高三数学专题03+以三角形为背景的范围最值为专题训练(第02期)-2017届高三数学备考十大特色
高中数学。三角形中的最值、范围问题。练习题(含答案)
高中数学。
三角形中的最值、范围问题。
练习题(含答案)解三角形问题是高考高频考点。
主要利用三角形的内角和定理、正弦定理、余弦定理、三角形面积公式等知识解题。
在解题过程中,需要灵活利用三角形的边角关系进行“边转角”“角转边”。
另外,要注意a+c。
ac。
a+c三者的关系。
高考中经常将三角变换与解三角形知识综合起来命题。
如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到。
而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式。
正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行。
例如:(1)sinA+sinB-sinAsinB=sinC。
可化为a+b-ab=c;(2)bcosC+ccosB=a 可化为sinBcosC+sinCcosB=sinA(恒等式);(3) bcsinBsinC/2=asinA/2.余弦定理为a²=b²+c²-2bccosA。
变式为a=(b+c)-2bc(1+cosA)。
此公式在已知a,A的情况下,配合均值不等式可得到b+c和bc的最值。
在三角形中,任意两边之和大于第三边。
在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可。
在求最值时使用较少。
另外,在三角形中,边角以及角的三角函数值存在等价关系。
例如a>b则A>B,则sinA>sinB,cosAB 则cosAB则sinA>sinB仅在一个三角形内有效。
解三角形中处理不等关系的几种方法包括:(1)转变为一个变量的函数;(2)利用均值不等式求得最值。
例如,已知四边形面积为S1、S2、S3、S4,则S1+S2+S3+S4的最大值为多少?答案】1) $\frac{b}{a}=\frac{\sqrt{3}+1}{2}$;2) $a+b+c$ 的最大值为 $2\sqrt{3}+\sqrt{6}$。
专题3-2 解三角形最值范围与图形归类(讲+练)-2023年高考数学二轮复习讲练测(全国通用原卷版)
专题3-2解三角形最值、范围与图形归类目录讲高考................................................................................................................................................................................1题型全归纳......................................................................................................................................................................2【题型一】最值与范围1:角与对边....................................................................................................................2【题型二】最值与范围2:角与邻边....................................................................................................................2【题型三】范围与最值3:有角无边型................................................................................................................3【题型四】最值与范围4:边非对称型................................................................................................................4【题型五】最值:均值型...........................................................................................................................................4【题型六】图形1:内切圆与外接圆....................................................................................................................4【题型七】图形2:“补角”三角形....................................................................................................................6【题型八】图形3:四边形与多边形....................................................................................................................7【题型九】三大线1:角平分线应用....................................................................................................................8【题型十】三大线2:中线应用..............................................................................................................................8【题型十一】三大线3:高的应用.........................................................................................................................9【题型十二】证明题.................................................................................................................................................10专题训练. (10)讲高考1.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC(2)若sin sin A C =,求b .2.(2022·全国·统考高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.3.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos 2A B A B =++.(1)若23C π=,求B ;(2)求222a b c +的最小值.4.(2021·全国·统考高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.5.(2021·北京·统考高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ∠;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC 的周长为4+条件③:ABC 题型全归纳【题型一】最值与范围1:角与对边【讲题型】例题1.已知ABC 的内角,,A B C 所对的边分别为()()22,,,sin sin sin sin sin a b c B C A B C -=-(1)求A ;(2)已知a =.例题2.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,已知22222202b c a ca b c b c+-+=+-+.(1)求角A 的值;1.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且2sin 2cos )A A B C -+sin 30A -=.(1)求A 的大小;(2)若2a =,求ABC ∆的周长L 的取值范围.2.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a,b,c ,且()222πcos B b a c ac sinAcosA---=(1)求角A ;(2)若a =bc 的取值范围.【题型二】最值与范围2:角与邻边【讲题型】例题1..已知ABC 为锐角三角形,角,,A B C 所对边分别为,,a b c ,ABC 满足:222sin sin sin sin sin A B C B C +-≤.(1)求角A 的取值范围;1..在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知sinsin 2A Ca b A +=.(1)求角B ;(2)若△ABC 为锐角三角形,且2c =,求△ABC 面积的取值范围.2.在ABC 中,设A ,B ,C 所对的边长分别为a ,b ,c ,且()()()sin sin sin c b C a b A B -=-+.(1)求A ;(2)若2b =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.【题型三】范围与最值3:有角无边型【讲题型】例题1.三角形ABC 中,已知222sin sin +sin sin sin A B A B C +=,其中,角A B C 、、所对的边分别为a b c 、、.(Ⅰ)求角C 的大小;(Ⅱ)求a b c +的取值范围.例题2.在锐角三角形ABC,若ac c b a c b a 3))((=+++-(I)求角B(II)求A A cos sin 3+的取值范围【练题型】1.设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)若a =5c =,求b(Ⅱ)求cos sin A C +的取值范围.2.在锐角三角形ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,且2sin sin cos sin cos C B a BB b A-=.(1)求A ;(2)求bc 的取值范围.【题型四】最值与范围4:边非对称型【讲题型】例题1.在ABC ∆中,,,a b c 分别是角,,A B C 的对边()()3a b c a b c ab +++-=.(1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求2a b -的范围.【练题型】在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin A C B A C +=.(Ⅰ)求角B 的大小;(Ⅱ)若ABC 为锐角三角形,b =a -的取值范围.【题型五】最值:均值型【讲题型】例题1.已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ;(2)若24a S =,求c bb c+的最大值.【练题型】1.在△ABC 中,设AD 为BC 边上的高,且AD =BC BC ,b ,c 分别表示角B ,C 所对的边长,则b cc b+的取值范围是_.【题型六】图形1:内切圆与外接圆【讲题型】例题1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知4b =,2c =,且sin sin sin()C B A B =+-.(1)求角A 和边a 的大小;(2)求△ABC 的内切圆半径.例题2.ABC 中,已知1AB =,BC =D 为AC 上一点,2AD DC =,AB BD ⊥.(1)求BD 的长度;(2)若点P 为ABD △外接圆上任意一点,求2+PB PD 的最大值.【讲技巧】外接圆:1.外接圆的圆心到三角形的三个顶点的距离相等。
高中数学 解三角形最值或范围-含答案
解三角形最值或范围1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2a -c b=cos C cos B ,b =2.(1)求B ;(2)求△ABC 的面积的最大值.【解】(1)由2a -c b =cos C cos B ,结合正弦定理可得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B ﹣sin C cos B =sin B cos C ,∴2sin A cos B =sin C cos B +sin B cos C =sin (B +C )=sin A ,得cos B =12 ,∵B ∈(0,π),∴B =π3 ;(2)若b =2,由余弦定理得:4=a 2+c 2-2ac ⋅cos π3,即a 2+c 2﹣ac =4,又a 2+c 2﹣ac ≥2ac ﹣ac =ac ,即ac ≤4.∴△ABC 的面积的最大值为S =12 ac ∙sin B =12 ×4×3 2 =3 .2.在锐角△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,且a sin B -3 2b =0.(1)求角A 的大小;(2)若a =4,求△ABC 面积的最大值.【解】(1)因为a sin B -3 2 b =0,所以sin A sin B -3 2 sin B =0,又sin B ≠0,所以sin A =3 2,即A =60°.(2)因为a 2=b 2+c 2﹣2bc cos A ,A =60°,a =4,所以16=b 2+c 2-2bc ×12=b 2+c 2-bc ,所以16≥2bc ﹣bc =bc ,即bc ≤16(当且仅当b =c =4时取等号),故S △ABC =12 bc sin A ≤12 ×16×sin60°=43 .△ABC 面积的最大值:43 .3.在△ABC 中,a =2,2cos2A +3=4cos A .(1)求角A 的大小(2)求△ABC 的周长L 的取值范围【解】(1)因为2cos2A +3=4cos A ,所以2cos 2A +12 =2cos A ,所以4cos 2A ﹣4cos A +1=0,所以cos A =12,又因为0<A <π,所以A =π3 .(2)因为a sin A =b sin B =c sin C,A =π3 ,a =2,所以b =43 sin B ,c =43 sin C ,所以l =2+b +c =2+43 (sin B +sin C ),因为B +C =2π3 ,所以l =2+b +c =2+43 [sin B +sin (2π3 -B )]=2+4sin (B +π6 ),又因为B ∈(0,2π3 ),可得B +π6 ∈(π6 ,5π6 ),所以12 <sin (B +π6)≤1,所以l ∈(4,6].4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积S =abc ,sin 2A +sin 2B +sin A sin B =2c sin C .(Ⅰ)求角C ;(Ⅱ)求△ABC 周长的取值范围.【解】(Ⅰ)由S =abc =12 ab sin C ,可知:2c =sin C ,∴sin 2A +sin 2B +sin A sin B =sin 2C .由正弦定理得a 2+b 2+ab =c 2.∴由余弦定理得cos C =-12 ,∴C =2π3.(Ⅱ)由(Ⅰ)知2c =sin C ,∴2a =sin A ,2b =sin B .∴△ABC 的周长为a +b +c =12 (sin A +sin B +sin C )=12 [sin A +sin (π3 -A )]+3 4 =12 (sin A +3 2 cos A -12 sin A )+3 4 =12 (12 sin A +3 2 cos A )+3 4 =12 sin (A +π3 )+3 4 ∵A ∈(0,π3 ),∴A +π3 ∈(π3 ,2π3 ),∴sin (A +π3 )∈(3 2 ,1],∴△ABC 的周长的取值范围为(3 2 ,2+3 4].5.已知锐角△ABC 面积为S ,∠A 、∠B 、∠C 所对边分别是a 、b 、c ,∠A 、∠C 平分线相交于点O ,b =3 且S =3 4(a 2+c 2-b 2),求:(1)∠B 的大小;(2)△ABC 周长的最大值.【解】(1)∵S =3 4(a 2+c 2-b 2),∴12 ac sin B =3 4 (a 2+c 2﹣b 2),故:12 ac sin B =3 4•2ac cos B ,可得:tan B =3 ,由B ∈(0,π),可得:B =π3 .…6分(2)∵b =3 ,B =π3 .∴由正弦定理可得:a sin A =c sin C =3 3 2 =2,可得:a =2sin A ,c =2sin C =2sin (2π3 -A ),∴则a +c =2sin A +2sin (2π3 )=2sin A +2sin 2π3 cos A ﹣2cos 2π3 sin A =3sin A +3 cos A =23 sin (A +π6 ).∵0<A <2π3 ,∴π6 <A +π6 <5π6 .当A +π6 =π2 ,即A =π3 时,a +c 取得最大值为23 .那么△AC 周长的最大值为:23 +3 =33 .6.已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,满足cos A cos B +sin A sin B =2c b 且b =3.(Ⅰ)求角B ;(Ⅱ)求△ABC 周长L 的最大值.【解】(Ⅰ).cos A cos B +sin A sin B =2c b ,由正弦定理得cos A sin B +cos B sin A cos B sin B =2sin C sin B ,即sin (A +B )cos B sin B =2sin C sin B,又sin (A +B )=sin C ≠0,所以cos B =12,又B ∈(0,π),得B =60°(Ⅱ)在△ACD 中,由余弦定理得b 2=a 2+c 2﹣2ac cos B =a 2+c 2﹣ac =9,所以(a +c )2=9+3ac ≤9+3(a +c 2)2,即a +c ≤6,所以L =a +b +c ≤9,当a =b =c =3时,△ABC 的周长L 最大值为9.7.在△ABC 中,∠ACB =60°,∠ACB 的平分线CD 交边AB 于D ,若CD =1,则4BC +AC 的最小值是( )A.33B.63C.6D.9【解】如图所示,△ABC 中,∠ACB =60°,∠ACB 的平分线CD 交边AB 于D ,且CD =1,设AC =b ,BC =a ,由S△ABC =S △ADC +S △DBC ,即12 ab sin60°=12 b sin30°+12 a sin30°,化为1a +1b =3 ,则4BC +AC =4a +b =13 (4a +b )(1a +1b )=13 (5+b a+4a b )≥13 (5+2b a ⋅4a b )=33 ,当且仅当b =2a =3 时,取得等号,则4BC +AC 的最小值为33 ,故选:A .8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线BD 交AC 于点D ,且BD =1,则4a +c 的最小值为( )A.8B.9C.10D.7【解】由题意得 12 ac sin120°=12 a sin60°+12c sin60°,即ac =a +c ,得1a +1c =1,得4a +c =(4a +c )( 1a +1c )=c a +4a c +5≥2c a ⋅4a c +5=4+5=9,当且仅当c a =4a c ,即c =2a 时,取等号,故选:B .9.在△ABC 中,∠A =π4 ,已知BC 边上的中线AD =3,则△ABC 面积的最大值为.【解】△ABC 中,∵∠BAC =π4 ,BC 边上的中线AD 长为3,AD →=12 (AB →+AC →),设AB =c ,AC =b ,平方可得:9=14 (c 2+b 2+2AB →⋅AC →)=14 (c 2+b 2+2cb •sin π4 ),化简可得,c 2+b 2+2 bc =36≥2bc +2 bc ,可得:bc ≤362+2 =18(2-2 ),故△ABC 的面积S =12 bc •sin π4 ≤12 ×18(2-2 )×2 2 =92 -9.故答案为:92 -9.10.在△ABC 中,∠A =2π3,已知BC 边上的中线AD =3,则△ABC 面积的最大值为.【解】设内角A ,B ,C 的对边分别为a ,b ,c ,则S △ABC =12 bc sin 2π3 =3 4bc ,在△ABC 中,由余弦定理可得:a 2=b 2+c 2+bc ,在△ABD 中,c 2=14 a 2+9﹣3a cos ∠ADB ,在△ACD 中,b 2=14 a 2+9﹣3a cos ∠ADC ,所以b 2+c 2=12 a 2+18,即:b 2+c 2=36+bc ,由b 2+c 2≥2bc ,可得:bc ≤36,当且仅当b =c 时成立,故△ABC 面积的最大值为93 .故答案为:93 .。
高中数学复习提升专题03 解三角形中的最值、范围问题(解析版)
专题03 解三角形中的最值、范围问题高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换、不等式、导数等结合考查,试题难度控制在中等以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.本专题围绕解三角形中的最值、范围问题精选例题,并给出针对性练习,以期求得热点难点的突破.【热点难点突破】例1.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.例2.【2018年文北京卷】若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则,为钝角,,,故.例3.锐角的内角,,的对边分别为,,,已知的外接圆半径为,且满足.(1)求角的大小; (2)若,求周长的最大值.【答案】(1);(2)当为正三角形时,周长的最大值为6.【解析】(1)由正弦定理,得,再结合,得,解得,由为锐角三角形,得.(2)由、及余弦定理,得,即,结合,得,解得(当且仅当时取等号),所以(当且仅当时取等号),故当为正三角形时,周长的最大值为6.例4. 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且2a =,242cos sin 25B C A ++=. (1)若满足条件的ABC ∆有且只有一个,求b 的取值范围; (2)当ABC ∆的周长取最大值时,求b 的值. 【答案】(1)10(0,2]{}3;(210【解析】 (1)2442cossin 1cos()sin 255B C A B C A ++=⇒+++=,即1sin cos 5A A -=-, 又∵0A π<<,且22sin cos 1A A +=,有3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩,若满足条件的ABC ∆有且只有一个,则有sin a b A =或a b ≥,则b 的取值范围为10(0,2]{}3;(2)设ABC ∆的周长为l ,由正弦定理得 10(sin sin )2[sin sin()]sin 3a l abc a B C B A B A =++=++=+++102(sin sin cos cos sin )22(3sin cos )2210)3B A B A B B B B θ=+++=++=++, 其中θ为锐角,且10sin 10310cos θθ⎧=⎪⎪⎨⎪=⎪⎩,max 2210l =+10cos B =,310sin B = 此时sin 10sin ab B A==例5. 【2016年北京卷】在∆ABC 中,2222+=a c b ac . (1)求B ∠ 的大小;(22cos cos A C + 的最大值. 【答案】(1)4π;(2)1. 【解析】(1)由余弦定理及题设得22222cos 222a cb ac B ac ac +-===,又∵0B π<∠<,∴4B π∠=;(2)由(1)知34A C π∠+∠=, 32cos 2cos()4A C A A π+=+-22222A A A =-+ 22cos()4A A A π==-,因为304A π<∠<,所以当4A π∠=2cos A C +取得最大值1.例6. 如图,有一码头P 和三个岛屿,,A B C , 303,90mi ,30PC mile PB n le AB n mile ===,0120PCB ∠=, 090ABC ∠=.(1)求,B C 两个岛屿间的距离;(2)某游船拟载游客从码头P 前往这三个岛屿游玩,然后返回码头P .问该游船应按何路线航行,才能使得总航程最短?求出最短航程.【答案】(1)3mile (2)(30603307n mile +【解析】(1)在PBC ∆中, 090,3,120PB PC PCB ==∠=,由正弦定理得,sin sin PB PCPCB PBC=∠∠,即0903sin120sin PBC =∠, 解得1sin 2PBC ∠=, 又因为在PBC ∆中, 00060PBC <∠<,所以030PBC ∠=, 所以030BPC ∠=,从而303BC PC == 即,B C 两个岛屿间的距离为3mile ;(2)因为090,30ABC PBC ∠=∠=,所以000903060PBA ABC PBC ∠=∠-∠=-=, 在PAB ∆中, 90,30PB AB ==,由余弦定理得,2202212?cos609030290303072PA PB AB PB AB =+-=+-⨯⨯⨯= 根据“两点之间线段最短”可知,最短航线是“P A B C P →→→→”或“P C B A P →→→→”,其航程为3073030330330603307S PA AB BC CP =+++=+=+所以应按航线“P A B C P →→→→”或“P C B A P →→→→”航行, 其航程为(30603307n mile +. 【方法总结】1.已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.2.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.3.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形关系式a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数无解一解两解一解一解无解4.在△ABC 中有如下结论sin A >sin B ⇔a >b .5.已知三边(a b c 如、、),由余弦定理求A B 、,再由180A B C ++=求角C ,在有解时只有一解. 已知两边和夹角(a b C 如、、),余弦定理求出对对边.5.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形; 当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.【精选精练】1. ABC ∆各角的对应边分别为c b a ,,,满足1≥+++ba cc a b ,则角A 的范围是( ) A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ 【答案】A 【解析】由1≥+++ba cc a b ,得()()()()b a c a c a c b a b ++≥+++,整理得bc a c b ≥-+222,由余弦定理得2122cos 222≥≥-+=bc bc bc a c b A ,⎥⎦⎤⎝⎛∈∴3,0πA . 2.为了竖一块广告牌,要制造三角形支架,如图,要求60ACB ∠=︒, BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A. 312⎛⎫+⎪ ⎪⎝⎭米 B. 2米 C. (13米 D. (23+米 【答案】D【解析】由题意设(1)BC x x =>米, (0)AC t t =>米,依题设0.50.5AB AC t =-=-米,在ABC 中,由余弦定理得: 22202cos60AB AC BC ACBC =+-,即()2220.5t t x tx -=+-,化简并整理得:20.25(1)1x t x x -=>-,即0.75121t x x =-++-,因1x >,故0.7512231t x x =-++≥+-312x =+时取等号),此时t 取最小值23,应选答案D 3.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c 满足222b c a bc +-=,0AB BC >,3a = 则b+c 的取值范围是( ) A. 31,2⎛⎫ ⎪⎝⎭B.3322⎛⎫ ⎪ ⎪⎝⎭C.13,22⎛⎫ ⎪⎝⎭D.13,22⎛⎤⎥⎝⎦ 【答案】B【解析】由222b c a bc +-=得:2221cos 22b c a A bc +-==,则A=3π,由0AB BC >可知:B 为钝角, 21sin aR A==,则sin ,sin b B c C ==,sin sin sin b c B C B +=+=+2sin(3π)B -33=sin cos 3sin()226B B B π+=+,由于223B ππ<<,25366B πππ<+<,所以13sin()23B π<+<332b c <+<,选B 4.在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c 且222a b c bc =++,3a S 为ABC ∆的面积,则3cos S B C 的最大值为( )(A )1 (B 31+ (C 3 (D )3 【答案】C【解析】∵222a b c bc =++,∴2221cos 22b c a A bc +-==-,∴23A π=,设ABC ∆外接圆的半径为R ,则3222sin sin 3a R A π===,∴1R =, ∴133cos sin 3cos 3cos 2S B C bc A B C B C ==+ 3sin 3cos 3)B C B C B C =+=-,故3cos S B C 3C .5.已知,,a b c 分别为内角,,A B C 的对边,其面积满足214ABC S a ∆=,则cb的最大值为( ) A.21 B. 2 C. 21 D. 22+【答案】C【解析】根据题意,有211sin 42ABC S a bc A ∆==,应用余弦定理,可得222cos 2sin b c bc A bc A +-=,于是212cos 2sin t t A t A +-=,其中c t b =.于是22sin 2cos 1t A t A t +=+,所以122sin 4A t t π⎛⎫+=+ ⎪⎝⎭,从而122t t+≤,解得t 21.选C.6.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC ∆的面积为32S =,则ab 的最小值为__________. 【答案】12【解析】由正弦定理可得()2sin cos 2sin sin 2sin sin C B A B B C B =+=++,即2sin cos 2sin cos 2sin cos sin C B B C C B B =++,∴2sin cos sin 0B C B +=,∴1cos 2C =-, 23C π=,由133sin 2S ab C =⋅==,∴12c ab =,再由余弦定理可得2222cos c a b ab C =+-⋅,整理可得2222134a b a b ab ab =++≥,当且仅当a b =时,取等号,∴12ab ≥故答案为12. 7.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】626+2)【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得sin sin BC BE E C =∠∠,即o o2sin 30sin 75BE=,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF =62-,所以AB 的取值范围为(62-,6+2).8. 在中,内角的对边分别为,且满足,为锐角,则的取值范围为__________. 【答案】【解析】分 由结合正弦定理可得:,且,为锐角,则:,即,据此有:,,,,即,,据此可得:,则的取值范围为.9.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()B A m cos ,cos =,()b c a n -=2,,且n m //.(1)求角A 的大小;(2)若4=a ,求ABC ∆面积的最大值. 【答案】(1)3π;(2)34. 【解析】 n m //,所以()0cos 2cos =--A b c B a ,由正弦定理得-B A cos sin ()0cos sin sin 2=-A B C ,A C AB B A cos sin 2cos sin cos sin =+∴()A C B A cos sin 2sin =+∴,由π=++C B A ,A C C cos sin 2sin =∴由于π<<C 0,因此0sin >C ,所以21cos =A ,由于π<<A 0,3π=∴A (2)由余弦定理得A bc c b a cos 2222-+=bc bc bc bc c b =-≥-+=∴21622,因此16≤bc ,当且仅当4==c b 时,等号成立;因此ABC ∆面积34sin 21≤=A bc S ,因此ABC ∆面积的最大值34. 10. 已知3x π=是函数()sin2cos2f x m x x =-的图象的一条对称轴.(1)求函数()f x 的单调递增区间;(2)设ABC ∆中角,,A B C 所对的边分别为,,a b c ,若()2f B =,且3b =2ca -的取值范围. 【答案】(1)(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)33⎛ ⎝ 【解析】试题分析: (1)3x π=是函数()f x 的一条对称轴213f m π⎛⎫⇒=+⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭,根据三角函数的性质,即可求出单调性;(2)()2f B = 可得3B π=,又3b =由正弦定理得: 2sin sin(+=3sin 236c a A A A ππ⎛⎫-=-- ⎪⎝⎭,由230,3sin 3362A A ππ⎛⎛⎫⎛⎫∈⇒-∈- ⎪ ⎪ ⎝⎭⎝⎭⎝,即可求出结果. 试题解析: (1)3x π=是函数()sin2cos2f x m x x =-的一条对称轴213f m π⎛⎫⇒=+ ⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭⇒增区间: (),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)()2f B = sin 2163B B ππ⎛⎫⇒-=⇒= ⎪⎝⎭ 又3b =2sin ,2sin 2sin 3a A c C A π⎛⎫===+ ⎪⎝⎭2sin sin(+=3sin 236c a A A A ππ⎛⎫⇒-=-- ⎪⎝⎭ 210,,sin ,1366262A A A πππππ⎛⎫⎛⎫⎛⎫⎛⎫∈⇒-∈-⇒-∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33sin 36A π⎛⎛⎫⇒-∈ ⎪ ⎝⎭⎝,即332c a ⎛⇒-∈ ⎝ 11. 在锐角ABC ∆中,内角,,A B C 的对边分别是,,a b c ,满足cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭.(1)求角A 的值; (2)若3b =b a ≤,求a 的取值范围.【答案】(1) 3A π=;(2) )3,3a ∈.【解析】试题分析:(1)根据余弦的二倍角公式以及两角和与差的余弦公式化简cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,可得sin A 的值,从而求得A 的值;(2)3b a =≤,∴c a ≥,∴32C ππ≤<,63B ππ<≤,再由正弦定理可得结果.试题解析:(1)由已知cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+=⎪ ⎪⎝⎭⎝⎭得2222312sin 2sin 2cos sin 044B A B B ⎛⎫-+-=⎪⎝⎭化简得3sin 2A =,又三角形ABC 为锐角三角形,故原创精品资源学科网独家享有版权,侵权必究! 11 3A π=. (2)∵3b a =≤,∴c a ≥,∴32C ππ≤<, 63B ππ<≤由正弦定理得: sin sin a b A B =即: 3sin 32a B =,即32sin a B =由13sin ,22B ⎛⎤∈ ⎥ ⎝⎦知)3,3a ⎡∈⎣. 12. 如图,是两个小区所在地,到一条公路的垂直距离分别为,两端之间的距离为.(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对的张角与对的张角相等,试确定点的位置;(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对所张角最大,试确定点的位置.【答案】(1)4;(2). 【解析】试题分析:(1)利用张角相等的相似性即可确定点P 的位置;(2)由题意得到三角函数,换元之后结合对勾函数的性质可得当时满足题意. 试题解析:(1)张角相等,∴,∴ (2)设,∴, ∴,, ,设,,,, ∴,,当且仅当时,等号成立,此时,即。
解三角形中的最值、范围问题--高考数学【解析版】
专题25 解三角形中的最值、范围问题近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一) 余弦定理变形应用:变式()()2221cos a b c bc A =+-+在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值(二)三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.(三)解三角形中处理不等关系的几种方法 1.三角形中的最值、范围问题的解题策略和步骤(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 (3)①定基本量:根据题意或几何图形厘清三角形中边、角的关系,利用正、余弦定理求出相关的边、角或边角关系,并选择相关的边、角作为基本量,确定基本量的范围.②构建函数:根据正、余弦定理或三角恒等变换将待求范围的变量用关于基本量的函数解析式表示.③求最值:利用基本不等式或函数的单调性等求最值. 2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.【典型考题解析】热点一 三角形角(函数值)相关的最值(范围)问题【典例1】(2021·山西·祁县中学高三阶段练习(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( ) A .1 B .32C .43D .54【答案】C【分析】先由正弦定理化简得111tan tan C B+=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B+=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数, 故112tan tan B C≥整理得tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立,此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B CA B C B C B C B C+⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C-取最小值,故111tan tan B C-⋅的最大值为43,即当tan tan 2B C ==时,tan A 的最大值为43.故选:C .【典例2】(2021·河南·高三开学考试(文))ABC 的内角,,A B C 的对边分别为,,a b c ,若sin tan sin sin A A B C =,则cos A 的最小值为________. 【答案】23【分析】先根据题目条件和正弦定理得到2cos a A bc=,结合cos A 的余弦定理表达式,得到,,a b c 的关系,利用此关系求cos A 的最小值.【详解】由条件可知,2sin cos sin sin A A B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc +-==,化简可得2223a b c =+.所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=,当且仅当b c =时取得等号,cos A 取得最小值23. 故答案为:23【典例3】(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围. 【答案】(I )3B π=;(II )3132⎤+⎥⎝⎦ 【解析】 【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围. 【详解】 (I )[方法一]:余弦定理由2sin 3b A a =,得222233sin 4a a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a c b B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin 3b A a =,结合正弦定理可得:32sin sin 3,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知3a cb+= 而ABC 为锐角三角形,所以3a cb+> 由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭ 故cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos 22A A A =-+311cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,1313sin 622A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解. 【总结提升】求角(函数值)的最值(范围)问题一般先将边转化为角表示,再根据三角恒等变换及三角形内角和定理转化为一个角的一个三角函数表示,然后求解. 热点二 三角形边(周长)相关的最值(范围)【典例4】(2018·北京·高考真题(文))若ABC 2223)a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________. 【答案】 60 (2,)+∞ 【解析】 【分析】根据题干结合三角形面积公式及余弦定理可得tan 3B =3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题. 【详解】)22231sin 2ABC S a c b ac B ∆=+-=, 22223a c b ac +-∴=cos 3B =sin 3,cos 3B B B π∴∠=,则231sin cos sin sin 311322sin sin sin tan 2A A Ac C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,,036B A ππ∠=∴<∠<,)31tan ,3,tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,+∞. 【典例5】(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##3-【解析】 【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++ ()44233211m m ≥=-+⋅+, 当且仅当311m m +=+即31m =时,等号成立, 所以当ACAB取最小值时,31m =. 31.【典例6】(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c a a c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.【典例7】(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值. 【答案】(1)23π;(2)33+ 【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果. 【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:3AC AB +≤AC AB =时取等号),ABC ∴周长323L AC AB BC =++≤+ABC ∴周长的最大值为33+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知23sin sin sin a b cA B C===23(sin sin )b c B C +=+23sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦233α=≤当且仅当0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为33+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,223b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin 3b c θθ+==23236πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()23b c +=所以ABC 周长的最大值为323+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.【典例8】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值. 【答案】(1)π6;(2)425. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. (1) 因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-. 所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-==()2222222cos11cos 24cos 5285425cos cos B BB BB-+-==+-≥=. 当且仅当22cos B =222a b c +的最小值为425.【规律方法】求边(周长)的最值(范围)问题一般通过三角中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解,有时也可将角转化为边,利用均值不等式或函数最值求解. 热点三 求三角形面积的最值(范围)【典例9】(2023·山西大同·高三阶段练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2b A a c =+,且2b =,则ABC 面积的最大值为___________. 3133【分析】利用余弦定理进行角化边后,结合基本不等式,三角形面积公式求解.【详解】由余弦定理,2cos 2b A a c =+可化为222222b c a b a c bc +-⋅=+,整理可得2224c a ac b ++==,由余弦定理2221cos 22a cb B ac +-==-,又(0,)B π∈,故23B π=,根据基本不等式22423a c ac ac ac ac =++≥+=,23a c ==取得等号,故133sin 243ABC S ac B ac ==≤,即ABC 面积的最大值为33. 故答案为:33. 【典例10】(2022·全国·高三专题练习)已知A ,B ,C 分别是椭圆22143x y +=上的三个动点,则ABC 面积最大值为_____________. 【答案】92##4.5【分析】作变换'2'3x x y y =⎧⎪⎨=⎪⎩之后椭圆变为圆,方程为224x y '+'=,A B C '''是圆的内接三角形,圆的内接三角形面积最大时为等边三角形,则ABC A B C S bS a'''=,求出A B C S ''',代入即可得出答案. 【详解】作变换'2''3x x y y y =⎧⎪⎨==⎪⎩之后椭圆变为圆,方程为224x y '+'=, A B C '''是圆的内接三角形,设A B C '''的半径为R ,设,,A B C '''所对应边长为,,a b c ''',所以 211sin 2sin 2sin sin 2sin sin sin 22A B C Sa b C R A R B C R A B C ''''''''''==⋅⋅⋅=⋅⋅'' 32sin sin sin 23A B C R ++⎛⎫≤ ⎝''⎪⎭',当且仅当3A B C π===时取等, 因为sin y x =在()0,π上为凸函数,则sin sin sin sin 33A B C A B C ''''+'+≤'++,3332222sin sin sin 3322sin 2sin 3334A B C A B C A B C SR R R R π'''++++⎛⎫'⎛⎫⎛⎫=≤==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭''''',当且仅当3A B C π===时取等, 所以圆的内接三角形面积最大时为等边三角形,因此2333343344A B C S R '''==⨯=,又因为ABC A B C S b S a '''=, ∴393322ABC A B C b SS a'''==⨯=. 故答案为:92.【典例11】(2019·全国·高考真题(理))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2)33(). 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABCSac B =⋅,又根据正弦定理和1c =得到ABCS 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABCS C 的值域.【详解】 (1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=. 0<B π<,02AC π+<<因为故2A C B +=或者2A C B π++=,而根据题意A B C π++=,故2A CB π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 33sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅22sincos cos sin 3321231333(sin cos )sin 3tan 38tan C CC C C ππππ--= 又因3,tan 62C C ππ<<>331338tan C << 33ABCS <<. 故ABCS的取值范围是33(【典例12】(2021·河北省曲阳县第一高级中学高三阶段练习)在ABC 中,内角,,A B C 的对边分别是,,a b c ,)sin 3cos b C a b C =-.(1)求角B 的大小;(2)若点D 满足=a AD cDC ,且||23BD =ABC 面积的最小值. 【答案】(1)π3B = (2)43【分析】(1)由正弦定理把边化为角,再结合三角恒等变换即可求解;(2)由题意得||||=a DC c AD ,进而利用三角面积可转化1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCD ABD BC BD DBC DC S BC S AB AD AB BD ABD ,从而有sin sin ∠=∠DBC ABD ,再由面积公式与基本不等式求解即可(1)因为()sin 3cos b C a b C =-,所以()sin sin 3sin sin cos B C A B C =-. 因为sin sin()sin cos cos sin A B C B C B C =+=+,所以sin sin 3(sin cos cos sin sin cos )3cos sin =+-=B C B C B C B C B C . 因为sin 0C ≠, 所以tan 3B =. 又因为0πB <<, 所以π3B =.(2)因为=a AD cDC , 所以点D 在线段AC 上,且||||=a DC c AD . 因为1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCDABDBC BD DBC DC S BC S AB AD AB BD ABD , 所以sin sin ∠=∠DBC ABD , 即BD 为ABC ∠的角平分线. 由(1)得π3B =, 所以π6ABD CBD ∠=∠=. 由ABC ABD BCD S S S =+△△△,得1π1π1πsin sin sin 232626ac a BD c BD =⋅+⋅,即2()4=+≥ac a c ac ,得16≥ac ,当且仅当a c =时,等号成立,11sin 16sin 432323=≥⨯=△ABC S ac ππ.故ABC 面积的最小值为43. 【规律方法】求三角形面积的最值(范围)的两种思路(1)将三角形面积表示为边或角的函数,再根据条件求范围.(2)若已知三角形的一个内角(不妨设为A),及其对边,则可根据余弦定理,利用基本不等式求bc 的最值从而求出三角形面积的最值.【精选精练】一、单选题1.(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得.【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B , 又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭,所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b ac ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D2.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( ) A .16 B .3C .64 D .643【答案】B【分析】利用正弦定理及诱导公式可得23A π=,然后利用三角形面积公式及基本不等式即得. 【详解】∵(2)cos cos 0b c A a C ++=, ∴2sin cos sin cos sin cos 0B A C A A C ++=, 即()2sin cos sin 2sin cos sin 0B A C A B A B ++=+=, 又()0,B π∈,sin 0B >,∴2cos 10A +=,即1cos 2A =-,又()0,A π∈,∴23A π=, 由题可知ABCABDACDS SS=+,4=AD ,所以1211sin4sin 4sin 232323bc c b πππ=⨯+⨯,即()4bc b c =+, 又()48bc b c bc =+≥,即64bc ≥, 当且仅当b c =取等号,所以1213sin 641632322ABCSbc π=≥⨯⨯=. 故选:B.3.(2022·河南·郑州四中高三阶段练习(理))在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6 B .12C .18D .24【答案】A【分析】利用余弦定理得到边长的关系式,然后结合勾股定理和基本不等式即可求得ABC 面积的最大值. 【详解】设2AB AC m ==,2BC n =,由于ADB CDB π∠=-∠,在ABD △和BCD △中应用余弦定理可得:2222949466m m m n m m+-+-=-,整理可得:2292m n =-,结合勾股定理可得ABC 的面积:22222111()2434222S BC AC BC n m n n n =⨯-=⨯⨯-=- 222243(43)62n n n n +-=-≤⨯=,当且仅当22n =时等号成立. 则ABC 面积的最大值为6. 故选:A.4.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒ ,∠ABC 的平分线交AC 于点D ,且BD =1,则4a c + 的最小值为( ) A .8 B .9 C .10 D .7【答案】B【分析】根据三角形面积可得到111a c +=,将4a c +变为11(4)()a c a c++,展开后利用基本不等式,即可求得答案.【详解】由题意得111sin120sin 60sin60222ac a c =+ ,即ac a c =+ ,得111a c+=,得 114(4)()a c a c a c +=++45c a a c =++≥425459c aa c⋅+=+=, 当且仅当4c aa c=,即23c a ==时,取等号, 故选:B . 二、多选题5.(2020·全国·高三专题练习)如图,ABC 的内角,,A B C 所对的边分别为),,3cos cos 2sin a b c a C c A b B +=,且3CAB π∠=.若D 是ABC 外一点,1,3DC AD ==,则下列说法中正确的是( )A .ABC 的内角3B π= B .ABC 的内角3C π=C .四边形ABCD 533 D .四边形ABCD 面积无最大值 【答案】AB【分析】根据正弦定理进行边化角求角B ,从而判断选项A ,B 正确;把四边形ABCD 的面积表示成ADC ∠的三角函数,从而根据三角函数求最值 【详解】因为()3cos cos 2sin a C c A b B +=,所以由正弦定理,得()23sin cos sin cos 2sin A C C A B +=,所以()23sin 2sin A C B +=,又因为A B C π++=,所以()sin sin A C B +=,所以23sin 2sin B B = 因为sin 0,B ≠所以3sin 2B =, 又因为3CAB π∠=,所以20,3B π⎛⎫∈ ⎪⎝⎭, 所以3B π=,所以3C A B ππ=--=,因此A ,B 正确;四边形ABCD 面积等于231sin 42ABC ACDS SAC AD DC ADC +=+⋅⋅∠()22312cos sin 42AD DC AD DC ADC AD DC ADC =⨯+-⋅⋅∠+⋅⋅∠ ()31916cos 3sin 42ADC ADC =⨯+-⋅∠+⨯∠ 533sin 23ADC π⎛⎫=+∠- ⎪⎝⎭, 所以当32ADC ππ∠-=即sin 13ADC π⎛⎫∠-= ⎪⎝⎭时,ABCACDSS+取最大值5332+, 所以四边形ABCD 面积的最大值为5332+, 因此C ,D 错误 故选:AB6.(2022·云南·高三阶段练习)如图,在长方体1111ABCD A B C D -中,4AB AD ==,13AA =,点M 满足12A M MA =,点P 在底面ABCD 的边界及其内部运动,且满足4AMP π∠≤,则下列结论正确的是( )A .点P 所在区域面积为4πB .线段1PC 17C .有且仅有一个点P 使得1MP PC ⊥D .四面体11P A CD -的体积取值范围为[6,8]【答案】AD【分析】A 选项,由1MA AP ==时,MP 与底面ABCD 的所成角4πθ=求解判断; B 选项,若PC 取最小值时,则线段1PC 长度最小,由A ,P ,C 三点共线求解判断; C 选项,由点P 与点F 重合,由点P 与点E 重合,利用余弦定理求解判断;,D 选项,由点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,当P与点F 重合时,此时点P 到平面11A CD 的距离最小求解判断. 【详解】如图所示:A 选项,当1MA AP ==时,MP 与底面ABCD 的所成角4πθ=,故点P 所在区域为以A 为圆心,1为半径的圆在正方形ABCD 内部部分(包含边界弧长),即圆的14,面积为211144π⨯=π,A 正确;B 选项,当PC 取最小值时,线段1PC 长度最小,由三角形两边之和大于第三边可知:当A ,P ,C 三点共线时,PC 取得最小值,即min ||421PC =-,则221min (421)34282PC =-+=-,B 错误; C 选项,不妨点P 与点F 重合,此时2221134PC FB BC C C =++=,由余弦定理得:1cos MFC ∠=22211123436022234MF C F C M MF C F +-+-==⋅⨯⨯,则12MFC π∠=,同理可得:12MEC π∠=,故多于一个点P 使得1MP PC ⊥,C 错误;D 选项,当点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,最大距离341255AH ⨯==,此时四面体11P A CD -的体积为11111124583325A CD S AH ⋅=⨯⨯⨯⨯=△,当P 与点F 重合时,此时点P 到平面11A CD 的距离最小,最小距离为FK ,因为BFK BAH ∽△△,所以34FK AH =,所以最小体积为3864⨯=,故四面体11P A CD -的体积取值范围为[]6,8 ,D 正确, 故选:AD . 三、填空题7.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin sin 2B Cb a B +=,2a =△ABC 周长的最大值为________.【答案】32【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.由余弦定理22222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故22b c +≤,当且仅当2b c ==时取等号. 故△ABC 周长的最大值为a b c ++的最大值为22232+=. 故答案为:328.(2021·江西南昌·高三阶段练习)已知ABC 的内角,,A B C 所对应的边分别为,,a b c ,且满足2224,4c c a b ==+, 则ABC 的面积取得最大值时,cos C =______.【答案】33434-【分析】根据余弦定理结合同角三角函数的关系可得sin C ,进而表达出ABCS ,结合基本不等式求解ABCS的最值,进而求得cos C 即可.【详解】由余弦定理,()222222243cos 222a b a b a b c b C ab ab a+-++-===-,又()0,C π∈,故2222349sin 1cos 122b a b C C a a -⎛⎫=-=--=⎪⎝⎭,故 2222114949sin 2224ABCa b b a b Sab C ab a --===. 又222416a b c +==,故()2222416496425564254420ABCb b b b b b b S----===222564258405b b +-≤=,当且仅当22256425b b =-,即425b =时取等号. 此时2322721642525a =-⨯=,即4175a =. 故ABC 的面积取得最大值时,42333345cos 23441725b C a ⨯=-=-=-⨯. 故答案为:33434-【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方9.(2021·河南·高三开学考试(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin tan sin sin A A B C =,则sin A 的最大值为________,此时cos B =________. 【答案】5366【分析】由已知条件结合正余弦定理可得2223b c a +=,再利用余弦定理结合基本不等式可求出cos A 的最小值,从而可求出sin A 的最大值,则可求出cos2B ,再利用二倍角公式可求出cos B . 【详解】由条件可知,2sin cos sin sin AA B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc+-==,则2223a b c =+. 所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=, 当且仅当b c =时取得等号,cos A 取得最小值23. 因为()0,A π∈, 所以25sin 1cos 3A A =-≤,当且仅当b c =时取得等号, 故sin A 的最大值为53. 此时B C =,所以2cos2cos()cos 3B A A π=-=-=-,所以222cos 13B -=-,因为角B 为锐角, 所以6cos 6B =. 故答案为:53,66 10.(2022·全国·高三专题练习)ABC 的外接圆半径为1,角A B C ,,的对边分别为a b c ,,,若cos cos 3a B b A +=0CA CB ⋅<,则C ∠=________;32a b +的最大值为_________【答案】23π27 【分析】由余弦定理求得c ,由向量数量积可得C 为锐角,再由正弦定理结合外接圆半径可求得C ,用正弦定理把32a b +表示为A 的三角函数,利用两角和与差的正弦公式变形化函数为一个角的一个三角函数形式,然后利用正弦函数性质得最大值.【详解】222222cos cos 322a c b c b a a B b A a b c ac cb+-+-+=⋅+⋅==,又22sin c R C ==,所以3sin 2C =, 0CA CB ⋅<,所以C 是钝角,所以23C π=, 由2sin sin a bA B==得2sin a A =,2sin b B =, 326sin 4sin 6sin 4sin()3a b A B A A π+=+=+-316sin 4(cos sin )4sin 23cos 22A A A A A =+-=+2327(sin cos )77A A =+, 设2cos 7ϕ=,3sin 7ϕ=(ϕ为锐角),则3227sin()a b A ϕ+=+,由23C π=得03A π<<,31sin 27ϕ=>,ϕ为锐角,则62ππϕ<<, 所以2A πϕ=-时,32a b +取得最大值27.故答案为:23π;27. 四、解答题11.(2022·湖北·襄阳五中高三阶段练习)在ABC 中,4tan ,3CAB D ∠=为BC 上一点,32=AD(1)若D 为BC 的中点,32BC =ABC 的面积;(2)若45DAB ∠=︒,求ABC 的面积的最小值. 【答案】(1)9 (2)92【分析】(1)根据中线向量公式可得,b c 关系,结合余弦定理可求452bc =,从而可求面积. (2)根据不同三角形的面积关系可得34355b c bc +=,利用基本不等式可求bc 的最小值,从而可求面积的最小值. (1)因为D 为BC 的中点,所以()12AD AB AC =+, ()222124AD AB AC AB AC ∴=++⋅. 记角,,A B C 的对边分别为,,a b c , 因为4tan 3A =,故A 为锐角,所以43sin ,cos 55CAB CAB ∠∠==, 则221318245c b bc ⎛⎫=++⋅ ⎪⎝⎭. 又由余弦定理得:2231825c b bc =+-⋅两式联立解得:452bc =,所以11454sin 92225ABCS bc CAB ∠==⨯⨯=. (2)445,tan 3DAB A ∠==,()41113tan tan ,sin 475213CAD CAB DAB CAD ∠∠∠∠-∴=-===+, 1132sin 32sin 22ABCCAD BADSSSb CADc DAB ∠∠=+=⋅+⋅ 1sin 2bc CAB ∠=, 即34355b c bc +=, 即34345323,5554b c bc b c bc +=≥⋅≥(当且仅当153,22b c ==时取得最小值)所以114549sin 22452ABCSbc CAB ∠=≥⨯⨯=.12.(2022·广东广州·高三开学考试)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值. 【答案】(1)证明见解析 (2)43【分析】(1)由已知及余弦定理可推出2cos b a b C =-,利用正弦定理边化角结合两角和差的正弦公式化简可得()sin sin B C B =-,即可证明结论; (2)利用(1)的结论将4cos a b b B +边化角,结合三角恒等变换可得43=4cos cos cos a b B b B B++,由基本不等式可求得答案. (1)证明:在ABC 中,由已知及余弦定理,得()2222cos a b b c a b ab C +==+-,即2cos b a b C =-,由正弦定理,得sin sin 2sin cos B A B C =-,又()πA B C =-+, 故()sin sin 2sin cos sin cos cos sin 2sin cos B B C B C B C B C B C =+-=+-cos sin sin cos B C B C =-()sin C B =-.∵()0sin sin B C B <=-,∴0πC B C <-<<, ∵()πB C B C +-=<,∴B C B =-,故2C B =. (2)由(1)2C B =得()30,πB C B +=∈,∴π0,3B ⎛⎫∈ ⎪⎝⎭,1cos ,12B ⎛⎫∈ ⎪⎝⎭,由(1)()12cos a b C =+,2C B =得()2522cos 1452cos 52cos 2cos cos cos cos B a b C B b B B B B+-+++===334cos 24cos 43cos cos B B B B =+≥⋅=, 当且仅当ππ0,63B ⎛⎫=∈ ⎪⎝⎭时等号成立, 所以当π6B =时,4cos a bb B+的最小值为43.13.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,tan tan 33B C ++=(1)求角A ;(2)若4a =,求b c +的取值范围. 【答案】(1)π3A = (2)(43,8⎤⎦【分析】(1)利用两角和的正切公式及诱导公式计算可得;(2)利用正弦定理将边化角,再转化为关于B 的三角函数,根据B 的取值范围及正弦函数的性质计算可得. (1)解:因为tan tan 33tan tan B C B C++=,所以tan tan 33tan tan B C B C ++=,所以tan tan 3(tan tan 1)B C B C +=-,从而tan tan 31tan tan B CB C +=--, 即tan()3B C +=-,所以tan 3A =,因为(0,π)A ∈,所以π3A =. (2)解:因为4a =,π3A =,由正弦定理,有83sin sin sin 3b c a B C A ===所以83sin 3b B =,83832π833143sin sin cos sin 4cos sin 3333223c C B B B B B ⎛⎫⎛⎫==-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以π43sin 4cos 8sin 6b c B B B ⎛⎫+=+=+ ⎪⎝⎭,又因为ABC 为锐角三角形,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,即ππ62B <<,所以ππ2π363B <+<,所以3πsin 126B ⎛⎫<+≤ ⎪⎝⎭,从而b c +的取值范围为(43,8⎤⎦. 14.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若23a =ABC 面积的最大值.【答案】(1)3π; (2)33.【分析】(1)由正弦定理化角为边,再利用余弦定理及特殊角的三角函数即得;(2)由余弦定理表示出,a b 关系,再由基本不等式得出ab 的最大值,从而可得面积最大值;或利用正弦定理边角互化,然后利用三角恒等变换及三角函数的性质即得. (1)在ABC 中,由题意及正弦定理得()()a c b a c b bc +--+=, 整理得222b c a bc +-=,由余弦定理得2221cos 222b c a bc A bc bc +-===, 因为0A π<<, 所以3A π=;(2)方法一:由(1)知,3A π=,又23a =,所以22122b c bc bc bc bc =+--=,所以12bc ,当且仅当23b c ==时,等号成立, 所以()max 113sin 1233222ABC Sbc A ==⨯⨯=; 方法二:由(1)知,3A π=,又23a =,所以由正弦定理,知234sin sin sin sin3a b c A B C π====, 所以4sin ,4sin b B c C ==, 所以13sin 8sin sin 43sin sin 22ABCSbc A B C B C ==⨯=, 又因为23B C π+=, 所以23143sin sin 43sin sin 43sin cos sin 322B C B B B B B π⎛⎫⎛⎫=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭31cos223sin222B B ⎛⎫-=+= ⎪ ⎪⎝⎭23sin 236B π⎛⎫-+ ⎪⎝⎭,因为23B C π+=,所以270,23666B B ππππ<<-<-<,所以当262B ππ-=,即3B π=时,ABC 的面积取得最大值,最大值为33.15.(2022·上海·模拟预测)在如图所示的五边形中,620AD BC AB ===,,O 为AB 中点,曲线CMD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称;(1)若点P 与点C 重合,求POB ∠的大小; (2)求五边形MQABP 面积S 的最大值, 【答案】(1)33arcsin 14(2)2874【分析】(1)利用余弦定理求出OC ,再利用正弦定理即可得出答案; (2)根据题意可得,QOMPOMAOQBOPS SSS==,则()2AOQQOMMQABP S SS=+五边形,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,根据三角形的面积公式结合三角函数的性质即可得出答案.(1)解:若点P 与点C 重合,连接OC ,10,6,120OB BC BP ABC ===∠=︒,在OBP 中,2222cos 1003660196OC OB BP OB BP OBP =+-⋅∠=++=, 所以14OC =, 因为sin sin BC OCPOB OBP=∠∠,所以36sin 332sin 1414BC OBPPOB OC ⨯⋅∠∠===, 所以33arcsin14POB ∠=;(2)解:连接,,,QA PB OQ OP ,因为曲线CMD 上任一点到O 距离相等, 所以14OP OQ OM OC ====, 因为P ,Q 关于OM 对称, 所以,QOMPOMAOQBOPSSSS==,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,则()2AOQQOMMQABP S SS=+五边形112sin sin 222OQ OA OQ OM παα⎡⎤⎛⎫=⋅⋅-+⋅ ⎪⎢⎥⎝⎭⎣⎦196sin 140cos αα=+()2874sin αϕ=+,其中5tan 7ϕ=, 当()sin 1αϕ+=时,MQABP S 五边形取得最大值2874, 所以五边形MQABP 面积S 的最大值为2874.16.(2022·广东·广州市真光中学高三开学考试)在平面四边形ABCD 中,30CBD ∠=,4BC =,23BD = (1)若ABD △为等边三角形,求ACD △的面积. (2)若60BAD ∠=,求AC 的最大值. 【答案】(1)3 (2)232+【分析】(1)利用余弦定理求出CD 的长,结合勾股定理可知90BDC ∠=,进而可求得ADC ∠的大小,利用三角形的面积公式可求得ACD △的面积;(2)设()0120ADB αα∠=<<,利用正弦定理可得出AD ,利用余弦定理可得出2AC 关于α的表达式,利用三角恒等变换结合正弦型函数的基本性质可求得AC 的最大值. (1)解:在BCD △中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅⋅∠. 即231612242342CD =+-⨯⨯⨯=,所以2CD =, 所以222BD CD BC +=,因此90BDC ∠=,因为ABD △为等边三角形,所以60ADB ∠=,23AD BD ==,所以150ADC ∠=.所以111sin 2323222ACD S AD CD ADC =⋅⋅⋅∠=⨯⨯⨯=△.(2)解:设()0120ADB αα∠=<<,则120ABD α∠=-, 在ABD △中,由正弦定理得sin sin AD BDABD BAD=∠∠,即()23sin60sin 120AD α=-,所以()4sin 120AD α=-. 在ACD △中,由余弦定理,得2222cos AC AD CD AD CD ADC =+-⋅⋅∠, ()()()224sin 120424sin 1202cos 90AC ααα⎡⎤=-+-⨯-⨯⨯+⎣⎦ 231314cos sin 16cos sin sin 483sin2162222αααααα⎡⎤⎛⎫⎛⎫=++++=+⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 0120α<<,则02240α<<,故当290α=时,即当45α=时,2AC 取到最大值8316+,即AC 的最大值为232+.17.(2023·河北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4b =,在 ①()(sin sin )(sin sin )b c B C A C a +-=-,②cos2()3cos 1A C B ++= 两个条件中任选一个完成以下问题: (1)求B ;(2)若D 在AC 上,且BD AC ⊥,求BD 的最大值. 【答案】(1)π3B = (2)23【分析】(1)选①,利用正弦定理得到222a c b ac +-=,再利用余弦定理求出π3B =;选②:利用诱导公式和二倍角公式得到1cos 2B =,从而求出π3B =;(2)法一:利用余弦定理得到2216a c ac =+-,利用基本不等式求出16ac ≤,求出面积的最大值,从而求出BD 的最大值;法二:利用正弦定理ABC 外接圆的直径,进而利用正弦定理表示面积,利用三角函数的有界性求出面积最大值,进而求出BD 的最大值. (1)若选①,由正弦定理得,()()()b c b c a c a +-=- 即222b c a ac -=-,即222a c b ac +-= ∴2221cos 222a cb ac B ac ac +-===, ∵(0,π)B ∈,∴π3B =, 若选②,∵cos 2()3cos cos 2(π)3cos cos 23cos 1A C B B B B B ++=-+=+=, ∴22cos 13cos 1B B -+=,即22cos 3cos 20B B +-=, 即cos 2B =-(舍)或1cos 2B =, ∵(0,π)B ∈,∴π3B =, (2)∵BD AC ⊥,BD 为AC 边上的高,当面积最大时,高取得最大值 法一:由余弦定理得,22222162cos b a c ac B a c ac ==+-=+-, 由重要不等式得162ac ac ac ≥-=, 当且仅当a c =时取等, 所以1sin 432ABC S ac B =≤△ 所以AC 边上的高的最大值为432312b = 法二:由正弦定理得ABC 外接圆的直径为832sin 3b R B ==, 利用正弦定理表示面积得:118383sin sin sin sin 2233ABC S ac B A C B ==⋅△ 1838332π1632πsin sin sin sin 2332333A A A A ⎛⎫⎛⎫=⋅⋅⋅-=- ⎪ ⎪⎝⎭⎝⎭。
专题三角形中的最值与取值范围问题
专题三角形中的最值与取值范围问题(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--专题 三角形中的最值与取值范围问题三角形中的边与角的最值与取值范围问题,是复习过程中的难点,在高考中考查形式灵活,常常在知识的交汇点处命题,与函数、几何、不等式等知识结合在一起。
我们知道三角形只要满足三个条件,那么这个三角形就基本唯一确定了,而少于三个条件时,有些边角周长面积就可以变化,从而就有了求这些量的取值范围问题。
这类问题的实质是将几何问题转化为代数问题,求解主要是充分运用三角形的内角和定理,正余弦定理,面积公式,基本不等式,三角恒等变形,三角函数的图像和性质来进行解题,非常综合,是解三角形中的难点问题。
下面对这类问题的解法做下探讨。
类型一:已知一角+对边例题1:在?ABC 中,A=60°,,求(1)ABC ∆面积的最大值;(2)b c +的取值范围;(3)2b c +的最大值;(4)BC 边上高的最大值。
类型二:已知一角+边的等量关系例题2:在?ABC 中,A=60°,1b c +=,求(1)ABC S ∆的最大值;(2)a 的取值范围;(3)周长的取值范围。
类型三:已知一角+面积例题3:在?ABC 中,A=60°,ABC S ∆=(1)b c +的最小值;(2)a 的最小值。
(3)周长的最小值。
(4)112b c +的最小值。
类型四:已知角的等量关系例题4:在?ABC 中,A=2B ,则c b的取值范围为 变式:在锐角?ABC 中,A=2B ,则c b的取值范围为 类型五:已知两边,求面积的最值例题5:在?ABC 中,已知1,2AB BC ==,求(1)ABC S ∆的最大值;(2)角C 的取值范围。
类型六:已知一边+另两边的等量关系例题6:在?ABC 中,已知6,10BC AB AC =+=,求ABC S ∆的最大值。
变式:在?ABC 中,已知6,BC AC ==,求ABC S ∆的最大值。
专题03 解三角形之最值、范围问题(解析版)
解三角形之最值、范围问题一、单选题1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =c sin B ,则tan A 的最大值为( ) A .1 B .54C .43D .32【答案】C2.在ABC ∆中,角,,A B C 的对边分别是,,,a b c 且,,A B C 成等差数列,2b =,则a c +的取值范围是( )A .(]2,3B .(]2,4C .(]0,4 D .(2,【答案】B3.锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2225a b c +=,则cos C 的取值范围是( ) A .(123,) B .(112,)C .[45D .[45,1) 【答案】C4.在ABC 内角A ,B ,C 的对边分别是a ,b ,c ,若()()3cos sin sin 1cos A B A B -=+,6a c +=,则ABC 的面积的最大值为( )A .BCD .【答案】D5.已知ABC 三内角,,A B C 的对边分别为,,a b c cos sin 0A a C +=,若角A 的平分线交BC 于D 点,且1AD =,则b c +的最小值为( )A .2B .C .4D .【答案】C6.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,且()()()3sin sin sin c B C a A c -+=-⋅,则ABC 周长的最大值为( )A .8B .9C .12D .15【答案】B二、解答题7.已知函数()2cos 3cos 1f x x x x =-+.(1)求函数()f x 的单调递减区间;(2)在锐角ABC 中,角,,A B C 所对的边分别,,a b c .若()1,f C c ==D 为AB 的中点,求CD 的最大值. 【答案】(1)递减区间511[,]1212k k k Z ππππ++∈;(2)32. 8.现有三个条件①sin()sin ()sin c A B b B c a A +=+-,②tan 2sin b aB A=,③(1cos )sin a B A +,请任选一个,填在下面的横线上,并完成解答. 已知ABC 的内角,,A B C 所对的边分别是a ,b ,c ,若______.(1)求角B ;(2)若a c +=,求ABC 周长的最小值,并求周长取最小值时ABC 的面积.【答案】(1)3π;(2)4.9.如图,在四边形ABCD 中,CD =BC =cos 14CBD ∠=-.(1)求BDC ∠; (2)若3A π∠=,求ABD △周长的最大值. 【答案】(1)6π;(2)12 10.已知ABC 的内角、、A B C 所对的边分别是,,,a b c 在以下三个条件中任先一个:①22(sin sin )sin sin sin B C A B C -=-;②sin4A =;③sin sin 2B C b a B +=; 并解答以下问题:(1)若选___________(填序号),求A ∠的值;(2)在(1)的条件下,若(0)a b m m ==>,当ABC 有且只有一解时,求实数m 的范围及ABC 面积S 的最大值.【答案】(1)条件选择见解析;60A =;(2)({}2m ∈⋃,max S =. 11.已知函数()21sin cos cos 62f x x x x π⎛⎫=-+- ⎪⎝⎭. (1)当[],0x π∈-时,求出函数()f x 的最大值,并写出对应的x 的值; (2)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若()12f A =,4b c +=,求a 的最小值. 【答案】(1)当56x =-π时,函数()f x 取最大值34;(2)最小值为2.12.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知1cos 2a c Bb =+. (1)若1c =,求ABC 面积的最大值;(2)若D 为BC 边上一点,4DB =,5AB =,且12AB BD ⋅=-,求AC .【答案】(1(2.13.在ABC 中,设,,A B C 所对的边分别为,,a b c ,4A π=,1cos 3B =,a b += (1)求,a b 的值;(2)已知,D E 分别在边,BA BC 上,且AD CE +=,求BDE 面积的最大值.【答案】(1)a =b =(214.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知1cos 2b a Cc =+. (1)求角A ;(2)若1AB AC ⋅=,求a 的最小值.【答案】(1)3π;(2。
专题03 以三角形为背景的范围最值为专题训练第01期-2017届高三数学备考十大特色专题集中训练 含解析 精品
专题3 以三角形为背景的范围最值为专题训练题型一与三角形相关的面积或周长范围1.【2017届重庆市高三上学期第一次诊断模拟】已知的外接圆半径为2,为该圆上的一点,且,则的面积的最大值为()A. 3B. 4C.D.【答案】B【解析】解析:由题设可知四边形是平行四边形,由圆内接四边形的性质可知,且当时,四边形的面积最大,则的面积的最大值为,应选答案B。
2.【2017届云南省昆明市第一中学高三月考卷(五)】已知三角形中,角所对边分别为,满足且,则三角形面积的最大值为__________.【答案】【解析】由题意得,因为,由三角形的正弦定理得,解得,又,所以,所以三角形的面积,又,所以所以,当,三角形面积的最大值为。
中,角A、B、C所对的边分别为a、b、3.【2017届广东汕头市普通高考高三月考】在ABCc ,且满足()cos 2cos c c B a b C ==-.(1)求角C 的大小;(2)求ABC ∆的周长的最大值.【答案】(1)3π=C ;(2)【解析】试题分析:(1)利用正弦定理结合两角和差的正弦公式进行化简即可求角C 的大小;(2)根据余弦定理结合基本不等式的应用求出b a +的范围即可求ABC ∆的周长的最大值.4.【湖南省2017届高三长郡中学、衡阳八中等十三校重点中学第一次联考】设的内角的对边分别为,且满足.(1)试判断的形状,并说明理由;(2)若,试求面积的最大值.【答案】(1);(2).【解析】试题分析:(1)由,利用正、余弦定理,得,化简整理即可证明:为直角三角形;(2)利用,,根据基本不等式可得:,即可求出面积的最大值.试题解析: 解法1:(1)∵,由正、余弦定理,得,化简整理得:,∵,所以,故为直角三角形,且;(2)∵,∴,当且仅当时,上式等号成立,∴.故,即面积的最大值为.解法2(1)由已知:,又∵,,∴,而,∴,∴,故,∴为直角三角形.(2)由(1),∴.∵,∴,∴,令,∵,∴,∴.而在上单调递增,∴.5.【2017届广东省深圳市高三下学期第一次调研考试(一模)】的内角的对边分别为,已知.(1)求;(2)若,求的面积的最大值.【答案】(1);(2).试题解析:(1)由已知及正弦定理可得,在中,,∴,∴,从而,∵,∴,∴,∴;(2)解法:由(1)知,∴,∵,∴,∵,∴,∵,∴(当且仅当时等号成立),∴;解法二:由正弦定理可知,∵,∴,∴,∴,∵,∴,∴当,即时,取最大值.6.【2017届江苏南通中学高三上期中数学(理)】如图,在ABC ∆中,角,,A B C 的对边分别为,,a b c ,(sin cos )a b C C =+.(Ⅰ)求ABC ∠; (Ⅱ)若=2A π∠,D 为ABC ∆外一点,2DB =,1DC =,求四边形ABDC 面积的最大值.【答案】(1) 4B π=(2) 54+试题解析:(Ⅰ)在ABC ∆中,∵(sin cos )a b C C =+, ∴sin sin (sin cos )A B C C =+, ∴sin()sin (sin cos )B C B C C π--=+, ∴sin(+)sin (sin cos )B C B C C =+,∴sin cos cos sin sin sin sin cos B C B C B C B C +=+, ∴cos sin sin sin B C B C =, 又∵(0,)C ∈π,故sin 0C ≠,∴cos sin B B =,即tan 1B =. 又(0,)B ∈π,∴4B π=. (Ⅱ)在BCD ∆中,2DB =,1DC =, 222=12212cos BC D +-⨯⨯⨯54cos D =-.又=2A π,由(Ⅰ)可知4ABC π∠=, ∴ABC ∆为等腰直角三角形,21115cos 2244ABC S BC BC BC D ∆=⨯⨯⨯==-,又1sin sin 2BDC S BD DC D D ∆=⨯⨯⨯=,∴55cos sin )444ABDC S D D D π=-+=-四边形.∴当=4D 3π时,四边形ABDC 的面积有最大值,最大值为54题型二 与三角形相关的边长或角范围 7.【2017届重庆市第一中学高三上学期一诊】中,角所对的边分别为,且,则的取值范围是__________.【答案】【解析】试题分析:由,得,,,故答案为.8.【2017届河南省郑州市第一中学高三上学期第一次质量检测】如果满足,,的锐角有且只有一个,那么实数的取值范围是__________. 【答案】【解析】由正弦定理得:,所以,因为是锐角三角形,所以,所以,所以,即.故本题正确答案为.9.【2017届浙江杭州地区重点中学高三上学期期中】在等腰△ABC 中,AB AC =,AC 边上的中线BD 长为6,则当ABC ∆的面积取得最大值时,AB 的长为 .【答案】【解析】试题分析:根据题意,设2AB AC x ==,则AD x =(26)x <<,由余弦定理,得cos A =2222AB AD BD AB AD +-⋅=2225365944x x x -=-,所以sin A =,所以1sin 2ABC S AB AC A ∆=⋅=142x ⋅24≤,当220x =,即x =ABC ∆的面积取得最大值时,AB 的长为10.【2017届福建福州外国语学校高三理适应性考试】△ABC 的三个内角为A ,B ,C ,若7tan()12π=-,则2cos sin 2B C +的最大值为 .【答案】3211.【2017届安徽六安一中高三上学期月考三】已知ABC ∆的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且ABC ∆的面积cos S B =. (1)求角B 的大小; (2)若2a =,且43A ππ≤≤,求边c 的取值范围.【答案】(1) 3π;(2)132+≤≤c . 【解析】试题分析:(1)借助题设条件运用三角形面积公式建立方程求解;(2)借助题设运用正弦定理建立函数探求. 试题解析: (1)1cos sin ,tan 22S B ac B B ==∴= 3B π∴=.(2)22sin 2sin 32,,,13sin sin sin sin tan A a c C a B c A C A A A ππ⎛⎫- ⎪⎝⎭===∴===+,,2143A c ππ≤≤∴≤≤.12.【2017届贵州省黔东南州高三下学期高考模拟考试】已知的内角所对的边分别为,若.(1)求的面积;(2)求AC 边的最小值. 【答案】(1);(2).【解析】试题分析:(1)先利用正弦定理将边角关系转化为角角关系,再利用两角和的正弦公式和诱导公式求得角,再利用平面向量的数量积公式和三角形的面积公式进行求解;(2)先利用余弦定理得到边边关系,再利用基本不等式求其最值. 试题解析:(1),由正弦定理可化为:………2分,,即,,,………3分又,得,,即,………4分的面积,………6分(2)由余弦定理, ………7分解得: ………8分配方,得: ………9分 由均值不等式知:………10分即边的最小值为为. ………12分13.【2017届山东枣庄市高三理上学期末】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c,角A 、B 、C 的度数成等差数列,b =(1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值.【答案】(1) 4c =;(2) 【解析】试题分析:(1)首先利用等差数列的性质求得角B 的大小,然后由正弦定理得到,a c 的关系式,最后利用余弦定理求得c 的值;(2)首先由正弦定理得到,a c 与角,A C 间的关系式,然后利用两角和的正弦公式求得a c +的最大值.试题解析:(1) 由角,,A B C 的度数成等差数列,得2B A C =+. 又,3A B C B ππ++=∴=.由正弦定理,得34c a =,即34ca =. 由余弦定理,得2222cos b a c ac B =+-,即22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =.(2) 由正弦定理,得,.sin sin sina c ba A c CA C B====∴==)()sin sin sin sin sin sin3a c A C A A B A Aπ⎤⎛⎫∴+=+=++=++⎤ ⎪⎥⎦⎝⎭⎦3sin26A A Aπ⎫⎛⎫=+=+⎪ ⎪⎪⎝⎭⎭.由23Aπ<<,得5666Aπππ<+<.所以当62Aππ+=,即3Aπ=时,()maxa c+=14.【2017届河南百校联盟高三文11月质监数学乙】已知ABC∆中,角A,B,C的对边分别为a,b,c,且sin sin1sin sin sin sinB CA C A B+=++.(Ⅰ)求角A;(Ⅱ)若a=b c+的取值范围.【答案】(Ⅰ)3Aπ=(Ⅱ)b c+的取值范围是(.【解析】试题解析:(Ⅰ)根据正弦定理可得1b ca c a b+=++,即()()()()b a bc a c a b a c+++=++,即222b c a bc+-=,根据余弦定理得2221cos22b c aAbc+-==,所以3Aπ=.(Ⅱ)根据正弦定理8sin sin sinb c aB C A===,所以8sinb B=,8sinc C=,又23B C π+=,所以218sin 8sin 8sin sin 32b c B B B B B π⎛⎫⎛⎫+=+-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭318sin cos cos 22226B B B B B π⎛⎫⎫⎛⎫=+=+=+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭, 因为203B π<<,所以5+666B πππ<<,所以1sin 126B π⎛⎫<+≤ ⎪⎝⎭,所以6B π⎛⎫+≤ ⎪⎝⎭即b c +的取值范围是(.题型三 与三角形相关的函数取值范围15.【2017届福建厦门双十中学高三上期中】在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos sin a b C B =+.(1)若2,a b =c ;(2)设函数230)2sin (15)y A C =--- ,求y 的取值范围. 【答案】(1)3c =;(2)(1,1]y ∈-. 【解析】试题分析:(1)用正弦定理化简cos sin a b C B =+得3B π=,再由余弦定理求得3c =;(2)化简60)1y A -- ,由于三角形为锐角三角形,所以(30,90)A ∈ ,由此求得(1,1]y ∈-.16.【2017届山东省胶州市普通高中高三上学期期末】设,函数,且.(1)求的单调递减区间;(2)设锐角的内角所对的边分别为,且,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)由函数,运用二倍角公式的逆运算,即可将化成一个角的和差的正余弦形式.再结合基本函数的单调性,通过解不等式即可得到的单调递减区间.(2)因为,结合余弦定理化简后再根据正弦定理,即可得到角B的值,又由(1)所得的函数关系,即可求出角A的范围.试题解析:(1)由得:,∴∴由得:,∴的单调递减区间为:(2)∵,由余弦定理得:,即,由正弦定理得:,,,∴∵△锐角三角形,∴,∴的取值范围为.17.【2017届山西省怀仁县第一中学高三上学期期末】的三个内角依次成等差数列.(1)若,试判断的形状;(2)若为钝角三角形,且,试求的取值范围.【答案】(1)正三角形;(2).【解析】试题分析:(1)由正弦定理将角的关系转化为边的关系:,再根据三角形内角和为及三个内角依次成等差数列得,再利用余弦定理转化边的关系:,得三角形形状(2)先利用二倍角公式及配角公式化简式子为,再根据大边对大角得为钝角,因此可确定自变量范围:,最后结合正弦函数性质求取值范围. 试题解析:(1)∵,∴,∵依次成等差数列,∴,,由余弦定理得,,∴,∴为正三角形.(2)∵,∴,∴,.∴代数式的取值范围是.题型四 与三角形相关的实际应用18.【2017届江苏启东中学高三上期第一次月考】如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD ,其中BMN 是半径为1百米的扇形,3π2=∠ABC .管理部门欲在该地从M 到D 修建小路:在弧MN 上选一点P (异于M 、N 两点),过点P 修建与BC 平行的小路PQ .问:点P 选择在何处时,才能使得修建的小路 MP与PQ 及QD 的总长最小?并说明理由.【答案】当BP BC ⊥时,总路径最短.【解析】试题分析:借助题设条件建立函数关系,再运用三角变换的公式求解和探求. 试题解析:连接BP , 过P 作1PP BC ⊥垂足为1P , 过Q 作1QQ BC ⊥垂足为1Q 设1PBP θ∠=()2π03θ<<, 2π3MP θ=- …………………2分 若20πθ<<,在1Rt PBP ∆中,11sin cos PP BP θθ==, 若,2πθ=则11sin cos PP BP θθ==, 若,322πθπ<<则,cos )cos(,sin 11θθπθ-=-==BP PP2cos PQ θθ∴=- …………………………4分在1Rt QBQ ∆中,111sin CQ QQ PP CQ θθθ===,,2DQ θ= …………………………6分所以总路径长,)320(sin 3cos 432)(πθθθθπθ<<--+-=f ……………………10分1)3sin(21cos 3sin )('--=--=πθθθθf ………………12分令()'0f θ=,π2θ=当π02θ<< 时,()'0f θ<当π2π23θ<< 时,()'0f θ> …………………………14分 所以当π2θ=时,总路径最短. 答:当BP BC ⊥时,总路径最短. ……16分19.【2017届山东临沂市高三理上学期期中】如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE ,其中三角形区域ABE 为主题游乐区,四边形区域为BCDE 为休闲游乐区,AB 、BC ,CD ,DE ,EA ,BE 为游乐园的主要道路(不考虑宽度).120,60,BCD CDE BAE DE ∠=∠=∠== 333BC CD km ==.(I )求道路BE 的长度;(Ⅱ)求道路AB ,AE 长度之和的最大值. 【答案】(Ⅰ)32;(Ⅱ) km 34.试题解析:(Ⅰ)如图,连接BD ,在BCD ∆中,由余弦定理得:32111211cos 2222=⎪⎭⎫⎝⎛-⨯⨯⨯-+=∠⋅-+=BCD CD BC CD BC BD ,3=∴BD ,CD BC = ,000302120180=-=∠=∠∴CBD CDB ,又0120=∠CDE ,090=∠∴BDE , 所以在BDE Rt ∆中,329322=+=+=DE BE BE ;(Ⅱ)设α=∠ABE ,060=∠BAE ,α-=∠∴0120AEB ,在ABE ∆中,由正弦定理,得BAEBEABE AE AEB AB ∠=∠=∠sin sin sin ,460sin 32sin 0==∠BAE BE,()α-=∴0120sin 4AB ,αsin 4=AE ,()()030sin 34sin 6cos 32sin 4sin 21cos 234sin 4120sin 4+=+=+⎪⎪⎭⎫ ⎝⎛+=+-=+∴ααααααααAE AB 001200<<α ,0001503030<+<∴α,∴当009030=+α,即060=α时,AE AB +取得最大值km 34,即道路AE AB ,长度之和的最大值为km 34.20.【2017届安徽蚌埠怀远县高三上学期摸底考】如图,我海监船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其东北方向与它相距32海里的B 处有一外国船只,且D 岛位于海监船正东海里处.(1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时8海里的速度沿正南方向航行,为了将该船拦截在离D 岛24海里处,不让其进入D 岛24海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:0sin36520.6,sin53080.8''≈≈) 【答案】(1);(2)40.试题解析:(1)依题意,在ABD ∆中,045DAB ∠=, 由余弦定理得(2222022cos 45322328002DB AD AB AD AB =+-=+-⨯⨯= ,∴DB =...........................4分即此时该外国船只与D 岛的距离为....................5分(2)过点B 作BC AD ⊥于点C ,在Rt ABC ∆中,AC BC ==CD AD AC =-=..........6分 以D 为圆心,24为半径的圆交BC 于点E ,连结,AE DE ,在Rt DEC ∆中,CE ==,∴BE =................7分又AE ==∴03sin 36525CE EAC EAC AE '∠==⇒∠≈.................9分外国船只到达点E 的时间82BE t ==(小时)∴海监船的速度40AEv t≥=(海里/小时)..................11分 故海监船的航向为北偏东0009036525308''-=,速度的最小值为40海里/小时..........12分21.【2017届江苏泰州中学高三上学期期中】如图,太湖一个角形湖湾,2AOB AOB θ∠=( 常数θ为锐角). 拟用长度为l (l 为常数)的围网围成一个养殖区,有以下两种方案可供选择: 方案一 如图1,围成扇形养殖区OPQ ,其中PQ l =; 方案二 如图2,围成三角形养殖区OCD ,其中CD l =;(1)求方案一中养殖区的面积1S ; (2)求方案二中养殖区的最大面积2S ;(3)为使养殖区的面积最大,应选择何种方案?并说明理由.【答案】(1)211,0,242l S lr πθθ⎛⎫==∈ ⎪⎝⎭;(2)224tan l S θ=;(3)应选择方案一. 【解析】试题分析:(1)借助题设条件运用弧长公式建立函数关系;(2)借助题设运用余弦定理与基本不等式求解;(3)依据题设运用导数的有关知识进行分析探求. 试题解析:(1)设OP r =,则2l r θ=,即12r θ=,所以 211,0,242l S lr πθθ⎛⎫==∈ ⎪⎝⎭.(2)设,OC a OD b ==.由余弦定理,得2222cos 2l a b ab θ=+-,所以22cos 2l ab θ≥,所以()221cos 2l ab θ≤-,当且仅当a b =时,“=”成立.所以()221sin 2sin 2241cos 24tan OCDl l S ab θθθθ∆=≤=- ,即224tan l S θ=.。
解三角形的最值和范围问题 (学生版)-高中数学
解三角形的最值和范围问题【新高考专用】【题型1三角形、四边形面积的最值或范围问题】【题型2三角形边长的最值或范围问题】【题型3三角形周长的最值或范围问题】【题型4三角形的角(角的三角函数值)的最值或范围问题】【题型5利用基本不等式求最值(范围)】【题型6转化为三角函数求最值(范围)】【题型7转化为其他函数求最值(范围)】【题型8“坐标法”求最值(范围)】【题型9与平面向量有关的最值(范围)问题】1、解三角形的最值和范围问题解三角形中的最值或范围问题,通常涉及与边长、周长有关的范围问题,与面积有关的范围问题,或与角度有关的范围问题,一直是高考的热点与重点,有时也会与三角函数、平面向量等知识综合考查,主要是利用三角函数、正余弦定理、三角形面积公式、基本不等式等工具研究三角形问题,解决此类问题的关键是建立起角与边的数量关系.【知识点1三角形中的最值和范围问题】1.三角形中的最值(范围)问题的常见解题方法:(1)利用正、余弦定理结合三角形中的不等关系求最值(范围);(2)利用基本不等式求最值(范围);(3)转化为三角函数求最值(范围);(4)转化为其他函数求最值(范围);(5)坐标法求最值(范围).2.三角形中的最值(范围)问题的解题策略:(1)正、余弦定理是求解三角形的边长、周长或面积的最值(范围)问题的核心,要牢牢掌握并灵活运用.解题时要结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等研究其最值(范围).(2)转化为三角函数求最值(范围)问题的解题策略三角形中最值(范围)问题,如果三角形为锐角三角形,或其他的限制,一般采用正弦定理边化角,利用三角函数的范围求出最值或范围.(3)坐标法求最值(范围)求最值(范围)问题的解题策略“坐标法”也是解决三角形最值问题的一种重要方法.解题时,要充分利用题设条件中所提供的特殊边角关系,建立合适的直角坐标系,正确求出关键点的坐标,将所要求的目标式表示出来并合理化简,再结合三角函数、基本不等式等知识求其最值.【题型1三角形、四边形面积的最值或范围问题】1.(2024·河北石家庄·三模)在△ABC中,角A、B、C所对的边分别为a、b、c,c=4,ab=9.(1)若sin C=23,求sin A⋅sin B的值;(2)求△ABC面积的最大值.2.(2024·全国·模拟预测)记锐角三角形ABC的内角A,B,C的对边分别为a,b,c,已知b cos A=3-a cos B,2a sin C=3.(1)求A.(2)求△ABC面积的取值范围.3.(2024·辽宁·模拟预测)如图,在平面内,四边形ABCD满足B,D点在AC的两侧,AB=1,BC=2,△ACD为正三角形,设∠ABC=α.(1)当α=π3时,求AC;(2)当α变化时,求四边形ABCD面积的最大值.4.(2024·上海·三模)已知△ABC的内角A,B,C的对边分别为a,b,c,且3a=2c sin A.(1)求sin C的值;(2)若c=3,求△ABC面积S的最大值.【题型2三角形边长的最值或范围问题】1.(2024·四川·三模)在△ABC中,内角A,B,C的对边分别为a,b,c,且满足2c sin B cos A=b sin A cos B+cos A sin B.(1)求A;(2)若△ABC的面积为163,D为AC的中点,求BD的最小值.2.(2024·江西·模拟预测)在△ABC中,角A,B,C所对的边分别记为a,b,c,且tan A=cos B-sin Ccos C+sin B.(1)若B=π6,求C的大小.(2)若a=2,求b+c的取值范围.3.(2024·广东广州·三模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c=b sin A2+a cos B.(1)求A;(2)若D是边BC上一点(不包括端点),且∠ABD=∠BAD,求CDBD的取值范围.4.(2024·江西鹰潭·二模)△ABC的内角A,B,C的对边分别为a,b,c,满足1-sin Acos A =sin B cos B.(1)求证:A+2B=π2;(2)求a2+b2c2的最小值.【题型3三角形周长的最值或范围问题】1.(2024·安徽淮北·二模)记△ABC的内角A,B,C的对边分别为a,b,c,已知c-b=2c sin2A2(1)试判断△ABC的形状;(2)若c=1,求△ABC周长的最大值.2.(2024·四川绵阳·模拟预测)已知在△ABC中,D为BC边的中点,且AD=5.(1)若△ABC的面积为2,cos∠ADC=55,求B;(2)若AB2+AC2=18,求△ABC的周长的最大值.3.(2024·云南曲靖·二模)在△ABC中,角A,B,C的对边分别为a,b,c,且a cos C+3c sin A=b+c.(1)求角B的取值范围;(2)已知△ABC内切圆的半径等于32,求△ABC周长的取值范围.=2b.4.(2024·湖南常德·一模)已知△ABC的内角A,B,C的对边分别是a,b,c,且acos C(1)判断△ABC的形状;(2)若△ABC的外接圆半径为2,求△ABC周长的最大值.【题型4三角形的角(角的三角函数值)的最值或范围问题】1.(2024·内蒙古呼和浩特·一模)记△ABC的内角A,B,C的对边分别为a,b,c.若a=3,b=2,则B+C的取值范围是()A.2π3,5π6B.2π3,πC.5π6,πD.π2,5π62.(2024·内蒙古呼和浩特·二模)在△ABC中,角A、B、C的对边分别为a、b、c,若1b2+54a2=c2a2b2,则tan A-1tan C的最小值为()A.13B.23C.29D.193.(2024·陕西宝鸡·二模)△ABC中,D为BC边的中点,AD=1.(1)若△ABC的面积为23,且∠ADC=2π3,求sin C的值;(2)若BC=4,求cos∠BAC的取值范围.4.(2024·北京石景山·一模)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【题型5利用基本不等式求最值(范围)】1.(2024·山西太原·三模)已知△ABC中,A=120°,D是BC的中点,且AD=1,则△ABC面积的最大值()A.3B.23C.1D.22.(2024·黑龙江哈尔滨·三模)已知△ABC的内角A,B,C的对边分别为a,b,c,且a=3,BC边上中线AD长为1,则bc最大值为()A.74B.72C.3D.233.(2024·安徽合肥·二模)记△ABC的内角A,B,C的对边分别为a,b,c,已知c=2,1tan A +1tan B+1tan A tan B=1.则△ABC面积的最大值为()A.1+2B.1+3C.22D.234.(2024·浙江台州·二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若a cos C=2c cos A,则bca2的最大值为()A.3B.32C.32D.3【题型6转化为三角函数求最值(范围)】1.(2024·辽宁沈阳·模拟预测)在△ABC中,内角A,B,C所对的边分别为a,b,c,且sin2C-sin C sin Bcos2B-cos2A=1.(1)求角A的大小;(2)若△ABC为锐角三角形,点F为△ABC的垂心,AF=6,求CF+BF的取值范围.2.(2024·辽宁·模拟预测)已知△ABC的内角A,B,C的对边分别为a,b,c,c-3bsin C= a-bsin A+sin B.(1)求A;(2)若△ABC为锐角三角形,且b=6,求△ABC的周长l的取值范围.3.(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.4.(2024·福建漳州·模拟预测)如图,在四边形ABCD中,∠DAB=π2,B=π6,且△ABC的外接圆半径为4.(1)若BC=42,AD=22,求△ACD的面积;(2)若D=2π3,求BC-AD的最大值.【题型7转化为其他函数求最值(范围)】1.(2024·四川成都·模拟预测)设锐角△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且c =2,B =2C ,则a +b 的取值范围为()A.2,10B.2+22,10C.2+22,4+23D.4+23,102.(2024·全国·模拟预测)已知△ABC 是锐角三角形,内角A ,B ,C 所对应的边分别为a ,b ,c .若a 2-b 2=bc ,则b a +c的取值范围是()A.33,22B.2-3,1C.2-3,2-1D.2+1,3+23.(2023·全国·模拟预测)已知△ABC 为锐角三角形,其内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =cos2A .(1)求ba的取值范围;(2)若a =1,求△ABC 周长的取值范围.4.(2024·全国·模拟预测)已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S △ABC =b 2-c 2+164⋅tan C .(1)求a 的值;(2)若D 为线段BC 上一点且满足BD =1,DA 平分∠BAC ,求△ABC 的面积的取值范围.【题型8“坐标法”求最值(范围)】1.(23-24高一下·四川宜宾·期末)如图,在平面四边形ABCD 中,AB ⊥BC ,∠BCD =60°,∠ADC =150°,BE =3EC ,CD =233,BE =3,若点F 为边AD 上的动点,则EF ⋅BF 的最小值为()A.1B.1516C.3132D.22.(2023·安徽马鞍山·模拟预测)已知平行四边形ABCD 中,∠ADC =60°,E ,F 分别为边AB ,BC 的中点,若DE ⋅DF=13,则四边形ABCD 面积的最大值为()A.2B.23C.4D.433.(2023·全国·模拟预测)在等腰△ABC 中,角A ,B ,C 所对应的边为a ,b ,c ,B =C =π6,a =23,P 是△ABC 外接圆上一点,则P A ⋅PB +PB ⋅PC +PC ⋅P A的取值范围是()A.-3,23B.-1,33C.-2,30D.-4,204.(2024·江西南昌·三模)如图,在扇形OAB 中,半径OA =4,∠AOB =90°,C 在半径OB 上,D 在半径OA 上,E 是扇形弧上的动点(不包含端点),则平行四边形BCDE 的周长的取值范围是()A.8,12B.82,12C.8,82D.4,82【题型9与平面向量有关的最值(范围)问题】1.(2023·河南开封·三模)已知e 1 、e 2 为单位向量,e 1 -e 2 =3,非零向量a 满足a-2e 2 =1,则e 1 -a 的最小值为()A.7B.7-1C.3D.3-12.(23-24高三上·北京通州·期末)在菱形ABCD 中,AB =2,∠BAD =60°,E 是BC 的中点,F 是CD 上一点(不与C ,D 重合),DE 与AF 交于G ,则AG ⋅DG的取值范围是()A.0,23B.0,43C.0,2D.0,33.(2024·福建泉州·模拟预测)已知平行四边形ABCD 中,AB =2,BC =4,B =2π3,若以C 为圆心的圆与对角线BD 相切,P 是圆C 上的一点,则BD ⋅CP -CB的最小值是()A.8-23B.4+23C.12-43D.6+234.(2023·福建厦门·二模)在△AOB 中,已知OB =2,AB=1,∠AOB =45°,若OP =λOA +μOB,且λ+2μ=2,μ∈0,1 ,则OA 在OP 上的投影向量为me (e为与OP 同向的单位向量),则m 的取值范围是()A.-22,1B.22,1C.-22,1D.22,1一、单选题1.(2024·江苏连云港·模拟预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,b cos A =1+cos B ,则边b 的取值范围为()A.0,1B.1,2C.0,2D.2,32.(2024·安徽合肥·模拟预测)已知△ABC 角A 、B 、C 的对边分别为a 、b 、c 满足2b a -c =sin A +sin Csin B ,则角B 的最大值为()A.π6B.π4C.π3D.2π33.(2024·广东东莞·模拟预测)已知在同一平面内的三个点A ,B ,C 满足AB =2,CA CA -CBCB≥1,则AC +BC的取值范围是()A.0,1 B.0,2 C.0,3 D.0,234.(2024·河南·三模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A+b cos B =3ccos C ,则tan A +tan C 的最小值是()A.43B.83C.23D.45.(2024·河南·模拟预测)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足b 3+c 3b +c=a 2.若a =23,则b 2+c 2的取值范围为()A.12,24B.20,24C.12,24D.20,246.(2024·江西·二模)在△ABC 中,若sin A =2cos B cos C ,则cos 2B +cos 2C 的取值范围为()A.1,65B.1,2+12C.65,2D.2+12,2 7.(2024·全国·二模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a cos A =b cos C +c cos B ,且a =4sin A ,则△ABC 周长的最大值为()A.42B.62C.43D.638.(2024·陕西咸阳·三模)为了进一步提升城市形象,满足群众就近健身和休闲的需求,2023年某市政府在市区多地规划建设了“口袋公园”.如图,在扇形“口袋公园”OPQ 中,准备修一条三角形健身步道OAB ,已知扇形的半径OP =3,圆心角∠POQ =π3,A 是扇形弧上的动点,B 是半径OQ 上的动点,AB ⎳OP ,则△OAB 面积的最大值为()A.334B.34C.335D.35二、多选题9.(2024·江苏南京·二模)已知△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,O 为△ABC 的重心,cos A =15,AO =2,则()A.AO =13AB +13ACB.AB ⋅AC ≤3C.△ABC 的面积的最大值为36D.a 的最小值为2510.(2024·湖南·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =b 2cos A +1 ,则下列结论正确的有()A.A =2BB.若a =3b ,则△ABC 为直角三角形C.若△ABC 为锐角三角形,1tan B -1tan A 的最小值为1D.若△ABC 为锐角三角形,则c a 的取值范围为22,23311.(2024·河北邯郸·三模)已知△ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,面积为34a 2+c 2-b 2,则下列说法正确的是()A.cos A cos C 的取值范围是-12,14B.若D 为边AC 的中点,且BD =1,则△ABC 的面积的最大值为33C.若△ABC 是锐角三角形,则a c 的取值范围是12,2 D.若角B 的平分线BE 与边AC 相交于点E ,且BE =3,则a +4c 的最小值为10三、填空题12.(2024·北京·三模)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a +c =2b ,则角B 的取值范围为0,π3 .13.(2024·陕西安康·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,2a cos C=2cos B +c cos C ,则2a +c 的最大值为4213.14.(2024·江苏盐城·一模)在△ABC 中,已知AB =2,BC =3,点P 在△ABC 内,且满足CP =2,∠APC +∠ABC =π,则四边形ABCP 面积的最大值为.四、解答题15.(2024·山东菏泽·模拟预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知AB ⋅AC -BA ⋅BC =λAB 2(1)若λ=1,判断△ABC 的形状;(2)若λ=12,求tan B -A 的最大值.16.(2024·江苏盐城·模拟预测)在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,a sin 2B 2+b sin 2A 2=3ab2a +b +c.(1)求角C 的大小;(2)若△ABC 为锐角三角形,求a +bc的取值范围.17.(2024·重庆渝中·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足3ca-sin B =tan A ⋅cos B .(1)求角A 的大小;(2)若△ABC 为锐角三角形且a =26,求△ABC 面积的取值范围.18.(2024·四川南充·模拟预测)在△ABC中,sin Csin A+sin B =sin A-sin B sin B+sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.19.(2024·陕西商洛·模拟预测)在锐角△ABC中.内角A,B,C所对的边分别是a,b,c,已知a-2c cos B=c.(1)求证:B=2C;(2)求sin B+23cos2C的取值范围.。
高考数学复习考点题型专题讲解3 三角中的最值、范围问题
高考数学复习考点题型专题讲解专题3 三角中的最值、范围问题高考定位 以三角函数、三角形为背景的最值及范围问题是高考的热点,常用的方法主要有:函数的性质(如有界性、单调性)、基本不等式、数形结合等.1.(2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( )A.π4B.π2C.3π4D.π 答案 A解析法一f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π, 得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数, 所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A. 法二 因为f (x )=cos x -sin x , 所以f ′(x )=-sin x -cos x ,则由题意,知f ′(x )=-sin x -cos x ≤0在[-a ,a ]上恒成立, 即sin x +cos x ≥0,即2sin ⎝⎛⎭⎪⎫x +π4≥0在[-a ,a ]上恒成立,结合函数y =2sin ⎝ ⎛⎭⎪⎫x +π4的图象可知有⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,解得a ≤π4, 所以0<a ≤π4,所以a 的最大值是π4,故选A. 2.(2022·全国甲卷)设函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3在区间(0,π)上恰有三个极值点、两个零点,则ω的取值范围是( ) A.⎣⎢⎡⎭⎪⎫53,136 B.⎣⎢⎡⎭⎪⎫53,196 C.⎝ ⎛⎦⎥⎤136,83 D.⎝ ⎛⎦⎥⎤136,196答案 C解析 由题意可得ω>0,故由x ∈(0,π),得ωx +π3∈⎝⎛⎭⎪⎫π3,πω+π3.根据函数f (x )在区间(0,π)上恰有三个极值点,知5π2<πω+π3≤7π2,得136<ω≤196. 根据函数f (x )在区间(0,π)上恰有两个零点,知2π<πω+π3≤3π,得53<ω≤83.综上,ω的取值范围为⎝ ⎛⎦⎥⎤136,83.3.(2018·北京卷)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;ca的取值范围是________. 答案 60° (2,+∞)解析 △ABC 的面积S =12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,所以tan B =3,因为0°<∠B <90°, 所以∠B =60°.因为∠C 为钝角,所以0°<∠A <30°, 所以0<tan A <33,所以c a =sin C sin A =sin (120°-A )sin A=sin 120°cos A -cos 120°sin Asin A=32tan A +12>2, 故ca的取值范围为(2,+∞).4.(2022·新高考Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A =sin 2B1+cos 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c2的最小值.解 (1)因为cos A 1+sin A =sin 2B1+cos 2B ,所以cos A 1+sin A =2sin B cos B1+2cos 2B -1,所以cos A 1+sin A =sin Bcos B,所以cos A cos B =sin B +sin A sin B , 所以cos(A +B )=sin B , 所以sin B =-cos C =-cos2π3=12. 因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以B =π6.(2)由(1)得cos(A +B )=sin B , 所以sin ⎣⎢⎡⎦⎥⎤π2-(A +B )=sin B ,且0<A +B <π2,所以0<B <π2,0<π2-(A +B )<π2,所以π2-(A +B )=B ,解得A =π2-2B ,由正弦定理得a 2+b 2c 2=sin 2A +sin 2Bsin 2C=sin 2A +sin 2B 1-cos 2C =sin 2⎝ ⎛⎭⎪⎫π2-2B +sin 2B 1-sin 2B=cos 22B +sin 2B cos 2B =(2cos 2B -1)2+1-cos 2B cos 2B=4cos 4B -5cos 2B +2cos 2B =4cos 2B +2cos 2B -5≥24cos 2B ·2cos 2B -5=42-5,当且仅当cos 2B =22时取等号, 所以a 2+b 2c2的最小值为42-5.热点一 三角函数式的最值或范围求三角函数式的最值或范围问题,首先把函数式化为一个角的同名三角函数形式,接着利用三角函数的有界性或单调性求解.例1(2022·宁波调研)已知函数f (x )=2sin x cos x -23cos 2x + 3. (1)求f ⎝ ⎛⎭⎪⎫π4的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)因为f (x )=2sin x cos x -23cos 2x +3=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,所以f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2-π3=2sin π6=1.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1,所以,当2x -π3=π2,即x =5π12时,f (x )取到最大值2; 当2x -π3=-π3,即x =0时,f (x )取到最小值- 3.易错提醒 求三角函数式的最值范围问题要注意: (1)把三角函数式正确地化简成单一函数形式;(2)根据所给自变量的范围正确地确定ωx +φ的范围,从而根据三角函数的单调性求范围.训练1(2022·潍坊质检)在①函数y =f (x )的图象关于直线x =π3对称,②函数y =f (x ) 的图象关于点P ⎝ ⎛⎭⎪⎫π6,0对称,③函数y =f (x )的图象经过点Q ⎝ ⎛⎭⎪⎫2π3,-1,这三个条件中任选一个,补充在下面问题中并解答.问题:已知函数f (x )=sin ωx cos φ+cos ωx sin φ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且________,判断函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上是否存在最大值?若存在,求出最大值及此时的x 值;若不存在,说明理由.解f (x )=sin ωx cos φ+cos ωx sin φ=sin(ωx +φ), 由已知函数f (x )的周期T =2πω=π,得ω=2,所以f (x )=sin(2x +φ). 若选①,则有2×π3+φ=k π+π2(k ∈Z ), 解得φ=k π-π6(k ∈Z ).又因为|φ|<π2,所以φ=-π6, 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π6.当x ∈⎝ ⎛⎭⎪⎫π6,π2时,则2x -π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以当2x -π6=π2,即x =π3时,函数f (x )取得最大值,最大值为1.若选②,则有2×π6+φ=k π(k ∈Z ), 解得φ=k π-π3(k ∈Z ). 又因为|φ|<π2,所以φ=-π3, 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.当x ∈⎝⎛⎭⎪⎫π6,π2时,则2x -π3∈⎝ ⎛⎭⎪⎫0,2π3, 所以当2x -π3=π2,即x =5π12时,函数f (x )取得最大值,最大值为1.若选③,则有2×2π3+φ=2k π-π2(k ∈Z ),解得φ=2k π-11π6(k ∈Z ).又因为|φ|<π2, 所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.当x ∈⎝ ⎛⎭⎪⎫π6,π2时,则2x +π6∈⎝ ⎛⎭⎪⎫π2,7π6,显然,函数f (x )在该区间上没有最大值. 热点二 与三角函数性质有关的参数范围与三角函数性质有关的参数问题,主要分为三类,其共同的解法是将y =A sin(ωx +φ)中的ωx +φ看作一个整体,结合正弦函数的图象与性质进行求解. 考向1 由最值(或值域)求参数的范围例2 若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0)在⎣⎢⎡⎦⎥⎤0,π2上的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,32B.⎣⎢⎡⎦⎥⎤32,3C.⎣⎢⎡⎦⎥⎤3,72D.⎣⎢⎡⎦⎥⎤52,72答案 B解析 因为ω>0,所以当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又因为函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0)在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域是⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3.故选B.考向2 由单调性求参数的范围例3 已知f (x )=sin(2x -φ)⎝ ⎛⎭⎪⎫0<φ<π2在⎣⎢⎡⎦⎥⎤0,π3上是增函数,且f (x )在⎝ ⎛⎭⎪⎫0,7π8上有最小值,那么φ的取值范围是( ) A.⎣⎢⎡⎭⎪⎫π6,π2 B.⎣⎢⎡⎭⎪⎫π6,π4C.⎣⎢⎡⎭⎪⎫π3,π2D.⎣⎢⎡⎭⎪⎫π4,π3答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤0,π3,得2x -φ∈⎣⎢⎡⎦⎥⎤-φ,2π3-φ, 又由0<φ<π2,且f (x )在⎣⎢⎡⎦⎥⎤0,π3上是增函数,可得2π3-φ≤π2,所以π6≤φ<π2. 当x ∈⎝ ⎛⎭⎪⎫0,7π8时,2x -φ∈⎝ ⎛⎭⎪⎫-φ,7π4-φ, 由f (x )在⎝⎛⎭⎪⎫0,7π8上有最小值,可得7π4-φ>3π2,则φ<π4.综上,π6≤φ<π4.故选B.考向3 由函数的零点求参数的范围例4 已知a =⎝⎛⎭⎪⎫sin ω2x ,sin ωx ,b =⎝ ⎛⎭⎪⎫sin ω2x ,12,其中ω>0,若函数f (x )=a·b -12在区间(π,2π)上没有零点,则ω的取值范围是( ) A.⎝⎛⎦⎥⎤0,18B.⎝ ⎛⎦⎥⎤0,58C.⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤58,1D.⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58答案 D 解析f (x )=sin 2ω2x +12sin ωx -12=1-cos ωx 2+12sin ωx -12=12(sin ωx -cos ωx )=22sin ⎝⎛⎭⎪⎫ωx -π4.由函数f (x )在区间(π,2π)上没有零点,知其最小正周期T ≥2π, 即2πω≥2π,所以ω≤1. 当x ∈(π,2π)时,ωx -π4∈⎝⎛⎭⎪⎫ωπ-π4,2ωπ-π4,所以⎩⎪⎨⎪⎧ωπ-π4≥k π,2ωπ-π4≤(k +1)π(k ∈Z ),解得k +14≤ω≤k 2+58(k ∈Z ).因为0<ω≤1, 当k =0时,14≤ω≤58,当k =-1时,0<ω≤18,所以ω∈⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58.故选D.规律方法 由三角函数的性质求解参数,首先将解析式化简,利用对称性、奇偶性或单调性得到含有参数的表达式,进而求出参数的值或范围.训练2 (1)(2022·广州调研)若函数f (x )=12cos ωx -32sin ωx (ω>0)在[0,π]内的值域为⎣⎢⎡⎦⎥⎤-1,12,则ω的取值范围为( ) A.⎣⎢⎡⎦⎥⎤23,43B.⎝ ⎛⎦⎥⎤0,43C.⎝⎛⎦⎥⎤0,23D.(0,1](2)(2022·金华质检)将函数f (x )=sin 4x +cos 4x 的图象向左平移π8个单位长度后,得到g (x )的图象,若函数y =g (ωx )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递减,则正数ω的最大值为( )A.12B.1 C.32D.23答案 (1)A (2)A解析 (1)f (x )=12cos ωx -32sin ωx =cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),当x ∈[0,π]时,π3≤ωx +π3≤ωπ+π3. 又f (x )∈⎣⎢⎡⎦⎥⎤-1,12,所以π≤ωπ+π3≤5π3,解得23≤ω≤43, 故ω的取值范围为⎣⎢⎡⎦⎥⎤23,43.(2)依题意,f (x )=⎝ ⎛⎭⎪⎫1-cos 2x 22+⎝ ⎛⎭⎪⎫1+cos 2x 22=1+cos 22x 2=3+cos 4x4, 其图象向左平移π8个单位长度得到g (x )=34+14cos ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x +π8=34+14cos ⎝ ⎛⎭⎪⎫4x +π2 =34-14sin 4x 的图象, 故g (ωx )=34-14sin(4ωx ).令-π2+2k π≤4ωx ≤π2+2k π,k ∈Z ,由于ω>0,得-π8+k π2ω≤x ≤π8+k π2ω,k ∈Z .由于函数g (ωx )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递减,故⎩⎪⎨⎪⎧-π8+k π2ω≤-π12,π8+k π2ω≥π4,解得⎩⎪⎨⎪⎧ω≤32-6k ,ω≤12+2k ,k ∈Z ,所以当k =0时,ω=12为正数ω的最大值.热点三 三角形中有关量的最值或范围三角形中的最值、范围问题的解题策略(1)定基本量:根据题意画出图形,找出三角形中的边、角,利用正弦、余弦定理求出相关的边、角,并选择边、角作为基本量,确定基本量的范围.(2)构建函数:根据正弦、余弦定理或三角恒等变换,将所求范围的变量表示成函数形式.(3)求最值:利用基本不等式或函数的单调性等求函数的最值.例5(2022·滨州二模)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知6cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =5. (1)求A 的大小;(2)若a =2,求b 2+c 2的取值范围. 解 (1)由已知得6sin 2A +cos A =5,整理得6cos 2A -cos A -1=0, 解得cos A =12或cos A =-13.又A ∈⎝⎛⎭⎪⎫0,π2,所以cos A =12,即A =π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A 及a =2,A =π3得4=b 2+c 2-bc , 即b 2+c 2=4+bc ,由正弦定理得a sin A =b sin B =c sin C =232=433,即b =433sin B ,c =433sin C ,又C =2π3-B ,所以bc =163sin B sin C =163sin B sin ⎝⎛⎭⎪⎫2π3-B =833sin B ·cos B +83sin 2B=433sin 2B -43cos 2B +43=83sin⎝ ⎛⎭⎪⎫2B -π6+43, 又由⎩⎪⎨⎪⎧0<B <π2,0<23π-B <π2,解得π6<B <π2,所以π6<2B -π6<56π,所以sin ⎝ ⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤12,1,所以bc ∈⎝ ⎛⎦⎥⎤83,4,所以b 2+c 2=4+bc ∈⎝ ⎛⎦⎥⎤203,8.易错提醒 求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清楚变量的范围,若已知边的范围,求角的范围可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,|b -c |<a <b +c ,三角形中大边对大角等.训练3 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知S =34(b 2+c 2-a 2),a =4.(1)求角A 的大小.(2)求△ABC 周长的取值范围. 解 (1)由S =34(b 2+c 2-a 2), 得12bc sin A =34(b 2+c 2-a 2)=34×2bc cos A , 整理得tan A =3,因为A ∈(0,π), 所以A =π3.(2)设△ABC 的周长为L , 因为a =4,A =π3, 由余弦定理得:42=b 2+c 2-2bc cos π3,即42=b 2+c 2-bc =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22=14(b +c )2, 所以b +c ≤8, 又b +c >a =4,所以L =a +b +c ∈(8,12].一、基本技能练1.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫π12=0,则ω的最小值为( ) A.2 B.4 C.6 D.8 答案 A解析 函数f (x )的周期T ≤4⎝ ⎛⎭⎪⎫π3-π12=π,则2πω≤π,解得ω≥2,故ω的最小值为2.2.将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到的函数为奇函数,则|φ|的最小值为( ) A.π12B.π6C.π3D.5π6 答案 B解析 将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到图象的函数解析式为y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+φ=cos ⎝ ⎛⎭⎪⎫2x -2π3+φ,此函数为奇函数,所以-2π3+φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ), 则当k =-1时,|φ|取得最小值π6.3.(2022·海南模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin A +2c sinC =2b sin C cos A ,则角A 的最大值为( ) A.π6B.π4 C.π3D.2π3答案 A解析 因为a sin A +2c sin C =2b sin C cos A , 由正弦定理可得,a 2+2c 2=2bc cos A ,① 由余弦定理得,a 2=b 2+c 2-2bc cos A ,② ①+②得2a 2=b 2-c 2,所以cos A =b 2+c 2-a 22bc=b 2+c 2-12(b 2-c 2)2bc=b 2+3c 24bc ≥23bc 4bc =32(当且仅当b =3c 时取等号),所以角A 的最大值为π6.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2a -cb=cos Ccos B,b =4,则△ABC 的面积的最大值为( ) A.43B.2 3 C.2 D. 3 答案 A解析 ∵在△ABC 中,2a -cb=cos C cos B, ∴(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C , 整理得sin(B +C )=2sin A cos B , ∵A ∈(0,π),∴sin A ≠0. ∴cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cos B =a 2+c 2-ac ≥2ac -ac =ac , ∴ac ≤16,当且仅当a =c 时取等号, ∴△ABC 的面积S =12ac sin B =34ac ≤4 3.即△ABC 的面积的最大值为4 3.5.(2022·苏北四市模拟)若函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x +π6在(0,α)上恰有2个零点,则α的取值范围为( ) A.⎣⎢⎡⎭⎪⎫5π6,4π3 B.⎝⎛⎦⎥⎤5π6,4π3C.⎣⎢⎡⎭⎪⎫5π3,8π3 D.⎝ ⎛⎦⎥⎤5π3,8π3 答案 B解析 由题意,函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x +π6=3sin ⎝ ⎛⎭⎪⎫2x +π3,因为0<x <α,所以π3<2x +π3<2α+π3, 又由f (x )在(0,α)上恰有2个零点, 所以2π<2α+π3≤3π,解得5π6<α≤4π3, 所以α的取值范围为⎝⎛⎦⎥⎤5π6,4π3.故选B. 6.已知函数f (x )=cos(ωx +φ)(ω>0)的最小正周期为π,且对x ∈R ,f (x )≥f ⎝ ⎛⎭⎪⎫π3恒成立,若函数y =f (x )在[0,a ]上单调递减,则a 的最大值是( ) A.π6B.π3 C.2π3D.5π6答案 B解析 因为函数f (x )=cos(ωx +φ)的最小正周期为π, 所以ω=2ππ=2, 又对x ∈R ,都有f (x )≥f ⎝ ⎛⎭⎪⎫π3,所以函数f (x )在x =π3时取得最小值,则2π3+φ=π+2k π,k ∈Z , 即φ=π3+2k π,k ∈Z ,所以f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,令2k π≤2x +π3≤π+2k π,k ∈Z , 解得-π6+k π≤x ≤π3+k π,k ∈Z ,则函数y =f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故a 的最大值是π3,故选B.7.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________. 答案⎣⎢⎡⎭⎪⎫32,+∞解析 x ∈⎣⎢⎡⎦⎥⎤-π3,π4,因为ω>0,-π3ω≤ωx ≤π4ω, 由题意知-π3ω≤-π2,即ω≥32,故ω取值范围是⎣⎢⎡⎭⎪⎫32,+∞.8.已知函数f (x )=cos ωx +sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在[0,π]上恰有一个最大值点和两个零点,则ω的取值范围是________. 答案⎣⎢⎡⎭⎪⎫53,136解析函数f (x )=cos ωx +sin ⎝⎛⎭⎪⎫ωx +π6=3sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0), 由x ∈[0,π],得ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ+π3.又f (x )在[0,π]上恰有一个最大值点和两个零点, 则2π≤ωπ+π3<52π, 解得53≤ω<136.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的角平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 答案 9解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D , 所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1·sin 60°+12c ·1·sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c=1,则4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥5+2c a ·4ac=9, 当且仅当c =2a 时取等号,故4a+c的最小值为9.10.已知△ABC的内角A,B,C所对的边分别为a,b,c,且A≠π2,c+b cos A-a cos B=2a cos A,则ba=________;内角B的取值范围是________.答案22⎝⎛⎦⎥⎤0,π4解析由c+b cos A-a cos B=2a cos A结合正弦定理得sin C+sin B cos A-sin A cos B=2sin A cos A,即sin(A+B)+sin B cos A-sin A cos B=2sin A cos A,化简得2sin B cos A=2sin A cos A.因为A≠π2,所以cos A≠0,则2sin B=2sin A,所以ba=sin Bsin A=22,则由余弦定理得cos B=a2+c2-b22ac=2b2+c2-b222bc=b2+c222bc≥2bc22bc=22,当且仅当b=c时等号成立,解得0<B≤π4.11.设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围. (1)证明由a=b tan A及正弦定理,得sin A cos A =a b =sin A sin B , 所以sin B =cos A , 即sin B =sin ⎝ ⎛⎭⎪⎫π2+A .又B 为钝角,因此π2+A ∈⎝ ⎛⎭⎪⎫π2,π,故B =π2+A ,即B -A =π2.(2)解 由(1)知,C =π-(A +B ) =π-⎝⎛⎭⎪⎫2A +π2=π2-2A >0, 所以A ∈⎝⎛⎭⎪⎫0,π4,于是sin A +sin C =sin A +sin ⎝ ⎛⎭⎪⎫π2-2A =sin A +cos 2A =-2sin 2A +sin A +1=-2⎝ ⎛⎭⎪⎫sin A -142+98.因为0<A <π4,所以0<sin A <22,因此22<-2⎝⎛⎭⎪⎫sin A -142+98≤98.由此可知sin A +sin C 的取值范围是⎝ ⎛⎦⎥⎤22,98.12.已知向量a =⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫π2+x ,sin ⎝ ⎛⎭⎪⎫π2+x ,b =(-sin x ,3sin x ),f (x )=a ·b .(1)求函数f (x )的最小正周期及f (x )的最大值;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=1,a =23,求△ABC面积的最大值并说明此时△ABC 的形状. 解 (1)由已知得a =(-sin x ,cos x ), 又b =(-sin x ,3sin x ), 则f (x )=a ·b =sin 2x +3sin x cos x=12(1-cos 2x )+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, 所以f (x )的最小正周期T =2π2=π, 当2x -π6=π2+2k π(k ∈Z ),即x =π3+k π(k ∈Z )时,f (x )取得最大值32. (2)在锐角△ABC 中,因为f ⎝ ⎛⎭⎪⎫A 2=sin ⎝ ⎛⎭⎪⎫A -π6+12=1,所以sin ⎝ ⎛⎭⎪⎫A -π6=12,所以A =π3.因为a 2=b 2+c 2-2bc cos A , 所以12=b 2+c 2-bc , 所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c =23时等号成立),此时△ABC 为等边三角形, S △ABC =12bc sin A =34bc ≤3 3.所以当△ABC 为等边三角形时面积取最大值3 3. 二、创新拓展练13.设锐角△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( ) A.(2,3) B.(1,3) C.(2,2) D.(0,2) 答案 A解析 ∵B =2A ,∴sin B =sin 2A =2sin A cos A . ∵a =1,∴b =2a cos A =2cos A .又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<2A <π2,0<A <π2,0<π-3A <π2,∴π6<A <π4, ∴22<cos A <32, 即2<2cos A <3,故选A.14.(多选)(2022·台州质检)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),已知f (x )在[0,2π]上有且仅有3个极小值点,则( )A.f (x )在(0,2π)上有且仅有5个零点B.f (x )在(0,2π)上有且仅有2个极大值点C.f (x )在⎝ ⎛⎭⎪⎫0,π6上单调递减D.ω的取值范围是⎣⎢⎡⎭⎪⎫73,103答案 CD解析 因为x ∈[0,2π], 所以ωx +π3∈⎣⎢⎡⎦⎥⎤π3,2πω+π3. 设t =ωx +π3∈⎣⎢⎡⎦⎥⎤π3,2πω+π3,画出y =cos t 的图象如图所示.由图象可知,若f (x )在[0,2π]上有且仅有3个极小值点, 则5π≤ 2πω+π3<7π, 解得73≤ω<103, 故D 正确;故f (x )在(0,2π)上可能有5,6或7个零点,故A 错误;f (x )在(0,2π)上可能有2或3个极大值点,故B 错误; 当x ∈⎝ ⎛⎭⎪⎫0,π6时,ωx +π3∈⎝ ⎛⎭⎪⎫π3,π6ω+π3.因为73≤ω<103,所以13π18≤π6ω+π3<8π9,故f (x )在⎝⎛⎭⎪⎫0,π6上单调递减,故C 正确.15.(多选)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c =6,记S 为△ABC 的面积,则下列说法正确的是( ) A.若C =π3,则S 有最大值9 3 B.若A =π6,a =23,则S 有最小值3 3C.若a =2b ,则cos C 有最小值0D.若a +b =10,则sin C 有最大值2425答案 ABD解析 对于选项A ,对角C 由余弦定理得36=c 2=a 2+b 2-ab ≥2ab -ab =ab , 因此,S =12ab sin C =34ab ≤93,当且仅当a =b =6时取等号,故A 正确; 对于选项B ,对角A 用余弦定理得 12=a 2=c 2+b 2-3bc =36+b 2-63b , 解得b =23或b =43, 因此,S =12bc sin A =32b ≥33,当且仅当b =23时取等号,故B 正确. 对于选项C ,若a =2b ,由三边关系可得a -b =b <c =6<a +b =3b ⇒2<b <6,此时,由余弦定理,得cos C =a 2+b 2-c 22ab =5b 2-364b 2=54-9b 2∈(-1,1),故C 错误.对于选项D ,若a +b =10,则cos C =a 2+b 2-c 22ab =(a +b )2-c 2-2ab 2ab =32ab -1,又ab ≤(a +b )24=25,当且仅当a =b =5时取等号,∴cos C =32ab -1≥725⇒sin C =1-cos 2C ≤2425,故D 正确,故选ABD.16.(2022·南京师大附中模拟)法国的拿破仑提出过一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰好是一个等边三角形的三个顶点”.在△ABC 中,A =60°,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为O 1,O 2,O 3,则∠O 1AO 3=________;若△O 1O 2O 3的面积为3,则三角形中AB +AC 的最大值为________.答案 120° 4解析 由于O 1,O 3是正△ABC ′,△AB ′C 的外接圆圆心,故也是它们的中心, 所以在△O 1AB 中,∠O 1AB =30°,同理∠O 3AC =30°, 又∠BAC =60°,所以∠O 1AO 3=120°; 由题意知△O 1O 2O 3为等边三角形,设边长为m , 则S △O 1O 2O 3=12m 2sin 60°=34m 2=3,解得O 1O 3=m =2.设BC =a ,AC =b ,AB =c ,在等腰△BO 1A 中,∠O 1AB =∠O 1BA =30°,∠AO 1B =120°, 则AB sin 120°=O 1Asin 30°,解得O 1A =c 3,同理得O 3A =b 3,在△O 1AO 3中,由余弦定理得O 1O 23=O 1A 2+O 3A 2-2O 1A ·O 3A ·cos 120°,即4=c 23+b 23-2·bc 3·⎝ ⎛⎭⎪⎫-12,即b 2+c 2+bc =12,即(b +c )2-bc =12, 故(b +c )2-12=bc ≤⎝⎛⎭⎪⎫b +c 22, 解得b +c ≤4,当且仅当b =c =2时取等号,故三角形中AB +AC 的最大值为4. 17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b 2c =a (b 2+c 2-a 2). (1)若A =π3,求B 的大小;(2)若a ≠c ,求c -3ba 的最小值.解 (1)因为b 2c =a (b 2+c 2-a 2),所以由余弦定理得cos A =b 2+c 2-a 22bc =b2a .因为A =π3,所以b 2a =12,即a =b , 所以B =A =π3.(2)由(1)及正弦定理得cos A =sin B2sin A,即sin B =2sin A cos A =sin 2A , 所以B =2A 或B +2A =π.当B +2A =π时,A =C ,与a ≠c 矛盾,故舍去, 所以B =2A .c -3b a =sin C -3sin B sin A =sin (A +B )-3sin Bsin A =sin A cos B +cos A sin B -3sin Bsin A=cos B +(cos A -3)sin 2Asin A=cos 2A +2(cos A -3)·cos A =4cos 2A -6cos A -1 =4⎝⎛⎭⎪⎫cos A -342-134.因为C =π-A -B =π-3A >0, 即A <π3,所以cos A >12,所以当cos A =34时,c -3b a 有最小值-134.。
专题03 以三角形为背景的范围最值为专题训练(第01期)-2017届高三数学备考十大特色专题集中
专题3 以三角形为背景的范围最值为专题训练题型一 与三角形相关的面积或周长范围1.【2017届重庆市高三上学期第一次诊断模拟】已知的外接圆半径为2,为该圆上的一点,且,则的面积的最大值为 ( ) A. 3 B. 4 C.D.2.【2017届云南省昆明市第一中学高三月考卷(五)】已知三角形中,角所对边分别为,满足且,则三角形面积的最大值为__________.3.【2017届广东汕头市普通高考高三月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足()cos 2cos c c B a b C ==-.(1)求角C 的大小;(2)求ABC ∆的周长的最大值.4.【湖南省2017届高三长郡中学、衡阳八中等十三校重点中学第一次联考】设的内角的对边分别为,且满足.(1)试判断的形状,并说明理由;(2)若,试求面积的最大值.5.【2017届广东省深圳市高三下学期第一次调研考试(一模)】的内角的对边分别为,已知.(1)求; (2)若,求的面积的最大值. 6.【2017届江苏南通中学高三上期中数学(理)】如图,在ABC ∆中,角,,A B C 的对边分别为,,a b c ,(sin cos )a b C C =+.(Ⅰ)求ABC ∠; (Ⅱ)若=2A π∠,D 为ABC ∆外一点,2DB =,1DC =,求四边形ABDC 面积的最大值. 题型二 与三角形相关的边长或角范围7.【2017届重庆市第一中学高三上学期一诊】中,角所对的边分别为,且,则的取值范围是__________.8.【2017届河南省郑州市第一中学高三上学期第一次质量检测】如果满足,,的锐角有且只有一个,那么实数的取值范围是__________.9.【2017届浙江杭州地区重点中学高三上学期期中】在等腰△ABC 中,AB AC =,AC 边上的中线BD 长为6,则当ABC ∆的面积取得最大值时,AB 的长为 .10.【2017届福建福州外国语学校高三理适应性考试】△ABC 的三个内角为A ,B ,C ,若7tan()12π=-,则2cos sin 2B C +的最大值为 .11.【2017届安徽六安一中高三上学期月考三】已知ABC ∆的三个内角A 、B 、C 所对的边分别为a 、b 、c ,且ABC ∆的面积cos S B =. (1)求角B 的大小; (2)若2a =,且43A ππ≤≤,求边c 的取值范围.12.【2017届贵州省黔东南州高三下学期高考模拟考试】已知的内角所对的边分别为,若.(1)求的面积;(2)求AC 边的最小值.13.【2017届山东枣庄市高三理上学期末】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,角A 、B 、C 的度数成等差数列,b =.(1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值.14.【2017届河南百校联盟高三文11月质监数学乙】已知ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 1sin sin sin sin B CA C A B+=++.(Ⅰ)求角A ;(Ⅱ)若a =,求b c +的取值范围.题型三 与三角形相关的函数取值范围15.【2017届福建厦门双十中学高三上期中】在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos sin a b C B =+.(1)若2,a b ==,求c ;(2)设函数230)2sin (15)y A C =---,求y 的取值范围. 16.【2017届山东省胶州市普通高中高三上学期期末】设,函数,且.(1)求的单调递减区间;(2)设锐角的内角所对的边分别为,且,求的取值范围. 17.【2017届山西省怀仁县第一中学高三上学期期末】的三个内角依次成等差数列.(1)若,试判断的形状; (2)若为钝角三角形,且,试求的取值范围.题型四 与三角形相关的实际应用18.【2017届江苏启东中学高三上期第一次月考】如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD ,其中BMN 是半径为1百米的扇形,3π2=∠ABC .管理部门欲在该地从M 到D 修建小路:在弧MN 上选一点P (异于M 、N 两点),过点P 修建与BC 平行的小路PQ .问:点P 选择在何处时,才能使得修建的小路MP 与PQ 及QD 的总长最小?并说明理由.19.【2017届山东临沂市高三理上学期期中】如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE ,其中三角形区域ABE 为主题游乐区,四边形区域为BCDE 为休闲游乐区,AB 、BC ,CD ,DE ,EA ,BE 为游乐园的主要道路(不考虑宽度).120,60,BCD CDE BAE DE ∠=∠=∠==333BC CD km ==.(I )求道路BE 的长度;(Ⅱ)求道路AB ,AE 长度之和的最大值.20.【2017届安徽蚌埠怀远县高三上学期摸底考】如图,我海监船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其东北方向与它相距32海里的B 处有一外国船只,且D 岛位于海监船正东海里处.(1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时8海里的速度沿正南方向航行,为了将该船拦截在离D 岛24海里处,不让其进入D 岛24海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:00sin 36520.6,sin 53080.8''≈≈)21.【2017届江苏泰州中学高三上学期期中】如图,太湖一个角形湖湾,2AOB AOB θ∠=( 常数θ为锐角). 拟用长度为l (l 为常数)的围网围成一个养殖区,有以下两种方案可供选择: 方案一 如图1,围成扇形养殖区OPQ ,其中PQ l =; 方案二 如图2,围成三角形养殖区OCD ,其中CD l =;S;(1)求方案一中养殖区的面积1S;(2)求方案二中养殖区的最大面积2(3)为使养殖区的面积最大,应选择何种方案?并说明理由.。
解三角形中的最值与范围问题-高考数学复习
∴f(x)=x+122-54∈(1,5), ∴bc22+bc-1∈(1,5), ∴a+b c的取值范围是(1,5).
课时精练
一、单项选择题 1.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 B=π3,a=4,且
三角形有两解,则 b 的取值范围是
A.(2 3,+∞)
√B.(2 3,4)
(2)求a+b c的取值范围.
由(1)知,c2=b2+ab, ∴a=c2-b b2,c>b, 由三角形三边关系可得ab+ +bc>>ac, ,
代入化简可得b<c<2b,
∴a+b c=c2-bb22+bc=bc22+bc-1, 令 x=bc,则 x∈(1,2),f(x)=x2+x-1,1<x<2,
以a12+b12的最大值为2156.
解决此类题目,一是利用正余弦定理,转化成边的函数,或转化成关于 正弦、余弦或正切的函数,根据函数的单调性求解;二是利用三角恒等 变换构造关于正弦、余弦或正切的函数,根据函数的单调性求解.
跟踪训练 3 (2023·浙江联考)已知△ABC 中,内角 A,B,C 所对的边分别
所以1b=sin A=sin 2C,
所以a12+b12=sin2C+sin22C=1-c2os 2C+(1-cos22C)=-cos22C-
1 2cos
2C+32,
因为△ABC为锐角三角形,且B=C,
则有π4<C<π2,得π2<2C<π,所以-1<cos 2C<0, 由二次函数的性质可得,当 cos 2C=-14时,a12+b12取得最大值1265,所
解三角形中的最值与范围问题
重点解读
解三角形中的最值或范围问题,通常涉及与边长、周长有关的 范围问题,与面积有关的范围问题,或与角度有关的范围问题, 一直是高考的热点与重点,主要是利用三角函数、正余弦定理、 三角形面积公式、基本不等式等工具研究三角形问题,解决此 类问题的关键是建立起角与边的数量关系.
高三高考数学专题03以三角形为背景的范围最值为专题训练
专题3 以三角形为背景的范围最值为专题训练题型一 与三角形相关的面积或周长范围1.【黑龙江省哈尔滨市第三中学2017届高三二模考试】在ABC ∆中, ,,a b c 分别是角,,A B C的对边,已知2c =,若222sin sin sin sin sin A B A B C +-=,则a b +的取值范围是__________. 【答案】(2,4]2.【江西省2017届高三下学期调研考试(四)】在ABC ∆中, 2cos 3a B b c π⎛⎫-=+ ⎪⎝⎭,且ABC ∆ABC ∆周长的取值范围为__________.【答案】(]6,9【解析】由2cos 3a B b c π⎛⎫-=+ ⎪⎝⎭得cos a B b c =+,由正弦定理得()cos sin sinA B sinB A B =++,?sinB cosAsinB =+,又0sinB ≠1cosA =+,所以1sin 62A π⎛⎫-= ⎪⎝⎭, 由0A π<<得5,666A πππ-<-<所以66A ππ-=,所以3A π=,又ABC ∆的外接圆半径为3aa sinA=⇒==, 23b c sinB sin B π⎤⎛⎫+=+=+- ⎪⎥⎝⎭⎦3166sin 226sinB sinB cosB B π⎫⎛⎫==+=+⎪ ⎪⎪⎝⎭⎭⎝⎭, 由203B π<<,得5666B πππ<+<,故36sin 66B π⎛⎫<+≤ ⎪⎝⎭,所以69a b c <++≤.3.【安徽省池州市2017届高三4月联考】已知在平面四边形ABCD 中, AB ,2BC =, AC CD ⊥, AC CD =,则四边形ABCD 面积的最大值为__________.【答案】34.【湖南省湘潭市2017第三次高考模拟】在ABC ∆中, 223=4cos A cosA +.(1)求角A 的大小;(2)若2a =,求ABC ∆的周长的取值范围.【答案】(1) 3A π=;(2) (]4,6l ∈.【解析】试题分析:(1)根据倍角公式可将已知等式转化为关于cos A 的二次方程,解方程求得cos A 的值,进而得到角A 的大小;(2)根据正弦定理可将三角形的边长用对应角的正弦值表示,列出周长的表达式并利用两角和与差公式化为关于角B 的三角函数,进而根据三角函数的值域求得周长的取值范围.试题解析:(1)因为2234cos A cosA +=,所以2122cos 2cos A A +=, 所以24410cos A cosA -+=, 所以1cos 2A =. 又因为0A π<<,所以3A π=.(2)因为sin sin sin a b c A B C ==, 3A π=, 2a =, 所以,b Bc ==, 所以)22sin sinCl b c B =++=++.因为23B C π+=, 所以22sin sin 2sin36l B B B ππ⎡⎤⎛⎫⎛⎫=+-=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 又因为203B π<<,所以1sin 126B π⎛⎫<+≤ ⎪⎝⎭,所以(]4,6l ∈ 5.【甘肃省兰州市2017年高考实战模拟考试数学】在ABC ∆中, ,,A B C 的对边分别为,,a b c ,若)tan tan tan tan 1A C A C +=-. (1)求角B ;(2)如果2b =,求ABC ∆面积的最大值.【答案】(Ⅰ)3B π=(2)在ABC ∆中,由余弦定理得2221cos 22a cb B ac +-==,所以224a c ac +=+ ∵222a c ac +≥ ∴4ac ≤,当且仅当2a c ==时等号成立∴ABC ∆的面积11sin 422S ac B =≤⨯=∴ABC ∆6.【广西桂林市、崇左市、百色市2017届高三下学期第一次联合模拟(一模)】四边形ABCD如图所示,已知2AB BC CD ===, AD =(1cos A C -的值;(2)记ABD ∆与BCD ∆的面积分别是1S 与2S ,求2212S S +的最大值.【答案】(1);(2)14.【解析】试题分析: (1)在,ABD BCD ∆∆中,分别用余弦定理,列出等式,cos A C - 的值; (2)分别求出12S S , 的表达式,利用(1)的结果,得到2212S S +是关于cos C 的二次函数,利用三角形两边之和大于第三边,两边之差小于第三边,求出BD 的范围,由BD 的范围求出cos C 的范围,再求出2212S S +的最大值.试题解析:(1)在ABD ∆中, 2222cos 16BD AB AD AB AD A A =+-⋅=-, 在BCD ∆中, 2222cos 88cos BD BC CD BC CD C C =+-⋅=-,cos 1A C -=.7.【黑龙江省哈尔滨市第六中学2017届高三下学期第一次模拟】在ABC ∆中,设边,,a b c 所对的角分别为,,A B C , ,,A B C 都不是直角,且22cos cos 8cos ac B bc A a b A +=-+ (Ⅰ)若sin 2sin B C =,求,b c 的值;(Ⅱ)若a =ABC ∆面积的最大值.【答案】(1) b c ==【解析】【试题分析】(1)依据题设条件,运用正弦定理余弦定理分析求解;(2)借助余弦定理基本不等式建立不等关系分析探求:(1)222222228cos 22a c b b c a acbc a b A ac bc +-+-+=-+ 2228cos b c a A ∴+-=2cos 8cos bc A A ∴= cos 0A ≠ 4bc ∴=由正弦定理得2b c =b c ∴=2222cos 22cos a b c bc A bc bc A =+-≥- 即688cos A ≥- 1cos 4A ∴≥当且仅当b c =时取等号sin 4A ∴≤1sin 22S bc A ∴=≤ 1sin 22S bc A ∴=≤,所以面积最大值为2题型二 与三角形相关的边长或角范围8.【河南省郑州一中2016-2017学年下期17届高三百校联盟】锐角ABC 中,角A 、B 、C所对的边分别为、、,若()2sin cos cos A a C c A +=,则cb的取值范围是( )A. 1,22⎛⎫⎪⎝⎭ B. ,23⎛ ⎝⎭ C. ()1,2 D. 2⎛⎫ ⎪ ⎪⎝⎭ 【答案】A【解析】由正弦定理得,()()2sin sin cos sin cos sin 3A A C C A A A CB π+=⇒+=⇒=又1sin ,0,sin 12622sin c C A C C C C b B πππ⎛⎫∈∴<<⇒<<⇒==∈ ⎪⎝⎭⎝⎭故选B.9.【河南省豫南九校(中原名校)2017届高三下学期质量考评八】在四边形ABCD 中,若2AB =, BC = AD =, 0AC CD ⋅= ,则BD的最大值为__________.【答案】6【解析】设DC t =,则AC t =,在ABC ∆中,由余弦定理得22cos ACB ∠==sin ACB ∠====.在DBC ∆中,由余弦定理得()220890DBt ACB =+-∠+2288t ACB t =++∠=+228DBt =+不妨设212(0)2tπθθ-=<<,则)2sin cos 202016sin 4DB πθθθ⎛⎫=++=++ ⎪⎝⎭,所以当时, 2max 36DB =,则对角线BD 的最大值为,应填答案。
高考数学解三角形中的最值专题
【详解】
(1)由 ,可得 ,
整理得 ,
所以 .
(2)由(1)得 , , ,,
, ,
由正弦定理得 ,
∴
,
∵ ,∴ , ,
,∴
∴ 的取值范围是 .
【点睛】
本题主要考查正弦定理和余弦定理的应用,属于中档题.
3.(1) ;(2) .
【详解】
(1)
原式
(2) ,
时等号成立.
周长的最大值为
【点睛】
本题考查了三角恒等变换,余弦定理,均值不等式,周长的最大值,意在考查学生解决问题的能力.
14.(1) ;(2) .
【解析】
试题分析:(1)根据题意,由正弦定理得到关于角的三角函数关系
利用: ,得到 ,再利用两角和的正弦定理,化简为: ,利用辅助角公式得到: ,进而求得: ;(2)根据余弦定理得到关于 的关系式: ,利用基本不等式得 ,所以三角形的周长的取值范围为 .
12.(1) ;(2)
【解析】
【分析】
(1)利用正弦定理,并结合 ,可将原式转化为 ,由 ,可求出 ,进而可求出 ;
(2)由 ,可求出 ,再结合余弦定理,可求得 的值,结合 ,可求出 的值,进而可求出 的周长.
【详解】
(1)由正弦定理可得, ,
由 ,则 ,
因为 ,所以 ,
又 ,所以 .
(2)由题意, ,解得 ,
(2)根据向量数量积的定义可得 ,再利用余弦定理以及基本不等式可得 ,由三角形的面积公式即可求解.
【详解】
解:(1)因为 ,所以 ,
由正弦定理, ,即
(2)若 ,则 ,
以三角形为背景的范围、最值问题
(1)求角B的大小.
(2)求
sinA+sin
的取值范围.
课 堂 小 结
这节课我们探讨到哪些知识,其规律方法?
ห้องสมุดไป่ตู้
(Ⅰ)求角A ;
(Ⅱ)若 a 4 3 ,求 b c 的取值范围.
达标检测:
1.△ABC的内角A,B,C的对边分别为a,b,c, 已知且 a=2csinA. (1)求确定角C的大小. (2)若c= 7 ,求△ABC的面积的最大值.
2.在△ABC中,角A,B,C的对边分别为a,b,c,
且满足 cosB-bcosA=0
【命题方向】
1.解三角形:考查三角形中的边长、角度、面积及边角之间的 关系及正、余弦定理的应用、最值、范围等. 2.三角函数的图象与性质:考查三角恒等变换及三角函数的图 象变换,三角函数的值域、单调性、奇偶性、对称性及周期性 等问题.
自主学习:
解三角形常用重要公式及结论:
sin( sin( A B B C )) sin sin C A
沿河民族中学:阚辉
考情分析:
• 本节是高考重点考察内容,高考全国2卷从2012年— 2016年连续五年有三年考到该内容。 • 其中: 2012年第17题解三角形,涉及正弦定理及求角。 2013年第17题解三角形,涉及正余弦定理及三角形的面积。 2014年第17题数列,涉及通项公式,不等式的证明。 2015年第17题解三角形,涉及正余弦定理,角平分线性质 及三角形面积。 2016年第17题数列,涉及通项公式,数列求和。 不难看出该题重点为正、余弦定理及三角形面积公式的 考查,考题灵活多样,有时与三角函数性质和向量,不等式等 综合。从全国高考形式来看,今年出与三角形相关的大题占 很大的可能性.
高中数学专题-三角形取值范围问题-题型总结(解析版)2
三角形取值范围问题--归纳总结关于解三角形问题和取值范围有很多题型,总结起来大致可以分为两类。
第一种处理方法使用基本不等式求最值(往往结合余弦定理),第二种处理方法转化为三角函数求值域(题目强调锐角三角形时用此法)。
需要注意的是基本不等式注意取等条件,三角函数法需要注意角的精确范围(尤其是锐角三角形时角的范围)。
题型1.三角函数和差类型方法:转换成三角函数求值域问题,注意角的范围。
【例1-1】(2022·新高考Ⅰ卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A1+sin A=sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【解析】(1)由cosA1+sinA=sin2B1+cos2B,得cosA1+sinA=2sinBcosB2cos2B=sinBcosB,即cosAcosB=sinB+sinBsinA,即cos(A+B)=-cosC=sinB,∵C=2π3,所以sinB=12得,B=A=π6.(2)由cos(A+B)=-cosC=sinB,得C=π2+B,A+2B=π2,由正弦定理得a2+b2 c2=sin2A+sin2Bsin2C=(2cos2B-1)2+1-cos2Bcos2B=4cos4B-5cos2B+2cos2B=4cos2B+2cos2B-5≥42-5,当且仅当cosB=(12)14时的符号成立,故最小值为42-5.【例1-2】(2022·广州一模)△ABC的内角A,B,C的对边分别为a,b,c,已知c=3,且满足ab sin Ca sin A+b sin B−c sin C= 3.(1)求角C的大小;(2)求b+2a的最大值.【解析】(1)由题意得abca2+b2-c2=3,余弦定理得:a2+b2-c2=2ab∙cosC,所以cosC=a2+b2-c22ab=12,又C为△ABC内角,所以C=π3;(2)由题得asinA =bsinB=csinC=2,所以a=2sinA,b=2sinB,所以b=2sinB=2sin(A+π3),所以b+2a=2sin(A+π3)+4sinA=sinA+3cosA+4sinA=5sinA+3cosA=27sin(A+φ),且tanφ=35,又因为A∈(0,2π3),所以sin(A+φ)max=1,所以b+2a≤27,即b+2a的最大值为27.【训练1】(2020·浙江卷)在锐角△ABC中,角A,B,C所对的边分别为a,b,c.(1)求角B的大小;(2)求cos A+cos B+cos C的取值范围.【解析】(1)∵2bsinA=3a,2sinBsinA=3sinA,∵sinA≠0,∴sinB=32,∵△ABC为锐角三角形,∴B=π3,(2)∵△ABC为锐角三角形,B=π3,∴C=2π3-A,∴cosA+cosB+cosC= cosA+cos(2π3-A)+cosπ3=12cosA+32sinA+12=sin(A+π6)+12,△ABC为锐角三角形,0<A<π2,0<C<π2,解得π6<A<π2,∴π3<A+π6<2π3,∴32<sin(A+π6)≤1,∴32+12<sin(A+π6)+12≤32,∴cosA+cosB+cosC 的取值范围为(3+12,32].题型2.三角形面积最值方法一:余弦定理+基本不等式(锐角三角形不建议用).方法二:转化为三角函数求值域(任意三角形都可用).策略一:对边对角型【例2-1】(2021·衡水调研)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a cos C+3a sin C−b−c=0.(1)求A的大小;(2)若a=3,求△ABC面积的取值范围.【解析】(1)由acosC+3a sinC-b-c=0,由正弦定理得:sinAcosC+3sinAsinC=sinB+sinC,即sinAcosC+3sinAsinC=sin(A+C)+sinC,可得:3sinAsinC=cosAsinC+sinC,由于C为三角形内角,sinC≠0,所以化简得3sinA-cosA=1,所以sin(A-π6)=12因为A∈(0,π2),所以A-π6∈(-π6,π3),所以A-π6=π6,即A=π3.(2)由2R=asomA=332=2,则bc=2RsinB∙2RsinC=4sinBsin(B+π3)=2(2B-π6)+1,sin因为△ABC是锐角三角形,所以B∈(π6,π2),所以(2B-π6sin)∈(12,1],可得bc∈(2,3],所以S△ABC=12bcsinA=34bc∈(32 ,334],所以△ABC的面积的取值范围是(32,334].【训练2】在△ABC中,A,B,C的对边分别为a,b,c,且sin Aa=3cos C c.(1)求角C的大小;(2)如果c=2,求△ABC的面积的最大值.【解析】(1)因为sinAa=3cosCc=sinCc,所以sinC=3cosC,即tanC=3,由C为三角形内角得,C=π3;(2)由余弦定理得4=a2+b2-ab≥2ab-ab=ab,当且仅当a=b时取等号,所以ab≤4,△ABC的面积S=12absinC=34ab≤3,即面积的最大值为 3.策略二:对边异角型【例2-2】(2021·瑶海月考)若a,b,c为锐角△ABC的三个内角A,B,C的对边,且sin2B+sin2C−sin2(B+C)=sin B sin C.(1)求角A;(2)若b=2,求△ABC的面积的取值范围.【解析】(1)因为sin2B+sin2C-sin2(B+C)=sinBsinC,所以sin2B+sin2C-sin2A=sinBsinC.由正弦定理得b2+c2-a2=bc,由余弦定理得cosA=b2+c2-a22bc=12,因为A为三角形内角,所以A=π3;(2)由题得bsinB=csinC,所以2sinB=csin(2π3-B),c=2sin(2π3-B)sinB=3cosB+sinBsinB=1+3tanB,因为锐角△ABC中,0<B<π20<2π3-B<π2,所以π6<B<π2,故tanB>33,0<1tanB<3,S△ABC=12bcsinA=34×2×(1+3 tanB)=32+32tanB∈(32,23).【训练3】(2019·全国Ⅲ卷)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A+C2=b sin A.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)asin A+C2=bsinA,即为asinπ-B2=acosB2=bsinA,可得sinAcos B2=sinBsinA=2sin B2cos B2sinA,∵sinA>0,∴cos B2=2sin B2cos B2 ,若cos B2=0,可得B=(2k+1)π,k∈Z不成立,∴sin B2=12,由0<B<π,可得B=π3;(2)若△ABC为锐角三角形,且c=1,由余弦定理可得b=a2+1-2a∙1∙cosπ3 =a2-a+1,由三角形ABC为锐角三角形,可得a2+a2-a+1>1且1+a2-a +1>a2,且1+a2>a2-a+1,解得12<a<2,可得△ABC面积S=12a∙sinπ3 =34a∈(38,32)策略三:夹边夹角型方法一:向量平方凑关系,结合基本不等式求最值.方法二:延长中线找对边,结合对边对角模型求值.【例2-3】在△ABC中,角A,B,C的对边分别为a,b,c,且b cos A+12a=c.(1)求角B的大小;(2)若AC边上的中线BM的长为3,求△ABC面积的最大值.【解析】(1)因为bcosA+12a=c,由正弦定理可得sinBcosA+12sinA=sinC,又sinC=sin(A+B)=sinAcosB+sinBcosA,所以12sinA=sinAcosB,又A为三角形内角,sinA>0,所以cosB=12,因为B∈(0,π),所以B=π3.(2)如图,延长线段BM至D,满足BM=MD,连接AD,在△ABC中,BD=2AM =23,AD=a,AB=c,∠BAD=π-B=2π3,由余弦定理,有232=a2+c2+ac≥2ac+ac=3ac,解得ac≤4,当且仅当a=c=2时取等号,所以S△ABC=12acsinB≤12×4×32=3,当且仅当a=c=2时等号成立,即面积的最大值为 3.AB C DE M【训练4】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知m=cos A 2,3sin A 2 ,n =−2sin A 2,2sin A2 ,且m ·n =0.(1)求角A 的大小;(2)点M 是BC 的中点,且AM =1,求△ABC 面积的最大值.【解析】(1)m ∙n =0,∴-2sin A 2cos A 2+23sin 2A 2=0,即-sinA +23×1-cosA2=-sinA -3cosA +3=0,即sinA +3cosA =3,即2sin (A +π3)=3,得sin (A +π3)=32,即A +π3=2π3,得A =π3.(2)∵点M 是BC 的中点,且AM=1,∴AM =12(AB +AC ),平方得AM 2=14(AB 2+AC 2+2AB ∙ AC ),即4=c 2+b 2+2bc ×12=c 2+b 2+bc ≥2bc +bc =3bc ,即bc ≤43,当且仅当b =c 时取等号,则△ABC 面积S =12bcsin π3=12×32bc ≤34×43=33,即三角形面积的最大值为33.题型3.三角形周长取值范围方法一:余弦定理+基本不等式(锐角三角形不建议用).方法二:转化为三角函数求值域(任意三角形都可用)策略一:对边对角型【例3-1】(2020·全国Ⅱ卷)在△ABC中,sin2A−sin2B−sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.=-12,【解析】(1)因为BC2-AC2-AB2=AC∙AB,所以cosA=AC2+AB2-BC22AC∙AB因为A∈(0,π),所以A=2π3.(2)由余弦定理BC2=AC2+AB2-2AC∙ABcosA=AC2+AB2+AC∙AB=9,)2(当且仅当AC=AB时取等即(AC+AB)2-AC∙AB=9,AC∙AB≤(AC+AB2)2=34(AC+AB)2,解号),9=(AC+AB)2-AC∙AB≥(AC+AB)2-(AC+AB2得AC+AB≤23(当且仅当AC=AB时取等号),所以△ABC周长L=AC+ AB+BC≤3+23,周长的最大值为3+2 3.【训练5】(2021·江西模拟)△ABC的内角A,B,C的对边分别为a,b,c.已知a cos B=(2c−b)cos A.(1)求A;(2)若△ABC为锐角三角形,且a=1,求△ABC周长的取值范围.【解析】(1)法一:由题意得a cosB+b cosA=2c cosA;由正弦定理得sinAcosB +sinBcosA=2sinCcosA,即sin(A+B)=2sinCcosA;又sin(A+B)=sinC,所以sinC=2sinC cosA.又sinC≠0,所以cosA=12;又0<A<π,所以A=π3.解法二:结合余弦定理a×a2+c2-b22ac =(2c-b)×b2+c2-a22bc,化简得b2+c2-a2=bc,所以cosA=b2+c2-a22bc=12;又0<A<π,所以A=π3.(2)由正弦定理得asinA =bsinB=csinC,且a=1,A=π3,所以b=233sinB,c=233sinC;所以a+b+c=1+233(sinB+sinC)=1+233[sinB+sin(2π3-B)]=1+2sin(B+π6).因为△ABC为锐角三角形,所以得0<B<π20<2π3-B<π2 ,解得π6<B<π2.所以1+2sin(B+π6)∈(1+3,3];即△ABC周长的取值范围是(1+3,3].策略二:对边异角型【例3-2】(2021·衡水模拟)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知b=3,sin A+a sin B=2 3.(1)求角A的大小;(2)求△ABC周长的取值范围【解析】(1)因为asinA =bsinB=csinC,所以asinB=bsinA,所以sinA+asinB=sinA+bsinA=4sinA=23,所以sinA=32,△ABC为锐角三角形,所以A=π3.(2)由题可得:asinA =bsinB=csinC,a=332sinB,c=3sinCsinB,a+c+3=332+3sinCsinB+3=332+3sin(2π3-B)sinB+3,所以周长=332+3(32cosB+12sinB)sinB+3=332∙1+cosBsinB+9 2=332∙1+2cos2B2-12sin B2cos B2+92=332∙1tan B2+92.又因为△ABC为锐角三角形,所以B 2∈(π12,π4)所以tan B2∈(2-3,1),所以1tan B2∈(1,2+3),所以(9+332,9+33).【训练6】(2021·江苏模拟)在△ABC中,a,b,c分别是内角A,B,C的对边,2b sin A sin(A+C)=3a sin B.(1)求角B;(2)若△ABC为锐角三角形,且c=2,求△ABC面积的取值范围.【解析】(1)∵2bsinAsin(A+C)=3asin2B,∴由正弦定理得:2sinBsinAsin(A +C)=23sinAsinBcosB,∵A+C=π-B,且sinA≠0,sinB≠0,∴sinB= 3cosB,∴tanB=3,∵B∈(0,π),∴B=π3.(2)由题意B=π3,c=2,可得S△ABC =12acsinB=3a2,由正弦定理得:a=csinAsinC=2sin(120°-C)sinC =3tanC+1,又△ABC为锐角三角形,可得0<A<90°,0<C<90°,故30°<C<90°,所以1<a<4,从而32<S△ABC<23,即△ABC面积的取值范围是(32,23).策略三:夹边夹角型方法一:向量平方凑关系,结合基本不等式求最值.方法二:延长中线找对边,结合对边对角模型求值.【例3-3】在△ABC中,a、b、c分别是角A、B、C的对边,若c cos B+b cos C= 2a cos A,M为BC的中点,且AM=1,则b+c的最大值是.【解析】在△ABC中,a、b、c分别是角A、B、C的对边,若c cosB+b cosC= 2acosA,利用正弦定理:sinCcosB+sinBcosC=2sinAcosA,所以:sin(B+C) =sinA=2sinAcosA,由于:sinA≠0,所以cosA=12,0<A<π,故A=π3,因为M为BC的中点,且AM=1,所以可设BC=2x,则(2x)2=b2+c2-2bccosA,故2x2=b2+c2-bc2,利用余弦定理得c2=12+x2-2xcos∠BMA①,同理:b2=12+x2-2x∠CMAcos②由①②得:b2+c2=2+2x2,所以:b2+c2=c2+b2-bc2+2,故:(b+c)2=4+bc,整理得:(b+c)2≤4+(b+c2)2,解得0<b+c≤433,故答案为433.【训练7】(2022·石家庄模拟)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若c cos B +b cos C =2a cos A ,AM =23AB +13AC,且AM =1,则b +2c 的最大值是.【解析】由ccosB +bcosC =2acosA ,得sinCcosB +sinBcosC =sin (B +C )=sinA =2sinAcosA ,可得cosA =12,A =π3,因为AM 2=(23AB +13AC )2=49c 2+19b 2+49bccosA =3,所以b 2+4c 2+2bc =27⇒(b +2c )2-2bc =27⇒(b +2c )2=27+2bc ≤27+(b +2c 2)2,当且仅当b =2c 取等号,得34(b +2c )2≤27⇒b +2c ≤6.b +2c 的最大值为6. 故答案为:6.【训练8】(2022·江苏模拟)△ABC 中,角A 、B 、C 的对边分别为a ,b ,c 且满足2a =3b =4c ,若sin2A ≤λ(sin B +sin C )恒成立,则λ的最小值为()A .−1114B .127C .−1124D .−712【解析】设2a =3b =4c =12t (t >0),则a =6t ,b =4t ,c =3t ,sin 2A ≤λ(sinB +sinC )恒成立,即λ≥sin 2A sinB +sinC 恒成立,sin 2A sinB +sinC =2sinAcosA sinB +sinC =2a b +c ∙b 2+c 2-a 22bc =6t7t ∙16t 2+9t 2-36t 212t 2=-1114,以λ≥-1114,所以λ的最小值为-1114.故选:A.【训练9】(2022·甲卷)已知△ABC中,点D在边BC上,∠ADB=120°,AD=2,CD=2BD.当ACAB取得最小值时,BD=.【解析】设BD=x,CD=2x,在三角形ACD中,b2=4x2+4-2∙2x∙2∙cos60°,可得:b2=4x2-4x+4,在三角形ABD中,c2=x2+4-2∙x∙2∙cos120°,可得:c2=x2+2x+4,要使得AC AB 最小,即b2c2最小,b2c2=4x2-4x+4x2+2x+4=4(x2+2x+4)-4x-12x2+2x+4=4-12(x+1)(x+1)2+3=4-12(x+1)(x+1)2+3=4-12x+1+3x+1≥4-1223,当且仅当x+1=3x+1,即x=3-1时,取等号,故答案为:3-1.【训练10】(2022·深圳模拟)在△ABC中,已知角A,B,C所对的边分别为a,b,c,若9b2+6bc cos A=11c2,则角B的最大值为()A.π6B.π4C.π3D.3π4【解析】由余弦定理cosA=b2+c2-a22bc,代入9b2+6bc cosA=11c2,得9b2+3(b2+ c2-a2)=11c2,整理得b2=112(3a2+8c2),cosB=a2+c2-b22bc =a2+c2-112(3a2+8c2)2ac=34a2+13c22ac≥234×13ac2ac=12,当且仅当9a2=4c2时取“=”,又因为B∈(0,π),所以B≤π3,故选:C.【训练11】(2015·全国Ⅰ卷)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC =2,则AB的取值范围是.【解析】方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=12x,AE=22x,DE=6+24x,CD=m,∵BC=2,∴(6+24x+m)sin15°=1,∴6+24x+m=6+2,∴0<x<4,而AB=6+24x+m-22x=6+2-22x,∴AB的取值范围是(6-2,6 +2).故答案为:(6-2,6+2).方法二:如下图,做出底边BC=2的等腰三角形EBC ,B =C =75°,倾斜角为150°的直线在平面内移动,分别交EB 、EC 与A 、D ,则四边形ABCD 即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C 时,AB 趋近最小,为6-2;②直线接近点E 时,AB 趋近最大值,为6+2;故答案为:(6-2,6+2).m12x 6+24x 22x。
解三角形重点题型二:解三角形中的最值与范围问题- 高考数学一轮复习重点题型讲义
重点题型二:解三角形中的最值与范围问题【问题分析】解三角形中的最值与范围问题是常考题型,经常出现解三角形题中解答题的第(2)问,此题型属于中等偏上题,稍微有点难度,考察学生问题分析能力及转化能力。
解决此类题型经常利用数形结合的思想与方法,对动点进行分析,建立有关的不等式及函数很容易找到最值点. 【解题策略】【题型分析】我们知道已知三角形的三个元素(除三个角外),可以得到确定的解(无解、一解或两解),那么当已知三角形的两个元素(除两个角外,因为两个角与三个角情况是一样的)时,这个三角形将是不确定的,变化的.这就涉及到了三角形的某个角,某个边及三角形的面积在一定范围的变化,通过研究不同情况下的变化规律,我们可以得到角、边、面积的变化范围或最值. 类型一:已知三角形△ABC 两边,解三角形.假设已知边a ,b ,且a ≥b ,如图所示,以C 为圆心,b 为半径做圆,则点A 在圆⊙C 上且不与B 、C 共线.从图中,易知当BA 与圆⊙C 相切时,角B 取得最大值,此时sinB =ba ,可得sinB ∈(0,ba ].同时,由图可得出角C ∈(0,π), 角A ∈(0,π),边c ∈(a −b,a +b).当AC ⊥BC 时,三角形△ABC 面积最大,S max =12ab ,所以三角形△ABC 的面积S ∈(0,12ab]. 类型二:已知三角形△ABC 一边及其一边的对角,解三角形最值与范围代数几何函数基本不等式 (单边最值)动点轨迹曲线方程1一)几何图形分析法假设已知边a 及其对角A ,由正弦定理推论可以得出asinA=2R 所以点A 在以R 为半径的圆上,边a 是圆的一条弦,如右图所示,点A 在圆上运动时,我们可以得到角C ∈(0,π−A), B ∈(0,π−A),边c ∈(0,2R ],b ∈(0,2R ]. 当AB =AC 时,可得到三角形面积的最大值S max =a 24tan A 2,进而可得三角形面积范围为S ∈(0,a 24tan A2].以上是通过几何图形动态分析得出的结论,我们也可以通过代数的方法(构造函数或利用基本不等式)进行分析: 二)构造函数法: 由正弦定理a sinA =b sinB =csinC得b =asinB sinA ,c =asinCsinA所以三角形面积S =12bcsinA =12∙asinB sinA ∙asinC sinA ∙sinA =a 22sinA∙sinBsinC又有A +B +C =π,所以sinB =sin (A +C) 所以S =a 22sinA ∙sin (A +C )sinC =a 22sinA ∙cosA−cos (A+2C)2(注:此步骤利用了和差化积积化和差公式)=a 22sinA ∙(cosA 2−cos (A+2C )2)=a 24sinA ∙(−cos (A +2C )+cosA)所以当cos (A +2C )=−1,即A +2C =π时,三角形面积取得最大值,最大值为S max =a 24sinA ∙(1+cosA)=a 24tan A 2.又C ∈(0,π−A),所以三角形的面积S ∈(0,a 24tan A2]同时,我们也可以得出三角形的周长:l =a +b +c =2R (sinA +sinB +sinC )=a +2R(sinB +sinC)=a +2R (sin (A +C )+sinC ) =a +2R ∙2sin A+2C 2cos A2 (注:此步骤利用了和差化积,积化和差公式)所以当sinA+2C 2=1,即A +2C =π,即B =C 时,周长最大值为l max =a +4Rcos A 2=a(1+1sin A2).所以三角形周长l ∈(2a,a(1+1sin A2)]三)构造基本不等式法:由余弦定理得a 2=b 2+c 2−2bc ∙cosA ≥2bc(1−cosA) (当b =c 时等号成立)所以bc≤a22(1−cosA)所以,三角形的面积S=12bcsinA≤12∙a22(1−cosA)∙sinA=a2sinA4(1−cosA)=a24tanA2故当b=c,三角形△ABC的面积最大值为S max=a24tan A2. 同时三角形的周长:l=a+b+c由余弦定理得a2=b2+c2−2bc∙cosA=(b+c)2−2bc(1+cosA)≥(b+c)2−(b+c)22∙(1+cosA)(当b=c时等号成立) 所以2a2≥(b+c)2(1−cosA)所以b+c≤a sinA2所以l=a+b+c≤a(1+1 sinA2)三角形△ABC周长最大值为l max=a(1+1sin A2)综上所述,已知三角形△ABC一边a及其一边的对角A,可得:①三角形中角C∈(0,π−A), B∈(0,π−A)②边c∈(0,2R],b∈(0,2R].(其中2R=asinA)③三角形的面积S∈(0,a 24tan A2]④三角形周长l∈(2a,a(1+1sin A2)]当b=c或B=C时,三角形的面积与周长取得最大值,分别为S max=a24tan A2,l max=a(1+1sin A2).类型三:已知三角形△ABC一边及其一边的邻角,解三角形2假设已知三角形△ABC边c及其角A,如右图所示.我们这里只考虑角A为锐角的情况,若角A是钝角或者是直角时可以参照分析即可.由右图易知:①当点C在线段DE上(不含端点)时,△ABC为锐角三角形,此时易知:B∈(π2−A,π2),C∈(π2−A,π2), b∈(ccosA,ccosA),a∈(csinA,ctanA)所以△ABC的面积S=12bcsinA∈(c2sin2A4,c2tanA2).②当C在点D或点E时,△ABC为直角三角形.b=ccosA或ccosA ,a=csinA或ctanA,S=c2sin2A4或c2tanA2③当C在线段AD或射线EF上时,△ABC为钝角三角形.B∈(0,π2−A)∪(π2,π−A),C∈(π2,π−A)∪(0,π2),b∈(0,ccosA)∪(ccosA,+∞),a∈(csinA,c)∪(ctanA,+∞)所以△ABC的面积S=12bcsinA∈(0,c2sin2A4)∪(c2tanA2,+∞).类型四:已知三角形△ABC一边及另外两边之间的关系,解三角形.假设已知边c和a,b之间的关系,如右图所示:我们常见的两边之间的关系有:①a+b=定值>c ----------点C的轨迹为椭圆②b−a=定值<c ----------点C的轨迹为双曲线一支③a2+b2=定值=c2----------点C的轨迹为圆(除A,B两点)④ab=定值≠1或a=λb, λ为定值且λ≠1----------点C的轨迹为圆(阿波罗尼斯圆,简称阿氏圆).【典例赏析】例1:在△ABC中,∠BAC的平分线交BC于点D,BD=2DC,BC=6,求ΔABC的面积的最大值.试题分析:思路一:代数法,根据角平分定理可以得出AB与AC的比值是一个定值,BC也是一个定值,由三角形三边,可以求出三角形面积(可以利用海伦公式,也可以利用角的余弦表示)关于边的表达式,进而求出面积的最值.思路二:由AB与AC的比值是一个定值,BC是固定值,所以点A的轨迹是一个圆(阿氏圆,除去与直线BC的两个交点)34解析:方法一:构造函数(构造一个关于边函数) 如图,设设AC =x ,则由正弦定理可得 BDsin ∠BAD=ABsin ∠ADB ①,CDsin ∠CAD =ACsin ∠ADC ②,又∠ADB +∠ADC =π,所以sin ∠ADB =sin ∠ADC , ①②式联立可得ABAC =21(由角平分线定理可直接得出), 则AB =2x ,则S △ABC =12AB ⋅AC ⋅sin ∠BAC =x 2⋅sin ∠BAC , 对△ABC ,由余弦定理可得cos∠BAC =AB 2+AC 2−BC 22AB⋅AC=5x 2−364x 2,则S 2=x 4⋅sin 2∠BAC =x 4⋅(1−cos 2∠BAC )=x 4−25x 4−360x 2+36216=−116(9x 4−360x 2+362)=−916(x 4−40x 2+144)=−916[(x 2−20)2−256],当x 2=20时,S 2有最大值,(S 2)max =144,所以S max =12方法二:几何法(点A 的轨迹是一个圆)以点B 为原点,BC 所在直线为x 轴,BC 中垂线为y 轴建立直角 坐标系,如右图所示,则B (−3,0),C(3,0),设点A (x,y ),y ≠0 由题意得AB =2AC ,所以AB 2=4AC 2 所以(x +3)2+y 2=4[(x −3)2+y 2] 整理得3x 2+3y 2−30x +27=0即x 2+y 2−10x +9=0⇔(x −5)2+y 2=16 所以点A 在以(5,0)为圆心,半径为4得圆上. 所以三角形ABC 面积最大值为S max =12×6×4=12 思考:方法一与方法二那个方法更好呢?例2:在△ABC 中,∠BAC =60∘,BC =3,且有CD ⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,则线段AD 长的最大值为( ) A .√132B .2C .√3+1D .2√35试题分析:思路一:已知一边及其一边得对角,D 为底边BC 的三等分点,可以用AB ⃗⃗⃗⃗⃗ 、AC ⃗⃗⃗⃗⃗ 表示向量AD ⃗⃗⃗⃗⃗ ,再结合正余弦定理,容易建立CD ⃗⃗⃗⃗⃗ 关于某角的函数,进而求出线段AD 长的最大与最小.思路二: 已知一边及其一边得对角,所以点A 在一个半径为√3的圆上远动,BC 为圆上的一条弦,通过几何分析很容易找出AD 长的最大与最小. 解析:方法一:在△ABC 中,设角A 、B 、C 的对边分别为a 、b 、c , 由正弦定理可得b sin B =c sin C =3sin π3=2√3,则b =2√3sin B ,c =2√3sin C ,又AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +13(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=13(2AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ), 所以,|AD ⃗⃗⃗⃗⃗ |2=19(2AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )2=19(AC ⃗⃗⃗⃗⃗ 2+4AB ⃗⃗⃗⃗⃗ 2+4AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ )=19(b 2+4c 2+4cb cos π3) 所以,|AD ⃗⃗⃗⃗⃗ |2=2√3sin 2B +4 ∵0<B <2π3,则0<2B <4π3,当2B =π2时,即当B =π4时,|AD ⃗⃗⃗⃗⃗ |取最大值, 即|AD⃗⃗⃗⃗⃗ |max=√4+2√3=√3+1.方法二:由正弦定理得asinA =3sin π3=2R =2√3所以点A 在一个半径为√3的圆上,BC 为圆上的一条弦,如右图所示 易得AO =√3,BD =1,DC =2, 又OD ⃗⃗⃗⃗⃗⃗ =23OB ⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗ ,∠BOC =2π3,所以|OD⃗⃗⃗⃗⃗⃗ |=1 又|AO⃗⃗⃗⃗⃗ |+|OD ⃗⃗⃗⃗⃗⃗ |≥|AD ⃗⃗⃗⃗⃗ |(当A 、O 、D 三点共线是等号成立) 所以|AD ⃗⃗⃗⃗⃗ |≤√3+1,故|AD ⃗⃗⃗⃗⃗ |max=√3+1 例3:已知锐角三角形ABC 内接于单位圆,且BC =√2,求△ABC 面积的最大值. 试题分析:思路一:三角形内接于单位圆,BC =√2为定值,所以点A 到BC 距离最大时,△ABC 的面积最大,根据图形很容易找到A 到BC 距离最大值,△ABC 面积的最大值即单位圆半径于圆心到BC 的距离之和.6思路二:求单边最值,可以利用基本不等式.由题意边a 与角A 容易求出,求面积最值即是求b ∙c 最值即可,由余弦定理即可得到b 与c 的关系,进而求出b ∙c 最值. 解析:方法一:如图,设圆O 的半径为1,因为BC =√2,所以△BOC 是直角三角形,即∠BOC =90°,所以角∠BAC =45°,所以O 到BC 的距离为√22,所以A 到BC 距离最大值为√22+1所以△ABC 面积的最大值为12×√2×(√22+1)=√2+12方法二:由正弦定理得asinA =2,所以sinA =√22,所以A =π4由余弦定理可知BC 2=AB 2+AC 2−2AB ⋅AC cos π4由基本不等式可知2=AB 2+AC 2−2AB ⋅AC cos π4≥(2−√2)AB ⋅AC ,当且仅当AB =AC 时,取等号;所以AB ⋅AC ≤22−√2=2+√2,又S △ABC =12AB ⋅AC sin ∠BAC =√24AB ⋅AC ≤√24×(2+√2)=√2+12.所以△ABC 的面积的最大值为√2+12例3:在ΔABC 中,角A 、B 、C 所对的边分别为a,b,c ,且满足b =a cos C +√33c sin A .(1)求角A 的大小;(2)若边长a =2,求ΔABC 面积的最大值.试题分析:①由b =a cos C +√33c sin A ,根据正弦定理进行边角互化,再有sinB =sin (A +C ),化简即可求出角A .②由①知角A ,由已知边a ,所以是已知一边及其一边对角的情况,所以参考上面类型二进行解决.解析:①由b =acosC +√33csinA 及正弦定理得,sinB =sinAcosC +√33sinCsinA,即sin (A +C )=sinAcosC +cosAsinC =sinAcosC +√33sinCsinA ,整理得cosAsinC =√33sinCsinA ,∵sinC ≠0,∴cosA =√33sinA ,∴tanA =√3,又0<A <π,∴A =π3.②在△ABC中,由余弦定理得a2=b2+c2−2bccosA,即4=b2+c2−2bccosπ3=b2+c2−bc≥2bc−bc=bc,当且仅当b=c时等号成立,∴bc≤4.∴SΔABC=12bcsinAA=√34bc≤√3.∴△ABC面积的最大值为√3.例4:设△ABC中角A,B,C的对边分别为a,b,c,A=π3.①若c=2,a=2√3,求b;②求sin B+sin C的取值范围.试题分析:①已知两边及一角,求第三边,直接利用余弦定理即可解决.②已知角A=π3,所以B+C=2π3,由B+C的关系可以将sin B+sin C转换为只含有一个角B或角C,再根据三角函数性质即可解决. 解析:①∵a2=b2+c2−2bc cos A,∴12=b2+4−2×2×b×12.∴b2−2b−8=0,∴4b .②∵A=π3,∴B+C=2π3,C=2π3−B.∴sin B+sin C=sin B+sin(2π3−B)=32sin B+√32cos B=√3sin(B+π6),又∵0<B<2π3,12<sin(B+π6)≤1.∴sin B+sin C的取值范围是(√32,√3]例5:已知△ABC的内角A,B,C的对边分别为a,b,c,且满足(a−c)(ainA+sinC)−sinB(a−b)=0.①求C;②若S△ABC=2√3,D为边AB的中点,求CD的最小值.解析:①△ABC中,内角A,B,C的对边分别为a,b,c,且(a−c)(sin A+sin C)+(b−a)sin B=0.利用正弦定理得:(a−c)(a+c)+(b−a)b=0,78整理得:a 2−c 2+b 2−ab =0,即cos C =a 2+b 2−c 22ab=12,由于0<C <π,所以:C =π3.②因为△ABC 的面积为S △ABC =12ab sin C =√34ab =2√3,解得ab =8;在△ABC 中,CD ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12CA ⃗⃗⃗⃗⃗ ,两边同平方得: |CD⃗⃗⃗⃗⃗ |2=14a 2+14b 2+14ab ⩾14×2ab +14ab =34ab =6, 当且仅当a =b =2√2时,等号成立, 所以CD ⩾√6,即CD 的最小值为√6.例6:已知ΔABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,且b 2=c 2+ac , ①求证:B =2C ;②若ΔABC 是锐角三角形,求ac 的取值范围.解析:①由余弦定理可得:b 2=a 2+c 2−2accosB , ∵b 2=c 2+ac ,∴c 2+ac =a 2+c 2−2ac ⋅cos B , ∴a 2=ac +2ac ⋅cos B ,即a =c +2c ⋅cos B , ∴利用正弦定理可得:sin A =sin C +2sin C cos B ,即sin(B +C)=sin B cos C +sin C cos B =sin C +2sin C cos B , ∴sin B cos C =sin C +sin C cos B , 可得:sin(B −C)=sin C ,∴可得:B −C =C ,或B −C +C =π(舍去),∴B =2C . ②∵a c=sin A sin C =sin(B+C)sin C=sin(2C+C)sin C=2cos 2C +cos 2C =2cos 2C +1∵A +B +C =π,A 、B 、C 均为锐角,由于:3C +A =π, ∴0<2C <π2,0<C <π4. 再根据π2<3C ,可得π6<C ,∴π6<C <π4,∴a c∈(1,2)例7:在△ABC 中,2B =A +C .①当AC=12时,求S△ABC的最大值;②当S△ABC=4√3时,求△ABC周长的最小值.解析:①由题意,B=60°,b=12,∴由余弦定理可得122=a2+c2−2ac cos60°≥ac,∴ac≤144,∴S△ABC=12ac sin B≤36√3,∴S△ABC的最大值为36√3;②S△ABC=4√3=12ac×√32,∴ac=16,又b2=a2+c2−2ac cos60°=(a+c)2−48,b2=a2+c2−2ac cos60°≥ac,∴a+c=√b2+48,4b∴△ABC周长为a+b+c≥8+4=12当且仅当a=b=c时,△ABC周长的最小值为12.910。
专题02 解三角形中的最值问题(解析版)
专题02 解三角形中的最值问题常见考点考点一 面积最值问题典例1.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且cos (2)cos 0c B b a C +-=. (1)求角C 的大小;(2)若2c =,求△ABC 的面积S 的最大值. 【答案】 (1)3C π=;(2 【分析】(1)由正弦定理、和角正弦公式及三角形内角的性质可得sin 2sin cos A A C =,进而可得C 的大小; (2)由余弦定理可得224a b ab +-=,根据基本不等式可得4ab ≤,由三角形面积公式求面积的最大值,注意等号成立条件. (1)由正弦定理知:sin cos (sin 2sin )cos 0C B B A C +-=,∴sin cos cos sin sin()sin 2sin cos C B C B B C A A C +=+==,又0,A C <<π, ∴sin 0A ≠,则1cos 2C =,故3C π=.(2)由2221cos 22a b c C ab +-==,又2c =,则224a b ab ab +-=≥,∴1sin 2S ab C =≤a b =时等号成立,∴△ABC 的面积S变式1-1.ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且22(sin sin )sin sin sin .A C B A C -=- (1)求角B(2)当b =3时,求ABC 的面积的最大值. 【答案】 (1)3B π=(2【分析】(1)由正弦定理角化边可得222b a c ac =+-,根据余弦定理结合角B 的范围,即可得答案. (2)由题意,结合基本不等式,可得9ac ≤,代入面积公式,即可得答案. (1)由正弦定理得:22()a c b ac -=-,整理得222b a c ac =+-,所以2221cos 22a cb B ac +-==, 因为(0,)B π∈,所以3B π=(2)因为2222b a c ac ac ac ac =+-≥-=, 所以9ac ≤(当且仅当a c =时等号成立),所以ABC 面积的最大值max 19sin 2S B =⨯=变式1-2.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,sin()sin sin A B C B -=-. (1)求A ;(2)若2a =,求ABC 面积的最大值. 【答案】 (1)3A π=;(2 【分析】(1)利用两角差的正弦公式及诱导公式对sin()sin sin A B C B -=-进行转化,得到1cos 2A =,即可得A ; (2)利用余弦定理、三角形的面积公式以及基本不等式,即可求出ABC 面积的最大值. (1)解:sin()sin sin A B C B -=-,sin cos cos sin sin()sin A B A B A B B ∴-=+-, sin cos sin cos sin cos sin cos sin A B B A A B B A B ∴-=+-, 2sin cos sin 0B A B ∴-=.sin 0B ≠,1cos 2A ∴=,(0,)A π∈,3A π∴=. (2)解:由余弦定理得2222cos23b c bc π+-=,224b c bc ∴+-=.222b c bc bc bc bc +-≥-=,当且仅当2b c ==时取等号,4bc ∴≤, 11sin 422ABCSbc A ∴=≤⨯=ABC变式1-3.△ABC 中,角,,A B C 的对边分别为,,a b c ,已知a =22()a b c bc --=, (1)若4B π=,求边长b 的值;(2)求△ABC 的面积S 的最大值. 【答案】(1)(2)【分析】(1)根据已知条件,结合余弦定理可以求出△A ,再结合正弦定理,即可求出边b ; (2)使用三角形面积公式1sin 2bc A ⋅结合余弦定理和基本不等式即可求出面积最大值﹒ (1)()22a b c bc --=∵ 2222a b bc c bc ∴-+-=222b c a bc ∴+-=2221.222b c a bc bc bc +-∴==由余弦定理可知2221cos 22b c a A bc +-==△(0,)A π∈3A π∴=又23a =4B π=△由正弦定理可知:sin sin a bA B=,,4b ∴== (2)1sin 2ABCSbc A =⋅ 由(1)可知3A π=S ∴=又222b c bc +≤ 由余弦定理可知2222cos a b c bc A =+-⋅2212b c bc ∴+=+122bcbc +∴≤12bc ∴≤当且仅当b =c 时,bc 有最大值为12max []12ABC S ==△∴则△ABC 面积最大值考点二 周长最值问题典例2.在锐角ABC 中,角,,A B C 所对的边分别为,,a bc sin cos A a B a =+. (1)求角B 的值;(2)若2b =,求ABC 周长的取值范围. 【答案】(1)3π(2)(2+ 【分析】(1)利用正弦定理把边化为角,结合三角变换可得解;(2)用正弦定理把边化角,结合三角恒等变换化简,利用三角函数的值域求解,即可得到答案. (1)sin sin cos sin B A A B A =+, 因为A 为三角形内角,所以sin 0A ≠,cos 1B B =+,可得:2sin 16B π⎛⎫-= ⎪⎝⎭,即1sin 62B π⎛⎫-= ⎪⎝⎭, 因为(0,)B π∈,可得5,666B πππ⎛⎫-∈- ⎪⎝⎭,可得66B ππ-=,所以可得3B π=(2)由正弦定理得,2sin sin sin a b c R A B C ===所以2sin )sin sin 3a c A C A A π⎤⎛⎫+=+=+- ⎪⎥⎝⎭⎣⎦1sin sin 2cos 4sin 26A A A A A A π⎫⎛⎫+=+=+⎪ ⎪⎪⎝⎭⎝⎭, 因为022032A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,所以62A ππ<<从而2363A πππ<+<sin 16A π⎛⎫<+≤ ⎪⎝⎭,所以4a c +≤,故周长的取值范围是(2+变式2-1.已知a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,()cos 2cos 0b C a c B --=. (1)求角B ;(2)若4AC =,求ABC 的周长的最大值. 【答案】(1)3π(2)12 【分析】(1)根据正弦定理进行边角互化,进而得解; (2)利用余弦定理结合基本不等式求最值. (1)()cos 2cos 0b C a c B --=,由正弦定理得:()sin cos 2sin sin cos 0B C A C B --=, 则sin cos sin cos 2sin cos B C C B A B +=. 即()sin 2sin cos B C A B +=,sin 2sin cos A A B ∴=.又sin 0A ≠,1cos 2B ∴=.()0,B π∈,3B π∴=; (2)由余弦定理得:2222cos b a c ac B =+-,即2216a c ac =+-, 16=a 2+c 2−ac =(a +c )2−3ac ,由22a c ac +⎛⎫≤ ⎪⎝⎭,所以()221632a c a c +⎛⎫≥+- ⎪⎝⎭8a c +≤,当且仅当4a c ==取等号. 故ABC 的周长的最大值为12.变式2-2.在锐角ABC 中,向量(,3)m a b =与(cos ,sin )n A B =平行. (1)求角A ;(2)若a =2,求ABC 周长的取值范围. 【答案】(1)3π;(2)2,6]+. 【分析】(1)利用向量共线的坐标表示结合锐角三角形条件计算作答.(2)由(1)结合正弦定理用角B 表示边b ,c ,借助三角函数的性质计算作答. (1)因向量(,3)m a b =与(cos ,sin )n AB =平行,则sin cos a BA ,由正弦定理得:sin sin cos A B B A =,而ABC 是锐角三角形,即sin0B >,从而有sin A A=,即tan A =02A π<<,所以3A π=.(2) 在锐角ABC 中,由正弦定理得:2sin sin sin sin 3b c a B C A π===,即,b B c C ==,而23C B π=-,且022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<,则23sin()](sin )4sin()326b c B B B B B ππ+=+-=+,而2363B πππ<+<sin(16B π<+)≤,则有4b c+≤,即26a b c <++≤,所以ABC 周长的取值范围是2,6].变式2-3.在ABC 中,已知内角A 、B 、C 的对边分别是a 、b 、c ,且2cos 2c B a b =+. (1)求角C 的大小;(2)若c =,求ABC 周长的最大值. 【答案】 (1)23π(2)4+【分析】(1)根据正弦定理结合三角恒等变换得到sin (2cos 1)0B C +=,即1cos 2C =-,得到答案. (2)根据余弦定理得到2212a b ab =++,利用均值不等式得到4a b +≤,得到周长最大值. (1)由已知得2sin cos 2sin sin C B A B =+,即2sin cos 2sin()sin C B B C B =++,2sin cos 2(sin cos cos sin )sin C B B C B C B =++,所以2sin cos sin 0B C B +=,sin (2cos 1)0B C +=,()0,πB ∈,sin 0B ≠,所以2cos 10C +=,即1cos 2C =-, ()0,πC ∈,故2π3C =. (2)由余弦定理得2222cos c a b ab C =+-,即222π122cos3a b ab =+-, 2212a b ab =++2()a b ab =+-2223()()24a b a b a b ++⎛⎫≥+-=⎪⎝⎭(当且仅当2a b ==时,等于号成立).所以2()16+≤a b ,即4a b +≤,于是周长4l a b c =++≤+故ABC ∆周长的最大值是4+考点三 角的最值问题典例3.在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(),m c b =,3,sin 2n B ⎛⎫= ⎪ ⎪⎝⎭,m n ∥.(1)求C ;(2)求sin sin A B +的取值范围. 【答案】 (1)3C π=(2)32⎛ ⎝【分析】(1)由m n ∥得sin c B ,由正弦边化角可求C ;(2)将sin B 代换成()sin A C +,化简得sin sin 6π⎛⎫++ ⎪⎝⎭A B A ,结合锐角三角形关系求出A 范围,结合三角函数即可求解sin sin A B +的取值范围. (1)由m n ∥得sin c B ,由正弦边化角得sin sin C B B =,因三角形中sin 0B ≠,故sin C =3C π=或23π(舍去);(2)()3sin sin sin sin sin 26A B A A C A A A π⎛⎫+=++=+ ⎪⎝⎭,3C π=, 20,32B A C A πππ⎛⎫=--=-∈ ⎪⎝⎭,解得2,63A ππ⎛⎫∈ ⎪⎝⎭,又0,2A π⎛⎫∈ ⎪⎝⎭,所以,62A ππ⎛⎫∈ ⎪⎝⎭,2,633A πππ⎛⎫+∈ ⎪⎝⎭,3sin sin 62A B A π⎛⎫⎛+=+∈ ⎪ ⎝⎭⎝.变式3-1.在ABC 中,A ∠、B 、C ∠所对的边分别为a 、b 、c ,且222a b c +-=ABC (1)求角C 的大小;(2cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值,并求取得最大值时角A 、B 的大小.【答案】 (1)4Cπ(2)最大值为2,此时3A π=,512B π=【分析】(1)根据面积公式和余弦定理得到sin cos C C =,结合角度范围得到答案. (2)利用三角恒等变换得到原式为2sin 6πA ⎛⎫+ ⎪⎝⎭,根据角度范围得到最值.(1)1sin 2ABC S ab C ==△,故2sin ab C =222cos 2a b c C ab +-==2cos ab C = 即sin cos C C =,即tan 1C =,又0πC <<,故π4C =. (2)π4C =,故3π4B A =-, ()cos cos πππcos 2sin 46A B A A A A A ⎛⎫⎛⎫-+=--=+=+ ⎪ ⎪⎝⎭⎝⎭,304A π<<,故ππ11π6612A <+<, 当ππ62A +=,即π3A =时,2sin 6A π⎛⎫+ ⎪⎝⎭取最大值为2.,此时π3A =,5π12B =.变式3-2.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,面积cos S C =. (1)求角C 的大小;(2)求2sin cos cos 223A A H B π⎛⎫=-+ ⎪⎝⎭的最大值,及取得最大值时角A 的值. 【答案】 (1)3C π=;(2)H ,此时4A π=.【分析】(1)由三角形的面积公式可求得tan C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角恒等变换化简得出4H A π⎛⎫=+ ⎪⎝⎭,求出角A 的取值范围,利用正弦型函数的基本性质可求得H 的最大值及其对应的角A 的值. (1)解:由in 12s S ab C =及题设条件得1sin cos 2ab C C =,即sin C C =,又cos 0C ≠,tan C ∴0C π<<,3C π∴=.(2)解:因为()2sincos cos sin cos sin cos 223A A H B A A A A ππ⎛⎫=-+=--=+ ⎪⎝⎭4A π⎛⎫=+ ⎪⎝⎭,3C π=,则203A π<<,114412A πππ∴<+<,故当42A ππ+=时,即当4A π=时,H变式3-3.在锐角ABC 中,角,,A B C 所对的边分别是,,a b c ,且sin sin 2sin sin 6b B a A b Ac C π⎡⎤⎛⎫-=+- ⎪⎢⎥⎝⎭⎣⎦.(1)求角A 的大小;(2)求sin cos C B ⋅的取值范围. 【答案】 (1)6π(2)1(0,)2【分析】(1)由正弦定理化角为边,再由余弦定理变形可得求得A 角;(2)求出B 角范围,把sin cos C B 用B 角表示,然后结合二倍角公式、两角和的正弦公式变形,再由正弦函数性质得取值范围. (1)sin sin 2sin sin (2sin cos 2cos sin )si 66n 6b B a A b A c C b A b A c C πππ⎡⎤⎛⎫-=+-=+- ⎪⎢⎥⎝⎭⎣⎦,由正弦定理得2222sin cos 2cos sin 66b a bc A bc A c ππ-=+-,222sin cos 2cos A bc A b c a bc A +=+-=cos A A =,cos 0A ≠,所以tan A =,又(0,)A π∈,所以6A π=;(2)三角形为锐角三角形,所以62A B B ππ+=+>,3B π>,即32B ππ<<.25551sin cos sin()cos (sin cos cos sin )cos cos cos 6662C B B B B B B B B B πππ=-=-=1cos 21111122cos 2)sin(2)4224264B B B B B π+==++=++, 32B ππ<<,则572666B πππ<+<,11sin(2)262B π-<+<,所以10sin cos 2C B <<.即sin cos C B 的范围是1(0,)2.考点四 边的最值问题典例4.已知在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 20B b A b +-=. (1)求角A ;(2)若a =b c -的取值范围. 【答案】 (1)π3; (2)()2,2-. 【分析】(1)利用正弦定理化边为角,结合诱导公式以及特殊角的三角函数值即可求角A ; (2)由(1)知:2π3C B =-,根据ABC 是锐角三角形可求出ππ62B <<,利用正弦定理化角为边,4sin b B =,4sin c C =,结合2π3C B =-以及角B 的范围,再利用三角恒等变换以及三角函数的性质(1)sin cos 20B b A b +-=,sin sin sin cos 2sin 0A B B A B +-=, 因为π02B <<,所以sin 0B ≠cos 2A A +=, 所以π2sin 26A ⎛⎫+= ⎪⎝⎭,πsin 16A ⎛⎫+= ⎪⎝⎭,因为π02A <<,ππ2π663A <+<,所以 可得:ππ62A +=,所以π3A =.(2)由正弦定理知:4sin sin sin b c a B C A ====, 所以4sin b B =,4sin c C =,所以()2π4sin sin 4sin sin 3b c B C B B ⎡⎤⎛⎫-=-=--⎪⎢⎥⎝⎭⎣⎦11π4sin sin 4sin 4sin 223B B B B B B ⎛⎫⎛⎫⎛⎫=-==- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,故ππ62B <<,所以πππ636B -<-<,1π1sin 232B ⎛⎫-<-< ⎪⎝⎭,所以()π4sin 2,23B ⎛⎫-∈- ⎪⎝⎭, 故b c -的取值范围为()2,2-.变式4-1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos a c b C -=. (1)求角B ;(2)若b =12a +c 的最大值. 【答案】 (1)3B π=(2(1)由正弦定理和题设条件,化简得sin 2cos sin C B C =,进而求得1cos 2B =,从而可得3B π=;(2)由(1)和正弦定理化简得()12a c A ϕ+=+,结合三角函数的性质,即可求得12a +c 的范围. (1)根据正弦定理,由22cos a c b C -=得2sin sin 2sin cos A C B C -=, 又因为()sin sin sin cos sin cos A B C B C C B =+=+, 所以2sin cos sin C B C =,又因为sin 0C ≠, 所以1cos 2B =,又因为()0,B π∈,所以3B π=(2)根据正弦定理2sin sin a cA C=== △2sin a A =,2sin c C =△1212sin sin 2sin sin 2sin sin 232a c A C A A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭故()12a c A ϕ++其中(tan ϕ=)又203A π<<.当2A πϕ+=时,12a +c变式4-2.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()sin sin sin a A b a B c C +-=. (1)求角C ; (2)求a bc+的取值范围. 【答案】 (1)3C π=(2)(]1,2 【分析】(1)由正弦定理角化边以及余弦定理即可求解. (2) 由正弦定理边化角,再由三角函数求最值.(1)由已知及正弦定理得222a b ab c +-=, 即222a b c ab +-=,由余弦定理得2221cos 22a b c C ab +-==,可得3C π=.(2)根据正弦定理得)sin sin sin sinsin a b A B A B c C ++==+2sin sin33A A π⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭3sin 2A A ⎛⎫=⎪⎪⎭2sin 6A π⎛⎫=+ ⎪⎝⎭, 又203A π<<,则5666A πππ<+< 故12sin 26A π⎛⎫<+≤ ⎪⎝⎭,则a b c+的取值范围是(]1,2.变式4-3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin sin sin sin A C a bA B c--=+.(1)求角B 的大小;(2)设2m a c =-,若b =A ,C 都为锐角,求m 的取值范围. 【答案】 (1)60B =; (2)(0,3). 【分析】(1)根据题意,结合正弦定理角化边,以及余弦定理,即可求解;(2)根据题意,结合正弦定理边化角,三角恒等变换,以及三角函数的性质,即可求解. (1)根据题意,由已知及正弦定理,得a c a ba b c--=+, 即22()a c c a b -=-,故222ac a c b =+-.由余弦定理,得2221cos 22a cb B ac +-==, 因为()0,B π∈,所以60B =. (2)根据题意,由60b B =︒,知2sin sin a c A C ===, 即2sin a A =,2sin c C =,故()4sin 2sin 4sin 2sin 120m A C A A =-=-︒-14sin 2sin 2A A A ⎫=-+⎪⎝⎭()13sin cos 302A A A A A ⎫==-=-⎪⎭︒.由A ,C 都为锐角,180120A C B +=-=,知3090A,03060A <-<,易得()30sin 302A <-<,故(0,3)m ∈.巩固练习练习一 面积最值问题1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2B B =. (1)求B ;(2)若ABC 为锐角三角形,且1c =,求ABC 面积的取值范围. 【答案】 (1)3B π=(2)⎝⎭【分析】(1)利用辅助角公式可得sin 16B π⎛⎫+= ⎪⎝⎭,再根据B 的取值范围,即可求出角B ;(2)由三角形面积公式可得ABC S =△,再利用正弦定理可得12=a ,根据三角形为锐角三角形求出C 的取值范围,再根据正切函数的性质求出a 的取值范围,即可得解; (1)解:由cos 2B B =,即12cos 22B B ⎛⎫= ⎪ ⎪⎝⎭,所以sin 16B π⎛⎫+= ⎪⎝⎭.又(0,)B π∈,所以7,666B πππ⎛⎫+∈ ⎪⎝⎭,所以3B π=. (2)解:由题设及(1)知ABC的面积1sin 2△=ABC S ac B .由正弦定理得2sin sin 13sin sin 2C c A a C C π⎛⎫- ⎪⎝⎭===. 由于ABC 为锐角三角形,故02A π<<,02C <<π,由(1)知23A C π+=, 所以62C ππ<<,所以tan C2tan C102tan C <<11222<<,即122a <<ABCS <<, 因此,ABC面积的取值范围是⎝⎭.2.已知ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()1sin cos 22b C ab c B ⎛⎫-=+- ⎪⎝⎭.(1)求b 的值; (2)若3B π=,求ABC 面积的最大值.【答案】 (1)2; (2【分析】(1)利用正弦定理以及逆用两角和的正弦公式得出1sin sin 2A b A =,而sin 0A ≠,即可求出b 的值; (2)根据题意,由余弦定理得224a c ac +-=,再根据基本不等式求得4ac ≤,当且仅当2a c ==时取得等号,即可求出ABC 面积的最大值. (1)解:由题意得1cos cos 2b C abc B =-,由正弦定理得:1sin cos sin sin cos 2B C b A C B =-, 即1sin cos sin cos sin 2B C C B b A +=,即1sin sin 2A b A =, 因为sin 0A ≠, 所以2b =. (2)解:由余弦定理2222cos b a c ac B =+-,即224a c ac +-=, 由基本不等式得:2242a c ac ac ac +-=≥-,即4ac ≤, 当且仅当2a c ==时取得等号,11sin 4sin 3223ABC S ac B ∴=≤⋅⋅=△,所以ABC 3.已知△ABC 的内角A 、B 、C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【答案】(1)3π(2【分析】 (1)将sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,转化为222b c a bc +-=,再由余弦定理求解;(2)根据△ABC 的外接圆半径为1,得到2sin a R A ==3bc ≤,再由1sin 2ABCSbc A =求解. (1) 解:因为sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,所以a b c b c a b c-+=+-, 即222b c a bc +-=,所以2221cos 22b c a A bc +-==,因为()0,A π∈,所以3A π=;(2)因为△ABC 的外接圆半径为1,所以2sin a R A ==由余弦定理得2222cos a b c bc A =+-,22b c bc bc =+-≥,所以3bc ≤,当且仅当b c =时,等号成立,所以11sin 322ABC S bc A =≤⨯=△故△ABC 的面积S 4.在ABC 中,A ∠、B 、C ∠的对边分别为a 、b 、c ,其中边c 最长,并且22sin sin 1A B +=.(1)求证:ABC 是直角三角形; (2)当1c =时,求ABC 面积的最大值. 【答案】 (1)证明见解析 (2)14【分析】(1)利用同角关系,将已知条件变形,配合诱导公式,可以证明结论.(2)利用勾股定理知222=1a b c +=,利用基本不等式可得面积最大值(1)证明:由22sin sin 1A B +=,得22sin 1sin A B =-,即22sin cos A B =, 又边c 最长,则A 、B 均为锐角,所以sin =cos =sin()2A B B π-,解得2A B π=-,2A B π+=即2C π=,所以ABC 为直角三角形.(2) 因为2C π=,由勾股定理222+=a b c ,因为1c =,所以221a b +=.记ABC 面积为S ,则12S ab =,由222ab a b ≤+得()22111244S ab a b =≤+=,当且仅当a b ==时等号成立.所以当a b ==时,ABC 面积取到最大值14.练习二 周长最值问题5.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin sin sin sin A C bB C a c-=-+.(1)求角A 的大小;(2)若2a =,求ABC 周长的最大值. 【答案】 (1)3A π=(2)6 【分析】(1)利用正弦定理可得222b c a bc +-=,结合余弦定理可得结果; (2)由余弦定理及均值不等式即可得到结果. (1) ∵sin sin sin sin A C bB C a c -=-+,∴a c bb c a c-=-+, ∴222b c a bc +-=,∴2221cos 22b c a A bc +-==,又()0,A π∈,∴3A π=;(2)由余弦定理2222cos a b c bc A =+-, 得224bc b c +=+, 即2()34b c bc +=+. 因为2()2b c bc+,所以223()()44b c b c +++.即4b c +(当且仅当2b c ==时等号成立). 所以6a b c ++.故ABC 周长的最大值6.6()sin cos 1C c A =+;②()()()sin sin sin a b A B c b C -+=-;③)2224ABC S b c a +-△中任选一个,补充在下面问题的横线上,并作答.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且______. (1)求角A 的大小;(2)若2a =,求ABC 的周长l 的取值范围. 注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,3A π=(2)(]4,6l ∈ 【分析】(1)选择①,运用正弦定理及辅助角公式可求解;选择②运用正弦定理及余弦定理可求解;选择③,由三角形面积公式及余弦定理可求解. (2)由正弦定理及辅助角公式可求解. (1)()sin sin cos 1A C C A =+,又()0,C π∈,所以sin 0C >cos 1A A -=,则2sin 16A π⎛⎫-= ⎪⎝⎭,故1sin 62A π⎛⎫-= ⎪⎝⎭. 又因为5666A πππ-<-<,所以66A ππ-=,解得3A π=.选择②,由正弦定理可得()()()a b a b c b c -+=-, 则222b c a bc +-=,则由余弦定理可得2cos bc bc A =,故1cos 2A =. 又因为0A π<<,所以3A π=.选择③,由三角形面积公式可得)22214sin cos 2bc A b c a A ⨯=+-=,得tan A =又因为0A π<<,故3A π=.(2)由正弦定理得sin sin a b B B A ==,sin sin a c C C A ==. 因为23B A C C ππ=--=-,203C π<<,所以)22sin sin 2sin sin 3l a b c B C C C π⎡⎤⎛⎫=++=+=-+ ⎪⎢⎥⎝⎭⎣⎦32sin 2C C ⎫=++⎪⎪⎝⎭24sin 6C π⎛⎫=++ ⎪⎝⎭.又5666C <+<πππ,所以1sin ,162C π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,从而(]4,6l ∈.7.在ABC 中,内角A B C 、、所对边分别为a b c 、、,已知()sin sin sin sin .c C b B a A B -=- (1)求角C 的值;(2)若3c =,求ABC 周长的最大值. 【答案】(1)3π(2)9 【解析】 (1)因为()sin sin sin sin .c C b B a A B -=-由正弦定理可得222c b a ab -=-,即222,c a b ab =+- 又因为2222cos c a b ab C =+-, 所以1cos 2C =, 因为0C π<<, 所以3C π=;(2)由余弦定理得22222cos ()3c a b ab C a b ab =+-=+-,所以2222()()3()24a b a b c a b ++≥+-=,即6a b +≤,当且仅当a b =时,等号成立, 所以ABC 周长的最大值为9.8.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为()1sin sin sin 2c a A b B c C +-. (1)求角C 的大小;(2)若c =ABC 周长的最大值. 【答案】 (1)3C π=;(2) 【分析】(1)根据ABC 的面积公式可得出()11sin sin sin sin 22ac B c a A b B c C =+-,化简后利用正弦定理进行角化边可得出222ab a b c =+-,然后运用余弦定理可求出cos C 的值,从而可求出角C 的大小;;(2)根据c =3C π=,利用余弦定理得出()22233a b ab a b ab =+-=+-,然后根据基本不等式即可求出a b +≤ABC 周长的最大值. (1)因为ABC 的面积为()1sin sin sin 2c a A b B c C +-, 所以()11sin sin sin sin 22S ac B c a A b B c C ==+-,即sin sin sin sin a B a A b B c C =+-,所以由正弦定理,得222ab a b c =+-,所以2221cos 222a b c ab C ab ab +-===.又0C π<<,所以3C π=. (2)因为c 3C π=,由余弦定理2222cos c a b ab C =+-,得()()22222233()324a b a b a b ab a b ab a b ++⎛⎫=+-=+-≥+-⋅= ⎪⎝⎭,所以()212a b +≤,即a b +≤a b =时“=”成立.所以a b c ++≤a b =时“=”成立.所以当ABC 是正三角形时,ABC 的周长取最大值练习三 角的最值问题9.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足()2sin cos 2sin b A B c b B =- (1)求角A 的大小;(2)求cos cos B C +的取值范围. 【答案】 (1)π3A = (2)1,12⎛⎤ ⎥⎝⎦【分析】(1)根据正弦定理得到2sin cos 2sin sin A B C B =-,再利用三角恒等变换得到1cos 2A =,得到角度. (2)利用三角恒等变换得到cos cos si πn 6B C B ⎛⎫+=+ ⎪⎝⎭,再根据角度的范围得到答案.(1)由正弦定理得()2sin sin cos 2sin sin sin B A B C B B =-, 因为0πB <<,所以sin 0B ≠,所以2sin cos 2sin sin A B C B =- 即2sin cos 2sin cos 2sin cos sin A B A B B A B =+-,解得1cos 2A =, 因为0πA <<,所以π3A =. (2)π3A =,故2π3B C +=,所以2π3C B =-且2π0,3B ⎛⎫∈ ⎪⎝⎭, 2πcos cos cos cos 3B C B B ⎛⎫+=+- ⎪⎝⎭2π2π1cos coscos sin sin cos sin 3326πB B B B B B ⎛⎫=++==+ ⎪⎝⎭. 因为2π0,3B ⎛⎫∈ ⎪⎝⎭,所以ππ5π,666B ⎛⎫+∈ ⎪⎝⎭,所以π1sin ,162B ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,即cos cos B C +的取值范围为1,12⎛⎤ ⎥⎝⎦.10.已知向量(,)m a c b =+,(,)n a c b a =--,且0m m ⋅=,其中A 、B 、C 是ABC 的内角,a ,b ,c 分别是角A ,B ,C 的对边.(1)求角C 的大小; (2)求sin sin A B +的最大值. 【答案】 (1)3C π=(2【分析】(1)由0m m ⋅=,得222a b c ab +-=,由余弦定理可得答案;(2)利用23A B π+=,可得sin sin 6π⎛⎫++ ⎪⎝⎭A B A ,再由A 的范围可得答案.(1)由0m m ⋅=,得222()()()0a c a c b b a a b c ab +-+-=⇒+-=,由余弦定理2221cos 222a b c ab C ab ab +-===,又0C π<<,则3C π=. (2) 由(1)得3C π=,则23A B π+=,可得:23sin sin sin sin sin 326ππ⎛⎫⎛⎫+=+-==+⎪ ⎪⎝⎭⎝⎭A B A A A A A ,203A π<<,∴5666A πππ<+<,∴1sin 126A π⎛⎫<+≤ ⎪⎝⎭,∴)6A π+≤即sin sin A B +11.在ABC 中,已知角A ,B ,C 的对边分别为a ,b ,c ,且b ,c 为方程2312100x x -+=的两个根,a =(1)求三角形ABC 的面积; (2)求sin sin B C +的值. 【答案】(1(2【分析】(1)根据韦达定理得到4b c+=,10 3bc=,再由余弦定理得到22()1cos122b c aAbc+-=-=,所以3Aπ=,根据三角形面积公式得到结果即可;(2)由正弦定理得到sin sinb cB C+=+sin sinB C+==(1)因为b,c为方程2312100x x-+=的两个根,所以4b c+=,103bc=因为a=22222()cos122b c a b c aAbc bc+-+-==-1123==因为0Aπ<<,所以3Aπ=,所以三角形ABC的面积为1110sin sin2233bc Aπ=⨯⨯=(2)在三角形ABC中,由正弦定理得,sin sin sinb c aB C A===所以sin sinb cB C+=+sin sinB C+==12.在ABC中,角A,B,C所对边分别为a,b,c,且sin sin sin sina Ab Cc C b B+=+.(1)求角A的大小;(2)求sin sinB C+的取值范围.【答案】(1)3Aπ=(2)⎝【分析】(1)由正弦定理,将角化边,再根据余弦定理,求解即可.(2)由(1)可知,3Aπ=,则sin sin6B C Bπ⎛⎫+=+⎪⎝⎭6Aπ⎛⎫=+⎪⎝⎭,根据正弦型三角函数的图象和性质,求解即可.(1)由正弦定理可得:222a bc c b +=+, 又△2222cos a b c bc A =+- △1cos 2A = △0A π<< △3A π=(2)由A B C π++=得23C B π=-,且20,3B π⎛⎫∈ ⎪⎝⎭,23sin sin sin sin sin 326BC B B B B B ππ⎛⎫⎛⎫+=+-==+ ⎪ ⎪⎝⎭⎝⎭ △5,666B πππ⎛⎫+∈ ⎪⎝⎭6B π⎛⎫+∈ ⎪⎝⎭⎝.所以sin sin B C +的取值范围是⎝练习四 边的最值问题13.已知ABC 的内角,,A B C 对边分别为,,a b c ,且()22sin sin sin sin sin A C B A C -=-. (1)求角B 的大小;(2)若ABC 为锐角三角形,且b =c a -的取值范围. 【答案】 (1)3B π=(2)()1,1- 【分析】(1)根据正弦定理边角互化和余弦定理求解即可;(2)由正弦定理得2sin ,2sin c C a A ==,进而π2sin 3c a C ⎛⎫-=- ⎪⎝⎭,再结合ππ,62C ⎛⎫∈ ⎪⎝⎭求解即可得答案.(1)解:由已知得222sin sin sin sin sin A C B A C +-=, 故由正弦定理得222a c b ac +-=,由余弦定理得2221cos 22a cb B ac +-==, 因为()0,B π∈,所以π3B =. (2)解:由(1)知sin B =, △2sin sin sin a c bA C B===,△2sin ,2sin c C a A ==△ ()()π2(sin sin )2sin sin sin 2sin .3c a C A C B C C C C ⎛⎫-=-=-+==- ⎪⎝⎭在锐角三角形ABC 中,π3B =, △ππ,62C ⎛⎫∈ ⎪⎝⎭,△πππ,366C ⎛⎫-∈- ⎪⎝⎭,△()π2sin 1,13C ⎛⎫-∈- ⎪⎝⎭,△c a -的取值范围为()1,1-.14.在锐角ABC 中,角,,A B C 的对边分别为a ,b ,c ,()222sin cos a b c B B -+.(1)求B ;(2)若1b =,求2c a -的取值范围. 【答案】(1)3π(2)()【分析】(1)利用余弦定理对已知条件化简,可求sin B 的值,结合B 为锐角,可求B 的值;(2)由正弦定理可得,a A c C =,再根据锐角三角形,可得,62A ππ⎛⎫∈ ⎪⎝⎭,所以2c a -的范围转化为三角函数求取值范围的问题求解. (1)解:因为()222sin cos a b c B B -+=,所以222sin 2a c b B B ac +-=,即cos sin B B B =,因为B 为锐角,所以cos 0B ≠,所以sin B =, 又0,2B π⎛⎫∈ ⎪⎝⎭,所以3B π=;(2)解:在锐角ABC 中,3B π=,所以23A C π+=, 所以20,20,23A A C πππ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪∈ ⎪⎭=-⎪⎝⎩,所以,62A ππ⎛⎫∈ ⎪⎝⎭,因为3B π=,1b =,所以sin sin sin a b c A B C ===所以,a A c C ==,所以223c a C A A A π⎪-=⎛⎝-⎭=⎫cos 2cos 3A A A π⎛⎫ ⎪+⎝=⎭=,又,62A ππ⎛⎫∈ ⎪⎝⎭,所以5,326A πππ⎛⎫+∈ ⎪⎝⎭,可得cos 3A π⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3A π⎛⎫+∈ ⎪⎝⎭,即2c a -的取值范围是().15.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知a =cos (cos )+C B B cos 0A =.(1)求角A 的大小; (2)求2b c +的取值范围. 【答案】 (1)3A π=(2)(8, 【分析】(1)根据三角恒等变换化简可得tan A(2)利用正弦定理及三角恒等变换可得2)b c B θ+=+,再根据三角函数的值域求解.(1)△cos (cos )cos 0C B B A +=,△cos()cos cos cos 0A B B A B A -++=.即cos cos sin sin cos cos cos 0-++-=A B A B B A B A ,sin sin cos 0A B B A =,△sin 0B >,△sin A A =, 又cos 0A ≠,△tan A = △02A π<<,△3A π=.(2)由正弦定理可得24sin sin 3a R A ===,228sin 4sin 8sin 4sin 10sin )3⎛⎫+=+=+-=+=+ ⎪⎝⎭b c B C B B B B B πθ,其中tan θ=,sin θ=cos θ=θ为锐角△ABC 为锐角三角形,则62B ππ<<,从而62B ππθθθ+<+<+,得sin sin()61⎛⎫+<+⎪⎭≤⎝B πθθ,sin sin cos cos sin 666⎛⎫+=+= ⎪⎝⎭πππθθθ△sin()17<+≤B θ,8)<+≤B θ△82b c <+≤从而2b c +的取值范围为(8,.16.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin B +sin (A -C )=cos C . (1)求角A 的大小;(2)当c =时,求a 2+b 2的取值范围. 【答案】 (1)6A π=(2)(12,20) 【分析】(1)利用两角和与差的正弦公式展开,求得1sin 2A =,即可得到答案; (2)由正弦定理得3b =,根据tan C >3<b <4,再利用二次函数的值域即可得到答案; (1)(1)ABC 中,由sinB +sin (A -C )=cosC 得sin (A +C )+sin (A -C )=cosC , 化简2sinAcosC =cosC ,而ABC 为锐角三角形,即cosC ≠0, 得1sin 2A =,又02A π<<,故6A π=;(2)(2)由正弦定理得sin sin b cB C=,得13(cos )sin 223sin sin C C c B b C C ⋅==== 又022062C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,即32C ππ<<,tan C >3<b <4,由余弦定理得a 2=b 2+c 2-2bccosA =b 2-6b +12,所以222231526122(12,20)22a b b b b ⎛⎫+=-+=-+∈ ⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3 以三角形为背景的范围最值为专题训练题型一 与三角形相关的面积或周长范围1.【黑龙江省哈尔滨市第三中学2017届高三二模考试】在ABC ∆中, ,,a b c 分别是角,,A B C的对边,已知2c =,若222sin sin sin sin sin A B A B C +-=,则a b +的取值范围是__________. 【答案】(2,4]2.【江西省2017届高三下学期调研考试(四)】在ABC ∆中, 2cos 3a B b c π⎛⎫-=+ ⎪⎝⎭,且ABC ∆ABC ∆周长的取值范围为__________.【答案】(]6,9【解析】由2cos 3a B b c π⎛⎫-=+ ⎪⎝⎭得cos a B b c =+,由正弦定理得()cos sin sinA B sinB A B =++,?sinB cosAsinB =+,又0sinB ≠1cosA =+,所以1sin 62A π⎛⎫-= ⎪⎝⎭, 由0A π<<得5,666A πππ-<-<所以66A ππ-=,所以3A π=,又ABC ∆的外接圆半径为3aa sinA=⇒==, 23b c sinB sin B π⎤⎛⎫+=+=+- ⎪⎥⎝⎭⎦3166sin 226sinB sinB cosB B π⎫⎛⎫==+=+⎪ ⎪⎪⎝⎭⎭⎝⎭, 由203B π<<,得5666B πππ<+<,故36sin 66B π⎛⎫<+≤ ⎪⎝⎭,所以69a b c <++≤.3.【安徽省池州市2017届高三4月联考】已知在平面四边形ABCD 中, AB ,2BC =, AC CD ⊥, AC CD =,则四边形ABCD 面积的最大值为__________.【答案】34.【湖南省湘潭市2017第三次高考模拟】在ABC ∆中, 223=4cos A cosA +.(1)求角A 的大小;(2)若2a =,求ABC ∆的周长的取值范围.【答案】(1) 3A π=;(2) (]4,6l ∈.【解析】试题分析:(1)根据倍角公式可将已知等式转化为关于cos A 的二次方程,解方程求得cos A 的值,进而得到角A 的大小;(2)根据正弦定理可将三角形的边长用对应角的正弦值表示,列出周长的表达式并利用两角和与差公式化为关于角B 的三角函数,进而根据三角函数的值域求得周长的取值范围.试题解析:(1)因为2234cos A cosA +=,所以2122cos 2cos A A +=, 所以24410cos A cosA -+=, 所以1cos 2A =. 又因为0A π<<,所以3A π=.(2)因为sin sin sin a b c A B C ==, 3A π=, 2a =, 所以,b Bc ==, 所以)22sin sinCl b c B =++=++.因为23B C π+=, 所以22sin sin 2sin36l B B B ππ⎡⎤⎛⎫⎛⎫=+-=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 又因为203B π<<,所以1sin 126B π⎛⎫<+≤ ⎪⎝⎭,所以(]4,6l ∈ 5.【甘肃省兰州市2017年高考实战模拟考试数学】在ABC ∆中, ,,A B C 的对边分别为,,a b c ,若)tan tan tan tan 1A C A C +=-. (1)求角B ;(2)如果2b =,求ABC ∆面积的最大值.【答案】(Ⅰ)3B π=(2)在ABC ∆中,由余弦定理得2221cos 22a cb B ac +-==,所以224a c ac +=+ ∵222a c ac +≥ ∴4ac ≤,当且仅当2a c ==时等号成立∴ABC ∆的面积11sin 422S ac B =≤⨯=∴ABC ∆6.【广西桂林市、崇左市、百色市2017届高三下学期第一次联合模拟(一模)】四边形ABCD如图所示,已知2AB BC CD ===, AD =(1cos A C -的值;(2)记ABD ∆与BCD ∆的面积分别是1S 与2S ,求2212S S +的最大值.【答案】(1);(2)14.【解析】试题分析: (1)在,ABD BCD ∆∆中,分别用余弦定理,列出等式,cos A C - 的值; (2)分别求出12S S , 的表达式,利用(1)的结果,得到2212S S +是关于cos C 的二次函数,利用三角形两边之和大于第三边,两边之差小于第三边,求出BD 的范围,由BD 的范围求出cos C 的范围,再求出2212S S +的最大值.试题解析:(1)在ABD ∆中, 2222cos 16BD AB AD AB AD A A =+-⋅=-, 在BCD ∆中, 2222cos 88cos BD BC CD BC CD C C =+-⋅=-,cos 1A C -=.7.【黑龙江省哈尔滨市第六中学2017届高三下学期第一次模拟】在ABC ∆中,设边,,a b c 所对的角分别为,,A B C , ,,A B C 都不是直角,且22cos cos 8cos ac B bc A a b A +=-+ (Ⅰ)若sin 2sin B C =,求,b c 的值;(Ⅱ)若a =ABC ∆面积的最大值.【答案】(1) b c ==【解析】【试题分析】(1)依据题设条件,运用正弦定理余弦定理分析求解;(2)借助余弦定理基本不等式建立不等关系分析探求:(1)222222228cos 22a c b b c a acbc a b A ac bc +-+-+=-+ 2228cos b c a A ∴+-=2cos 8cos bc A A ∴= cos 0A ≠ 4bc ∴=由正弦定理得2b c =b c ∴=2222cos 22cos a b c bc A bc bc A =+-≥- 即688cos A ≥- 1cos 4A ∴≥当且仅当b c =时取等号sin 4A ∴≤1sin 22S bc A ∴=≤ 1sin 22S bc A ∴=≤,所以面积最大值为2题型二 与三角形相关的边长或角范围8.【河南省郑州一中2016-2017学年下期17届高三百校联盟】锐角ABC 中,角A 、B 、C所对的边分别为、、,若()2sin cos cos A a C c A +=,则cb的取值范围是( )A. 1,22⎛⎫⎪⎝⎭ B. ,23⎛ ⎝⎭ C. ()1,2 D. 2⎛⎫ ⎪ ⎪⎝⎭ 【答案】A【解析】由正弦定理得,()()2sin sin cos sin cos sin 3A A C C A A A CB π+=⇒+=⇒=又1sin ,0,sin 12622sin c C A C C C C b B πππ⎛⎫∈∴<<⇒<<⇒==∈ ⎪⎝⎭⎝⎭故选B.9.【河南省豫南九校(中原名校)2017届高三下学期质量考评八】在四边形ABCD 中,若2AB =, BC = AD =, 0AC CD ⋅= ,则BD的最大值为__________.【答案】6【解析】设DC t =,则AC t =,在ABC ∆中,由余弦定理得22cos ACB ∠==sin ACB ∠====.在DBC ∆中,由余弦定理得()220890DBt ACB =+-∠+2288t ACB t =++∠=+228DBt =+不妨设212(0)2tπθθ-=<<,则)2sin cos 202016sin 4DB πθθθ⎛⎫=++=++ ⎪⎝⎭,所以当时, 2max 36DB =,则对角线BD 的最大值为,应填答案。
10.【安徽省马鞍山市2017届高中毕业班第二次教学质量检测】在边长为2的正三角形ABC的边AB AC 、上分别取M N 、两点,点A 关于线段MN 的对称点A '正好落在边BC 上,则AM 长度的最小值为____.【答案】6【解析】显然,A P 两点关于折线MN 对称,连接MP ,可得AM PM =,则有BAP APM ∠=∠,设BAP θ∠=, 2BMP BAP APM θ∠=∠+∠=,再设AM MP x ==,则有2MB x =-,在ABC ∆中, 180120APB ABP BAP θ∠=-∠-∠=-,1202BPM θ∴∠=- ,又60MBP ∠= ,在B M P ∆中,由正弦定理知sin sin BM MPBPM MBP=,即()2,sin60sin 1202x x x θ-=∴=- 060,01202120θθ≤≤∴≤-≤ ,所以当120290θ-= 时,即15θ= 时,()sin 12021θ-=26==,且75AMN ∠= ,则AM的最小值为6,故答案为6.11.【江西省临川实验学校2017届高三第一次模拟考试】已知ABC ∆的内角A B C 、、的对边分别为a b c 、、,若2A B =,则2c b b a+的取值范围为__________. 【答案】()2,412.【安徽省淮北市第一中学2017届高三下学期第二次周考】在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,已知()6,sin sin sin c A C A B =-=-.若16a ≤≤,则sin C 的取值范围是__________.【答案】2⎤⎥⎣⎦【解析】∵()sin sin sin A C A B -=-,∴()()()sin sin sin sin sin 2sin cos A A B C A B A B A B =-+=-++=, 由sin 0A ≠,可得1cos 2B =. ∵22226,2cos 636,c b a c ac B a a =∴=+-=-+∴6sin sin c B b C b ====,∵16a ≤≤,⎡⎤⎣⎦,∴sin C 的取值范围是,12⎤⎥⎣⎦. 13.【四川省资阳市2017届高三4月模拟考试】在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,已知21sin sin sin 24B C B C -+=.(Ⅰ) 求角A 的大小;(Ⅱ) 若2b c +=,求a 的取值范围.【答案】(Ⅰ)2π3A =(Ⅱ))2 【解析】试题分析:(1)利用题意结合诱导公式求得B C + 的值,结合三角形 内角和为π 求解角A 的值即可; (2)由余弦定理结合(1)中的结论得到的取值范围,据此求解边长的取值范围即可.(Ⅱ)根据余弦定理,得2222π2cos3a b c bc =+-⋅ 22b c bc =++ ()()2222b b b b =+-+- 224b b =-+ ()213b =-+.又由2b c +=,知02b <<,可得234a ≤<,所以的取值范围是)2. 14.【北京市西城区2017届高三一模】在ABC ∆中,角A , B , C 的对边分别为,,,且tan 2sin a C c A =.(Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的取值范围.【答案】(Ⅰ)π3C =;(Ⅱ) 【解析】试题分析:(Ⅰ)由tan 2sin a C c A =结合正弦定理,可得1cos 2C =.因为 ()0,πC ∈,所以 π3C =. (II)由(I)得2πB 3A =- 代入可得, sin sin A B + 2πsin sin 3A A ⎛⎫=+- ⎪⎝⎭,化简可得其结果为π6A ⎛⎫+ ⎪⎝⎭,利用正弦函数的性质可求出答案.题型三 与三角形相关的函数取值范围15.【四川省宜宾市2017届高三第二次诊断检测数学】在ABC ∆中, AC CB ⋅=2tan sin2A B ⋅的最大值是__________.【答案】3-【解析】 由题意得,在ABC ∆中, AC CB ⋅=所以()cos cos cos ab C ab C ab C π-=-=⇒=-且1sin sin 2S ab C ab C === 所以tan 1C =-,又因为()0,C π∈,所以34C π=,所以4B A π=-, 所以()222222sin tan sin2tan sin 2tan cos22cos 14cos A A B A A A A A A π⎡⎤⎛⎫⋅=⋅-=⋅=⋅- ⎪⎢⎥⎝⎭⎣⎦ ()()2221sin 2cos 1cos A A A--=,设2cos t A =,即222311tan sin2233t t A B x t x -+-⎛⎫⋅==-++≤- ⎪⎝⎭.16.【安徽省蚌埠市2017届第二次(3月)教学质量检查】已知直线l ⊥平面α,垂足为O ,三角形ABC 的三边分别为1BC =, 2AC =, AB =若A l ∈, C α∈,则BO 的最大值为__________.1【解析】如图,以OC 为轴, OA 为y 建立平面直角坐标系,设AOC θ∠=,则由于221290ACB +=⇒∠= ,所以90BCx θ∠=- ,则2cos OC θ=,点B 的纵坐标()sin 90cos y BC BCx sin θθ=⨯∠=-= ,横坐标2cos cos 2cos x BC BCx sin θθθ=+⨯∠=+,所以OB ===即1OB ==+sin 2148ππθθ⎛⎫+=⇒= ⎪⎝⎭时取等号),所以()max 1OB =117.【江西省吉安一中、九江一中等八所重点中学2017届高三4月联考】已知,,a b c 分别为锐角ABC ∆三个内角,,A B C 的对边,且()()()sin sin sin a b A B c b C +-=- (Ⅰ)求A ∠的大小;(Ⅱ)求2sin 2sin 22C B π⎛⎫+- ⎪⎝⎭的取值范围.【答案】(Ⅰ)A=3π;(Ⅱ)1,02⎛⎤- ⎥ ⎝⎦. 【解析】【试题分析】(1)运用正弦定理及余弦定理进行求解;(2)运用三角变换公式将表达式化为角的函数,再借助函数的定义域求其值域即是取值范围。