热统试卷A卷答案
热统试题及重要答案
一、简答题(23分)1. 简述能量均分定理。
(4分)答:对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值的平均值等于。
根据能量均分定理,单原子分子的平均能量为,双原子分子的平均能量2. 热力学方法和统计物理方法是研究关于热运动规律性的两种方法,试评论这两种方法各自的优缺点。
(5分)答:热力学:较普遍、可靠,但不能求特殊性质。
以大量实验总结出来的几条定律为基础,应用严密逻辑推理和严格数学运算来研究宏观物体热性质与热现象有关的一切规律。
统计物理:可求特殊性质,但可靠性依赖于微观结构的假设,计算较麻烦。
从物质的微观结构出发,考虑微观粒子的热运动,通过求统计平均来研究宏观物体热性质与热现象有关的一切规律。
两者体现了归纳与演绎不同之处,可互为补充,取长补短。
3. 解释热力学特性函数。
(4分)答:如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定,这个热力学函数即称为特性函数,表明它是表征均匀系统的特性的。
4.简述推导最概然分布的主要思路。
(5分)①写出给定分布下的微观状态函数表达式② 两边同时取对数,并求一阶微分③ 利用约束条件N ,E 进行简化④ 令一阶微分为0,求极大值⑤ 由于自变量不完全独立,引入拉格朗日未定乘子⑥ 最后得出粒子的最概然分布5. 试述克劳修斯和开尔文关于热力学第二定律的两种表述,并简要说明这两种表述是等效的。
(5分)答:克:不可能把热量从低温物体传到高温物体而不引起其他变化(表明热传导过程是不可逆的);开:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的);联系:反证法 P31二.填空题(27分)1. (3分)熵的性质主要有① 熵是态函数 ; ② 熵是广延量 ; ③ 熵可以判断反应方向 ;④熵可以判断过程的可逆性 ;⑤ S=k ln 熵是系统微观粒子无规则运动混乱程度的度量 。
热统习的题目解答(全)
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。
解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。
证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。
1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。
a 和k 可以近似看作常数。
今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。
热统期末试卷及答案 北师大
热统期末试卷及答案北师大一、选择题(每小题3分,满分24分)1、下列现象中,由于光的反射形成的是()A.月光下的人影B.池塘的水底看起来比实际的浅C.拱桥在平静湖水中的倒影D.玻璃三棱镜分解了的太阳光2、下列物态变化中属于放热现象的是哪一组()①初春,冰封的湖面解冻②盛夏,旷野里雾的形成③深秋,路边的小草上结了一层霜④严冬,冰冻的衣服逐渐变干、A.①②B.②③C.③④D.①④3、下列说法中,正确的是()A.验电器的工作原理是同种电荷相互排斥B.宇航员在月球上无法用电磁波来通信C.只有镜面反射遵循光的反射定律D.只有凸透镜能成等大的像4、下列说法错误的是()A.并联电路的干路电流等于各支路电流之和B.使用精密仪器和改进实验方法可以避免误差C.用安培定则可判断通电螺线管的极性D.1kWh=3。
6×106J5、潜水员逐渐从水里浮出水面的过程中,他受到的浮力()A.逐渐增大B.逐渐减小C.始终不变D.先增大后不变6、能说明将电能转化为机械能的是()A.钻木取火B.水蒸气将塞子冲出C.通电导体在磁场中受力D.焦耳定律实验7、相向而行的甲、乙两物体的s﹣t图像,下列说法正确的是()A.相遇时两物体通过的路程均为100mB.0﹣30s内甲、乙均做匀速直线运动C.甲的运动速度为10m/sD.甲、乙是同时出发的8、小雅同学在做电学实验时,不小心将电压表和电流表的位置互换了,如果此时将开关闭合,则()A.两表都可能被烧坏B.两表都不会被烧坏C.电流表不会被烧坏D.电压表不会被烧坏,电流表可能被烧坏二、填空题(每小题2分,满分20分)9、人的眼睛像一架照相机,物体经晶状体成像与视网膜上,对于近视眼患者而言,远处物体成的像位于视网膜(),可佩戴()透镜矫正。
10、滑冰运动员在训练中通过弯道时的情景,这一过程中她们的运动状态()(选填“改变”或“不变”);运动员穿的速滑冰鞋的冰刀表面要光滑、平整是为了()。
11、弹奏前调整琴弦的松紧程度,可以改变琴声的();根据乐器发声的(),可以听出是什么乐器在演奏(选填“响度”、“音调”或“音色”)12、某工人用装置,将重150N的木块在10s内竖直向上匀速提升4m,此装置是()滑轮(选填“定”或“动”),该工人拉力的功率为()W(滑轮和绳的重力、摩擦均不计)13、可以直接从自然界获得的能源叫一次性能源,必须通过消耗一次能源才能获得的能源叫二次能源,石油、风能、天然气、煤、电能等能源中,属于可再生能源的两种是(),属于二次能源的是()14、“六一”儿童节期间,小朋友在锦江山公园里荡秋千,当秋千从高处落下时,重力势能()(选填“变大”、“变小”或“不变”),不再用力推时,秋千最后会停下来,在此过程中机械能转化为()能、15、过桥米线是云南人爱吃的食物,路过米线馆可以闻见汤的香味,这是()现象;“汤钵烫手”是汤钵和手之间发生了()。
热力学与统计物理_试题及答案
(1)与总能量3ω相联系的分布是什么样的分布?分布需要满足的条件是什么?
(2)根据公式 计算每种分布的微观态数Ω;
(3)确定各种分布的概率。
解:能级:ε1,ε2,ε3,ε4,…
能量值:0,ω,2ω,3ω,…
极端低温时系统的熵:S=0
5.金属中的电子可以视为自由电子气体,电子数密度n,
(1)简述:T=0K时电子气体分布的特点,并说明此时化学势μ0的意义;
(2)证明:T=0K时电子的平均能量 ,简并压强 ;
(3)近似计算:在室温下某金属中自由电子的热容与晶格热容之比。
(1)μ0表示T=0K时电子的最能量。电子从ε=0的能级开始,先占据低能级,然后占据高能级,遵从泡利不相容原理。
简并度:1,1,1,1,…
分布数:a1, a2, a3, a4, …
分布 要满足的条件为:
满足上述条件的分布有:A:
B:
C:
各分布对应的微观态数为:
所有分布总的微观态数为:
各分布对应的概率为:
2.表面活性物质的分子在液面(面积为A)上做二维自由运动,可以看作二维理想气体,设粒子的质量为m,总粒子数为N。
(2)爱因斯坦模型: ;
高温时:
(3)
上式的第二项与T的4次方成正比,故
授课教师
命题教师或命题负责人
签字
院系负责人
签字
年月日
中国海洋大学命题专用纸(附页)
学年第学期试题名称:共页第页
解:(1)单粒子的配分函数为:
处于基态的粒子数为:
处于激发态的粒子数为:
温度为T时处于激发态的粒子数与处于基态的粒子数之为:
(2008级)热统(A卷)
2010─2011学年 第二学期《 热力学与统计物理 》课程考试试卷(A 卷)专业:物理学 年级:2008级 考试方式:闭卷 学分4.5 考试时间120分钟一、填空题(每题4分,共 32 分)1、玻耳兹曼熵的表达式为 ,其物理意义为 。
2、定域系统含有N 个近独立粒子,每个粒子有两个非简并能级1ε和2ε,则粒 子的配分函数=1Z ,粒子处于能级1ε的概率为 。
3、自由电子限制在二维平面上运动,电子的能量满足经典关系mp 22=ε,单位面积上、能量在εεεd +~范围内的量子态数εεd D )(= 。
4、将热量Q 从高温热源1T 传到低温热源2T 的过程中,熵的变化为=∆S 。
5、多元系处于复相平衡时,可以独立改变的强度量的数目f 由吉布斯相律决定。
设多元复相系有ϕ个相,每相有k 个组元,各组元间不发生化学反应。
根据 吉布斯相律,=f ;在盐的水溶液中,当溶液和水蒸气达到平衡 时描述系统的独立强度变量数为 。
A 卷 第 1 页共 6 页6、热力学系统中,功的表达式为∑=ii i dy Y dW。
设液体的表面张力系数为σ,将液体的表面积增大dA ,液体表面张力所做的功为dA dW σ=。
不考虑系统的 体积变化,表面系统的热力学基本方程为dU = ,对应的麦克 斯韦关系为T AS)(∂∂ = 。
7、对p 、V 、T 系统,焓H 随压强p 的变化关系(焓态关系)为T pH)(∂∂= ;已知1摩尔理想气体的状态方程为RT pV m =,则可以得到T mpH )(∂∂= 。
8、热力学系统的平衡稳定性条件是 和 。
对于质量为1摩尔的某种物质,设相变潜热为L ,气相的摩尔体积为βv ,液相的摩尔体积为αv ,当气液二相达到平衡时,相平衡曲线满足的克拉珀龙方程为=dTdP。
A 卷 第 2 页共 6 页(16分)某三维晶格的体积为V ,晶格内含有 N 个原子。
这个原子在晶格上的振动可以看作相互独立的简正振动,简正l C 和t C ,与圆频率k c l ⋅=ω和k c t ⋅=ω。
暖通专业综合试题及答案精选全文完整版
可编辑修改精选全文完整版暖通专业综合试题及答案1. 在供热(冷)系统中,循环水泵的作用是什么?设计时如何确定?答:在供热(冷)系统中,循环水泵不是将水提升到高处,而是使水在系统内周而复始的循环,克服环路的阻力损失,与建筑物的高度无直接关系。
循环水泵流量的确定按下式计算:G G '=)2.1~1.1(式中 G -----循环水泵的流量,t/h ;G '----热网最大设计流量。
t/h 。
循环水泵扬程的确定按下式计算:))(2.1~1.1(y wh wg r H H H H H +++=式中 H -----循环水泵的扬程,mH 2O ;r H -----网路循环水通过热源内部的压力损失,mH 2O ;wg H -----网路总干线供水管得损失,mH 2O ;wh H -----网路回水管的压力损失,mH 2O ;y H -----主干线末端用户的系统的压力损失,mH 2O ;2. 热水采暖系统为什么要定压?常用的定压方式有哪几种?答:只有热水采暖系统定压点的压力恒定不变才能使供热系统正常运行。
供热系统的定压方式主要有膨胀水箱定压、补给水泵定压、补给水泵变频调剂定压、气体定压罐定压和蒸汽定压。
3. 在管网水力计算中,主干线pj R 如何确定?如果选用值太大(或太小)会有什么影响?答:主干线pj R 对确定整个管网的管径起着决定性作用。
如选用比摩阻越大,需要的管径就越小,因而降低了管网的基建投资和热损失,但网路循环水泵的基建投资及运行电耗随之增大;反之,如选用比摩阻越小,网路循环水泵的基建投资及运行电耗就越小,但需要的管径就越大,因而管网的基建投资和热损失随之增加。
所以,一般取经济比摩阻来作为水力计算主干线式中 G -----循环水泵的流量,t/h ;G '----热网最大设计流量。
t/h 。
循环水泵扬程的确定按下式计算:))(2.1~1.1(y wh wg r H H H H H +++=式中 H -----循环水泵的扬程,mH2O ;r H -----网路循环水通过热源内部的压力损失,mH2O ;wg H -----网路总干线供水管得损失,mH2O ;whH -----网路回水管的压力损失,mH2O ; y H -----主干线末端用户的系统的压力损失,mH2O ;4. 在空调系统设计中,得热量和冷负荷有什么区别?答:房间得热量是指某一时刻由室内和室外热源进入房间的热量总和。
热统试题
内 蒙 古 大 学 理 工 学 院 物理 系02-03学年第1学期 统计热力学 期末考试试卷(A ) 学号 姓名 专业 数理基地 年级 2000重修标记 □ 闭(开)卷 120分钟一、一、 (30分)1. 1. 已知一质点按照)sin(ϕω+=t x 的规律振动,若偶然测量其位置,试求在dx x x +→这一间隔内发现质点的几率;解: 设质点在dx x x +→间隔内的运动时间为dt ,这一间隔内,质点出现的几率ωπ22dtdw =又 )sin(ϕω+=t xdt t dx ωϕω⋅+=)cos(21xdx-=ω21xdxdw -=∴π2. 2. 证明VV E E p T C p V T ⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂证明:T VTV E V E T E V E E T V T ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂1 (1)及 V VC T E =⎪⎭⎫⎝⎛∂∂ 将 p T p T V E VT -⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂代入(1)式 则 VV E E p T C p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂二、二、 设N 个粒子组成的系统能级可写成()...3,2,1,0==n n n εε,其中0ε为常数,试求系统的能量和定容热容量(15分)解:由单粒子能量可以得到粒子的配分函数:∑-=nn e z βε由 ()...3,2,1,0==n n n εε110-=βεe z系统平均能量:()201ln 00-=∂∂-=βεβεεβe e N z N E 定容热容量:三、 三、 用正则分布求经典单原子分子理想气体的内能、物态方程和熵(20分)。
解:单原子分子能量()22221z y x p p p m++=ε 系统配分函数2332!!1NNNN m h N V z N Z ⎪⎪⎭⎫⎝⎛==βπ内能 NkT Z E 23ln =∂∂-=β 物态方程 VNkTZ V p =∂∂=ln 1β 熵 ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛∂∂-=252ln 23ln ln ln 2βπββh m N V Nk Z Z k S四、目前由于分子束外延技术的发展,可以制成几个原子层厚的薄膜材料,薄膜中的电子可视为在平面内做自由运动,电子面密度为s n ,试求0K 时二维电子气的费米能量和内能(20分)。
山西师范大学10-11热统试卷A卷
一、简答题(每题 6 分,共 30 分) 1、热力学第二定律的两种表述。 2、熵增加原理。 3、等概率原理 4、玻色——爱因斯坦凝结 5、写出三种统计分布(M-B、F-D、B-E) ,并阐述它们之间及其与经典分布间的 关系。 二、证明题(每题 10 分,共 20 分) 1、证明: ⎜
班级:_________ 专业:_______________
大
线
院系:_____________
西
三、 (10 分)已知理想气体状态方程: PV = νRT ,试求此理想气体的定压膨胀 系数 α 、定容压强系数 β 和等温压缩系数 κ 。 四、 (10 分)试计算 T=0K 时自由电子气体中一个电子能量的相对涨落。 五、 (15 分)某遵从 M-B 统计分为 A 的圆柱筒垂直地放在地面上,假定筒内的理
山
想气体处于同一温度 T,试求该系统的内能 U 和热容量 CV 。
2 2 2 P ix + P iy + P iz P i2 六、 (15 分)设粒子的能量动量关系为 ε = ,由 N 个这样的全同经 = 2m 2m
典单原子分子组成的理想气体系统,被封闭在体积为 V 的容器内,处于温度为 T 的平衡态。 试运用正则分布求系统的内能 U、压强 P 和体积 V 的关系。
2010——2011
学
年
第
一
学
期
期
末
考
试
T T 2 ⎛ ∂V ⎞ ⎛ ∂T ⎞ = − ⎟ ⎜ ⎟ ⎝ ∂S ⎠ H C P V ⎝ ∂H ⎠ P
⎛ ∂S ⎞ ⎛ ∂U ⎞ T⎜ ⎟ =⎜ ⎟ = CV ⎝ ∂T ⎠V ⎝ ∂T ⎠ V
学
范
师
密
封
2、证明: ⎜
山西师范大学11-12热统试卷A卷答案
P2 , 2m
Z=
1 N !h 3 N
−βE ∫ ⋅ ⋅ ⋅∫ e ∏ dx i dy i dz i dp ix dp iy dp iz −∞ i =1
2 2 2
∞
N
P +Piy +Piz P2 ⎤ ⎤ VN N ⎡ ∞ −β 2m VN N ⎡ ∞ −β ix 2m = dpix dpiydpiz ⎥ ⎢∫ e ∏⎢∫−∞ e dpixdpiydpiz ⎥ = N!h3N ∏ −∞ N!h3N i=1 ⎣ i =1 ⎢ ⎥ ⎢ ⎥ ⎦ ⎣ ⎦
ΔS1 + ΔS 2 + ΔS 热机 ≥ 0 ⇒ ∫
T0
T1
T C P dT T0 C P dT +∫ + 0 ≥ 0 ⇒ ln 0 ≥ 0 T 2 T T T1T2 ⇒ T0 ≥ 1 ⇒ T0 ≥ T1T2 T1T2
2
2
∴ Wmax = C P (T1 + T2 − 2T0 ) = C P (T1 + T2 − 2 T1T2 )
山西师范大学期末考试答案及评分标准
2011—2012 学年第一学期
院系:物信学院
(卷)
专业:物理学
考试科目:热统
试卷号: A 卷
一、简答题(30 分)
线
题
1、一个孤立系统经过足够长时间将会达到这样一种状态,系统的各种宏观性 质在长时间内不再发生任何变化,这种状态称为热力学平衡态。 2、在可逆等温过程中,系统做功等于自由能的减少;在不可逆等温过程中,系 统做的功小于其自由能的减少。可见,可逆等温过程系统所做的功最大,这叫做最
∂ ln Z 3 = NKT ∂β 2
热统期末考试题及答案
热统期末考试题及答案一、选择题(每题2分,共10分)1. 热力学第一定律的表达式是:A. ΔU = Q - WB. ΔU = Q + WC. ΔH = Q - WD. ΔH = Q + W答案:B2. 以下哪个选项是热力学第二定律的表述?A. 能量守恒定律B. 熵增原理C. 热能自发地由高温物体传递到低温物体D. 热能自发地由低温物体传递到高温物体答案:B3. 理想气体的内能只取决于:A. 体积B. 温度C. 压力D. 物质的量答案:B4. 根据热力学第三定律,绝对零度是:A. 无法达到的B. 可以无限接近的C. 可以实际达到的D. 与温度无关答案:A5. 熵是表示系统无序程度的物理量,其单位是:A. JB. J/KC. KD. J/mol答案:B二、填空题(每空2分,共20分)1. 热力学系统可以分为__________和__________。
答案:孤立系统;开放系统2. 根据卡诺定理,热机的效率与__________有关。
答案:热源温度3. 理想气体的压强由分子的__________和__________决定。
答案:碰撞频率;平均动能4. 热力学温度T与理想气体的体积V和压强P的关系是__________。
答案:T ∝ (PV)^(1/2)5. 热力学第二定律的克劳修斯表述是:不可能从单一热源__________能量,而不产生其他影响。
答案:提取三、简答题(每题10分,共20分)1. 简述热力学第一定律和第二定律的区别和联系。
答案:热力学第一定律是能量守恒定律在热力学过程中的体现,表明能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,或者从一个物体转移到另一个物体。
而热力学第二定律则描述了能量转换的方向性,即自发过程总是向着熵增的方向进行,表明了热能转换过程中的不可逆性。
2. 解释什么是熵,以及熵增原理的意义。
答案:熵是热力学中描述系统无序程度的物理量,通常用来衡量系统状态的不确定性。
热统习题解答(全)
热统习题解答(全)第⼀章热⼒学的基本规律1.1 试求理想⽓体的体胀系数α,压强系数β和等温压缩系数κ。
解:理想⽓体的物态⽅程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=??-==??==??=βα1.2 证明任何⼀种具有两个独⽴参量T ,P 的物质,其物态⽅程可由实验测得的体胀系数α及等温压缩系数κ,根据下述积分求得: ?-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态⽅程。
证明:dp p VdT T V p T dV T P )()(),(??+??= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=??+??=)(1)(1积分后得 ?-=)(ln kdP adT V 如果,1,1p T ==κα代⼊上式,得C P T PdP T dT V ln ln ln )(ln +-=-=?所以物态⽅程为:CT PV =与1mol 理想⽓体得物态⽅程PV=RT 相⽐较,可知所要求的物态⽅程即为理想⽓体物态⽅程。
1.3在00C 和1atm 下,测得⼀块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。
a 和k 可以近似看作常数。
今使铜加热⾄100C ,问(1)压⼒要增加多少⼤⽓压才能使铜块的体积维持不变?(2)若压⼒增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=??+??=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475==?=?-- (b)475121211211007.4100108.7101085.4)()(---?=??-??=---=-=?p p T T V V V V V κα可见,体积增加万分之4.07。
热统试题及答案
热统试题及答案一、选择题(每题5分,共20分)1. 热力学第一定律的数学表达式是:A. \(\Delta U = Q + W\)B. \(\Delta U = Q - W\)C. \(\Delta H = Q + W\)D. \(\Delta H = Q - W\)答案:A2. 理想气体的内能仅与温度有关,其原因是:A. 理想气体分子间无相互作用力B. 理想气体分子动能与势能之和仅与温度有关C. 理想气体分子间有相互作用力D. 理想气体分子动能与势能之和与体积有关答案:B3. 熵的微观意义是:A. 系统混乱度的量度B. 系统有序度的量度C. 系统能量的量度D. 系统温度的量度答案:A4. 绝对零度是:A. 温度的最低极限B. 温度的最高极限C. 温度的零点D. 温度的任意值答案:A二、填空题(每题5分,共20分)1. 热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为______而不产生其他效果。
答案:功2. 卡诺循环的效率由两个热源的温度决定,其效率公式为 \(1 -\frac{T_c}{T_h}\),其中 \(T_c\) 和 \(T_h\) 分别代表冷热热源的绝对温度,单位为______。
答案:开尔文3. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的完美晶体的熵趋向于一个常数值,这个常数值为______。
答案:04. 根据玻尔兹曼关系,熵 \(S\) 与系统微观状态数 \(W\) 的关系为\(S = k_B \ln W\),其中 \(k_B\) 是______。
答案:玻尔兹曼常数三、简答题(每题10分,共20分)1. 简述热力学第一定律和热力学第二定律的区别。
答案:热力学第一定律是能量守恒定律在热力学过程中的表现形式,它表明能量不能被创造或消灭,只能从一种形式转换为另一种形式,或者从一个物体转移到另一个物体。
热力学第二定律则描述了能量转换的方向性,即能量转换过程中存在不可逆损失,并且指出了热能转化为其他形式能量的效率不是100%。
(完整版)热力学统计物理练习的题目及答案详解
热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。
1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。
2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。
4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。
5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。
6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。
7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。
8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。
9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。
10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。
11.循环关系的表达式为 。
12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。
13.W Q U U A B +=-,其中W 是 作的功。
14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。
15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。
16.第一类永动机是指 的永动机。
17.内能是 函数,内能的改变决定于 和 。
18.焓是 函数,在等压过程中,焓的变化等于 的热量。
19.理想气体内能 温度有关,而与体积 。
20.理想气体的焓 温度的函数与 无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。
22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。
热统答案
2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落. 解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数ST p ⎛⎫∂⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为.P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS =,故有.TP pS PS V T p T T S p C T ⎛⎫∂∂⎛⎫⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-=⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ 焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 0dH =,故有 .T Pp HPH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ 得0.pS H T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落.3.1 证明下列平衡判据(假设S >0); (a )在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,稳定平衡态的H 最小.(c )在,H p 不变的情形下,稳定平衡态的S 最小.(d )在,F V 不变的情形下,稳定平衡态的T 最小.(e )在,G p 不变的情形下,稳定平衡态的T 最小.(f )在,U S 不变的情形下,稳定平衡态的V 最小.(g )在,F T 不变的情形下,稳定平衡态的V 最小.4.10 物质的量为01n v 的气体A 1和物质的量为02n v 的气体A 2的混合物在温度T 和压强p 下体积为0V ,当发生化学变化334411220,v A v A v A v A +--=并在同样的温度和压强下达到平衡时,其体积为.e V 证明反应度ε为01203412.e V V v v εV v v v v -+=⋅+-- 解:初始状态下混合理想气体的物态方程为()0012.pV n v v RT =+(1)以ε表示发生化学变化达到平衡后的反应度,则达到平衡后各组元物质的为:L ()()010203041,1,,.n v εn v εn v εn v ε--总的物质的量为:()0123412+++--,n v v εv v v v ⎡⎤⎣⎦其物态方程为:()0123412.e pV n v v v v v v RT ε=+++--⎡⎤⎣⎦ 2) 两式联立,有:01203412.e V V v v V v v v v ε-+=⋅+-- 3) 因此,测量混合气体反应前后的体积即可测得气体反应的反应度.7.18 试求双原子分子理想气体的振动熵. 解: 以ω表示振动的圆频率,振动能级为1,0,1,2,2n n n εω⎛⎫=+= ⎪⎝⎭振动配分函数为()1v 2112v1e,1e 1ln Z ln 1.2n n Z ee βωβωβωβωβω⎛⎫∞-+ ⎪⎝⎭=---==-=---∑ 双原子理想气体的熵为 ()v v v 11ln ln Z ln 1e e 1S Nk Z Nk βωβωβββω-⎛⎫∂=- ⎪∂⎝⎭⎡⎤=--⎢⎥-⎣⎦v v v ln 1e ,e 1T T T Nk θθθ-⎡⎤⎢⎛⎫⎥=-- ⎪⎢⎥⎝⎭⎢⎥-⎣⎦其中v kωθ= 是振动的特征温度.8.4 试证明,在热力学极限下均匀的二维理想玻色气体不会发生玻色-受因斯坦凝聚. 解:令玻色气体降温到某有限温度c T ,气体的化学势将趋于-0. 在c T T <时将有宏观量级的粒子凝聚在0ε=的基态,称为玻色-爱因斯坦凝聚. 临界温度c T 由条件()0d e 1c kT D n εεε+∞=-⎰(1)()222πd d LD m hεεε=将其代入(1),得2202πd .e 1c kT L m n h εε+∞=-⎰ (2)令cx kT ε=,上式可改写为:2202πd .e 1c x L x mkT n h +∞=-⎰ (3)将(3)被积函数展开,有()()211e 1e e ,e 1e 1e x x xx x x----==+++-- 则:d 111e 123x x +∞=+++-⎰11.n n∞==∑ (4) (4)的级数是发散的,这意味着在有限温度下二维理想玻色气体的化学势不可能趋于零. 换句话说,在有限温度下二维理想玻色气体不会发生玻色-爱因斯坦凝。
热统答案(全)
5
其中 L 是长度, 它只是温度 T 的 Nhomakorabea数, b 是常量. 试 L0 是张力 J 为零时的 L 值, 证明: (a)等温扬氏模量为
bT L 2 L2 0 Y 2 . A L0 L
在张力为零时, Y0
(2)
张力为零时, L L0 , Y0
3bT . A
(b)线胀系数的定义为
1 L . L T J
由链式关系知
6
, L T L J T
1 J L
(3)
而
L L2 L 2 L0 dL0 J 0 b , 2 bT 2 2 T L L0 L L0 L dT 1 2 L2 J 0 bT 3 , L T L0 L
(3)
积分得
J YA T2 T1 .
(4)
与 1.3 题类似,上述结果不限于保持金属丝长度不变的准静态冷却过程,只 要金属丝的初态是平衡态,两态的张力差
J J L, T2 J L, T1
就满足式(4) ,与经历的过程无关。 1.6 一理想弹性线的物态方程为
全式除以 V ,有
dV 1 V 1 V dp. dT V V T p V p T
根据体胀系数 和等温压缩系数 T 的定义,可将上式改写为
1
dV dT T dp. V
(2)
上式是以 T , p 为自变量的完整微分,沿一任意的积分路线积分,有
W1 p0 V p0V0 .
另一方面,小匣既抽为真空,系统在冲入小匣的过程中不受外界阻力,与外 界也就没有功交换,则
热统试题——精选推荐
热统试题内蒙古⼤学理⼯学院物理系02-03学年第1学期统计热⼒学期末考试试卷(A )学号姓名专业数理基地年级 2000重修标记□闭(开)卷 120分钟⼀、⼀、(30分)1. 1.已知⼀质点按照)sin(?ω+=t x 的规律振动,若偶然测量其位置,试求在dx x x +→这⼀间隔内发现质点的⼏率;解:设质点在dx x x +→间隔内的运动时间为dt ,这⼀间隔内,质点出现的⼏率ωπ22dtdw =⼜ )sin(?ω+=t xdt t dx ω?ω?+=)cos(21xdx-=ω21xdxdw -=∴π2. 2.证明VV E E p T C p V T ??? ????-=???证明:T VTV E V E T E V E E T V T ?? -=?????-=??? ????1 (1)及 V VC T E =将 p T p T V E VT -=???代⼊(1)式则 VV E E p T C p V T-=⼆、⼆、设N 个粒⼦组成的系统能级可写成()...3,2,1,0==n n n εε,其中0ε为常数,试求系统的能量和定容热容量(15分)解:由单粒⼦能量可以得到粒⼦的配分函数:∑-=nn e z βε由 ()...3,2,1,0==n n n εε110-=βεe z系统平均能量:()201ln 00-=??-=βεβεεβe e N z N E 定容热容量:三、三、⽤正则分布求经典单原⼦分⼦理想⽓体的内能、物态⽅程和熵(20分)。
解:单原⼦分⼦能量()22221z y x p p p m++=ε系统配分函数2332!!1NNNN m h N V z N Z==βπ内能 NkT Z E 23ln =??-=β物态⽅程 VNkTZ V p =??=ln 1β熵+???? ??+=????-=252ln 23ln ln ln 2βπββh m N V Nk Z Z k S四、⽬前由于分⼦束外延技术的发展,可以制成⼏个原⼦层厚的薄膜材料,薄膜中的电⼦可视为在平⾯内做⾃由运动,电⼦⾯密度为s n ,试求0K 时⼆维电⼦⽓的费⽶能量和内能(20分)。
热统试题解
热力学与统计物理试题一、名词解释:1、自由能的物理意义:在等温过程中,系统对外所做的功等于它的自由能的减少,这就是自由能的物理意义。
2、热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则它们彼此也必定处于热平衡,这个结论通常叫做热力学第零定律。
3、内能:系统处于一定状态下是具有一定能量的,这种由系统热运动的宏观状态所决定的能量,就叫做内能。
4、定压膨胀系数:表达式是:PT V V ⎪⎭⎫ ⎝⎛∂∂=1α,它给出在压强保持不变的条件下,温度升高1K 所引起的物体体积变化的百分率。
5、等几率原理:对于处在平衡状态的孤立系统,系统各个可能的微观态出现的几率是相等的。
这是统计物理学中的基本假设。
二、填空题:1、热力学过程如果按过程的特征分类,可以分为等容过程、等压过程、等温过程和绝热过程。
2、在热力学中需要用几何参量、力学参量、化学参量和电磁参量等四类参量来描写热力学系统的平衡状态。
3、温度是决定一个系统是否与其他系统处于热平衡的宏观性质,它的特征就在于一切互为热平衡的系统都具有相同的温度。
4、表示参量与温度之间联系的数学关系式被称为系统的物态方程。
5、将一个热力学平衡态的系统分为相等的两部分,如果一个热力学量对其一部分的数值和对整个系统的数值相等,则这个量叫做强度量。
6、从宏观的观点看来,系统与外界的相互作用有两种形式,一种方法是使系统与外界进行热交换,另一种方法是使系统对外界做功或外界对系统做功。
7、当气体的体积由1V 变化到2V 时,气体所完成的功为:⎰=21V V PdV A要想计算这个积分,必须知道P 和V 的函数关系。
只有在一定的过程中,P 和V 才有确定的关系,在不同的过程中,P 和V 的关系式是不相同的。
即功是与过程有关的量。
8、如图(1),系统从某一状态出发,历经许多变化之后,最后回到原来的状态,则此过程叫做循环过程。
系统由状态1经路径A到达状态2,再由状态2经路径B回到状态1,这是一个循环过程。
热统习题答案精简版
1.3 解:(a )根据1.2题式(2),有.T dVdT dp Vακ=- .T dp dT ακ= ()2121.T p p T T ακ-=- 52174.851010622.7.810n p p p --⨯-=⨯=⨯(b )()()21211.T VT T p p V ακ∆=--- (4) 57144.8510107.8101004.0710.VV ---∆=⨯⨯-⨯⨯=⨯1.16 解: 0ln ln .p S C T nR p S =-+ (1) 在等压过程中温度由1T 升到2T 时,熵增加值p S ∆为21ln.p p T S C T ∆= 0ln ln .V S C T nR V S =++ (2) 在等容过程中温度由1T 升到2T 时,熵增加值V S ∆为21ln .V V T S C T ∆=.p p V V S C S C γ∆==∆ (4) 1.19解: 122.T TT T l L -=+ (1) 这小段由初温T 变到终温()1212T T +后的熵增加值为121221222ln ,T T l p p TT T dT dS c dl c dl T T T T l L++==-+⎰(2)根据熵的可加性,整个均匀杆的熵增加值为()12122012121212222120121122121212112212ln ln 2ln ln 2ln ln ln 2ln ln ln 12lL p Lp p p p p S dS T T T T c T l dlL c T T T T T T T T c L T l T l T l T T L L L L c L T T c L T T T T T T T T T T T T T T C T T ∆=⎡+-⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦+⎡---⎤⎛⎫⎛⎫⎛⎫=-++-+ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦+=---+-+-=-+-⎰⎰.⎛⎫⎪⎝⎭式中p p C c L =是杆的定压热容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 (共 5 页)
山 西 师 范 大 学 2010——2011 学 年 第 一 学 期 期 末 考 试 试 题 (卷)
密 封 线 密 封 线 以 内 不 准 作 任 何 标 记 密 封 线
第 2 页 (共 5 页)
二、证明题(每题10分,共20分)
1、证明:T T T
H
S S S
H H P T S P S H H P S T P T ∂∂∂⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟∂∂∂∂⎛⎞⎝⎠⎝⎠⎝⎠=−=−⎜⎟
∂∂∂∂⎛⎞⎛⎞⎛⎞⎝⎠⎜⎟⎜⎟⎜⎟∂∂∂⎝⎠⎝⎠⎝⎠
1P P P
P P
P P
V V T V T T T S V V T T V T V V S S V
S V V T ⎡⎤⎡⎤
∂∂⎛⎞⎛⎞−−⎜⎟⎜⎟⎢⎥⎢⎥∂∂⎝⎠⎝⎠⎣
⎦⎣⎦
=∂⎛⎞⎜⎟∂⎝⎠∂⎛⎞−+⎜⎟∂∂⎛⎞⎝⎠==
−
⎜⎟∂∂∂⎛⎞⎛⎞⎝⎠⎜⎟⎜⎟∂∂⎝⎠⎝⎠
P P
P T T V H C V H S ∂∂⎛⎞⎛⎞=
−⎜⎟⎜⎟∂∂⎝⎠⎝⎠ 2P
P T T V C V H ∂⎛⎞=−⎜⎟∂⎝⎠ 2、证明:因为
V
T V T S S S S dU TdS PdV T dT dV PdV T dT T P dV T V T V ⎡⎤⎡⎤∂∂∂∂⎛⎞⎛⎞⎛⎞
⎛⎞=−=+−=+−⎜⎟⎜⎟⎜⎟⎜⎟⎢⎥⎢⎥∂∂∂∂⎝⎠⎝⎠⎝⎠⎝⎠⎣⎦⎣⎦
又因 V T
U U dU dT dV T V ∂∂⎛⎞⎛⎞
=+⎜
⎟⎜⎟∂∂⎝⎠⎝⎠
比较两式可得: V V V
S U T C T T ∂∂⎛⎞⎛⎞
==⎜
⎟⎜⎟∂∂⎝⎠⎝⎠ T T V
U S P T P T P V V T ∂∂∂⎛⎞⎛⎞⎛⎞=−=−⎜
⎟⎜⎟⎜⎟∂∂∂⎝⎠⎝⎠⎝⎠
三、(10分)解:理想气体方程:PV RT ν=
第 3 页 (共 5 页)
取偏导数得 V
P R T V ν∂⎛⎞
=⎜⎟∂⎝⎠ 2T V V P RT ν∂⎛⎞=−
⎜⎟∂⎝⎠ P
V R V T P T ν∂⎛⎞==⎜⎟∂⎝⎠ 或由循环关系得 V P
T
P V V
T P T T V ∂⎛⎞
⎜⎟
∂∂⎛⎞⎝⎠=−=⎜⎟∂∂⎛⎞⎝⎠⎜⎟∂⎝⎠
所以 P 1V 1V T T α∂⎛⎞=
=⎜⎟
∂⎝⎠ V 1P R 1P T PV T νβ∂⎛⎞===⎜⎟∂⎝⎠ T 1V 1
V P P
κ∂⎛⎞=−=⎜⎟∂⎝⎠ 或由P ακβ=得 1
P P
ακβ=
= 四、(10分)解:已知相对涨落为:
22
εεε
− ○1
对于自由电子气有两种不同的自旋态,温度为T、能量为ε的一个量子态上的平均电子数为:
()()11
kT f
e εμε−=
+
在体积V 内,能量介于ε——d εε+内的量子态数为
()()11322
2342V g d m d d h πεεεεεε==Α 其中()3
2342V m h
πΑ=
设T=0K 时,电子气动化学势为0μ,可得在T →0K 时每个单粒子态上所占据的电子数: ()1f ε= 0εμ≤ ()0f ε= ε>0μ
所以,总粒子数为:
()()()00
13
2
200
2
3
N f g d g d d μμεεεεεεεμ∞
===Α=Α∫∫∫
总能量为:
第 4 页 (共 5 页)
()()()00
3
5
2
2000
23
55
s f g d g d d N μμεεεεεεεεεεμμ∞
===Α=Α=∫∫∫
T=0K 时,电子的平均能量为:03
5
εμ=
○2 同时又有:
()()()00
5
7
2
2
2
22
2000
23
77
f g d g d d N μμεεεεεεεεεεμμ∞
===Α=Α=∫∫∫
T=0K 时,能量平方的平均值为:2
2
037
εμ=
○3 综上所述,联立○1○2○3三式可得T=0K 时自由电子气中一个电子能量的涨落为:
2
22
εεε−22
00
20397250.19925
μμμ−== 五、(15分)解:气体分子的能量为 ()2221
2x y z P P P mgz m
ε=
+++ 分子的配分函数为
()2223
1
exp 2x y z x y z Z P P P mgz dP dP dP dxdydz h m ββ⎡⎤=
−++−⎢⎥⎣⎦
∫∫∫∫∫∫ =()3
230
1exp exp 2h
x x A
P dP dxdy mgz dz h m ββ+∞
−∞⎡⎤⎛⎞
−−⎢⎥⎜
⎟⎝⎠⎣⎦
∫∫∫∫
=()3/23121exp kT mgh mkT A h mg kT π⎡⎤
⎛⎞−−⎜⎟⎢⎥⎝⎠⎣⎦
气体的内能和热容量分别为:
()
/521mgh kT Inz Nmgh
U N NkT e β∂=−=−∂− ()
2
/2
/521mgh kT V mgh kT mgh e C Nk Nk kT e ⎛⎞
=−⎜⎟⎝⎠−
第 5 页 (共 5 页)
六、(15分)解:粒子的能量动量关系为2
P 2m
ε=,
系统的配分函数为
N
E i i i ix iy iz 3N
i 1
1
Z e dx dy dz dp dp dp N !h β∞
−−∞
==
⋅⋅⋅∏∫∫
2
2
2
2
ix iy iz P P P P N
N
N
N
2m
2m
ix iy iz ix iy iz 3N 3N i 1i 1V
V e dp dp dp e dp dp dp N!h N!h ββ++∞∞−−−∞−∞
==⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣
⎦⎣⎦
∏∏∫
∫2
ix 3N 3
3N
P N
N
N
N
2
2m
ix 3N
3N
2i 1V
V V 2m e dp N!h N!h N!h βπβ∞−−∞=⎡⎤⎛⎛⎞=
=⋅=⋅⎢⎥⎜⎜⎟⎜⎝⎠
⎢⎥⎝⎣
⎦
∏∫所以 ln Z 3
U N K T 2
β∂=−
=∂
1ln Z N K T P V V β∂=
=
∂ 故 2
PV U 3
=。