第二章____热传导方程
数学物理方程2热传导方程
对未来研究的展望
深入研究热传导方程的数学性质
尽管热传导方程已有广泛的研究和应用,但对其数学性质的理解仍不够深入。未来可以进一步研究热传导方程解的唯 一性、稳定性、渐近性等数学问题,以推动数学理论的发展。
拓展热传导方程的应用领域
随着科技的发展,热传导方程的应用领域也在不断拓展。例如,在新能源领域,热传导方程可以用于研究太阳能电池 板的工作原理和优化设计;在环保领域,热传导方程可用于研究污染物在环境中的扩散和迁移规律。
交换。
热传导方程是偏微分方程的一种形式,通常采用傅里叶级数或
03
有限元方法进行求解。
热传导现象的重要性
1
热传导现象在自然界和工程领域中广泛存在,如 气候变化、能源利用、材料科学等。
2
热传导方程的应用有助于深入理解热量传递的机 制,为相关领域的研究提供理论基础。
3
通过求解热传导方程,可以预测温度分布、热量 传递速率等关键参数,为实际问题的解决提供指 导。
04 热传导方程的数值解法
有限元法
有限元法是一种将连续的求解域离散化为有限个小的、互连 的子域(或单元)的方法。在每个单元内,选择合适的基函 数,将待求的解表示为这些基函数的线性组合。通过求解一 系列线性方程组,可以得到原问题的近似解。
有限元法在求解热传导方程时,可以将复杂的几何形状离散 化为有限个简单的几何形状,从而简化计算过程。同时,有 限元法能够处理复杂的边界条件和初始条件,适用于各种类 型的热传导问题。
有限差分法
总结词
有限差分法是一种数值求解偏微分方程的方法,通过将连续的偏微分方程离散化为差分 方程来求解。
详细描述
有限差分法的基本步骤是将偏微分方程中的空间变量离散化为有限个点,然后将偏微分 方程转化为差分方程,最后通过迭代求解差分方程得到原方程的近似解。这种方法适用
工程热力学与传热学 第二章 稳态热传导 基本概念
t—温度(0C);
x , y , z—直角坐标
由傅里叶定律可知,求解导热问题的关键是获 得温度场。导热微分方程式即物体导热应遵循的一 般规律,结合具体导热问题的定解条件,就可获得 所需的物体温度场。
具体推导: 傅里叶定律
能量守衡定律
导热微分方程式
假定导热物体是各向同性的,物性参数为常数。 我们从导热物体中取出一个任意的微元平行六面 体来推导导热微分方程,如下图所示。
2. 说明: 导热系数表明了物质导热能力的程度。 它是物性参数 物质的种类 热力状态(温度、压力等)。
在温度t=200C时:
纯铜λ=399 w/m0C;水λ=0.599 w/m0C;干空气0C λ(固体)大--------→(液体)---------→(气体)小
隔热材料(或保温材料)----石棉、硅藻土、矿渣棉等,它 们的导热系数通常:λ < 0.2 w/m0C。
c t ( x 2t2 y 2t2 z 2t2)q'
这是笛卡儿坐标系中三维非稳态导热微分方程的一般形式。
导热微分方程式——温度随时间和空间变化的一般关系。 它对导热问题具有普遍适用的意义。
Cp t ( x2t2 y2t2 z2t2)qv
最为简单的是一维温度场的稳定导热微分方程为:
稳态温度场:物体各点的温度不随时间变动; 非稳态(瞬态)温度场:物体的温度分布随时间改变。
2. 等温面(Isothermal surface)(线):同一时刻物体中温度 相同的点连成的面(或线)。 特点:(1)同一时刻,不同等温线(或面)不可能相交; (2)传热仅发生在不同的等温线(或面)间; (3)由等温线(或面)的疏密可直观反映出不同区域 热流密度的相对大小。
在半径r处取一厚度为dr长度为l米的薄圆筒壁。则
热传导方程与扩散方程
∂u 2 ∂2u 0 < x < l, t > 0 ∂t = a ∂x2 , 混合问题: ux (0, t) = u(l, t) = 0, t > 0 u(x,0) = ϕ(x) 0≤ x ≤l
ut − a 2u xx = 0, 0 < x < L u x | x =0 = 0, u x | x = L = 0 u | = ϕ ( x) t =0
u ( x, t ) = X ( x)T (t )
T ' /( a 2T ) = X " / X = −λ
X ' ( 0) = X ' ( L ) = 0
t2
交换积分次序 ∂u ∂ ∂u ∂ ∂u ∂ ∂u ∫t1 ∫∫∫ cρ ∂t − ∂x k ∂x − ∂y k ∂y − ∂z k ∂z dxdydzdt = 0 Ω
t2
注意到t1 , t 2 及Ω均是任意的, 则有热传导的齐次方程
分离结果的求解 空间方程解出 非零解条件 非零解 时间方程解出
X "+ω 2 X = 0 X ( 0) = X ( L) = 0
T '+ a 2ω 2T = 0
X ( x ) = C cos ω x + D sin ω x X ( 0) = C = 0 X ( L) = D sin ω L = 0
X = cos(wx), w = kπ / L, k = 0,1,2,L, λ = w2
数学物理方程 齐海涛 热传导方程
齐海涛 (山东大Æ%海分
)
êÆÔ理方程
2008 年 12 月 9 日
4 / 63
热传导方程的导出
函ê������ 关u变量������, ������ , ������ 具k二阶连Y偏导ê, 关u������ 具k一阶连Y偏 导ê. 在������ 内任取一闭曲面, 它所包Œ的区••Ω, d(1.1) 知, 从ž刻������1 到������2 ž刻流入Ω 的热量• ∫︁ ������2 ∫︁ ∫︁ ������������ ������ = ������ (������, ������, ������ ) d������ d������. (1.2) ������������ ������1 Γ 在žmm隔(������1 , ������2 ) 中Ô体§度从������(������, ������, ������, ������1 ) 变化到������(������, ������, ������, ������2 ), 它所áÂ的 热量• ∫︁ ∫︁ ∫︁ ������(������, ������, ������ )������(������, ������, ������ )[������(������, ������, ������, ������2 ) − ������(������, ������, ������, ������1 )]d������d������ d������ Ω ∫︁ ������2 ∫︁ ∫︁ ∫︁ ������������ = ������������ d������d������ d������ d������, ������������ ������1 Ω 其中������ •比热, ������ •密度.
(1.6)称•齐次热传导方程, 而(1.7)称•非齐次热传导方程.
传热学课件第 二 章 稳 态 热传导
d2t d x2
m 2 t t f
1
通过肋壁的导热
一、等截面直肋的导热
4.求解:
4>.引入过余温度:<1>式变为 <4> 5>.解微分方程得温度场 <4>式为一个二阶线性齐次常微分方程,它的通解为: =C1emx+C2e-mx <5> 将边界条件<2>、<3>代入<5>即得肋片沿H方向的温度分布:
通过圆筒壁的导热
一、已知第一类边界条件
据傳里叶定律并整理后可得热流量的表达式: 1 ln d2 2l d1 式中的分母即为长度为l的圆筒壁的导热热阻。 单位为:℃/W 实际工程多采用单位管长的热流量ql来计算热流量:
t w1 t w 2
ql
Q l
t w1 t w 2
d ln d2 2 1 1
通过平壁的导热
二、已知第三类边界条件:
q
q
t f 1 t f 2
1 1 h1 h2
也可写作:q=k(tf1-tf2) (请牢记K的物理意义!) 对于冷热流体通过多层平壁的导热,可写作:
t f 1 t f 2
1 h1
i 1
n
i 1 i h2
若已知传热面积A,则热流量为:
e m x H e m x H 0 e mH e mH
d 2 m 2 d x2
or :
0
或写作:
0
ch mx H ch mH
expmx H exp mx H expmH exp mH
1
h21d x 0
数学物理方程谷超豪版第二章课后答案
第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xuk t s x u k t s x u k dQ x x x x ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l kxu k t u c --∂∂=∂∂ρ或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
传热学 第2章 稳态导热
t t t t c Φ x x y y z z
3、常物性且稳态:
2t 2t 2t Φ a 2 2 2 0 x y z c
如果边界面上的热流密度保持为常数,则 q | w 常数 当边界上的热流密度为零时,称为绝热边界条件
t t qw 0 0 n w n w
18
(3)第三类边界条件 给出了物体在边界上与和它直接接触的流体之 间的换热状况。 根据能量守恒,有:
返回
2.1.1 各类物体的导热机理
气体:气体分子不规则热运动时相互碰撞的结果,高温的气体分子运 动的动能更大 固体:自由电子和晶格振动 对于导电固体,自由电子的运动在导热中起着重要的作用,电的良导 体也是热的良导体 对于非导电固体,导热是通过晶格结构的振动,即原子、分子在其平 衡位置附近的振动来实现的
返回
2.2.2 定解条件
导热微分方程式是能量守恒定律在导热过程中的应用,是一切导热 过程的共性,是通用表达式。 完整数学描述:导热微分方程 + 定解条件 定解条件包括初始条件和边界条件两大类,稳态问题无初始条件 初始条件:初始时刻的状态表示为: =0,t =f (x,y,z)
边界条件: 给出了物体在边界上与外界环境之间在换热上的联系或相互作用
2、推导基本方法:傅里叶定律 + 能量守恒定律 在导热体中取一微元体
进入微元体的总能量+微元体内热源产生的能量-离开微元体的总能量= 微元体内储存能的增加
11
Ein Eg Eout Es
d 时间段内:
Ein Φx Φy Φz d Eiout Φxdx Φy dy Φz dz d
传热学第二章稳态热传导
h h
t f t f ( )
五、 热扩散系数 (thermal diffusivity)
a
物体导热能力 c 物体蓄热能力
从导热方程看:
a
t
温度变化快 扯平能力强
故,a 是评价温度变化速度的一个指标
2.3 通过平壁及圆筒壁的一维稳态导热
一、通过单层平壁的导热
0 , 则 2. Φ
t a 2 t
2
3. 稳态:
Φ a t 0 c
,则
0 4. 稳态且 Φ
t 0
2
三、其它正交坐标
1、柱坐标: (cylinder coordinate)
x r cos ; y r sin ; z z
2 t 1 t 1 2 t 2 t t a 2 2 2 2 r r r z c r
p
各类物质导热系数的范围
导热机理
气体:分子热运动 t
金属 非金属
固体:自由电子和晶格振动
t 晶格振动 阻碍自由电子运动
液体的导热机理不清
固体> 液体 > 气 ; 取决于物质的种类和温度
热绝缘(保温)材料 insulation material:<0.2W/(mK) (50
(2)固体的热导率
(a) 金属的热导率
金属 12~418W (m K)
纯金属的导热:依靠自由电子的迁移和晶格振动; 金属导热与导电机理一致,良导体也是良导热体。
银 铜 金 铝
T
10K:Cu 12000 W (m K) 15K : Cu 7000 W (m K)
第二章--稳态热传导(导热理论基础)
2021/3/10
2
导热理论基础
二、傅里叶(J.Fourier)定律:
1.基本概念:
2>.等温面与等温线:(温度场习惯上用等温面图或等温线图来表 示,如图2-1)
等温线
a.等温面:同一时刻温度场中所有 温度相同的点构成的面。
第二章 稳态热传导(导热理论 基础)
一、概述 二、傅里叶(J.Fourier)定律 三、导热系数 四、导热微分方程 五、导热微分方程的单值性条件 六、解决一具体导热问题的一般步骤
2021/3/10
1
导热理论基础
一、概述:
一般我们认为:导热是发生在物体中的宏观现象,故将物质看作是 连续介质。
导热基础理论的主要任务:
3
导热理论基础
二、傅里叶(J.Fourier)定律:
1.基本概念:
3>.温度梯度gradt:两等温面间的温差△t与其法线方向
的距离△n比值的极限。在单位距离内温度沿法线方
向上的变化值最大、最显著,此时的温度变化率称
之为温度梯度。即: gr a lid m n ttn n n t
n 0
t+△t t t-△t
2.傅里叶(J.Fourier)定律:
在导热现象中,单位时间内通过给定面积的传热量,正比例于该处 垂直导热方向的截面面积及此处的温度梯度,其数学表达式为:
q g A g rrW a a / W m 2 d dtt
几点问题:
1>.负号表示热量传递指向温度降低的方向,与温度梯度方向相反。
2>.温度梯度是引起物体内热量传递的根本原因。
第二章 稳态热传导2
典型一维稳态导热问题的分析解
通过平壁的导热
多层平壁
由热阻分析法:q
t1 tn1
n
ri
i 1
t1 tn1
n i
i1 i
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
第一层:
q
1 1
r2 d 0 50mm
40mm
r3
45mm
典型一维稳态导热问题的分析解
例题
21 tw1 tw 2 2 tw tw2
t 先假定界面温度为
而 2 0.099
w ,则由题意
0.0002
tw
tw2 2
ln
r2 r1
ln
dx dx
3
tw1
所以对情形3 有 dt dt >
dx dx
x
为什么东北的窗玻璃都采用双层玻璃?
讨论
导热环节越多,串联的热阻就越多,总热阻相对来说就 越大,相同温差下传递的热量越少,越有利于隔热。
典型一维稳态导热问题的分析解
通过圆筒壁的导热
第一次积分
第二次积分
r
dt dr
c1
t c1 ln r c2
典型一维稳态导热问题的分析解
通过圆筒壁的导热
单层圆筒壁
应用边界条件
t1 c1 ln r1 c2 ; t2 c1 ln r2 c2
获得两个系数
c1
传热学-第2章
在导热体中取一微元体 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中: [导入与导出净热量]+ [内热源发热量] = [热力学能的增加]
1、导入与导出微元体的净热量 d 时间内、沿 x 轴方向、经 x 表面导入的热量:
dQx qx dydz d
t t1
n i
x
i 1
t tn1
t1 t2 t3 t4
热阻:
r1
1 , , rn n 1 n
第二章 稳态热传导
三层平壁的稳态导热
30
q
t1 t n 1
由热阻分析法:
ri
i 1
n
t1 t n 1
i i 1 i
n
问:现在已经知道了q,如何计算其中第 i 层的右侧壁温?
第一章复习
(1) 导热
傅里叶定律:
(2) 对流换热 牛顿冷却公式: (3) 热辐射
斯忒藩-玻耳兹曼定律 :
dt Φ A dx
Aht
A T 4
(4) 传热过程
(t f 1 t f 2 ) (t f 1 t f 2 ) Φ 1 1 Rh1 R Rh 2 Ah1 A Ah2
多层、第三类边条
tf1
q
tf1 tf 2 1 n i 1 h1 i 1 i h2
h1 t2 t3
h2 tf2
W 单位: 2 m
传热系数? tf1
?
t1 t2 t3 t2
? tf2
32
三层平壁的稳态导热
第二章 稳态热传导
一台锅炉的炉墙由三层材料叠合而成.最里面的是耐火黏土砖,厚 115MM;中间是B级硅藻土砖,厚125MM;最外层为石棉板,厚 70MM.已知炉墙内外表面温度分别为485℃ 和60 ℃ , 试求每平方 米炉墙的热损失及耐火黏土砖和硅藻土砖分界面上的温度。 解:各层的导热系数可根据估计的平均温度从手册中查出。第一 次估计的平均温度不一定正确,待算得分界面温度时,如发现不 对,可重新假定每层的平均温度。经几次试算,逐步逼近,可得 合理的数值。这里列出的是几次试算后的结果: W 3 0.116 /(m K ) W 1 1.12W /(m K ) 2 0.116 /(m K )
复习第二章导热过程的传热学原理与导热微分方程
15
第四节 简化假设与实际问题的模型化
③液固态金属的热物性均为常数,即不随温度而变。 ④铸型材料的热物性值亦取为常数。 ⑤常不考虑金属铸型界面气隙的存在,或以简化的综合换热系数
第五节 凝固潜热的处理
(2)非平衡凝固条件下二元合金的固相率与温度的关系 考虑固相无扩散,液相溶质均匀分布。 则由夏尔(Sheil)方程:
C LC 0[1fs(T)k]01
又C0 Tm TL CL Tm T
fs(T)1(TTm mTTL)k011
21
第五节 凝固潜热的处理
由上述两种 fs (T ) 的表达式可知,f s (T ) 是温
上述分类目的是从数学上便于求解方程组,实际 上物体边界的传热现象是多种多样的。
10
第三节 导热过程的定解条件/边界条件
4、辐射换热边界条件
针对铸件的凝固过程,要考虑辐射换热边界条件和 铸件/铸型界面边界条件的处理。
q( T n)w (Tw 4Tf4)
(热辐射量定 E义 T4)
Tw物体表面T温 f 已 度知 ,环境温度
波尔兹曼常数, 辐射系数,是物 光体 洁表 度面 函数
11
第三节 导热过程的定解条件/边界条件
针对上式进行线性化处理,得:
q( T n)whr(TwTf)
式中h, r (Tw2Tf2)(TwTf ),称为辐射换热系数
实际导热问题,可能同时存在对流和辐射换热,其 边界条件为:
q( T n)w(h ch r)T (w T f)
2、第二类边界条件
给定边界上的热流密度,即:
数学物理方程谷超豪版第二章课后答案.doc
第二章热传导方程§ 1热传导方程及其定解问题的提1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dQ k 1(u u 1 )dsdt又假设杆的密度为,比热为 c ,热传导系数为 k ,试导出此时温度 u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度u u( x,t) 。
记杆的截面面积 l 2为 S 。
t 到 tt 内流入截面坐标为 x 到 xx 一小段细杆的热量为 4由假设,在任意时刻dQu s t k u2u s x tkxs t k1x x x xx 2 xt 到 tt 在截面为杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻x 到 xx 一小段中产生的热量为4k 1dQ2k 1 u u l x tu u s x t1l1又在时刻 t 到 tt 在截面为 x 到 xx 这一小段内由于温度变化所需的热量为dQc u x,tt u x,t s x c u s x t由热量守恒原理得:3t tcu s x t k2us x t4k 1u u s x tt tx2 xl1消去 sx t ,再令x 0 , t 2 u 0 得精确的关系:cuk 4k 1 u ut x 2 l1u k 2u 4ka 22 u4k或t cx2c 1u u 1x2c 1u u 1ll其中a2kc2. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为 ,则从时刻 t 1 到 t 2 流入此闭曲面的溶 质,由 dMDudsdt ,其中 D 为扩散系数,得nt 2D udsdtMt 1 snt 2t 2C udvdtM 1C u x, y, z, t 2 u x, y, z, t 1 dxdydzCudtdvt 1tt 1t两者应该相等,由奥、高公式得:t 2uuut 2C udvdtMD D D dvdt M 1t 1xx y y z zt 1t其中 C 叫做孔积系数 =孔隙体积。
第二章-稳态热传导
传热学 Heat Transfer
Shanghai Jiao Tong University
2-2 导热问题的数学描述 温度场
导热微分方程
t f ( x, y, z, )
傅立叶定律
热流量
热流密度
导热微分方程的推导:傅立叶定律 + 能量守恒定律 导入导出微元体的净热流量+ 微元体内热源生成热= 微元体内能的增量 导入热流量 导出热流量 内热源生成热
第一类 第二类 第三类 导热问题的数学描述= 导热微分方程+定解条件
稳态导热:给定边界条件即可。 非稳态导热:给定初始条件和边界条件。
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
2-2 导热问题的数学描述 第一类边界条件(Dirichlet条件):给定边界上的温度值。 稳态导热: 非稳态导热: 第二类边界条件(Neumann条件):给定边界上的热流密度值。 稳态导热: 非稳态导热: 特例:绝热边界
SJTU-OYH
传热学 Heat Transfer
Shanghai Jiao Tong University
2-3 典型一维稳态导热分析解 通过多层平壁的导热
热阻分析法
热流密度
q
t1 t n 1
t1
ri
i 1
n
t1 t n 1
i i 1 i
n
n为层数
t2
t3 t4
温度分布 第一层:
x
y
z
xdx
dxdydz
y dy
z dz
内能增量
t c dxdydz
SJTU-OYH
第二章稳态热传导
xx d x xx x xd x xx x x t xd y d z d x yy d y yy y yd y yy y y t yd x d z d y
使微分方程获得适合某一特定问题的解的附加条件,
称为定解条件。
初始条件
非稳态导热
边界条件
稳态导热
边界条件
导热问题的数学描写
二、边界条件分类
1、第一类边界条件:指定边界上的温度分布。
如右图中:
x 0, t tw1 x ,t tw2
对于非稳态导热,这类边界条件还需要给出以下关系式:
0时 ,twf1
zz d z zz zzd z zz z z t zd x d y d z
导热问题的数学描写
微元体热力学能(即内能)的增量= c t dxdydz
微元体内热源的生成热= d x d y d z
式中:ρ——微元体的密度; c ——微元体的比热容; Φ——单位时间内单位体积中内热源的生成热; τ ——时间;
导热问题的数学描写
2、第二类边界条件:指定边界上的热流密度值。 如右图中:
x
,t
x
qw
对于非稳态导热,这类边界条件还需要给出以下关系式:
0时,-nt wf2
导热问题的数学描写
3、第三类边界条件:指定边界上物体与周围流体间的表面传 热系数h及周围流体的温度tf。 如右图中:
x, xtxqwhtwtf
各个时刻物体中各点温度所组成的集合,又称为温 度分布。
t f x,y,z,
稳态温度场(定常温度场)
t f x,y,z
瞬态温度场(非定常温度场)
2 热传导方程的离散化(讲义)
但是,这样给出的结果是否符合实际情况呢?一个特殊的情况 是在采用等节点间距时,我们有
W
w
W
w
ke =
k P + kE 2
2.1 一维稳态导热问题的离散化
考虑一种极限的情况,如果一侧的导热系数极小,而 另外一侧的导热系数很大,从物理上看,这个界面应 该表现为一个绝热的界面。而从算术平均的计算方法 来看,显然这个界面的导热系数是很大的。为了解决 这个困难,我们回顾一维复合壁面的稳态导热问题
(δ x)w
(δ x)w+ (δ x)w−
(δ x)e (δ x)e− P ∆x E
(δ x)w
(δ x)w+ (δ x)w−
(δ x)e (δ x)e− P ∆x E
dT + S ∆x = 0 dx w T −T −qE − kw P W + ( Sc + S PTP )∆x = 0 (δ x)w
T
aP ≥ ∑ anb
W
w
P
e
E
2.1 一维稳态导热问题的离散化
(13)代数方程组的求解方法
在代数方程组求解时,有直接解法和迭代解法可供 选择,以下我们分别来讨论。 首先我们来讨论直接解法。将离散化方程改写成
2.1 一维稳态导热问题的离散化
整理成矩阵形式 a1 −c 2 − d1 a2 O −d 2 O O T1 e1 T e 2 2 M M = M M −d n −1 Tn−1 en −1 an Tn en
(δ x) e + (δ x) e − ke = k P + kE (δ x ) e (δ x ) e
第2章 稳态热传导
第2章 稳态热传导课堂讲解【2-5】对于无限大平板内的一维导热问题,试说明在三类边界条件中,两侧边界条件的哪些组合可以使平板中的温度场获得确定的解?【解】两侧面的第一类边界条件;一侧面的第一类边界条件和第二类边界条件;一侧面的第一类边界条件和另一侧面的第三类边界条件;一侧面的第一类边界条件和另一侧面的第三类边界条件。
【2-12】在某一产品的制造过程中,厚为1.0mm 的基板上紧贴了一层透明的薄膜,其厚度为0.2mm 。
薄膜表面上有一股冷却气流流过,其温度为20℃,对流换热表面传热系数为40 W/(m 2•K)。
同时,有一股辐射能透过薄膜投射到薄膜与基板的结合面上,如附图所示。
基板的另一面维持在温度t 1=30℃。
生成工艺要求薄膜与基板结合面的温度t 0应为60℃,试确定辐射热流密度q 应为多大?薄膜的导热系数λf =0.02W /(m∙K),基板的导热系数λf =0.06W /(m∙K)。
投射到结合面上的辐射热流全部为结合面所吸收。
薄膜对60℃的热辐射是不透明的。
【解】由薄膜与基板结合面向基板另一面的稳态导热的热流密度为:()211m W 0081001.0306006.0Δ=-⨯==t q δλ 由于薄膜对60℃的热辐射是不透明的,则从薄膜与基板的结合面通过薄膜向冷却气流传热,无辐射换热23222mW 1142.8640102.0102.020601Δ=+⨯-=+=-h t q λδ 辐射热流密度q 应为221m W 2942.8686.11421800=+=+=q q q课后作业【2-4】一烘箱的炉门由两种保温材料A 及B 组成,且δA =2δB (见附图)。
已知λA =0.1W /(m∙K),λB =0.06W /(m∙K),烘箱内空气温度t f1=400℃,内壁面的总表面传热系数h 1=50W/(m 2•K)。
为安全起见,希望烘箱炉门的外表面温度不得高于50℃。
设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。
物理热学选修三知识点总结
物理热学选修三知识点总结热学是物理学的一个重要分支,热学选修三作为高中阶段的一门物理选修课程,主要涉及了气体分子的特性、热力学循环以及热传导等内容。
在热学选修三中,学生将学习到一些重要的热学知识,本文将对热学选修三的知识点进行总结,以便帮助学生加深对这些知识的理解。
第一章气体分子的特性在热学选修三中,学生将学习到气体分子的特性,包括理想气体的状态方程、分子平均动能和气体分子的速率分布等内容。
1.1 理想气体的状态方程理想气体的状态方程可以用来描述气体的状态和性质。
在热学选修三中,学生将学习到理想气体的状态方程为PV=nRT,其中P为气体的压强,V为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度。
通过这个状态方程,学生可以了解到气体在不同条件下的状态和性质。
1.2 分子的平均动能在热学选修三中,学生将学习到气体分子的平均动能与温度之间的关系。
根据动能定理,气体分子的平均动能与温度成正比,即Ek=3/2kT,其中Ek为气体分子的平均动能,k为玻尔兹曼常数,T为气体的温度。
通过这个关系,学生可以了解到气体分子的平均动能随温度的变化规律。
1.3 气体分子的速率分布在热学选修三中,学生还将学习到气体分子的速率分布。
根据麦克斯韦-玻尔兹曼速率分布定律,气体分子的速率分布与温度成正比,即随着温度的升高,气体分子的速率分布图向右移动,速率分布峰值变大。
通过这个定律,学生可以了解到气体分子的速率分布随温度的变化规律。
第二章热力学循环在热学选修三中,学生将学习到一些重要的热力学循环,包括卡诺循环、斯特林循环和布雷顿循环等。
2.1 卡诺循环卡诺循环是热学中最重要的循环之一,它是一个理想的热力学循环过程。
在热学选修三中,学生将学习到卡诺循环的工作原理和效率计算公式。
通过学习卡诺循环,学生可以了解到热机循环工作过程中的热量交换和功的转化规律。
2.2 斯特林循环斯特林循环是热机循环中的另一个重要循环,它是一个由等温和等容过程组成的循环过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 x l , t 0, 0 x l, t 0; t 0;
(2.1) (2.2) (2.3) (2.4)
(I )
问题(I)的通解形式为:
u( x, t ) Ak e
k 1 a 2 k t
sin k x ,
(2.14)
其中 Ak , k 由下面给出:
n
三、定解问题 定义1 在区域 G [0, ) 上,由方程(1.5)、初 始条件(1.7)和边界条件(1.9)、(1.10)、 (1.11)中的其中之一组成的定解问题称为初边值问 题或混合问题。例如三维热传导方程的第一初边值问 题为: 2
ut a (uxx u yy uzz ) f ( x , y , z , t ), ( x , y, z , t ) , t 0, ( x , y , z , t ) , u( x , y, z , t ) |t 0 ( x, y, z ), u | ( x , y , z ) g( x, y, z , t ), t 0.
tan k l
k
h
, M k 0 sin
l
2
l h k xdx . (2.18) 2 2 2( h k )
1 Ak Mk
l
0
()sin k d
(2.19)
问题(II)的解:
u( x , t ) sin k x Bk ( )e
t1
由热量守恒定律得:
t2 u u u u c dV ]dt [ ( ( k ) ( k ) ( k ))dV ]dt t1 [ t1 t x x y y z z t2
[ F ( x , y, z , t )dV ]dt
(1.6)
通常称(1.5)为非齐次的热传导方程,而称(1.6) 为齐次热传导方程。
二、定解条件(初始条件和边界条件)
初始条件:
t 0 : u( x , t ) ( x , y , z ), ( x, y, z ) G , (1.7)
边界条件:( G )
1、第一边界条件( Dirichlet 边界条件)
u
g( x, y, z, t ),
( x, y, z ) ,
t 0,
(1.8)
特别地:g( x , y , z , t ) 0 时,物体表面保持恒温。
2、第二边界条件 ( Neumann 边界条件)
u k n
g( x , y , z , t ),
( x , y , z ) ,
sin k x Bk ( )e
k 1
d , (2.20)
1 l Ak ( )sin k d , Mk 0 1 l Bk ( ) f (, )sin k d . 0 Mk
注 1、方程(1.6)不仅仅描述热传导现象,也可
以刻画分子、气体的扩散等,也称扩散方程;
2、上述界条件形式上与波动方程的边界条件一 样,但表示的物理意义不一样; 3、热传导方程的初始条件只有一个,而波动方 程有两个初始条件。 4、除了三维热传导方程外,物理上,温度的分 布在同一个界面上是相同的,可得一维热传导方 程: u 2u
t 0,
(1.9)
注: u u 沿边界 上的单位外法线方向 n 的方 表示 n 向导数 3、第三边界条件 ( D-N 混合边界条件 )
u n u
特别地:g( x , y , z , t ) 0 时,表示物体绝热。
g( x , y, z , t ), ( x, y, z ) ,
3 R [0, )上,由方程(1.5)和初 定义2 在区域 始条件(1.7)组成的定解问题称为初值问题或柯西问 题。例如三维热传导方程的初值问题为:
2 3 u a ( u u u ) f ( x , y , z , t ), ( x , y , z , t ) R , t 0, t xx yy zz 3 u ( x , y , z , t ) | ( x , y , z ), ( x , y , z , t ) R . t 0
t1
t2
由 及 t1 , t 2 的任意性知 u u u u c (k ) (k ) (k ) F ( x, y, z, t ).(1.4) t x x y y z z
三维有热源的热传导方程: (均匀且各向同性物 体,即 c , , k 都为常数的物体)
2 2 2 u u u u 2 a 2 2 2 f ( x , y , z , t ), t y z x
(1.5)
k , 其中 a c
2
F f , f 称为非齐次项(自由项)。 c
三维无热源热传导方程:
2 2 2 u u u u 2 a 2 2 2 0 . t y z x
x V ( x, t ) [ 2 ( t ) h1 ( t )] 1 ( t ) . 1 hl
t 0.
不失一般性,考虑齐次边界条件的初边值问题
ut a 2 uxx f ( x , t ), 0 x l , t 0, 0 x l, t 0 : u ( x ), x 0 : u 0; x l : u hu 0, t 0. x
热传导试 验定律或 牛顿定律 从物体流到介质中的热量和两者的温差成正比:
dQ k1 (u u1 )dSdt , (1.11) 其中比例常数 k1 0 称为热交换系数
流过物体表面 的流量可以从物质内部(傅里叶 定律)和外部介质(牛顿定律)两个方面来确定: u u 或 k k1 (u u1 ). k dSdt k1 (u u1 )dSdt , n n u ( u) |( x , y , z ) g( x, y, z, t ). 即得到(1.10):
c (
u dt )dV t
t2 t1
u [ c dV ]dt t
(2)通过曲面 S 进入 内的热量 Q1
由傅里叶热传导定律,从 t 1 到 t 2 这段时间内通过 S 进入 内的热量为
Q1
由高斯公式
t2
t1
u k ( x, y, z ) dS dt , n S
t a 2 k ( t ) k 1 0
d ,
1 其中 Bk ( ) M k
l
0
f (, )sin k d .
非齐次方程混合问题的解:
u( x , t ) Ak e
k 1 a 2 k t
sin k x
t a 2 k ( t ) 0
1、热量守恒定律: 温度变 化吸收 的热量
通过边 界流入 的热量
热源放 出的热 量
2、傅里叶(FourБайду номын сангаасer)热传导定律:
u dQ k ( x , y , z ) dS dt , n k ( x , y, z ) 为热传导系数。
热传导方程的推导: 任取物体 G 内一个由光滑闭曲面 S 所围成的区 域 ,研究物体在该区域 内热量变化规律。 热量 守恒 定律 区域 内各点的温度从时刻 t 1 的温度u( x , y , z , t1 ) 改变为时刻 t 2 的温度 u( x, y, z , t 2 ) 所吸收(或 放出)的热量,应等于从时刻 t 1 到时刻 t 2 这 S 流入(或流出) 段时间内通过曲面 内的 热量和热源提供(或吸收)的热量之和。即
上述定解问题可分解为下面两个混合问题:
ut a 2 uxx 0, 0 x l , t 0, 0 x l, t 0 : u ( x ), x 0 : u 0, x l : u hu 0, t 0; x
(I )
和
( II ) ut a 2 uxx f ( x , t ), 0 x l , t 0, t 0 : u 0, 0 x l , x 0 : u 0, x l : u hu 0, t 0. x
内温度变化所需要的热量 Q =通过曲面 S 流入 内的热量 Q1 +热源提供的热量 Q2
下面分别计算这些热量
(1) 内温度变化所需要的能量 Q 的比热(单位质量的物体温度改变 1 C 所需要的热量)为 c c( x , y , z ), 密度为 ( x , y , z ), 那么包含点 ( x , y , z ) 的体积微元 dV 的温度从u( x , y , z , t1 变为 u( x, y, z , t 2 )所需要的热量为 设物体 G
x
divAdxdydz AndS
S
知
u u u Q1 [ ( (k ) (k ) (k ))dV ]dt .(1.2) t1 x x y y z z
t2
(3)热源提供的热量 Q2 用 F ( x , y , z , t ) 表示热源强度,即单位时间内从单位 体积内放出的热量,则从 t 1 到 t 2 这段时间内 内热 源所提供的热量为 t2 Q2 [ F ( x, y, z, t )dV ]dt (1.3)
dQ c [u( x , y, z , t 2 ) u( x , y, z , t1 )]dV 整个 内温度变化所需要的能量 Q
Q
dQ c [u( x , y , z , t
t2 t1
2
) u( x , y , z , t1 )]dV (1.1)
t a2 x