微电子学概论--ch4_集成电路制造工艺1
微电子学概论课件
集成电路的作用
§小型化 §价格急剧下降 §功耗降低 §故障率降低
微电子学概论课件
§其次,统计数据表明,发达国家在发 展过程中都有一条规律
Ø 集成电路(IC)产值的增长率(RIC)高于电子 工业产值的增长率(REI)
Ø 电子工业产值的增长率又高于GDP的增长率 (RGDP)
Ø 一般有一个近似的关系
▪ 杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
微电子学概论课件
按结构形式的分类
§单片集成电路:
Ø它是指电路中所有的元器件都制作 在同一块半导体基片上的集成电路
Ø在半导体集成电路中最常用的半导 体材料是硅,除此之外还有GaAs等
§混合集成电路:
Ø厚膜集成电路 Ø薄膜集成电路
微电子学概论课件
按电路功能分类
§数字集成电路(Digital IC):它是指处理数字 信号的集成电路,即采用二进制方式进行数 字计算和逻辑函数运算的一类集成电路
( b)单胞无需是基本的
晶体结构
§ 三维立方单胞
Ø 简立方、
体心立方、
面立方
固体材料的能带图
固体材料分成:超导体、导体、半导体、绝缘体
半导体的能带
▪ 本征激发
有效质量的意义
▪ 自由电子只受外力作用;半导体中的电子 不仅受到外力的作用,同时还受半导体内 部势场的作用
▪ 意义:有效质量概括了半导体内部势场的 作用,使得研究半导体中电子的运动规律 时更为简便(有效质量可由试验测定)
W. Schokley J. Bardeen W. Brattain
获得1956年 Nobel物理 奖
微电子学概论课件
集成电路制造工艺
集成电路制造工艺集成电路制造工艺是一项高度复杂和精细的技术过程,它涉及到多个步骤和环节。
下面将介绍一般的集成电路制造工艺流程。
首先是晶圆制备。
晶圆是集成电路的基础材料,通常由硅材料制成。
制备晶圆需要精确的工艺和设备,包括材料分析、芯片设计、晶圆选择和切割等步骤。
在制备过程中,要保证晶圆的纯度和质量,确保芯片的正常运行。
接下来是晶圆上的图案制作。
这一步主要是通过光刻技术将芯片设计上的图案转移到晶圆上。
光刻是一种利用紫外线照射光刻胶,然后通过化学处理来形成芯片图案的技术。
在这一步中,制造工程师需要控制光刻机的参数和条件,以确保图案的精确度和清晰度。
接着是雕刻。
雕刻是将光刻后形成的图案转移到晶圆上的过程。
这里使用的是化学气相沉积或离子束雕刻等技术。
制造工程师需要精确控制雕刻机的参数,使得雕刻过程能够准确地复制芯片设计上的图案。
接下来是金属沉积。
这一步是为芯片的导线和电极等部分进行金属沉积,以连接芯片上的不同元件。
金属沉积通常使用物理气相沉积或化学气相沉积技术。
制造工程师需要控制沉积的厚度和均匀性,以确保导线和电极的电性能和连接质量。
然后是化学机械抛光。
抛光是为了平整化晶圆表面,以便进行下一步的工艺步骤。
抛光是利用机械研磨和化学反应溶解的技术,在控制条件下去除晶圆表面的不平坦部分。
最后是芯片封装和测试。
在封装过程中,芯片被放置在封装材料中,并进行焊接和封装工艺。
然后芯片需要经过严格的测试,以确保其功能和品质。
测试包括功能测试、可靠性测试和环境适应性测试等。
总的来说,集成电路制造工艺是一个复杂而精细的过程,需要多个步骤和环节的精确控制。
通过不断的技术创新和工艺改进,集成电路制造工艺不断提高,为我们提供了更加先进和高效的电子产品。
集成电路制造工艺是现代电子工业的重要基础,它的高度复杂和精细使得集成电路成为了现代科技的核心。
随着科技的飞速发展,集成电路的制造工艺也在不断地进步和创新。
本文将具体介绍集成电路制造工艺的一些关键步骤和技术。
集成电路制备工艺
微电子技术课程ppt
集成电路生产工艺:制膜
物理气相淀积(PVD)
PVD技术有两种基本工艺:蒸镀法和溅镀法。前 者是通过把被蒸镀物质(如铝)加热,利用被蒸镀 物质在高温下(接近物质的熔点)的饱和蒸气压, 来进行薄膜沉积;后者是利用等离子体中的离子, 对被溅镀物质电极进行轰击,使气相等离子体内 具有被溅镀物质的粒子,这些粒子沉积到硅表面 形成薄膜。在集成电路中应用的许多金属或合金 材料都可通过蒸镀或溅镀的方法制造。 淀积铝 也称为金属化工艺,它是在真空设备中进行的。 在硅片的表面形成一层铝膜。
微电子技术课程ppt
集成电路生产工艺
前部工序的主要工艺
1. 图形转换:将设计在掩膜版(类似于照相底片)上 的图形转移到半导体单晶片上
2. 掺杂:根据设计的需要,将各种杂质掺杂在需
要的位置上,形成晶体管、接触等 3. 制膜:制作各种材料的薄膜
微电子技术课程ppt
集成电路生产工艺
图形转换: 光刻:接触光刻、接近光刻、投影光刻、电子束 光刻 刻蚀:干法刻蚀、湿法刻蚀 掺杂: 离子注入 退火 扩散 制膜: 氧化:干氧氧化、湿氧氧化等 CVD:APCVD、LPCVD、PECVD PVD:蒸发、溅射
炉退火 快速退火:脉冲激光法、扫描电子束、连续波激光、 非相干宽带频光源(如卤光灯、电弧灯、石墨加热器、 红外设备等)
微电子技术课程ppt
集成电路生产工艺:制膜
氧化工艺
氧化膜的生长方法,硅片放在1000C左右的氧气气氛中生长氧化层。
干氧氧化:结构致密但氧化速率极低
湿氧氧化:氧化速率高但结构略粗糙,制备厚二氧化硅薄膜
微电子技术课程ppt
集成电路生产工艺 杂质掺杂:扩散
替位式扩散 低扩散率 杂质离子占据硅原子的位置(Ar、P) 间隙式扩散 高扩散率 杂质离子位于晶格间隙(Au、Cu、Ni)
《微电子与集成电路设计导论》第四章 半导体集成电路制造工艺
4.4.2 离子注入
图4.4.6 离子注入系统的原理示意图
图4.4.7 离子注入的高斯分布示意图
4.5 制技术 4.5.1 氧化
1. 二氧化硅的结构、性质和用途
图4.5.1 二氧化硅原子结构示意图
氧化物的主要作用: ➢ 器件介质层 ➢ 电学隔离层 ➢ 器件和栅氧的保护层 ➢ 表面钝化层 ➢ 掺杂阻挡层
F D C x
C为单位体积掺杂浓度,
C x
为x方向上的浓度梯度。
比例常数D为扩散系数,它是描述杂质在半导体中运动快慢的物理量, 它与扩散温度、杂质类型、衬底材料等有关;x为深度。
左下图所示如果硅片表面的杂质浓 度CS在整个扩散过程中始终不变, 这种方式称为恒定表面源扩散。
图4.4.1 扩散的方式
自然界中硅的含量 极为丰富,但不能 直接拿来用。因为 硅在自然界中都是 以化合物的形式存 在的。
图4.1.2 拉晶仪结构示意图
左图为在一个可抽真空的腔室内 置放一个由熔融石英制成的坩埚 ,调节好坩埚的位置,腔室回充 保护性气氛,将坩埚加热至 1500°C左右。化学方法蚀刻的籽 晶置于熔硅上方,然后降下来与 多晶熔料相接触。籽晶必须是严 格定向生长形成硅锭。
涂胶工艺的目的就是在晶圆表面建立薄的、均匀的、并且没有缺陷的光刻胶膜。
图4.2.4 动态旋转喷洒光刻胶示意图
3. 前烘
前烘是将光刻胶中的一部分溶剂蒸发掉。使光刻胶中溶剂缓慢、充分地挥发掉, 保持光刻胶干燥。
4. 对准和曝光
对准和曝光是把掩膜版上的图形转移到光刻胶上的关键步骤。
图4.2.5 光刻技术的示意图
图4.2.7 制版工艺流程
4.3 刻蚀
(1)湿法腐蚀
(2)干法腐蚀 ➢ 等离子体腐蚀 ➢ 溅射刻蚀 ➢ 反应离子刻蚀
微电子学概论复习(知识点总结)
第一章 绪论1.画出集成电路设计与制造的主要流程框架。
2.集成电路分类情况如何?答:3.微电子学的特点是什么?答:微电子学:电子学的一门分支学科微电子学以实现电路和系统的集成为目的,故实用性极强。
微电子学中的空间尺度通常是以微米(μm, 1μm =10-6m)和纳米(nm, 1nm = 10-9m)为单位的。
微电子学是信息领域的重要基础学科微电子学是一门综合性很强的边缘学科涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧按应用领域分类数字模拟混合电路非线性电路线性电路模拟电路时序逻辑电路组合逻辑电路数字电路按功能分类GSI ULSI VLSI LSI MSI SSI 按规模分类薄膜混合集成电路厚膜混合集成电路混合集成电路BiCMOS BiMOS 型BiMOS CMOS NMOS PMOS 型MOS 双极型单片集成电路按结构分类集成电路机辅助设计、测试与加工、图论、化学等多个学科微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向微电子学的渗透性极强,它可以是与其他学科结合而诞生出一系列新的交叉学科,例如微机电系统(MEMS)、生物芯片等第二章半导体物理和器件物理基础1.什么是半导体?特点、常用半导体材料答:什么是半导体?金属:电导率106~104(W∙cm-1),不含禁带;半导体:电导率104~10-10(W∙cm-1),含禁带;绝缘体:电导率<10-10(W∙cm-1),禁带较宽;半导体的特点:(1)电导率随温度上升而指数上升;(2)杂质的种类和数量决定其电导率;(3)可以实现非均匀掺杂;(4)光辐照、高能电子注入、电场和磁场等影响其电导率;半导体有元素半导体,如:Si、Ge(锗)化合物半导体,如:GaAs(砷化镓)、InP (磷化铟)硅:地球上含量最丰富的元素之一,微电子产业用量最大、也是最重要的半导体材料。
集成电路的基本制造工艺教材
集成电路的基本制造工艺教材引言集成电路(Integrated Circuit, IC)是现代电子技术领域的重要组成部分。
它将大量的电子元器件集成在一个微小的芯片上,具有体积小、功耗低、集成度高和可靠性好等优势。
为了掌握集成电路的制造工艺,我们需要了解其基本概念、制造流程以及常见工艺参数,并掌握常用的工艺设备和材料。
本教材旨在介绍集成电路的基本制造工艺,包括工艺概述、晶体管制造、金属互连、表面处理和工艺参数等内容。
工艺概述什么是集成电路制造工艺集成电路制造工艺是指将集成电路从单晶硅片开始的各个制造工序,通过一系列的工艺操作和步骤,将电子元器件逐步形成在硅片上的过程。
它包括晶体管制造、金属互连、表面处理等工艺步骤。
工艺流程集成电路的制造工艺流程可以分为以下几个主要步骤:1.准备晶圆:选择合适的硅片作为晶圆,进行清洗、去氧化等处理。
2.生长氧化层:使用热氧化或化学气相沉积方法,在硅片表面生长一层氧化硅薄膜。
3.形成掩膜:使用光刻技术,在氧化层上涂覆光刻胶,然后通过曝光和显影将光刻胶形成所需的图案。
4.沉积材料:使用物理或化学方法,在开放的区域上沉积金属或半导体材料。
5.刻蚀材料:使用干法或湿法刻蚀技术,去除不需要的材料,形成所需的结构。
6.清洗和检测:清洗芯片表面,去除残留物,然后使用检测设备对芯片进行测试和验证。
7.封装和测试:将芯片封装成完整的芯片组件,并进行功率测试、功能测试等。
晶体管制造基本构造晶体管是集成电路中最基本的元器件之一,其制造过程包括以下几个步骤:1.掩膜制备:使用光刻技术将掩膜图案转移到硅片上。
2.掺杂:通过离子注入方法,在硅片上引入杂质,形成N型或P型区域。
3.扩散:将掺杂的杂质通过高温扩散到硅片中。
4.雕刻:使用刻蚀技术去除不需要的杂质,并形成晶体管的构造。
5.金属互连:通过金属层进行电极的连接。
工艺参数晶体管的制造工艺中有一些关键的参数需要注意,它们包括:•掺杂浓度:掺杂浓度决定了晶体管的导电性能,过高或过低的掺杂浓度都会导致器件性能的下降。
集成电路制造工艺(微电子)PPT课件
进行低能量、高剂量的砷离子注入,形成发射 区和集电区
26
金属化
淀积金属,一般是铝或Al-Si、Pt-Si合金等 光刻6#版(连线版),形成金属互连线
合金:使Al与接触孔中的硅形成良好的欧 姆接触,一般是在450℃、N2-H2气氛下处 理20~30分钟
19
生长n型外延层
利用HF腐蚀掉硅片表面的氧化层 将硅片放入外延炉中进行外延,外延层的厚度和掺杂
浓度一般由器件的用途决定
20
形成横向氧化物隔离区
热生长一层薄氧化层,厚度约50nm 淀积一层氮化硅,厚度约100nm 光刻2#版(场区隔离版
21
形成横向氧化物隔离区
利用反应离子刻蚀技术
22
形成横向氧化物隔离区
去掉光刻胶,把硅片放入氧化炉氧化,形成 厚的场氧化层隔离区
去掉氮化硅层
23
形成基区
光刻3#版(基区版),利用光刻胶将收集区遮挡 住,暴露出基区
基区离子注入硼
24
形成接触孔:
光刻4#版(基区接触孔版) 进行大剂量硼离子注入 刻蚀掉接触孔中的氧化层
25
形成发射区
形成P管源漏区
光刻,利用光刻胶将NMOS区保护起来 离子注入硼,形成P管源漏区
10
形成接触孔
化学气相淀积磷硅玻璃层 退火和致密 光刻接触孔版 反应离子刻蚀磷硅玻璃,形成接触孔
11
形成第一层金属
淀积金属钨(W),形成钨塞
12
形成第一层金属
淀积金属层,如Al-Si、Al-Si-Cu合金等 光刻第一层金属版,定义出连线图形 反应离子刻蚀金属层,形成互连图形
《微电子学概论》第五章集成电路设计
数字信号处理器
数字信号处理器是专门用于数字信 号处理的集成电路,具有高速、高 精度、低功耗等特点,广泛应用于 通信、音频处理等领域。
可编程逻辑器件
可编程逻辑器件是一种可以通过编 程实现各种逻辑功能的集成电路, 如FPGA和CPLD等,广泛应用于数 字系统的设计和实现。
模拟集成电路设计实例
《微电子学概论》第五章集成电路 设计
目 录
• 集成电路设计概述 • 集成电路设计原理 • 集成电路设计实例 • 集成电路设计的挑战与未来发展
01 集成电路设计概述
集成电路设计的定义与重要性
集成电路设计的定义
集成电路设计是指将系统、电路、电 子元器件、工艺等集成在一个芯片上 ,实现特定功能的过程。
可靠性设计原则
分析可靠性设计的基本原则和策 略,如冗余设计、降额设计等。
环境适应性设计
介绍如何提高集成电路在不同环 境下的适应性和可靠性,如温度
适应性设计、抗辐射设计等。
03 集成电路设计实例
数字集成电路设计实例
微处理器
微处理器是数字集成电路设计的 经典实例,它集成了运算器、控 制器和存储器等功能,实现了计
集成电路物理设计
电路模拟与优化
介绍电路模拟的基本原理 和方法,以及电路优化的 策略和技术。
布局与布线
分析布局和布线对集成电 路性能的影响,以及布局 布线的基本原则和技巧。
时序分析
介绍时序分析的基本概念 和方法,以及如何确保集 成电路的时序正确性靠性评估的基本方法和技 术,如寿命预测、失效分析等。
混合信号集成电路设计实例
数字模拟转换器
数字模拟转换器是混合信号集成电路设计的实例之一,用于将数 字信号转换为模拟信号,广泛应用于音频、图像等领域。
集成电路的基本制造工艺
四、钝化工艺
在集成电路制作好以后,为了防止外部杂质, 如潮气、腐蚀性气体、灰尘侵入硅片,通常 在硅片表面加上一层保护膜,称为钝化。
目前,广泛采用的是氮化硅做保护膜,其加 工过程是在450°C以下的低温中,利用高频 放电,使 和 气体分解,从而形成氮化 硅而落在硅SiN片4 上。NH3
3SiH4 4NH3 450 0C Si3N4 12H2
五、光刻工艺
光刻工艺是完成在整个硅片上进行开窗的工 作。
掩膜版和光刻胶: 掩膜版:亮版和暗版 光刻胶:正胶和负胶
几种常见的光刻方法
接触式光刻:分辨率较高,但是容易造 成掩膜版和光刻胶膜的损伤。
接近式曝光:在硅片和掩膜版之间有一 个很小的间隙(10~25m),可以大大减 小掩膜版的损伤,分辨率较低。
纯净硅称为本征半导体。本征半导体中载流子的浓度在室 温下:T=300K
n p ni 1.6 *1010(1/ cm3) 当硅中掺入Ⅴ族元素P时,硅中多数载流子为电
子,这种半导体称为N型半导体。
n 1022 (1 / cm)
当硅中掺入Ⅲ族元素B时,硅中多数载流子为空穴,这种 半导体称为P型半导体。
氮化硅的化学汽相淀积:中等温度(780~ 820℃)的LPCVD或低温(300℃) PECVD方法 淀积。
物理气相淀积(PVD)
蒸发:在真空系统中,金属原子获得 足够的能量后便可以脱离金属表面的 束缚成为蒸汽原子,淀积在晶片上。 按照能量来源的不同,有灯丝加热蒸 发和电子束蒸发两种。
溅射:真空系统中充入惰性气体,在 高压电场作用下,气体放电形成的离 子被强电场加速,轰击靶材料,使靶 原子逸出并被溅射到晶片上。
硅圆片工艺
晶片: 只含有极少“缺陷”的单 晶硅衬底圆片。
第一章微电子学概论
《微电子技术基础》 电子工业出版社 2001年第一版
双极、场效应用晶体管原理 高等学校电子信息类规划教 材、全国电子信息类专业 “九五”部级重点教材。
第一章
《半导体制造基础》 Gary S.M., Simon M.S. 施敏著 代永平译 2007年
《半导体器件物理基础》
曾树荣 著 北京大学出版社 2002年 第一版
第一章
部分参考书籍
张兴,黄如,刘晓彦
《微电子学概论》 北京大学出版社 2000年第一版 涵盖了半导体物理和器件 物理基础知识,集成电路 基础知识、设计、制造、 最新技术以及发展趋势, 内容系统全面.
曹培栋,亢宝位著
谢君堂,曲秀杰等著 《微电子技术应用基础》 北京理工大学出版社 2006年 第一版
集成电路的分类
集成电路的制造特点
第一章
21世纪社会发展的三大支柱产业学-信息的存储和传输依赖微电子技术和集成电路
各种信息产品的基础就是微电子 微电子技术和集成电路带动了一些列的高科技产业发展
第一章
§1.1
微电子技术与集成电路的发展历程
微电子科学是最典型的高新技术,虽然 只有短短50多年的发展历史,但是它已 经发展成为整个信息科学技术和产业的 基础和核心,同时它又是发展极其迅速 的一门技术。 计算机的发展历程就是最生动的例证!!! 微电子技术和集成电路改变了社会生产方式和生活方式。 甚至影响了世界经济和政治格局。
1956年 获诺贝尔物理奖
第一章
约翰· 巴丁 John Bardeen
1928年,威斯康新大学麦迪逊分校电机工程系获学士学位, 1929年,获硕士学位,毕业后留校担任电机工程研究助理。 1930年,在匹兹堡海湾实验研究所从事地球磁场等研究。 1933年,在普林斯顿大学的魏德曼指导下研究固体物理学。 1935年,任哈佛大学研究员; 1936年,获普林斯顿大学博士学位。 1941年,在华盛顿海军军械实验室工作; 1945年,贝尔电话公司实验研究所研究半导体及金属导电 机制、半导体表面性能等问题。 1947年,和布拉顿发明点接触半导体三极管; 1956年,获诺贝尔物理学奖。 1957年,和库珀、施里弗共同创立了BCS理论,对超导电性 做出合理的解释。 1972年,再次获得诺贝尔物理学奖。第一位也是目前为止 唯一两次获诺贝尔物理学奖的人。
微电子学概论课程教学大纲
《微电子学概论》课程教学大纲课程名称:微电子学基础 / Conspectus of Microelectronics课程代码:020727学时:32 学分:2 讲课学时: 32 上机/实验学时:0 考核方式:考查先修课程:模拟电子技术适用专业:电子信息工程等电类专业开课院系:电子电气工程学院电子信息系教材:张兴黄如刘晓彦主编.微电子学概论(第二版).北京:北京大学出版社,2005年主要参考书:[1] 郝跃主编.微电子学概论.北京:高等教育出版社,2003年[2] 吴德馨主编.现代微电子技术.北京:化学工业出版社,2003年[3] (美)Donald A.Neamen编.半导体器件导论.北京:清华大学出版,2006年一、课程的性质和任务本课程是电子信息工程类专业的一门专业基础课。
该门课程主要介绍了微电子学发展史、半导体器件、制造工艺、集成电路和SOC电路的设计以及计算机辅助设计技术。
该课程为学生进行微电子技术研究和集成电路的开发提供了理论基础。
二、教学内容和基本要求对本课程的学习,要求掌握集成电路的器件、组成、制造工艺及基本设计方法。
教学内容如下:第一章绪论1. 晶体管的发明和集成电路的发展史2. 集成电路的分类3. 微电子学的特点第二章半导体物理和器件物理基础1. 半导体及其基本特性2. 半导体中的载流子3. pn结4. 双极晶体管5. MOS场效应管第三章大规模集成电路基础1. 半导体集成电路概述2. 双极集成电路基础3. MOS集成电路基础第四章集成电路制造工艺1. 双极集成电路工艺流程2. MOS集成电路工艺流程3. 光刻与刻蚀技术4. 氧化5. 扩散与离子注入6. 化学气象淀积7. 接触与互联8. 隔离技术第五章集成电路设计i. 集成电路设计特点与设计信息描述ii. 集成电路的设计流程iii. 集成电路的设计规则和全定制设计方法iv. 专用集成电路的设计方法v. 集中集成电路设计方法的比较vi. 可测性设计技术第六章集成电路设计的EDA系统1. VHDL及模拟2. 综合3. 逻辑模拟4.电路模拟5.时序分析和混合模拟6.版图设计7.器件模拟8.工艺模拟9.计算机辅助测试(CAT)技术第七章系统芯片(SOC)设计1.系统芯片的基本概念和特点2.SOC设计过程第八章光电子器件1.固体中的光吸收和光发射2.半导体发光二极管第九章微机电系统1.基本概念2. 几种重要的MEMS器件3.MEMS加工工艺4.MEMS技术发展的趋势5.纳机电系统第十章纳电子器件1.纳电子器件概述2.碳纳米管和半导体纳米管3.量子电、量子线4.单电子晶体管5.分子结器件6.场效应晶体管7.逻辑器件及其电路第十一章微电子技术发展的规律和趋势1.基本规律2.趋势和展望三、实验(上机、习题课或讨论课)内容和基本要求1. 各章课后均有习题2.关于微电子发展、集成电路设计、光电子、微机电系统及纳电子等方面撰写小论文。
集成电路制造工艺(3篇)
第1篇摘要:随着科技的飞速发展,集成电路已成为现代电子设备的核心组成部分。
集成电路制造工艺作为集成电路产业的核心技术,其技术水平直接影响到集成电路的性能、成本和市场份额。
本文将介绍集成电路制造工艺的基本原理、主要流程以及发展趋势。
一、引言集成电路(Integrated Circuit,IC)是一种将多个电子元件集成在一个半导体芯片上的微型电子器件。
自20世纪50年代诞生以来,集成电路技术取得了巨大的发展,为电子设备的小型化、智能化和功能多样化提供了强大的技术支持。
集成电路制造工艺作为集成电路产业的核心技术,其技术水平直接影响到集成电路的性能、成本和市场份额。
二、集成电路制造工艺的基本原理1. 半导体材料集成电路制造工艺的基础是半导体材料。
半导体材料具有介于导体和绝缘体之间的电导率,通过掺杂、氧化、扩散等工艺,可以实现半导体材料的导电和绝缘。
2. 光刻技术光刻技术是集成电路制造工艺中的关键技术,其主要作用是将半导体材料上的电路图案转移到硅片上。
光刻技术包括光刻胶、光刻机、光刻掩模等。
3. 沉积技术沉积技术是将材料沉积在硅片表面,形成电路图案。
沉积技术包括物理气相沉积(PVD)、化学气相沉积(CVD)等。
4. 刻蚀技术刻蚀技术是将硅片表面的材料去除,形成电路图案。
刻蚀技术包括湿法刻蚀、干法刻蚀等。
5. 化学机械抛光(CMP)化学机械抛光技术用于去除硅片表面的微米级缺陷,提高硅片的平整度。
CMP技术包括化学溶液、机械压力和抛光垫等。
6. 封装技术封装技术是将制造好的集成电路芯片封装在封装壳体内,保护芯片免受外界环境的影响。
封装技术包括塑料封装、陶瓷封装等。
三、集成电路制造工艺的主要流程1. 原材料制备首先,制备高纯度的硅材料,经过切割、抛光等工艺,得到硅片。
2. 光刻将光刻掩模与硅片对准,利用光刻胶将电路图案转移到硅片上。
3. 沉积在硅片表面沉积绝缘层、导电层等材料,形成电路图案。
4. 刻蚀利用刻蚀技术去除硅片表面的多余材料,形成电路图案。
微电子技术中的集成电路设计与制造
微电子技术中的集成电路设计与制造第一节:引言微电子技术是当代信息科学与技术的重要支撑,而集成电路作为微电子技术的核心和基础,在现代社会中起到了无可替代的作用。
本文将重点介绍微电子技术中的集成电路设计与制造的专业知识和应用。
第二节:集成电路设计技术集成电路设计是指将各种电子器件集成到一块芯片上,并连接成功能完整的电路。
首先,在集成电路设计过程中,需要进行电路原理图的绘制和逻辑设计。
然后,通过计算机辅助设计软件进行功能仿真和验证。
最后,选用合适的工艺流程对电路进行布图设计。
集成电路设计的目标是在满足功能需求和性能指标的前提下,尽量降低功耗、面积和成本。
第三节:集成电路制造工艺集成电路制造是指将设计好的集成电路通过一系列工艺步骤转化为实际的芯片产品。
首先,需要制备晶圆,即在硅片上通过化学和物理的方法形成精细的结构和材料。
然后,通过光刻、蚀刻、沉积等工艺步骤逐层构建电路结构。
最后,进行封装和测试,将芯片封装到适当的封装器件中,然后对芯片进行电气和可靠性测试。
集成电路制造的关键是控制工艺的精度和稳定性,以确保芯片的可靠性和性能。
第四节:集成电路设计与制造的应用集成电路设计与制造在现代社会中应用广泛,涵盖了通信、计算机、消费电子、医疗器械等各个领域。
在通信领域,集成电路的设计与制造使得移动通信设备小型化、高效化,方便了人们的日常沟通。
在计算机领域,集成电路的设计与制造推动了计算机的高速、高性能发展,为人工智能、大数据等应用提供了强有力的支持。
在消费电子领域,集成电路的设计与制造使得智能手机、平板电脑等产品功能更加强大、体积更小。
在医疗器械领域,集成电路的设计与制造推动了医疗设备的智能化、精确化,提高了医疗水平和患者的生活质量。
第五节:集成电路设计与制造面临的挑战与未来发展随着科技的不断发展,集成电路设计与制造也面临着一些挑战。
首先,功耗和散热问题是当前的热点,如何在保证性能的同时降低功耗,解决散热问题是亟待解决的技术难题。
集成电路制造工艺微电子
光刻,利用光刻胶将NMOS区保护起来 离子注入硼,形成P管源漏区
• 形成接触孔
• 化学气相淀积磷硅玻璃层 • 退火和致密 • 光刻接触孔版 • 反应离子刻蚀磷硅玻璃,形成接触孔
• 形成第一层金属
• 淀积金属钨(W),形成钨塞
• 形成第一层金属
• 淀积金属层,如Al-Si、Al-Si-Cu合金 等
•辅助工序
•超净厂房技术 •超纯水、高纯气体制备技术 •光刻掩膜版制备技术 •材料准备技术
作业
•设计制备NMOSFET的工艺 ,并画出流程图
感谢下 载
• 形成横向氧化物隔离区
• 利用反应离子刻蚀技术将光刻窗口中的氮化硅层-氧化层以及一半的外延硅层刻 蚀掉
• 进行硼离子注入
• 形成横向氧化物隔离区 • 去掉光刻胶,把硅片放入氧化炉氧化,形成厚的场氧化层隔离区 • 去掉氮化硅层
• 形成基区 • 光刻3#版(基区版),利用光刻胶将收集区遮挡住,暴露出基区 • 基区离子注入硼
• 淀积氧化层 • 反应离子刻蚀氧化层,形成侧壁氧化层 • 淀积难熔金属Ti或Co等 • 低温退火,形成C-47相的TiSi2或CoSi • 去掉氧化层上的没有发生化学反应的Ti或Co • 高温退火,形成低阻稳定的TiSi2或CoSi2
形成N管源漏区
光刻,利用光刻胶将PMOS区保护起来 离子注入磷或砷,形成N管源漏区
口中的氧化层刻蚀掉,并去掉光刻胶 • 进行大剂量As+注入并退火,形成n+埋层
• 生长n型外延层
• 利用HF腐蚀掉硅片表面的氧化层
• 将硅片放入外延炉中进行外延,外延层的厚度和掺杂 浓度一般由器件的用途决定
• 形成横向氧化物隔离区 • 热生长一层薄氧化层,厚度约50nm • 淀积一层氮化硅,厚度约100nm • 光刻2#版(场区隔离版
微电子技术应用基础第二章集成电路的制造工艺
③ 离子注入掺杂的均匀性好,可以在较大面积上形成既薄又均匀的 掺杂层,而且横向扩散比热扩散小得多。
④ 离子注入技术对于注入离子的能量和剂量可以分别独立地控制, 因而可以精确控制掺杂的浓度和掺杂深度。
第七节
1
在二氧化硅薄膜上开窗口的光刻工艺步骤 图
3 二氧化硅膜的制备方法 图
此外还有氢氧合成氧化及高压氧化等制备二氧化硅膜的方法。
第五节 化学汽相淀积(CVD)方法
化学汽相淀积指的是通过气态物质的化学反应在衬底上淀积一层薄膜 材料的过程。
化学汽相淀积技术特点是:淀积温度低,淀积薄膜的成分和厚度容易 控制,均匀性和重复性好,适用范围宽,设备简单等诸多优点。
1
(1) PN
图
PN结隔离工艺的优点是方法简单、易于制造、无需特殊技术和设备。
① 由于PN结漏电流的存在,隔离性能欠理想。
② 由于隔离扩散时的横向扩散,因此要占用较多芯片面积,这对提高 集成度不利。
③ 隔离结面积大,由于PN结的电容效应,会影响高频放大器的频率响 应和高速数字电路的速度。
④ PN结隔离的抗辐照能力差,受温度影响大。这是因为PN结的电特性 对温度和辐射影响灵敏的缘故。
做专业的企业,做专业的事情,让自 己专业 起来。 2020年 12月 下午10 时13分 20.12. 722:1 3Dec ember 7, 2020
时间是人类发展的空间。2020年12 月7日星 期一1 0时13 分17秒 22:13 :177 December 2020
科学,你是国力的灵魂;同时又是社 会发展 的标志 。下午 10时13 分17 秒下午1 0时13 分22: 13:17 20.12. 7
《微电子学概论》ch4集成电路制造工艺1
消除损伤
退火方式:
炉退火 快速退火:脉冲激光法、扫描电子束等
离子注入视频
上一页 下一页
OUTLINE
Pattern Transfer
•Lithography •Etching
Doping
•Diffusion •Ion Implantation
Film Preparation
•Oxidation •Chemical Vapor Deposition
上一页 下一页
扩散系统结构图
上一页 下一页
固态源扩散系统
固态源扩散:如B2O3、P2O5、BN等
上一页 下一页
液态源扩散系统
上一页 下一页
气态源扩散系统
扩散视频
上一页 下一页
掺杂技术:离子注入
离子注入:将具有很高能量的杂质离子射入半导
体衬底中的掺杂技术,掺杂深度由注入杂质离子
的能量和质量决定,掺杂浓度由注入杂质离子的
Example:
Thin Oxide & Polysilicon Gate
Deposit the Poly (by CVD (Chemical Vapor Deposition)
Deposit a layer of thin oxide
Pattern the poly gate
刻蚀视频
上一页 下一页
上一页 下一页
溅射与离子束铣蚀(Sputtering and Ion Beam Milling):通过高能惰性气体离子的物理轰击作用刻
蚀,各向异性性好,但选择性较差
等离子刻蚀(Plasma Etching):利用放电产生的
游离基与材料发生化学反应,形成挥发物,实现刻蚀。 选择性好、对衬底损伤较小,但各向异性较差