3.3.1几何概型(优质课)

合集下载

6.示范教案(3.3.1 几何概型)

6.示范教案(3.3.1  几何概型)

高一数学集体备课教案执笔人:陈 超 教案使用教师____________ 参与研讨教师:周鸿强、陈燕、施宝林、陈丽杨 教案使用时间____________课 题:3.3.1 几何概型教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.教学方法:讲授法课时安排:1课时教学过程:一、导入新课:1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?2、在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.二、新课讲授:提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.三、例题讲解:例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.分析:见教材136页解:(略)变式训练1、某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.2、在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.四、课堂小结:几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.五、课后作业:课本习题3.3A组1、2、3.板书设计课后反思:。

人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共17张PPT)

人教版高中数学必修三第三章第3节 3.3.1 几何概型  课件(共17张PPT)
含有这个细菌的概率; (4)向上抛一枚质地不均匀的旧硬币,
求正面朝上的概率. A.1个 B.2个 C. 3个 D.4个
题组一:
2. 下列概率模型中,几何概型的是(1),(3) . (1)在1万平方千米的海域中有80平方千米 的大陆架贮藏着石油.假设在海域中的任意一 点钻探,求钻到油层面的概率;
(2)从区间 [10,10] 内任意取出一个整数, 求取到绝对值不大于1的数的概率; (3)向一个边长为4cm的正方形ABCD内 投一个点P,求点P离中心不超过1cm 的概率
分别是扇形区域ADE和扇形区域CBF(该 矩形区域内无其他信号来源,基站工作正
常).若在该矩形区域内随机地选一地点,
则该地点无信号的概率是( A )
A.1-
4
B.
-1
2
C.2- 2
D.
4
题组五:
2.如图,矩形 ABCD 中,点 A 在 x轴上,
点 B的坐标为 (1,0).点 C 与点 D在 C
x 1, x 0
函数
f
(x)
1 2
x
1,
x
0
的图像上.
若在矩形内随机取一点,则该点取自阴影 y
部分的概率等于( B)
D
C
1 1 31
A.6 B.4 C.8 D.2
A
F OB
x
五、课堂总结:
如果每个事件发生的概率只与构成
该事件区域的长度(面积或体积)成比例,
则称这样的概率模型为几何概型.
几何概型的特点: (1)试验中所有可能出现的基本事件有无限多个. (2)每个基本事件出现的可能性相等.
内随机取一点 P ,则点 P 到点O 的距离
小于1的概率为 .

人教A版必修三3.3.1几何概型教案(1)

人教A版必修三3.3.1几何概型教案(1)

------------------------- 天才是百分之一的灵感加百分之九十九的勤劳------------------------------课题:几何概型教课目的:1.经过师生共同研究 , 领会数学知识的形成 , 正确理解几何概型的观点;掌握几何概型的概率公式:组成事件 A的地区长度 (面积或体积 ), 学会应用数学知识来解决P(A)=试验的所有结果所组成的地区长度 (面积或体积 )问题 , 领会数学知识与现实世界的联系, 培育逻辑推理能力 .2. 本节课的主要特色是随机试验多, 学习时养成好学谨慎的学习习惯, 会依据古典概型与几何概型的差别与联系来鉴别某种概型是古典概型仍是几何概型, 会进行简单的几何概率计算 , 培育学生从有限向无穷研究的意识.教课要点:理解几何概型的定义、特色, 会用公式计算几何概率.教课难点:等可能性的判断与几何概型和古典概型的差别.教课方法:解说法课时安排:1课时教课过程:一、导入新课:1、复习古典概型的两个基本特色:( 1)所有的基本领件只有有限个;(2)每个基本领件发生都是等可能的. 那么关于有无穷多个试验结果的状况相应的概率应怎样求呢?2、在概率论发展的初期 , 人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的 , 还一定考虑有无穷多个试验结果的状况. 比如一个人到单位的时间可能是8:00至 9 : 00 之间的任何一个时辰;往一个方格中投一个石子, 石子可能落在方格中的任何一点这些试验可能出现的结果都是无穷多个. 这就是我们要学习的几何概型.二、新课解说:提出问题(1)任意投掷一枚平均硬币两次 , 求两次出现同样面的概率?(2) 试验 1. 取一根长度为 3 m 的绳索 , 拉直后在任意地点剪断 . 问剪得两段的长都不小于 1 m 的概率有多大?试验 2. 射箭竞赛的箭靶涂有五个彩色得分环. 从外向内为白色, 黑色 , 蓝色 , 红色 , 靶心是金色. 金色靶心叫“黄心”. 奥运会的竞赛靶面直径为122 cm, 靶心直径为12.2 cm. 运动员在70 m 外射箭 . 假定射箭都能射中靶面内任何一点都是等可能的. 问射中黄心的概率为多少?(3)问题 (1)(2) 中的基本领件有什么特色 ?两事件的实质差别是什么 ?(4)什么是几何概型 ?它有什么特色 ?(5)怎样计算几何概型的概率 ?有什么样的公式 ?(6)古典概型和几何概型有什么差别和联系?活动:学生依据问题思虑议论 , 回首古典概型的特色 , 把问题转变为学过的知识解决 , 教师指引学生比较归纳 .议论结果: (1) 硬币落地后会出现四种结果:分别记作(正, 正)、(正 , 反)、(反 , 正)、(反 ,------------------------- 天才是百分之一的灵感加百分之九十九的勤劳 ------------------------------1 1 1出现同样面的概率为4 .42(2) 经剖析 , 第一个试验 , 从每一个地点剪断都是一个基本领件 , 剪断地点能够是长度为3 m的绳索上的任意一点 .第二个试验中 , 射中靶面上每一点都是一个基本领件, 这一点能够是靶面直径为122 cm的大圆内的任意一点 .在这两个问题中 , 基本领件有无穷多个 , 固然近似于古典概型的“等可能性”, 可是明显不可以用古典概型的方法求解 .考虑第一个问题 , 如右图 , 记“剪得两段的长都不小于 1 m ”为事件 A. 把绳索三平分 , 于是当剪断地点处在中间一段上时, 事件 A 发生 . 因为中间一段的长度等于绳长的1 , 于是事件 A 发生的概率 P(A)= 1.331×π×第二个问题 , 如右图 , 记“射中黄心”为事件B, 因为中靶心随机地落在面积为1×π× 12.2 241222cm 2的大圆内 , 而中间靶点落在面积为cm 2 的黄心内时 , 事件 B 发生 , 于是142事件 B 发生的概率 P(B)=4=0.01.112224(3) 硬币落地后会出现四种结果(正 , 正)、(正 , 反)、(反 , 正)、(反 , 反)是等可能的 , 绳索从每一个地点剪断都是一个基本领件 , 剪断地点能够是长度为 3 m 的绳索上的任意一点 , 也是等可能的 , 射中靶面内任何一点都是等可能的 , 可是硬币落地后只出现四种结果 , 是有限的 ; 而剪断绳索的点和射中靶面的点是无穷的 ; 即一个基本领件是有限的, 而另一个基本领件是无限的 . (4) 几何概型 .关于一个随机试验 , 我们将每个基本领件理解为从某个特定的几何地区内随机地取一点,该地区中的每一个点被取到的时机都同样 , 而一个随机事件的发生则理解为恰巧取到上述区域内的某个指定地区中的点 . 这里的地区能够是线段、 平面图形、 立体图形等 . 用这类方法办理随机试验 , 称为几何概型 .假如每个事件发生的概率只与组成该事件地区的长度( 面积或体积 ) 成比率 , 则称这样的概率模型为几何概率模型(geometric models of probability) , 简称 几何概型 .几何概型的基本特色: a. 试验中所有可能出现的结果 ( 基本领件 ) 有无穷多个;b. 每个基本领件出现的可能性相等.(5) 几何概型的概率公式:-------------------------天才是百分之一的灵感加百分之九十九的勤劳------------------------------组成事件 A的地区长度 (面积或体积 ).P (A)=试验的所有结果所组成的地区长度 (面积或体积 )(6) 古典概型和几何概型的联系是每个基本领件的发生都是等可能的; 差别是古典概型的基本领件是有限的 , 而几何概型的基本领件是无穷的, 此外两种概型的概率计算公式的含义也不一样 .三、例题解说:例 1 判断以下试验中事件 A 发生的概率是古典概型, 仍是几何概型 .(1)投掷两颗骰子 , 求出现两个“ 4 点”的概率 ;(2)以以下图所示 , 图中有一个转盘 , 甲、乙两人玩转盘游戏 , 规定当指针指向 B 地区时 , 甲获胜, 不然乙获胜 , 求甲获胜的概率 .活动:学生牢牢抓住古典概型和几何概型的差别和联系, 而后判断 .解:( 1)投掷两颗骰子 , 出现的可能结果有 6× 6=36 种 , 且它们都是等可能的 , 所以属于古典概型 ;(2)游戏中指针指向 B 地区时有无穷多个结果 , 并且不难发现“指针落在暗影部分”, 概率能够用暗影部分的面积与总面积的比来权衡, 即与地区长度相关 , 所以属于几何概型 .评论:此题考察的是几何概型与古典概型的特色, 古典概型拥有有限性和等可能性. 而几何概型则是在试验中出现无穷多个结果, 且与事件的地区长度相关.例 2某人午睡醒来, 觉察表停了 , 他翻开收音机想听电台整点报时, 求他等候的时间短于10 分钟的概率 .剖析:赐教材 136 页解:(略)变式训练1 、某路公共汽车 5 分钟一班准时抵达某车站, 求任一人在该车站等车时间少于 3 分钟的概率(假定车到来后每人都能上).解:能够以为人在任一时辰到站是等可能的. 设上一班车离站时辰为a, 则某人到站的全部可能时辰为Ω =(a,a+5),记A g={等车时间少于 3 分钟 }, 则他到站的时辰只好为g=(a+2,a+5)中g的长度 3的任一时辰 , 故 P(A g)= .的长度 5评论:经过实例初步领会几何概型的意义.2 、在 1 万平方千米的海疆中有40 平方千米的大陆架储蓄着石油, 假定在海疆中任意一点钻探 , 钻到油层面的概率是多少?-------------------------天才是百分之一的灵感加百分之九十九的勤劳------------------------------剖析:石油在 1 万平方千米的海疆大陆架的散布能够看作是随机的,而40 平方千米可看作组成事件的地区面积, 由几何概型公式能够求得概率.解:记“钻到油层面”为事件A, 则 P(A)=0.004.答:钻到油层面的概率是0.004.四、讲堂小结:几何概型是差别于古典概型的又一概率模型, 使用几何概型的概率计算公式时, 必定要注意其合用条件:每个事件发生的概率只与组成该事件地区的长度成比率.五、课后作业:课本习题 3.3A 组 1、 2、3.板书设计几何概型1、几何概型的观点2、几何概型的基本特色课后反省:。

人教版高中必修3(B版)3.3.1几何概型教学设计

人教版高中必修3(B版)3.3.1几何概型教学设计

人教版高中必修3(B版)3.3.1几何概型教学设计
一、教学目的
1.理解几何概型的概念和性质。

2.掌握分段讨论和间断函数的求解方法。

3.能够解决常见的几何问题,如角平分线、垂心、垂线等问题。

4.培养学生的逻辑思维和推理能力。

二、教学重点
1.了解几何概型的性质。

2.学会运用几何概型的思想解决几何问题。

三、教学难点
1.掌握分段讨论和间断函数的求解方法。

2.学会几何问题中常用的一些策略和方法。

四、教学资源
1.人教版高中数学(B版)教材。

2.电脑和投影仪。

3.黑板、彩色粉笔。

五、教学过程设计
1. 导入环节
引导学生回忆上一节学习的内容,如线段平分线、角平分线等概念,以及它们的性质和应用。

2. 理论讲解
1.讲解几何概型的概念和性质。

2.介绍分段讨论和间断函数的求解方法。

3.讲解如何运用几何概型的思想解决几何问题。

3. 练习环节
1.给学生提供一些几何问题,引导他们通过分析和运用几何概型的思想
来解决问题。

2.带着学生复习之前学过的几何知识,解决一些常见问题。

4. 总结反思
让学生回顾本节课学到的内容,提出问题、分享经验,帮助大家理解几何概型和解题思路。

同时告诉学生,几何问题虽然看似简单,但需要不断地练习和思考。

六、教学评价
1.在练习环节中观察学生的解题方法和策略,以及对几何概型的掌握程
度。

2.根据课堂互动、讨论和回答问题的表现,对学生进行评价。

3.希望学生课后主动做一些练习,加深对几何概型的理解和应用。

高中数学 (3.3.1 几何概型)教案 新人教A版必修3

高中数学 (3.3.1 几何概型)教案 新人教A版必修3

课 题:3.3.1 几何概型教学目标:1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.教学方法:讲授法课时安排:1课时教学过程:一、导入新课:1、复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?2、在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.二、新课讲授:提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验 2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为 3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型. 几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A .(6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.三、例题讲解:例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.分析:见教材136页解:(略)变式训练1、某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.2、 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.四、课堂小结:几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.五、课后作业:课本习题3.3A组1、2、3.板书设计课后反思:。

高中数学3.3.1几何概型课件新人教A版必修3

高中数学3.3.1几何概型课件新人教A版必修3

与长度有关的几何概型
[例 1] (1)在区间[-1,2]上随机取一个数 x,则|x|≤1 的概率为 ________.
(2)某汽车站每隔 15 min 有一辆汽车到达,乘客到达车站的时 刻是任意的,求一位乘客到达车站后等车时间超过 10 min 的概率.
[解析] (1)∵区间[-1,2]的长度为 3,由|x|≤1 得 x∈[-1,1], 而区间[-1,1]的长度为 2,x 取每个值为随机的,∴在[-1,2]上取 一个数 x,|x|≤1 的概率 P=23.
数的概率;
③从区间[-10,10]内任取出一个整数,求取到大于1而小于2
的数的概率;
④向一个边长为4 cm的正方形ABCD内投一点P,求点P离中
心不超过1 cm的概率.
A.1
B.2
C.3
D.4
率为
()
A.π4
B.1-π4
π C.8
D.1-π8
2.在平面直角坐标系 xOy 中,设 M 是横坐标与纵坐标的绝对值均 不大于 2 的点构成的区域,E 是到原点的距离不大于 1 的点构成 的区域,向 M 中随机投一点,则所投的点落入 E 中的概率是 ________.
解析:如图,区域 M 表示边长为 4 的正方形 ABCD 的内 部(含边界),区域 E 表示单位圆及其内部, 因此 P=π4××142=1π6.
将集合M和N所表示的区域在直角坐标系中画出,如图,
则区域M的面积S=12×8×8=32, 区域N的面积S′=12×6×2=6, 所以点P落入区域N的概率为P=362=136.
答案:D
[随堂即时演练]
1.下列概率模型中,几何概型的个数为
()
①从区间[-10,10]内任取出一个数,求取到1的概率;

优质课件数学必修三几何概型(优质课比赛)

优质课件数学必修三几何概型(优质课比赛)

问题 1:这位顾客获得 100 元购物券的概率与什么因素有关? 提示:与标注①的小扇形个数多少(面积大小)有关. 问题 2:在该实例试验中,试验结果有多少个?其发生的概 率相等吗? 提示:试验结果有无穷多个,但每个试验结果发生的概率相等. 问题 3:如何计算该顾客获得 100 元购物券的概率? 提示:用标注①的扇形面积除以圆的面积.
P
A
构成事件A的区域长度 试验的全部结果所构成的区域长度
某海域面积约为17万平方公里,如果在 此海域里有面积达0.1万平方公里的大陆架蕴 藏着石油,假设在这个海域里任意选定一点 钻探,则钻出石油的概率是多少?
解:设事件B为这个海域里
任意选定一点钻探,钻出
石油
P B
0.1 17
1 170
P
B
构成事件B的区域面积 试验的全部结果所构成的区域面积
2
9
25
25.
5
y-x =-1
4
3
2
1
0 1 234 5 x
答:两人会面的概率等于 9
25
豆子落入的不规则图形概率为0.6,求 不规则图形的面积。
例3.有一个底面半径为1 ,高为3的圆柱, 点O为这个圆柱底面圆的圆心,在这个 圆柱内随机取一点A,则点A到点O的距 离不大于1的概率是多少?
1、某公共汽车站每隔5分钟有一辆公共汽车通过,
乘客到达汽车站的任一时刻都是等可能的,求乘客等
车不超过3分钟的概率. p 3 5
有一杯1升的水, 其中含有1个细菌, 用 一个小杯从这杯水中取出0.1升, 求小杯水 中含有这个细菌的概率.
解:记“小杯水中含有这个细菌”为事件C,
事件C 发生的概率
P(C )
0.1 1

高中数学新人教版A版精品教案《3.3.1几何概型(1)》

高中数学新人教版A版精品教案《3.3.1几何概型(1)》

教学设计,靶心直径为 cm 运动员在70 m 外射箭假设射箭都能射中靶面内任何一点都是等可能的问射中黄心的概率为多少?3问题12中的基本事件有什么特点两事件的本质区别是什么 4什么是几何概型它有什么特点5如何计算几何概型的概率有什么样的公式 6古典概型和几何概型有什么区别和联系活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括讨论结果:1硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反)每种结果出现的概率相等,214141=+的绳子上的任意一点第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A 把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生由于中间一段的长度等于绳长的31, 于是事件A 发生的概率31412的大圆内,而当中靶点落在面积为41×π× cm 2的黄心内时,事件B 发生,于是事件B 发生的概率22122412.1241⨯⨯⨯⨯ππ教学设计学过程及方法区域长度有关。

例 2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率分析:见教材136页解:(略)三、随堂练习1、某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上)解:,则某人到站的一切可能时刻为Ω=a,a5,记A g={等车时间少于3分钟},则他到站的时刻只能为g=a2,a5中的任一时刻,故PA g=53=Ω的长度的长度g点评:通过实例初步体会几何概型的意义2、在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率教学小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例课后反。

高中数学优质教学设计6:3.3.1 几何概型 教案

高中数学优质教学设计6:3.3.1  几何概型 教案

3.3.1 几何概型[课标解读]1.理解几何概型的定义及特点.(重点)2.掌握几何概型的计算方法和求解步骤,准确地把实际问题转化为几何概型问题.(难点)3.与长度、角度有关的几何概型问题.(易混点)知识点几何概型[提出问题]每逢节假日,各大型商场竞相出招,吸引顾客,其中某商场设立了一个可以自由转动的转盘,规定顾客消费100元以上,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准①、②或③区域,顾客就可以分别获得100元、50元、20元的购物券(转盘被等分成20个扇形),一位顾客消费了120元.问题1:这位顾客获得100元购物券的概率与什么因素有关?提示:与标注①的小扇形个数多少(面积大小)有关.问题2:在该实例试验中,试验结果有多少个?其发生的概率相等吗?提示:试验结果有无穷多个,但每个试验结果发生的概率相等.问题3:如可计算该顾客获得100元购物券的概率?提示:用标注①的扇形面积除以圆的面积.[导入新知]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.3.几何概型概率公式在几何概型中,事件A的概率的计算公式为:P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).[化解疑难]理解几何概型应关注三点(1)几何概型中,每个基本事件在一个区域内均匀分布,所以随机事件概率的大小与随机事件所在区域的形状、位置无关,只与区域的大小有关.(2)如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但不是不可能事件.(3)如果一个随机事件所在的区域是全部区域扣除一个单点,则它出现的概率为1,但不是必然事件.题型一与长度有关的几何概型[例1] (1)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.【解析】∵区间[-1,2]的长度为3,由|x |≤1得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.【答案】23(2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.解 设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.[类题通法]1.几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性); (2)把基本事件转化为与之对应的区域D ; (3)把所求随机事件A 转化为与之对应的区域I ; (4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为: P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.[活学活用]一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮; (3)不是红灯亮.解在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型.(1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.题型二与面积有关的几何概型[例2] (1)有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖,他应 当选择的游戏盘为( )(2)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .π4B .1-π4C .π8D .1-π8【解析】(1)根据几何概型的面积比,A 中中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为(2r )2-πr 2(2r )2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,故A 游戏盘的中奖概率最大.(2)长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2÷2=π4,取到的点到O 的距离大于1的概率为1-π4.【答案】(1)A (2)B[类题通法]1.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为: P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.2.解与面积相关的几何概型问题的三个关键点(1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积; (3)套用公式,从而求得随机事件的概率. [活学活用]在平面直角坐标系xOy 中,设M 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向M 中随机投一点,则所投的点落入E 中的概率是________.【解析】如图,区域M 表示边长为4的正方形ABCD 的内部(含边界),区域E 表示单位圆及其内部,因此P =π×124×4=π16.【答案】π16题型三与角度有关的几何概率[例3] 在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解 如图,在AB 上取AC ′=AC ,连接CC ′,则∠ACC ′=180°-45°2=67.5°.设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,AM <AC ,则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.5°90°=34.[类题通法]与角度有关的几何概型概率的求法(1)如果试验的所有结果构成的区域的几何度量可用角度表示,则其概率的计算公式为 P (A )=构成事件A 的区域角度试验的全部结果构成的区域角度.(2)解决此类问题的关键是事件A 在区域角度内是均匀的,进而判定事件的发生是等可能的. [活学活用]如图,在平面直角坐标系中,射线OT 为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT 内的概率是( )A.16B.23C.13D.160【解析】如图,∵在任意角集合中任取一个角,则该角终边落在∠xOT 内对应的角度为60度,而整个角集合对应的角度为圆周角,∴该角终边落在∠xOT 内的概率P =60360=16,故选A.【答案】A题型四与体积有关的几何概型[例4] (1)在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( )A.6πB.32πC.3πD.233π【解析】由题意可得正方体的体积为V 1=1.又球的直径是正方体的对角线,故球的半径R =32.球的体积V 2=43πR 3=32π.这是一个几何概型,则此点落在正方体内的概率为P =V 1V 2=132π=233π. 【答案】D(2)已知正方体ABCD -A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD -A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是________.【解析】设正方体的棱长为2.正方体ABCD -A 1B 1C 1D 1的内切球O 的半径是其棱长的一半,其体积为V 1=43π×13=4π3.则点M 在球O 内的概率是4π323=π6.【答案】π6[类题通法]与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为 P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.[活学活用]有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,求点P 到点O 的距离大于1的概率.解圆柱的体积V 圆柱=π×12×2=2π是试验的全部结果构成的区域体积.以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×4π3×13=2π3,则构成事件A “P到点O 的距离大于1”的区域体积为2π-2π3=4π3,由几何概型的概率公式得P (A )=4π32π=23.多维探究几何概型中的交汇性问题[典例] 设关于x 的一元二次方程x 2+2ax +b 2=0,若a 是从区间[0,3]上任取的一个数, b 是从区间[0,2]上任取的一个数,求上述方程有实根的概率.[解题指导] 设事件A 为“方程x 2+2ax +b 2=0”有实根. 则Δ=4a 2-4b 2≥0,即a 2≥b 2. 又∵a ≥0,b ≥0. ∴a ≥b .试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},而构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },即如图所示的阴影部分.所以,P (A )=3×2-12×223×2=23.[多维探究]几何概型与其他知识的交汇问题,以其新颖性、综合性而渐成为命题者的一个重要着眼点,本题是以方程的根为依托考查了与面积有关的几何概型的求法,另外,几何概型还常与集合、解析几何等问题相交汇命题,出现在试卷中. [角度一] 几何概型与集合的交汇问题已知集合M ={}x ,y |x +y ≤8,x ≥0,y ≥0,N ={}x ,y |x -3y ≥0,x ≤6,y ≥0,若向区域M 随机投一点,则点P 落入区域N 的概率为( )A.13 B.12C.38D.316【解析】根据题设中的集合的意义,在平面直角坐标系中分别画出区域M 和N ,可分别计算区域M 和N 的面积,进而求解.将集合M 和N 所表示的区域在直角坐标系中画出,如图,则区域M 的面积S =12×8×8=32,区域N 的面积S ′=12×6×2=6,所以点P 落入区域N 的概率为P =632=316,故选D.【答案】D[角度二] 几何概型与解析几何的交汇问题已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)求圆C 的圆心到直线l 的距离.(2)求圆C 上任意一点A 到直线l 的距离小于2的概率. 解 (1)由点到直线l 的距离公式可得d =2542+32=5. (2)由(1)可知圆心到直线l 的距离为5,要使圆上点到直线的距离小于2,设与圆相交且与直线l 平行的直线为l 1,其方程为4x +3y =15.则符合题意的点应在l 1:4x +3y =15与圆相交所得劣弧上,由半径为23,圆心到直线l 1的距离为3可知劣弧所对圆心角为π3.故所求概率为P =π32π=16.[随堂即时演练]1.下列概率模型中,几何概型的个数为( )①从区间[-10,10]内任取出一个数,求取到1的概率;②从区间[-10,10]内任取出一个数,求取到绝对值不大于1的数的概率;③从区间[-10,10]内任取出一个整数,求取到大于1而小于2的数的概率;④向一个边长为4 cm 的正方形ABCD 内投一点P ,求点P 离中心不超过1 cm 的概率. A .1 B .2 C .3D .4【解析】①不是几何概型,虽然区间[-10,10]有无限多个点,但取到“1”只是一个数字,不能构成区域长度;②是几何概型,因为区间[-10,10]和[-1,1]上有无限多个数可取(满足无限性),且在这两个区间内每个数被取到的机会是相等的(满足等可能性);③不是几何概型,因为区间[-10,10]上的整数只有21个(是有限的),不满足无限性特征;④是几何概型,因为在边长为4 cm 的正方形和半径为1 cm 的圆内均有无数多个点,且这两个区域内的任何一个点都有相等可能被投到,故满足无限性和等可能性. 【答案】B2.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底长分别为a 3与a2,高为b .向该矩形内随机地投一点,则所投的点落在梯形内部的概率为( )A.112B.14C.512D.712【解析】S 矩形=ab ,S 梯形=12(13a +12a )b =512ab .故所投的点在梯形内部的概率为P =S 梯形S 矩形=512abab =512.【答案】C3.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________【解析】由于方程x 2+x +n =0(n ∈(0,1))有实根,∴Δ≥0,即1-4n ≥0,∴n ≤14,又n ∈(0,1),∴有实根的概率为P =141-0=14.【答案】144.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.【解析】大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A ,则事件A 构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P (A )=2400=0.005.【答案】0.0055.已知一只蚂蚁在边长为4的正三角形内爬行,求此蚂蚁到三角形三个顶点的距离均超过1的概率.解设正三角形ABC 的边长为4,其面积为4 3.分别以A ,B ,C 为圆心,1为半径在△ABC 中作扇形,除去三个扇形剩下的部分即表示蚂蚁距三角形三个顶点的距离均超过1的区域,其面积为43-3×12×π3×12=43-π2,故所求概率P =43-π243=1- 3 π24.。

高中数学优质教学设计3:3.3.1几何概型 教案

高中数学优质教学设计3:3.3.1几何概型 教案

3.3.1 几何概型(第1课时)一、教学目标:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力。

二、教学重点与难点:重点:1、几何概型概率计算公式及应用。

2、如何利用几何图形,把问题转化为几何概型问题。

难点:正确判断几何概型并求出概率。

三、学法与教学用具:1、通过对本节知识的探究与学习,感知用几何图形解决概率问题的方法,掌握数学建模的思想;2、教学用具:计算机及多媒体教学.四、教学基本流程:复习古典概型的概提出问题,引入课题五、教学情境设计:问题问题设计意图师生活动复习巩固谁能叙述古典概型的有关知识吗?复习上节课相关知识师:提出问题,引导学生回忆,对学生活动进行评价。

生:回忆、概括。

问题情境1.小红和小黄玩转盘游戏,猜想在四种情况下,小红获胜的概率是多少?2.在区间[0,1] 内随意说一个数,它大于0.5的概率是多大?让学生通过观察,猜想几何概型的特点及计算公式。

师:提出问题,引导学生思考、猜想,得出几何概型的概率计算公式。

生:观察、思考、猜想。

建构数学1.几何概型的概型、特点及概率公式2.你能说说几何概型与古典概型的区别吗?分析、比较,更加深对几何概型的理解。

师:引导学生比较两种概型的区别,明确几何概型要求的基本事件有无限多个,明确几何概型的计算公式。

生:思考,比较,理通过转盘游戏和数字游戏、猜想相应的概率几何概型的概念、特点、与古典概型的区别例题的教学,明确几何概型的计算步骤练习和小结解。

高中数学优质教学设计2:3.3.1几何概型 教案

高中数学优质教学设计2:3.3.1几何概型 教案

§3.3.1 几何概型教学内容:人教版《数学必修3》第三章第三节几何概型。

学情分析:学生学习了概率的含义以及古典概型的计算方式,对概率有了一定的了解,对概率的求法也有了一定的方法。

现在进行几何概型的学习,可以通过对比进行学习,通过分辨两种概型的区别与联系,可以达到学习几何概型的目的。

教学目标知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过游戏、案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

教学重点:初步体会几何概型,将求未知量的问题转化为几何概型求概率的问题教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域D和与事件A对应的区域d,并求出它们的测度。

教学过程:一、复习引入T1:计算随机事件概率的方法有哪些?T2:古典概型的特征是什么?T3:如何计算古典概型的概率?二、创设情景,引入新课1.玩转盘游戏游戏规则:甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜. 数据的统计:1)请每一位同学以左边的转盘,做20次试验,统计指针指向B 的次数,并计算指针指向B 的频率。

2)教师以右边的转盘,分别做100、200、400、700次试验,统计指针指向B 的次数,并计算指针指向B 的频率。

2.学生活动(分组讨论) 分析下列三个题目,回答问题:1)如图,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜. 求甲获胜的概率?2)射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典概型
(1)所有可能出现的基本事件只有有限个(有限性) (2)每个基本事件出现的可能性相等(等可能性)
我们将具有这两个特点的概率模型称为古典概率模型, 简称古典概型.
2.古典概型的概率公式
P(A)= A包含的基本事件的个数
基本事件的总数
复习题:在0至10中,任意取出一整数, 则该整数小于5的概率.
(1)、无限性:基本事件的个数无限
(2)、等可能性:基本事件出现的可能性相同
几何概型的概率公式:
P(A)= 构成事件A的测度 (区域长度、面积或体积) 试验的全部结果所构成的测度 (区域长度、面积或体积)
m A 记为: P A m
古典概型
几何概型
等可能性

等可能性
有限性

则把线段三等分,当剪断中间一段时,事件A发生
故由几何概型的知识可知,事件A发生的概率为:
m A 1 p( A) m 3
2.面积问题:如右下图所示的单位圆,假设你在每 个图形上随机撒一粒黄豆,分别计算它落到阴影 部分的概率.
解:由题意可得 设 “豆子落在第一个图形的阴影部分”为事件A, “豆子落在第二个图形的阴影部分”为事件B。 从而:基本事件的全体 对应的几何区域为面积为1的单位圆 事件A对应的几何区域为第一个图形的阴影部分面积1/2 事件B对应的几何区域为第二个图形的阴影部分面积3/8 故几何概型的知识可知,事件A、B发生的概率分别为:
m A 1 p( A) m 2
m B 3 p( B) m 8
3.体积问题:有一杯1升的水,其中含有1 个细菌,用一个小杯从这杯水中取出0.1 升,求小杯水中含有这个细菌的概率.
解:由题意可得 设 “取出的0.1升水中含有细菌”为事件A。 则:基本事件的全体 对应的几何区域为体积为1升的水 事件A对应的几何区域为体积为0.1升的水 故由几何概型的知识可知,事件A发生的概率为:
当堂检测:
1.在区间[1,3]上任取一数,则这个数大于1.5的概率为 ( D ) A.0.25 B.0.5 C.0.6 D.0.75
2.如图所示,边长为2的正方形中有一封闭曲线围成 的阴影区域,在正方形中随机撒一粒豆子,它落在阴 2 影区域内的概率为 , 则阴影区域的面积为 ( B )
3
A. 4 3
m A 1 p( A) m 10
提升训练:
1.某人午觉醒来,发现表停了,他打开收音 机,想听电台报时,求他等待的时间不多于 10分钟的概率。(电台整点报时)
解:设A={等待的时间不多于10分钟}, 事件A恰好是打开收音机的时刻位于[50,60] 内 因此由几何概型的求概率公式得: P(A)=(60-50)/60=1/6 “等待报时的时间不超过10分钟”的概率为1/6
(1)为古典概率模型, P(a 3 )=7/10 (2)为几何概率模型, P( PM 10) =1/6 是与长度有关的几何概型问题
基础训练: 1.长度问题:取一根长度为3m的绳子, 拉直后在任意位置剪断,那么剪得两段 的长度都不小于1m的概率有多大?
解:由题意可得 1m 1m
3m
设 “剪得两段绳长都不小于1m”为事件A。
问题1:在0至10中,任意取出一实数, 则该数小于5的概率. 问题2(转盘游戏):图中有两个转盘.甲乙两 人玩转盘游戏,规定当指针指向B区域时,甲获胜, 否则乙获胜.在两种情况下分别求甲获胜的概率 是多少?
定义:事件A理解为区域 的某一子区域A,A的概率 只与子区域A的几何度量(长度,面积,体积)成 正比,而与A的位置形状无关,满足以上条件的试 验称为几何概型. 特征:
无限性
A包含的基本事件的个数 p A 基本事件的总数
m A p A m
口答:
判断以下各题的是何种概率模型,并求相应概率 (1)在集合 A= {0,1,2,3,4,5,6,7,8,9} 元素 a ,则 a 3 的概率为 中任取一个
(2)已知点O(0,0),点M(60,0),在线段OM上任取一 点P ,则 PM 10 的概率为
B. 8 3
C.
2 3
D. 无法计算
3.在Rt△ABC中,∠A=30°,过直角顶点C作射线CM交 线段AB于M,求|AM|>|AC|的概率.
1/6
课堂小结
• 1.几何概型的特征:无限性、等可能性、可区域化 • 2.几何概型主要用于解决与测度有关的题目 m A P A m • 3.注意理解几何概型与古典概型的区别。 • 4.如何将实际问题转化为几何概型的问题,利用几 何概型公式求解。
相关文档
最新文档