制性核酸内切酶:是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶回文结构:每条单链以任一方向阅读时都与另一条链以相同方向阅读时的序列是一致的,例如5'GGTACC3' 3'CCATGG5'.同裂酶(isoschizomer)或异源同工酶:不同来源的限制酶可切割同一靶序列(BamH I 和Bst I具有相同的识别序列G↓GATGC)同尾酶(isocaudiners):来源不同、识别序列不同,但产生相同粘性末端的酶。
两个同尾酶形成的黏性末端连接之后,一般情况下连接处不能够再被其任何一种同尾酶识别。
BamH I 识别序列: G↓GATCCBgl II 识别序列: A↓GATCT黏性末端 (cohesive terminus/sticky ends):DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为黏性末端。
平末端(blunt ends): DNA片段的末端是平齐的。
星活性(star activity):指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。
易产生星活性的内切酶用*标记。
如:EcoR I*底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。
连杆/衔接物(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。
分子生物学和基因工程
分子生物学和基因工程分子生物学和基因工程是现代生命科学领域中的两个重要分支。
它们致力于研究和应用基因的结构、功能以及遗传信息的传递和调控。
本文将就这两个领域的概念、研究内容以及应用进行介绍和阐述。
分子生物学是研究生物学中最基本的领域之一,它主要关注生物体内发生的分子层面的过程。
分子生物学家使用一系列实验技术和方法来了解和研究生物体内的基因、蛋白质、细胞信号传导和代谢过程等。
他们通过对 DNA、 RNA、蛋白质等分子的研究,揭示了生物体内多种生物学现象的分子机制。
分子生物学研究的领域非常广泛,涉及基础生物学、遗传学、细胞生物学、生物化学等多个学科的交叉。
例如,分子生物学的核心研究内容之一就是基因的结构和功能。
通过对基因的序列分析和表达调控的研究,可以深入了解基因在生物体内的作用和机制。
此外,分子生物学还关注细胞的分裂、分化和程序性死亡等基本生物学过程,以及细胞信号传导和代谢途径等生物化学的研究。
分子生物学的研究成果对许多学科有着重要的影响。
例如,基因组学的发展,使科学家能够研究和了解人类和其他生物的整个基因组序列。
这使我们能够更好地理解和研究各种遗传性疾病的起源和机制,并开展诊断和治疗的研究。
此外,基因编辑技术的进步也为遗传基因病的治疗提供了新的方法和可能性。
基因工程是利用分子生物学等技术对生物体的基因进行设计、改造和应用的过程。
通过基因工程技术,科学家可以向生物体中插入、删除、修改或替换外源基因,从而改变其遗传特性,达到特定目的。
基因工程应用广泛,包括农业、医学、工业等多个领域。
在农业上,基因工程被应用于作物的改良和保护。
通过转基因技术,农作物可以获得抗虫、抗草甘膦除草剂、耐盐碱等抗逆性状,提高农作物产量和质量,解决粮食安全问题。
此外,基因工程还被用于改善作物的口感、外观等特性,满足人们对美观和营养的需求。
在医学上,基因工程被应用于基因诊断、基因治疗和药物研发。
基因诊断通过对个体基因组的检测,可以预测和诊断遗传性疾病和疾病的遗传风险。
基因工程技术名词解释
基因工程技术名词解释
基因工程技术是应用分子生物学和细胞生物学的原理和方法进行基因操作,修改生物基因的技术。
常见的基因工程技术名词及其解释如下:
1. 基因克隆:将目标基因从DNA中分离出来,重组到质粒等载体上,使其能够在宿主细胞中自我复制和表达。
2. 基因剪切:利用限制性内切酶进行DNA分子特定的切割,实现目标序列的切除或粘贴。
3. 基因敲除:将目标基因进行替换或删除,通过对细胞的遗传物质进行“删改”。
4. 基因表达:在某种特定的生物体系中使目标基因得以表达并产生蛋白质等特定的作用。
5. 基因转染:将确切的DNA片段转移至另一个生物体细胞内,并让它表达新的蛋白质或修改已有的蛋白质功能。
6. 基因突变:通过人工方式创造或使一段DNA序列产生突变,并观察这种遗传变异对链上蛋白质表现的影响。
7. 基因编辑:通过人为方式改变或删除一个个体或生物各自遗传基因序列的方法,在人体细胞治疗、紫外线损伤等领域具有潜在应用价值。
这些技术广泛应用于生物学、医学和农业领域,使我们可以更精准地控制和修改生物的基因,以满足不同领域的需求。
基因工程名词解释
★基因工程概念(狭义)是在分子生物学和分子遗传学等学科综合发展的基础上,于上世纪70年代诞生的一门崭新的生物技术科学。
应用基因工程技术完全打破生物界物种的界限,在体外对大分子DNA进行剪切、加工、重组后引入细胞中表达,使其具有新的遗传特性,从而定向改造生物。
广义:指DNA重组技术的产业化设计与应用,包括上下游技术。
上游技术指外源基因重组、克隆和表达载体构建;下游技术则涉及含有重组外源基因的生物细胞的大规模培养以及外源基因表达产物的分离、纯化过程。
★基因: 是一个含有特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。
基因特点:基因是实体:DNA或RNA(如烟草花叶病毒);基因是具有一定遗传效应的DNA分子中特定的核苷酸序列;基因是遗传信息传递和性状分化发育的依据;基因是可分的,根据其编码产物的功能,可分为编码蛋白质基因、tRNA和rRNA,以及不转录却有特定功能的DNA区段(如启动子、操作子基因等)。
★两个实验:首先用肺炎双球菌实验证明基因的化学本质DNA分子的是美国著名微生物学家O.T. Avery于1944年发表;1952美国冷泉港喀内基遗传学实验室的A.D.Hershey用35S和32P分别标记噬菌体外壳蛋白质与DNA,感染大肠杆菌,证明了Avery的结论。
★顺反子:在现代的遗传学文献中,顺反子和基因这两个术语是相互通用的,一般说来,一个顺反子就是一个基因,大约含有1500个核苷酸对,是由一群突变单位和重组单位组成的线性结构。
因此,基因不是最小单位,它仍然是可分的;并非所有的DNA序列都是编码基因,而只有其中某一特定的多核苷酸区段才是基因的编码区。
★基因家族是真核生物基因组中来源相同,结构相似,功能相关的一组基因。
★假基因:具有与功能基因相似的核苷酸序列,但由于有许多突变以致失去了原有的功能,所以是没有功能的基因,常以ψ表示。
现已在大多数真核生物中发现了假基因。
★基因工程诞生:核酸限制性内切酶:1972年H. Y. Boyer发现EcoRI位点GAATTC。
名词解释(分子生物学)
10.同源重组(homologousrecombination):发生在同源序列间的重组,它通过链的断裂和再连接,在两个DNA分子同源序列间进行单链或双链片段的交换,又称基因重组。
27.探针(probe):带有特殊可检测标记的核酸片段,具有特定序列,能够与待测的核酸片段互补结合,用于检测核酸样品中存在的特定基因。
28.PCR(聚合酶链反应):利用耐热DNA聚合酶的反复作用,通过高温变性—低温退火—适温延伸的循环操作,在体外迅速将DNA模板扩增数百万倍的一种操作技术。
29.基因芯片(gene chip):将许多特定的DNA片段或cDNA片段作为探针,有规律地紧密排列固定于单位面积的支持物上,然后与标记的样品杂交,通过对杂交信号的监测分析,即可得出样品遗传物质。
名词解释
1.操纵子(operon):是真核生物基因的一个基本转录单位,由编码序列及上游的调控序列组成。编码序列通常包括几个功能相关的结构基因,调控序列由启动序列(启动子),操纵序列(操纵基因)及其他调节序列构成。
2.顺式作用元件(cis-acting element):是真核基因表达是调控转录过程的特殊DNA序列,以转录因子结合而起作用,通常包括启动子,增强子,沉默子等。
25.生长因子(growth factor):指存在于血清中,通过质膜上特异的受体,将信息传递至细胞内部,调节细胞生长与增殖的多肽类物质。
26.核酸分子杂交:在DNA复制过程中,如果把不同DNA单链分子放在同一溶液中,或把DNA与RNA放在一起,只要在DNA或RNA的单链分子之间有一定的碱基配对关系,就可以在不同的分子之间形成杂化双链。
基因工程名词解释
基因工程名词解释:基因工程:一般指利用分子生物学的手段,将不同生物的遗传物质按人们的意志或需要,进行基因的定向改造,突变与重组,从而使生物体的遗传性状发生变异。
穿梭质粒载体:质粒分子上含有两个亲缘关系不同的复制子以及相应的选择性标记,能在两种不同的受体细胞中复制并检测T-DNA:反向PCR:研究与已知DNA区域相连接的未知染色体DNA序列。
噬菌粒:噬菌粒是一类人工构建的含有单链噬菌体包装序列、复制子以及质粒复制子、克隆位点、标记基因的特殊类型的载体。
融合蛋白:将外源蛋白基因与受体菌自身蛋白基因重组在一起进行表达,并能正确折叠形成良好的杂合构象,但不同于天然构象。
载体:携带外源DNA进入宿主细胞进行复制和表达的双链DNA分子。
报告基因:指编码产物能够被快速测定,常用来判断外源基因是否已经成功的导入寄主细胞并检测其表达活性的一类特殊用途的基因。
同裂酶:来源不同,识别位点和切割位点均相同的限制性内切酶。
即同裂酶产生同样的切割,形成同样的末端。
同裂酶对识别序列的甲基化状态有不同的限制性反应。
多克隆位点:多个限制酶的单一切点。
由许多酶切位点组成,往往是人工合成的一段外源基因的插入部位的DNA序列。
基因敲除:基因敲除是向正常生物个体内引入某个突变的基因位点而选择性地使某特定基因功能失活的技术。
具有生物活性的蛋白质分子。
TA克隆:把PCR片断与一个具有3‘-T突出的载体DNA连接起来的方法。
因为PCR反应中所使用的聚合酶具有末端转移的活性,通常在3'加上A。
RT PCR:逆转录PCR:先用逆转录酶作用于mRNA,以寡聚dT为引物合成cDNA第一链,然后用已知一对引物,扩增嵌合分子,这种方法称为逆转录PCR。
同尾酶:这一类的限制酶来源各异,识别的靶字序列也不相同,但产生相同的粘性末端。
由同尾酶产生的DNA片段,是能够通过其粘性末端之间的互补作用彼此连接起来的。
cDNA文库:是指将某种生物体基因组转录的全部mRNA经反转录产生的cDNA片段分别与克隆载体重组,储存于某种受体菌中,该群体就称该生物基因组的cDNA文库。
基因工程名词解释
基因工程名词解释-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII基因工程名词解释1 基因工程:对不同的遗传物质在体外进行剪切、组合和拼接,使遗传物质重新组合,然后通过载体转入微生物、植物和动物细胞内,进行无性繁殖,并使所需的基因在细胞中表达,产生人类所需的产物或新生物类型2 限制性内切核酸酶:一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸水解酶3 粘性末端:指DNA分子在限制酶的作用下形成的具有互补碱基的单链延伸末端结构,它们能够通过互补碱基间的配对而重新环化起来4 平末端:当限制酶从识别序列的中心轴西线处切开时,切开的DNA两条单链的切口,是平整的,这样的切口叫平末端5 酶的星号活性:极度非标准反应条件下,当条件改变时许多酶的识别位点会改变,导致与切割序列的非特异性,这种现象称为星号活性6 载体:将外源DNA或基因携带进入宿主细胞进行扩增或表达的工具7 质粒的不相容性:两种质粒在同一宿主细胞中不能共存的现象8PCR引物:在PCR反应中,与待扩增的DNA两侧碱基互补的寡核苷酸片段,其本质是单链DNA9cDNA文库:指将某种生物体基因组转录的全部mRNA经反转录产生的cDNA 片段,分别与克隆载体重组,储存于某种受体菌中,该群体就称该生物基因组的cDNA文库10基因组文库:指将某种生物体的全部基因组DNA用限制性内切酶或机械力量切割成一定长度范围的DNA片段,在与合适的载体在体外重组,并转化相应的宿主细胞,获得的所有阳性菌落,这个群体就称为该生物基因组文库11DNA体外重组:将外源DNA用DNA连接酶在体外连接到合适的载体DNA上12 感受态细胞:经过适当处理后容易接受外源DNA进入的细胞13 受体细胞:从实验技术上讲是能摄取外源DNA并使其稳定维持的细胞14 报告基因:一种编码可被检测的蛋白质或酶的基因,也就是说是一个其表达产物非常容易被鉴定的基因。
生物工程名词解释
生物工程名词解释1.基因:基因是生物体质量和性状遗传的基本单位,是DNA 中编码蛋白质的片段。
它决定了生物体的性状和生理功能。
2.转基因:转基因是指通过基因工程技术,将其他物种的基因导入到目标生物体中,使其具备新的性状或功能。
3.基因工程:基因工程是一种利用分子生物学、遗传学和生物化学等技术手段,对生物体的基因进行操作和改造的科学。
4.重组DNA技术:重组DNA技术是指通过人工途径将DNA 分子中的DNA片段重新组合,构建具有特定功能的DNA分子。
5.限制性内切酶:限制性内切酶是一类能够识别特定DNA序列,并在该序列特定位置剪切DNA分子的酶。
6.载体:载体是指在基因工程中用于将外源基因导入目标生物体的DNA分子,常用的载体包括质粒、病毒等。
7.质粒:质粒是一种环状DNA分子,存在于细菌细胞中,常用于作为载体将外源基因导入细菌或植物细胞中。
8.转化:转化是指将外源基因通过基因工程技术导入细胞或生物体中,并使其表达出相应的基因产物。
9.表达:表达是指将外源基因导入细胞或生物体中,并使其能够进行转录和翻译,从而产生相应的蛋白质。
10.克隆:克隆是指通过基因工程技术,将从一个个体中得到的特定基因复制并导入其他个体中,使其也具备相同的基因。
11.基因组:基因组是指一个生物体所有基因的集合,包括其所有DNA序列和非编码RNA序列。
12.CRISPR-Cas9:CRISPR-Cas9是一种基因组编辑技术,利用CRISPR序列导向的RNA和Cas9蛋白的组合来精确编辑目标基因。
13.合成生物学:合成生物学是一门综合了物理、化学、数学等多个学科的科学,旨在通过工程化的方法来设计和构建新的生物系统。
14.基因组编辑:基因组编辑是指利用基因工程技术对生物体的基因组进行特定的编辑和修改。
15.干细胞:干细胞是一类具有自我更新和分化潜能的细胞,可以分化为各种不同类型的细胞,具备广泛的应用前景。
16.基因突变:基因突变指基因序列中发生的变异,可以是点突变、缺失、插入或移位等形式,导致基因功能的改变。
分子生物学与基因工程
分子生物学与基因工程分子生物学是一门研究生物体分子结构、功能和相互作用的学科,而基因工程则是利用分子生物学的原理和技术来进行基因的修改和重组。
这两个领域的发展为我们认识生命的奥秘和解决一些重大的生物学问题提供了强有力的工具和方法。
本文将介绍分子生物学和基因工程的基本概念、应用及其对生命科学的影响。
一、分子生物学的基本概念分子生物学是在上世纪中叶兴起的一门新兴学科,它着重研究生物体中的生物大分子,如DNA、RNA和蛋白质等,并研究这些分子在生物体中的结构和功能。
分子生物学的研究方法主要包括分子克隆、PCR、免疫学技术等,这些研究方法使得科学家们能够更深入地了解生物体内分子的组成和运作机制。
二、基因工程的基本概念基因工程是利用分子生物学的原理和技术对基因进行修改和重组的一种技术手段。
通过基因工程技术,科学家们可以改变生物体的基因组,使其获得新的性状或功能。
常见的基因工程技术包括基因克隆、基因编辑和基因转染等。
基因工程技术的应用不仅局限于农业领域,还广泛应用于医疗、工业和环境保护等方面。
三、分子生物学在基因工程中的应用分子生物学是基因工程技术的基础和核心。
研究人员通过分子生物学的方法克隆目标基因、构建基因载体、转染细胞等,从而实现对基因的修改和重组。
同时,分子生物学的技术也为对基因的功能研究提供了有力的工具,例如通过基因敲除、过表达等方法,研究人员可以揭示基因在生物体中的作用和调控机制。
四、基因工程的应用领域基因工程技术在农业、医学、工业和环境保护等领域都有广泛的应用。
在农业方面,基因工程技术可用于改良作物、增加抗病虫害能力、提高产量和营养价值等。
在医学方面,基因工程技术被用于生产重组蛋白药物、疫苗和基因治疗等。
在工业方面,基因工程技术为酶的生产和生物燃料的开发提供了强有力的手段。
在环境保护方面,基因工程技术可用于生物降解污染物和改善植物适应环境能力等。
五、基因工程对生命科学的影响基因工程技术的发展对生命科学的研究产生了深远的影响。
基因工程名词解释
基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
遗传工程:广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。
包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。
狭义:基因工程。
限制性核酸内切酶:是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶回文结构:每条单链以任一方向阅读时都与另一条链以相同方向阅读时的序列是一致的,例如5'GGTACC3' 3'CCATGG5'.同裂酶(isoschizomer)或异源同工酶:不同来源的限制酶可切割同一靶序列(BamH I 和Bst I具有相同的识别序列G↓GATGC)同尾酶(isocaudiners):来源不同、识别序列不同,但产生相同粘性末端的酶。
两个同尾酶形成的黏性末端连接之后,一般情况下连接处不能够再被其任何一种同尾酶识别。
BamH I 识别序列: G↓GATCCBgl II 识别序列: A↓GATCT黏性末端 (cohesive terminus/sticky ends):DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为黏性末端。
平末端(blunt ends): DNA片段的末端是平齐的。
星活性(star activity):指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。
易产生星活性的内切酶用*标记。
如:EcoR I*底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。
连杆/衔接物(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。
分子生物学名词解释
1、重组DNA技术是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA 体外操作程序,也称为分子克隆技术。
2、基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。
上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。
3、1 U 核酸内切酶的酶活性:在最佳反应条件下反应1 小时,完全水解1 mg 标准DNA 所需的酶量
4、1 U DNA连接酶的酶活性:在最佳反应条件下15 ℃反应1 小时,完全连接1 mg l-DNA (Hin d III片段)所需的酶量
5、高浓度的酶、高浓度的甘油、低离子强度、极端pH值等,会使一些核酸内切酶的识别和切割序列发生低特异性,即所谓的Star activity现象。
6、任何两种含有相似复制子结构的不同质粒,不能同时存在于不相容性一个细胞中,这种现象称为质粒的不相容性,不相容性的质粒组成不相容性群。
7、接合型质粒:能在天然条件下自发地从一个细胞转移到另一个细胞(接合作用),如F、Col、R质粒等。
非接合型质粒:不能在天然条件下独立地发生接合作用如Col、R的其它成员
值得注意的是,某些非接合型质粒(ColE1)在接合型质粒的存在和协助下,也能发生DNA 转移,这个过程由bom 和mob 基因决定
8、λ噬菌体感染大肠杆菌后,除能裂解细胞外,也可能将其DNA直接整合到宿主细胞的染色体DNA上,并不产生子代噬菌体颗粒,这种情况为溶原状态。
分子生物学名词解释
一、名词解释1、分子生物学(狭义):研究核酸和蛋白质等大分子的形态、结构特征及其重要性、规律性和相互关系的科学,主要研究基因的结构和功能及基因的活动。
2、分子生物学(广义):在分子的水平上研究生命现象的科学,涵盖了分子遗传学和生物化学等学科的研究内容。
3、基因:是具有特定功能、能独立发生突变和交换的、“三位一体”的、最小的遗传单位。
4、顺反子:基因的同义词,是一个具有特定功能的、完整的、不可分割的最小遗传单位。
5、增色效应:当进行DNA热变性研究时,温度升高单链状态的DNA分子不断增加而表现出A260值递增的效应。
6、变性温度:DNA双链在一定的温度下变成单链,将开始变性的温度至完全变性的温度的平均值称为DNA的变性温度。
7、DNA的复性:DNA在适当的条件下,两条互补链全部或部分恢复到天然双螺旋结构的现象。
8、C值:一种生物中其单倍体基因组的DNA总量。
9、C值悖论:C值和生物结构或组成的复杂性不一致的现象。
10、重叠基因:共有同一段DNA序列的两个或多个基因。
11、重复基因:基因组中拷贝数不止一份的基因。
12、间隔基因(断裂基因):就是基因的编码序列在DNA分子上是不连续的,为不编码的序列所隔开。
13、转座子:在基因组中可以移动的一段DNA序列。
14、转座:一个转座子从基因组的一个位置转移到另一个位置的过程。
15、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。
16:、DNA 复制:亲代双链的DNA分子在DNA聚合酶等相关酶的作用下,别以每条单链DNA为模板,聚合与模板链碱基对可以互补的游离的dNTP,合成两条与亲代DNA分子完全相同的子代双链DNA分子的过程。
17、复制子:从复制起点到复制终点的DNA区段称为一个复制子。
18、复制体:在复制叉处装备并执行复制功能的多酶复合体。
19、复制原点(复制起点):DNA分子中能独立进行复制的最小功能单位。
20、端粒:染色体末端具有的一种特殊结构,对维持染色体的稳定起着十分重要的作用。
分子生物学概念
1.基因芯片(gene chip):又称DNA芯片、生物芯片。
是固定有寡核苷酸、基因组DNA或互补DNA等的生物芯片。
利用这类芯片与标记的生物样品进行杂交,可对样品的基因表达谱生物信息进行快速定性和定量分析。
2.拷贝数(copy number):拷贝数就是指某基因(可以是质粒)在某一生物的基因组中的个数。
一般检测方法有Southern blot和实时荧光定量PCR。
3.基因工程(gene engineering):又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。
广义的基因工程则指按人们意愿设计,通过改造基因或基因组而改变生物的遗传特性。
4.探针(probe):是一小段带有标记的单链DNA或者RNA片段(大约是20到500bp),用于检测与其互补的核酸序列。
双链DNA加热变性成为单链,随后用放射性同位素(通常用磷-32)、萤光染料或者酶(如辣根过氧化物酶)标记成为探针。
5.cDNA:complementary DNA,互补脱氧核糖核酸。
是以RNA为模板,在适当引物的存在下,借助依赖RNA的DNA聚合酶(反转录酶)的作用而合成的DNA就是cDNA。
真核生物的信使RNA或其他RNA的cDNA,在遗传工程方面广为应用。
6.定量PCR(Polymerase Chain Reaction):广义概念的定量PCR技术是指以外参或内参为标准,通过对PCR终产物的分析或PCR过程的监测,进行PCR起始模板量的定量。
狭义概念的定量PCR技术(严格意义的定量PCR技术)是指用外标法(荧光杂交探针保证特异性)通过监测PCR过程(监测扩增效率)达到精确定量起始模板数的目的,同时以内对照有效排除假阴性结果(扩增效率为零)。
7.扩增曲线(amplification curve):在实时荧光定量PCR 反应中,引入了一种荧光化学物质,随着PCR 反应的进行,PCR 反应产物不断累计,荧光信号强度也等比例增加。
分子生物学名词解释
1、染色体:是指在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一定形态、结构特征的物体。
携带很多基因的分离单位。
只有在细胞分裂中才可见的形态单位。
2、染色质:是指细胞周期间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA组成的复合结构,因其易被碱性染料染色而得名。
3、核小体:染色质的基本结构亚基,由约200 bp的DNA和组蛋白八聚体所组成4、C值谬误:一个有机体的C值与它的编码能力缺乏相关性称为C值矛盾5、半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自6、亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制6、DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
7、半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。
8、引发酶:此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引物(Primer)。
实质是以DNA为模板的RNA聚合酶。
9、转坐子:存在与染色体DNA上可自主复制和位移的基本单位。
10、多顺反子:一种能作为两种或多种多肽链翻译模板的信使RNA,由DNA链上的邻近顺反子所界定。
11、基因:产生一条多肽链或功能RNA所必需的全部核甘酸序列。
12、启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。
13、增强子:能强化转录起始的序列14、全酶:含有表达其基础酶活力所必需的5个亚基的酶蛋白复合物,拥有σ因子。
(即核心酶+σ因子)15、核心酶:仅含有表达其基础酶活力所必需亚基的酶蛋白复合物,没有σ因子。
16、核酶:是一类具有催化功能的RNA分子17、三元复合物:开放复合物与最初的两个NTP相结合,并在这两个核苷酸之间形成磷酸二酯键后,转变成包括RNA聚合酶,DNA和新生的RNA的三元复合物。
分子生物学名词解释
一、名词解释:基因文库:将来自一个有机体不同随即DNA序列片段与载体重组、转化、得到该物种基因组的一群重组体克隆,这些克隆的集合体即为基因文库。
2、SSR:简章序列重复多态性,引物是根据微卫星DNA重复序列两翼的特定短序列设计,用来扩增重复序列本身。
由于重复的长度变化极大,所以是检测多态性的一种有效方法。
其特点包括:一般检测到的是一个单一的多等位基因位点,共显性遗传,故可鉴别杂合子与纯合子;得到的结果重复性很高。
4、STS:序列标签位点,是由特定引物序列所界定的一类标记的统称,短的在基因组上是可以被唯一操作的序列,因而可以确定在物理图谱上的特定位置。
5、CAP: CAP即分解代谢物基因活化蛋白是一种激活蛋白,因为细菌的许多启动子为弱启动子,本身与RNA聚合酶的作用较弱,在有CAP蛋白这类激活蛋白存在下,可使RNA聚合酶与启动子的亲和力增强,CAP蛋白的活性强烈依赖cAMP。
6、AFLP:扩增片段长度多态性,其特点是把RFLP和PCR结合了起来。
其基本步骤是:把DNA进行限制性内切酶酶切,然后选择特定的片段进行PCR扩增(在所有的限制性片段两端加上带有特定序列的“接头”,用与接头互补的但3?端有几个随机选择的核苷酸的引物进行特异PCR扩增,只有那些与3?端严格配对的片段才能得到扩增),再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。
7、SNP:单核苷酸多态性,是一种较为新型的分子标记,其依据的是一位点的不同等位基因之间常常只有一个或几个核苷酸的差异,因此在分子水平上对单个核苷酸的差异进行检测是很有意义的。
8、FISH:荧光原位杂交技术,是一种利用非放射性的荧光信号对原位杂交样本进行检测的技术。
它将荧光信号的高灵敏度、安全性,荧光信号的直观性和原位杂交的高准确性结合起来,通过荧光标记的DNA探针与待测样本的DNA进行原位杂交,在荧光显微镜下对荧光信号进行辨别和计数,从而对染色体或基因异常的细胞、组织样本进行检测和诊断,为各种基因相关疾病的分型、预前和预后提供准确的依据。
分子生物学与基因工程
分子生物学与基因工程随着科学技术的迅猛发展,分子生物学与基因工程已成为当今科学领域的热门话题。
分子生物学主要研究生物分子结构、功能、相互作用等,而基因工程则强调基因在生物体内的作用与变化。
两者密切相关,旨在改善人类健康、粮食安全、生态环境等方面。
1.基因工程的概念及应用领域基因工程是指通过人为方法将DNA分子从一个生物体转移到另一个生物体的过程。
基因工程技术可广泛应用于农业、医学、环保等领域。
例如,基因工程可用于修改植物、动物、微生物的基因,从而改善其产量、品质、抗逆性等特性。
此外,基因工程还可用于研究人类遗传疾病、制造人类胰岛素等生物制剂。
2.分子生物学的研究对象及研究方法分子生物学旨在探究生命活动过程中的基本分子机制。
其研究领域包括DNA、RNA、蛋白质等分子的结构、功能、调控等。
分子生物学的研究方法主要包括PCR技术、DNA克隆、基因测序等。
其中,PCR技术可用于大量复制DNA分子,DNA克隆可用于将一段DNA序列扩增成大量复制物,并将其插入宿主细胞中以得到大量目的DNA。
3.分子生物学与基因工程的联系与共同点分子生物学与基因工程的联系非常密切。
分子生物学作为基础研究手段,为基因工程提供了技术支撑。
例如,基因工程过程中需要大量复制目的基因,PCR技术的应用正是基于分子生物学的研究成果。
此外,分子生物学研究还为基因工程提供了基础数据和普适模型。
4.分子生物学与基因工程的发展前景分子生物学和基因工程的发展势头一直不减。
以人类健康为例,分子生物学可用于研究人类遗传疾病的发生和治疗方法,基因工程也可制造出各种生物制剂,使药物的疗效更为显著。
而在农业方面,基因工程技术可逐渐被广泛应用,为农业现代化进程提供强劲动力。
总之,分子生物学与基因工程的研究成果对于人类健康、食品安全、生态环境等方面都有着重要的作用和影响,为科技创新和人类社会的进步注入了新的动力。
今后,科研人员应不断探索分子生物学和基因工程的深度思考,为全球领域提供更多更好的科学成果。
分子生物学名词解释
C值:C value通常指一种生物单倍体基因组DNA的总量,以每细胞被的皮克(pg)数表示。
C值反常现象:C value paradox也称C值谬误。
指C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然的联系,某些较低等的生物C值却很大。
DNA甲基化:CpG二核苷酸(CpG岛)通常成串出现在DNA上,在甲基转移酶的作用下,胞嘧啶(C)的第5位碳原子能被修饰加上甲基。
可形成5-甲基胞嘧啶、N6-甲基腺嘌呤及7-甲基鸟嘌呤。
DNA重组技术:recombinant DNA technology又称基因工程(genetic engineering)。
将不同的DNA 片段按照预先的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状的技术。
GU-AG法则:GU-AG rule多数细胞核mRNA前体中内含子的5’边界序列为GU,3’边界序列为AG。
因此,GU表示供体衔接点的5’端,AG表示收纳体衔接点的3’端序列。
习惯上,吧这种保守序列模式称为GU-AG法则。
RNA的编辑:RNA editing是某些RNA,尤其是mRNA前体的一种加工方式,如插入、删除或取代一些核苷酸残基,导致DNA所编码的遗传信息发生改变,因为经过编辑的mRNA序列发生了不同于模板DNA的变化。
RNA的再编码:RNA recoding是指RNA的编码和读码方式的改变。
RNA的干涉:RNA interference,RNAi是利用双链小RNA高效、特异性降解细胞内同源mRNA,从而阻断体内靶基因表达,使细胞出现靶基因缺失表型的方法。
RNA的剪接:RNA splicing从mRNA前体分子中切除被称为内含子(intron)的非编码区,并使基因中被称为外显子(exon)的编码区拼接形成成熟mRNA的过程就是RNA的剪接。
SD序列:Shine-Dalgarno sequence存在于原核生物起始密码子AUG上游7-12个核苷酸处的一种4-7个核苷酸的保守片段,它与16S r RNA 3’端反向互补,所以可将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程、分子生物学和分子遗传学重要名词解释5’Cap 5’-末端帽:有时简称帽,是在许多真核生物mRNA5`-末端发现的一种由7-甲基-鸟嘌呤核苷-5`-ppp –末端核苷构成的特殊构成的特殊结构。
它是在转录后不久经酶催反应加入到TATA (Hogness)序列的附近,具有保护mRNA稳定性的功能。
在原核生物的mRNA分子中不存在5`-末端帽结构。
A protein A蛋白:他参与λDNA插入噬菌体头部和在粘性末端(cos)位点上裂解多联体DNA的过程。
abortive lysgeny 流产溶原性:温和噬菌体感染敏感的宿主菌后,既不整合进宿主染色体中,也不进行复制,从而使每一个带有噬菌体的宿主菌分裂产生的两个细胞中,只有一个是溶原性的。
abortive transduction 流产转导:这是得到不稳定转导子的一类转导,区别于得到稳定转导子的完全转导。
在流产转导中,转导子分裂产生两个细胞时,只有其中的一个获得供体基因,另一个细胞则仍属受体基因型。
Abundance of an mRNA mRNA丰度:是指每个细胞平均拥有的某一种特定mRNA的分子数,跟据丰度的差异可将分为两种不同的等级:其一是富裕型的,每个细胞拥有的平均考贝数为1000——10000,属于此型的mRNA约有100种;其二是稀少型的,每个细胞拥有平均考贝数仅有1——10个上下,属于这一类行的mRNA达10000多种。
Abzymes 抗体酶: 应用单克隆抗体技术生产的兼具抗体及酶催活性的工程蛋白质。
也就是说,其行为如同蛋白酶一样,能够催化化学反应的一类新型的抗体。
Acceptor splicing site 受体拼接位点: 间隔子的右端和与其相连的表达子的左端之间的接合点。
Acquired immunodeficiency syndrome, AIDS 获得性免疫缺损综合征: 由人类免疫缺损病毒(HIV)引起的一种疾病,他最早于1980年在美国洛杉叽发现。
HIV病毒通过血液和精液在人群中传播,感染了这种病毒之后,会使人体出现严重的免疫抑制和淋巴结病(lymphadenopathy),并增加对机会病原体(opportunistic pathogen)的敏感性。
这种综合征是由于HIV病毒的感染以及cd4类T细胞功能破坏所致。
T细胞表面CD抗原CDS4是HIV病毒的受体。
HIV病毒的感染使T细胞发生融合形成大的合胞体(syncytia)并最终裂解。
AIDS是致命的,目前尚无法有效治疗也无有效疫苗可用。
activator 活化物:1,在分子生物学中,活化物是一种蛋质,结合在某个基因上游DNA的一个位置上,激活从该基因开始的转录。
2,在酶学中,活化物是一种小分子,与酶相结合从而提高酶的催化活性。
Activator 激活物: 能够通过与结合在启动子上的RNA聚合酶发生相互作用,从而促使RNA聚合酶起动操纵子进行转录反应的一种正调节蛋白质。
Adaptor 接头:即DNA接头,是一类人工合成的非自我互补单链寡核苷酸短片段,当其同街接物(linker)自行退火时,就会形成具有一个平末端和一个粘性末端的双链的接头/衔接物结构。
因此,同平端DNA分子连接之后,无需用核酸内切限制酶切割,就会提供符合预先设计要求的粘性末端。
Adenovirus 腺病毒:一种具双链DNA的动物病毒,大小约为36kb。
次种病毒在分子生物学研究中占有突出的位置,许多重要的分子生物学事件,诸如RNA剪辑,DNA复制及转录等,,都是腺病毒研究中发现的。
现在腺病毒以被改造用作分离哺乳动物基因的克隆载体。
Affinity chromatography 亲和层析:一种根据配体与特异蛋白质结合作用原理建立的层析技术,该法主要应用于分离与纯化特异的蛋白质。
Agarose 琼脂糖:是从红色海藻的琼脂中提取的一种线性多糖聚合物,可用于配置核酸电泳凝胶。
当琼脂糖溶液加热至沸点后冷确凝固,便会形成一种基质,其密度石油琼脂糖浓度决定的。
可以被琼脂糖凝胶电泳分离的DNA片段的大小范围为0.2——50kb。
经过化学上修饰的低熔点琼脂糖再机构上比较脆弱,因此,再较低的温度下便会融化,可用于TNA片段的制备的电泳。
Agrobacterium rhizogenes 发根土壤杆菌:革兰氏阴性,杆状土壤细菌,与跟癌土壤杆菌Agrobacterium tumefaciens 的亲缘关系很近。
发根土壤杆菌常常带有大的质粒,称为Ri质粒,同Ti质粒很近。
发根土壤杆菌同Ri质粒相结合,会在某些植物中引起瘤性生长,称为发根病。
Agrobacterium tumefaciens 根癌土壤杆菌:一种土壤细菌,当含有Ti质粒时,能感染许多种植物的茎而形成冠瘿瘤。
Agrobacterium tumefaciens 根瘤土壤杆菌:根瘤土壤杆菌是属于土壤杆菌属(Agrobacterium)的一种格兰氏阴性细菌,它在土壤中的书数量十分丰富。
根土壤杆菌的致瘤性菌株(Tumorigenic steains)携带有一种Ti质粒的一部分转移到寄主植株的染色体基因组,致使许多种双子叶植物产生冠瘤。
allelic exclusion 等位基因互斥:一个杂合个体的细胞只表达一对等位基因中的一个,这种现象称为等位基因互斥。
例如,每一个B淋巴细胞克隆只表达免疫球蛋白基因中的一种等位基因,如只产生κ链又产生λ链。
Allosteric regulation 变构调节: 是指一种特除的调节酶引发的催化反应。
在这种反映中,一种小分子量的效应物分子同调节酶分子上的一个位点结合之后,便会影响到该酶分子另一位点的活性。
此种结合作用是可逆的,会导致调节酶发生够象变化,从而影响到它与第三种分子间的相互作用,因而这种酶分子特称为变构蛋白质。
alpha-complementation α互补:Ω片段与α片段缔合后,恢复β-半乳糖苷酶的活性,称为α互补。
参见alpha-fragment,omega fragment。
Alternative splicing 可变剪辑: 系指某些基因的转录本分子,在不同类行的或是处于不同发育阶段的细胞当中,能够发生不同形式的剪辑作用,结果形成具有不同序列机构特征的,编码不同蛋白质的mRNA分子。
可变剪辑(differential splicing).Alu sequence Alu序列: 一种长度约300kp的DNA序列,因起含有一个AluI限制位点而的名。
它是人类基因组的重要的重负序列,约有100万拷贝,均匀地分布在整个基因组的各个部位,占人体细胞总DNA的3%——6%之间。
Aiu序列的5/-末端及3/-末端都同一种富裕的Trna, 即7SLRNA,具有高度的同原性。
Aiu序列结构具有一种加工的假基因的特征,这表明它很可能是以一种RNA为中介经过反转录过程重复而成的。
amber mutant 琥珀突变型:由于编码某一氨基酸的密码子改变为UAG密码子,使多肽链合成终止的突变型。
参见amber。
Amber mution 琥铂突变: 由于某一密码子改变成为链终止信号密码子UAG,结果导致多太链在成熟前便终止合成的一种突变。
amber suppressor 琥珀突变抑制基因:这种基因的作用是阻遏编码氨基酸的密码子变为UAG终止密码子。
参见amber mutant。
Aminoacyl-tRNA 氨酰-tRNA :携带着一个氨基酸的tRNA。
它是通过氨基酸的HN2基团和tRNA 末端碱基的3/或2/-OH基团之间的共价连接形成的。
Aminoacyl-tRNA synthetases 氨酰-tRNA合成酶: 负责催化氨基酸NH2基团同tRNA分子的3/OH或2/-OH基团共介间接的一种核酸酶。
Antibody 抗体: 即免役球蛋白(immunoglobulins)是一类由脊椎动物免疫系统产生的多功能糖蛋白(glycoproteins),通常存在于血清中。
它可以特异性地识别抗原中的抗原决定簇并与其结合。
因此,根据这种特异性反应便可鉴定其存在与否。
Antibody engineering 抗体工程: 应用DNA重组技术或空变的方法改变某种抗的编码序列,产生出自然界中原本不存在的蛋白质分子,这种基因工程特称为抗体工程。
由单碱基变换引起的蛋白质分子中单一氨基酸的取代反应,而使蛋白质的功能活性,例如抗原特异性、亲和性以及引发效应物功能的相互相互作用位点等发生变化,这样便得到了最简单的工程抗体。
动物抗体的人源化(humanizing)是最复杂的工程抗体。
在这种人源化抗体(humanized antibody)中,是通过所有互补决定区的更换,使动物抗体的特异性被―转变‖成为一种免疫球蛋白。
antibody engineering 抗体工程:指在基因水平上模拟抗体产生过程,改造抗体结构和强化抗体功能的一系列生物工程技术。
这是蛋白质工程技术在医学上的应用,为了避免鼠源单克隆抗体在临床上应用时产生的副作用,和提高抗体的结合能力和专一性,根据抗体分子的结构通过蛋白质工程技术对其进行改造,并用基因工程技术产生多种新的抗体。
例如,人鼠抗体基因拼接产生嵌合抗体和重构抗体,酶或毒素的基因与抗体基因拼接产生抗体酶或抗体毒素等。
也可用定位诱变技术改造抗体可变区域或恒定区以提高抗体分子的亲和力和专一性。
anticodon 反密码子:指tRNA分子中的3个核苷酸,它们同mRNA中形成密码子的核苷酸的是互补的。
在核糖体上发生密码子和反密码子的相互作用,保证将正确的氨基酸插入合成中增长着的多肽链Anticodon 反密码子: 转移RNA(tRNA)分子中的核苷酸三联体,在转译过程中通过互补碱基的桎,同信使(RNA(mRNA)中的密码子结合起来。
反密码子的突变可使密码-反密码子的配对关系发生变化,但并不影响tRNA分子对氨基酸识别的特异性。
antigen presentation 抗原提呈:将外来蛋白质抗原的片段显现在细胞表面,使之能专一地被T细胞抗原受体所认识。
Antigen 抗原:任何可以被抗体或T细胞受体特异性识别的物质,统称为抗原分子,简称抗原。
Antigenic determinant 抗原决定簇:又叫做表位(epitope),特指抗原分子上能够与抗体结合位点发生特异性结合作用并决定抗原特异性的部位。
所谓抗原的价数实质上就是抗原决定簇的数目。
antigenic drift 抗原漂变:流感病毒的抗原由于血细胞凝集(HA)基因发生点突变而逐渐出现变化,产生出不能被原有抗体有效中和新抗原。
antigenic shift 抗原更换:感染性病毒的某种亚型在一段时间内反复出现,生物(包括人群)群体对它产生了免疫性,然后突然被一种全新的亚型所取代,生物群体对这种新亚型的病毒不具免疫性,这种现象称为抗原更换。