外文翻译-分数阶导数
分数阶导数简介-徐杭
0
e t t 1dt 为 Gamma 函数 [2 ] 。
结合上面的 阶 Riemann-Liouville 分数阶积分的定义以及经典微积分中的整数阶微积 分
[13]
可以给出如下的 阶Riemann-Liouville分数阶微分的定义:
[1]
定义 2
设 f C 0, , 0 , m 是大于或等于 的最小正整数( m 1 ),记
导数的初步推广——分数阶导数的简介
08990217 徐 杭 数学与应用数学 综合理科 082 班 指导教师:张 翼 数理与信息工程学院
【摘 要】 分数阶导数已经在较多地方发挥重要作用。 本文首先阐述了分数阶导数的研究现 状, 然后通过对分数阶导数的几种不同定义, 进行分析与比较, 说明它们的一些联系。 并举 出了一些实际应用分数阶导数的例子。 【关键词】分数阶导数;Riemann-Liouville 定义;Grunwald-Letnikov 定义;Caputo 定义
1. 引言
分数阶导数,简单来讲就是对整数阶导数理论的拓展。例如,我们一般对某个性质较好 的可导函数,可以求出它的一阶导数、二阶导数、 ……、 n 阶导数。那么我们是否可以对 函数求分数阶导数呢?比如
1 导数。再如某个函数不满足求导条件,我们是否可以使用微 2
积分理论对这个函数进行分析性质的研究呢?根据多方文献的参考得知, 答案是肯定的, 这 也是分数阶导数产生的源动力。 早在 1695 年,Leibniz 给 L’Hospital 写了一封信,问:“整数阶导数的概念能否自然地推 广到非整数阶导数。 ” L’Hospital 对这个问题感到很新奇, 作为回信他反问了一个简单的问题: “如果求导的次数为
分数阶导数及其应用的开题报告
分数阶导数及其应用的开题报告一、选题背景与意义在微积分学中,我们学习了很多导数的概念和应用,但是常规的导数只考虑了整数阶的情况,对于非整数阶导数的情况,我们需要引入分数阶导数的概念。
分数阶导数也称为Caputo导数或Riemann-Liouville导数,其由分数阶积分的概念推广而来,具有广泛的应用价值。
分数阶导数理论最早起源于物理学和工程学领域,在非稳态的介质、多相流动、非线性传输以及金融领域等方面具有重要意义。
随着分数阶导数相关理论的不断完善和应用的逐渐扩展,分数阶微积分学已成为一个热门的研究领域。
因此,深入研究分数阶导数的理论,探究其性质和应用,对于推进分数阶微积分学的研究和应用都有重大的意义。
二、研究内容1.分数阶导数的概念和性质(1)分数阶导数的定义和公式(2)分数阶导数的基本性质(3)与整数阶导数的关系2.分数阶导数的应用(1)分数阶微分方程(2)分数阶偏微分方程(3)分数阶控制问题(4)分数阶信号处理(5)分数阶金融建模三、研究方法1.文献综述法通过查阅相关文献,了解当前分数阶导数理论的研究现状和发展趋势,为深入研究奠定基础。
2.分析方法通过对分数阶导数的定义、性质和应用进行分析、推导和证明等,深入探究其本质和规律。
3.数值方法利用数值计算方法,对分数阶导数的计算和应用进行模拟和验证,验证其理论结论的正确性和可行性。
四、预期成果通过对分数阶导数理论和应用的研究,得出如下结论:1.分数阶导数的概念和性质得到深入理解和掌握,能够运用相关知识解决实际问题。
2.探讨分数阶导数在微积分学中的应用,提高了对微积分学的认识和理解。
3.运用数值方法,验证分数阶导数的性质和应用,为分数阶导数的应用拓展提供数值验证。
五、可行性分析1.研究团队成员之间专业性强,研究方向互补,具备开展此项研究的资质。
2.研究所需设备和资料均能够满足需求,具备较好的研究条件。
3.该研究方向与当前科学热点密切相关,具有较高的应用价值和实际意义,得到了相关资助和支持。
分数阶导数简介-徐杭
3.4 三种分数阶导数定义的关系 Riemann-Liouville 定义是 Grunwald-Letnikov 定义的扩充,其应用范围也就更广泛。与 Grunwald-Letnikov 定义扩展到 Riemann-Liouville 定义的思维方式相似 , Caputo 定义也是对 Grunwald-Letnikov定义的另一种改进。对于函数 f ( x) 的正的非整数 阶导数,先进行 m 阶 导数, 再进行 m 阶积分。 Riemann-Liouville定义与Caputo定义都是对Grunwald-Letnikov定义的改进。在阶数 为 负实数和正整数时, 它们是等价的。由文献【15】分析可知,在条件:(1)函数 f ( x) 有 m 1 阶连续导数, m 至少取 [ ] n 1 。(2) f
[3]
、软物质研究、地震分析
[9 ]
[4]
、粘弹性阻尼器
[10][11]
[5 ~8]
、电力分形网络、分数阶正弦振荡器、
分形理论
、分数阶PID控制器设计
。但是由于分数阶微积分具有历史依赖性与全域
相关性,增加了分数阶导数方程的数值计算复杂性。 在数值算法方面主要存在的问题有: (1)长时间历程问题一直没有找到一个满意的解决 途径,在数值模拟中,随着时间历程的增加计算量成指数增长。同时一些学者提出的短期记 忆方法只对很少一些情况有效, 并不具有普适性。 因而长时间历程问题的解决任重道远。 (2) 在原有算法基础上开发出时间-空间混合的分数阶导数方程的算法和软件。 一种数学工具要 在工程中有广泛的应用, 那么就必须有成熟的算法与软件, 像有限元的计算模拟软件就有很 多,所以有限元才能在工程界有如 此广泛的应用。 (3)分数阶导数的定义还不完善,现在 分数阶导数的定义有多种,至今还没有一个完善到大多数学者能够接受的定义。 现阶段,分数阶导数方程的数值算法主要包括
分数阶Kuramoto——Sivashinsky方程的精确解
分数阶Kuramoto——Sivashinsky方程的精确解作者:冯忆颖来源:《科学与财富》2016年第03期摘要:本文,我们给出了关于时间的分数阶K-S方程的一个精确解。
这里的分数阶导数是在局部分数阶导数的意义下讨论的。
这种解对于物理学家解释相关物理现象具有重要意义。
关键词:Kuramoto-Sivashinsky(K-S)方程;局部分数阶导数;精确解1 引言考虑下面的分数阶Kuramoto——Sivashinsky(K-S)方程:(1)这里Du表示局部分数阶导数。
K-S方程有很强的物理背景,已有大量作者进行了研究([1、3、5])。
本文,我们在文献[1]研究的基础上,研究方程(1)的精确解. 这对于物理学家探讨物理现象具有重要意义。
2 预备知识最近,由于局部分数阶导数在描述物理现象方面的优势,已经吸引了大量研究者的注意[8]。
这里,我们仅给出局部分数阶导数的定义和它的链锁求导法则。
定义:函数f(x)在x0处的局部α阶导数D■■f(x)定义为[8]:这里,为著名的伽马函数。
这种导数具有下面简单的链锁求导法则:3 主要结果设,使用局部导数的链锁法则,将它们代入方程(1),我们可得:上面的方程可用tanh-sech[6]方法求解. 我们可求得:从而我们得到方程(1)的精确解:这里我们使用了这个奇函数性质。
4 结论本文,我们给出了关于时间的分数阶K-S方程的一个精确解. 这里的分数阶导数是在局部分数阶导数的意义下讨论的. 这种解对于物理学家解释相关物理现象具有重要意义。
参考文献[1]Sahoo S, Ray S S. New approach to find exact solutions of time-fractional Kuramoto-Sivashinsky equation[J]. Physica A Statistical Mechanics & Its Applications, 2015, 434:240-245.[2]A.H. Khater, R.S. Temsah, Numerical solutions of the generalized Kuramoto-Sivashinsky equation by Chebyshev spectral collocation methods, Comput.Math. Appl. 56(2008)1465-1472.[3]A.M. Wazwaz, New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations, Appl. Math. Comput. 182(2006)1642-1650.[4]M. Kurulay, A. Secer, M.A. Akinlar, A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method, Appl.Math. Inf. Sci. 7 (1)(2013) 267-271.[5]L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, second ed., Birkh?usher, Boston, USA, 2005.[6]J.D.M. Rademacher, R.W.Wattenberg, Viscous shocks in the destabilized Kuramoto-Sivashinsky equation, J. Comput. Nonlinear Dyn. 1(2006)336-347.[7]A.M. Wazwaz, The tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos Solitons Fractals 25(2005)55-63.2013(97)(2013)1-8.[8]G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl. 51(2006)1367-1376.[9]Li, X., Essex, C., and Davison, M., A Local Fractional Derivative,(2003),Pro-ceedings of the First Symposium on Fractional Derivatives and Their Applications,American Society of Mechanical Engineering, Sep 2-6, 2003.。
分数阶navier-stokes方程的研究历程
分数阶navier-stokes方程的研究历程1. 引言1.1 概述分数阶Navier-Stokes方程是描述不可压缩流体运动的重要数学模型之一,其研究在流体力学、工程领域以及自然科学中具有广泛应用。
本文旨在探讨分数阶Navier-Stokes方程的研究历程,从引入分数阶导数的概念到求解困难性的分析,以及该方程在流体力学中的应用案例等方面给予详细介绍。
1.2 文章结构本文内容按以下章节组织:引言、分数阶Navier-Stokes方程简介、分数阶导数在流体力学中的应用和发展历程、数值方法与算法研究进展、结论与展望。
首先介绍了本文的概述和文章结构,然后逐步深入探讨各个章节对应的内容。
1.3 目的本文旨在系统总结和归纳分数阶Navier-Stokes方程相关研究领域内的最新进展,并对未来研究工作进行展望。
通过本文的撰写,希望能够加深我们对于分数阶Navier-Stokes方程物理意义和求解方法的理解,同时为相关领域的学者和研究人员提供一个全面且有价值的参考资料。
分数阶Navier-Stokes方程的研究成果将为解决实际工程问题和深入理解自然界现象提供重要支持,并为未来更精确的数学模型构建奠定基础。
2. 分数阶Navier-Stokes方程简介2.1 Navier-Stokes方程概述和基本假设Navier-Stokes方程描述了流体的运动行为,它是流体力学领域中最重要的基本方程之一。
该方程由质量守恒方程和动量守恒方程组成。
其中,质量守恒方程描述了流体的连续性,而动量守恒方程描述了流体受到外力作用下的加速度变化。
Navier-Stokes方程在众多科学与工程领域中都有广泛应用,如空气动力学、气候模拟、水力学等。
基于分数阶导数的Navier-Stokes方程引起了研究人员们的兴趣。
与传统的整数阶导数不同,分数阶导数具有非局部和记忆性的特点。
这意味着分数阶导数能够捕捉更多复杂系统中长距离依赖关系,并且可以对时间历史进行全面性地建模。
分数阶论文外文翻译
分数阶系统所有镇定一阶控制器的计算1.Electrical电子工程系,伊诺努大学,44280土耳其马拉蒂亚,电子邮件:******************.tr2,化学工程,安纳马莱大学,Annamalainagar,印度泰米尔纳德邦608002电子邮件:*****************摘要:本文提出了一种有效的运用一阶控制器 C (s )=(x1s +x2)/(s +x3)解决一个给定但是任意的分数阶系统的镇定问题的方案。
这个问题是通过在控制器的参数空间[X1,X2,X3]中运用D-分解技术确定全局镇定性区域来解决的。
推导出解析表达式的目的是为了获得这个区域的镇定边界,其描述为实根边界,无穷根边界和复根边界。
从而,获得镇定一阶控制器参数的完整集合。
通过几个例子显示该算法有一个简单而可靠的结果,因此在分数阶控制系统的分析与设计上这个算法是非常实用的。
关键词:镇定,分数阶系统,一阶控制器1引言众所周知,大多数的工业控制系统是低阶和固定结构的控制器的形式,如PI,PID和一阶超前/滞后控制器[1]。
在过去的半个世纪中,大量的学术界和工业界的努力都集中在这些类型控制器的设计上,主要是在调整规则,辨识方案,镇定方法等领域。
在镇定的领域, Ho等人[2]基于Hermite-Biehler定理广义版本的著作出版之后,近年报道了许多线性时不变系统反馈镇定方面的重要成果。
在Silva 等人的著作[3]中,Ho等人著作中[2 ]的结果已被用于计算一个给定系统所有镇定P,PI,PID和一阶控制器的集合。
然而,在指数阶系统中这种方法的计算过程的难度会增大,这是该方法的一个缺点。
Soylemez 等人[4]给出了一种运用Nyquist图的可替代的快速方法,和Hermite-Biehler定理相比较,这种方法只需要较少的计算。
Ackermann 和 Kaesbauer[5]也提出了奇异频率概念的参数空间法,然而,这些方法中考虑到的镇定问题可以完全处理好通过整数阶微分方程来描述动态特性的系统。
分数阶微分方程的数值解法
Fractional partial differential equations
Mathematics problem
• Existence ( Fractional sobolev space)
• uniqueness
• Regularity ( Not available yet)
Numerical methods
Part 2: Fractional partial differential equations
Normal Diffusion: Some particles are dissolved in a glass of water. Brownian motion: a big particle collides with a large set of smaller particles which move with different velocities in different random directions
Viscosity (粘性)
Viscous stress (粘性 力)is proportional to the strain rate (形变 率)
Strain rate (形变率) = the time derivative of the strain (形变的时间导数) =gradient of the velocity of the material (速度的导数)
Elastic (弹性) Viscous (粘性)
பைடு நூலகம்
What is stress (应力的定义)
The stress across a surface element (yellow disk) is the force that the material on one side (top ball) exerts on the material on the other side (bottom ball), divided by the area of the surface
毕业论文外文文献翻译A-Child’s-Garden-of-Fractional-Derivatives分数阶导数
毕业设计(论文)外文文献翻译文献、资料中文题目:分数阶导数的儿童乐园文献、资料英文题目:A Child’s Garden of Fractional Derivatives 文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14译文:分数阶导数的儿童乐园Marcia Kleinz , Thomas J. Osler大学数学学报(美国),2000年3月,31卷,第2期,第82-88 页1引言我们都熟悉的导数的定义。
通常记作1()()df x D f x dx 或 222()()d f x D f x dx 或这些都是很容易理解的。
我们同样也熟悉一些有关导数的性质,例如[()()]()()D f x f y Df x Df y +=+但是像这样的记号1/21/21/2()D ()d f x f x dx 或者又代表什么意思呢?大多数的读者之前肯定没有遇到过导数的阶数是1/2的。
因为几乎没有任何教科书会提到它。
然而,这个概念早在18世纪,Leibnitz 已经开始探讨。
在之后的岁月里,包括L’Hospital, Euler,Lagrange, Laplace, Riemann, Fourier, Liouville 等数学大家和其他一些数学家也出现过或者研究过的概念。
现在,关于“分数微积分”的文献已经大量存在。
近期关于“分数微积分”的两本研究生教材也出版了,就是参考文献[9]和[11]。
此外,两篇在会议上发表的论文[7]和[14]也被收录。
Wheeler 在文献[15]已编制了一些可读性较强,较易理解的资料,虽然这些都还没有正式出版。
本论文的目的是想用一种亲和的口吻去介绍分数阶微积分。
而不是像平常教科书里面的从定义-引理-定理的方法介绍它。
我们寻找了一个新的想法去介绍分数阶导数。
首先我们从熟悉的n 阶导数的例子开始,比如D n axn ax ea e =。
高等数学(微积分学)专业术语名词、概念、定理等英汉对照.
目录第一部分英汉微积分词汇Part 1 English-Chinese Calculus Vocabulary第一章函数与极限Chapter 1 function and Limit (1)第二章导数与微分Chapter 2 Derivative and Differential (2)第三章微分中值定理Chapter 3 Mean Value theorem of differentials and theApplicati on of Derivatives (3)第四章不定积分Chapter 4 Indefinite Intergrals (3)第五章定积分Chapter 5 Definite Integral (3)第六章定积分的应用Chapter 6 Application of the Definite Integrals (4)第七章空间解析几何与向量代数Chapter 7 Space Ana lytic Geomertry and Vector Algebra (4)第八章多元函数微分法及其应用Chapter 8 Differentiation of functions Several variablesand Its Application (5)第九章重积分Multiple Integrals (6)第十章曲线积分与曲面积分Chapter 10 Line(Curve ) Integrals and Sur face Integrals……………………6 第十一章无穷级数Chapter 11 Infinite Series……………………………………………………6 第十二章微分方程Chapter 12 Differential Equation (7)第二部分定理定义公式的英文表达 Part 2 English Expression for Theorem, Definition and Formula第一章函数与极限Chapter 1 Function and L imit (19)1.1 映射与函数(Mapping and Function ) (19)1.2 数列的极限(Limit of the Sequence of Number) (20)1.3 函数的极限(Limit of Function) (21)1.4 无穷小与无穷大(Infinitesimal and Inifinity) (23)1.5 极限运算法则(Operation Rule of L imit) (24)1.6 极限存在准则两个重要的极限(Rule for theExistence of Limits Two Important Limits) (25)1.7 无穷小的比较(The Comparison of infinitesimal) (26)1.8 函数的连续性与间断点(Continuity of FunctionAnd Discontinuity Points) (28)1.9 连续函数的运酸与初等函数的连续性(OperationOf Continuous Functions and Continuity ofElementary Functions) (28)1.10 闭区间上联系汗水的性质(Properties ofContinuous Functions on a Closed Interval) (30)第二章导数与数分Chapter2 Derivative and Differential (31)2.1 导数的概念(The Concept of Derivative) (31)2.2 函数的求导法则(Rules for Finding Derivatives) (33)2.3 高阶导数(Higher-order Derivatives) (34)2.4 隐函数及由参数方程所确定的函数的导数相关变化率(Derivatives of Implicit Functions and Functions Determined by Parametric Equation and Correlative Change Rate) (34)2.5 函数的微分(Differential of a Function) (35)第三章微分中值定理与导数的应用Chapter 3 Mean Value Theorem of Differentials and theApplication of Derivatives (36)3.1 微分中值定理(The Mean Value Theorem) (36)3.2 洛必达法则(L’Hopital’s Rule) (38)3.3 泰勒公式(Taylor’s Formula) (41)3.4 函数的单调性和曲线的凹凸性(Monotonicityof Functions and Concavity of Curves) (43)3.5 函数的极值与最大最小值(Extrema, Maximaand Minima of Functions) (46)3.6 函数图形的描绘(Graphing Functions) (49)3.7 曲率(Curvature) (50)3.8 方程的近似解(Solving Equation Numerically) (53)第四章不定积分Chapter 4 Indefinite Integrals (54)4.1 不定积分的概念与性质(The Concept andProperties of Indefinite Integrals) (54)4.2 换元积分法(Substitution Rule for Indefinite Integrals) (56)4.3 分部积分法(Integration by Parts) (57)4.4 有理函数的积分(Integration of Rational Functions) (58)第五章定积分Chapter 5 Definite Integrals (61)5.1 定积分的概念和性质(Concept of Definite Integraland its Properties) (61)5.2 微积分基本定理(Fundamental Theorem of Calculus) (67)5.3 定积分的换元法和分部积分法(Integration by Substitution andDefinite Integrals by Parts) (69)5.4 反常积分(Improper Integrals) (70)第六章定积分的应用Chapter 6 Applications of the Definite Integrals (75)6.1 定积分的元素法(The Element Method of Definite Integra (75)6.2 定积分在几何学上的应用(Applications of the DefiniteIntegrals to Geometry) (76)6.3 定积分在物理学上的应用(Applications of the DefiniteIntegrals to Physics) (79)第七章空间解析几何与向量代数Chapter 7 Space Analytic Geometry and Vector Algebar (80)7.1 向量及其线性运算(Vector and Its Linear Operation) (80)7.2 数量积向量积(Dot Produc t and Cross Product) (86)7.3 曲面及其方程(Surface and Its Equation) (89)7.4 空间曲线及其方程(The Curve in Three-space and Its Equation (91)7.5 平面及其方程(Plane in Space and Its Equation) (93)7.6 空间直线及其方程(Lines in and Their Equations) (95)第八章多元函数微分法及其应用Chapter 8 Differentiation of Functions of SeveralVariables and Its Application (99)8.1 多元函数的基本概念(The Basic Concepts of Functionsof Several Variables) (99)8.2 偏导数(Partial Derivative) (102)8.3 全微分(Total Differential) (103)8.4 链式法则(The Chain Rule) (104)8.5 隐函数的求导公式(Derivative Formula for Implicit Functions). (104)8.6 多元函数微分学的几何应用(Geometric Applications of Differentiationof Ffunctions of Severalvariables) (106)8.7方向导数与梯度(Directional Derivatives and Gradients) (107)8.8多元函数的极值(Extreme Value of Functions of Several Variables) (108)第九章重积分Chapter 9 Multiple Integrals (111)9.1二重积分的概念与性质(The Concept of Double Integralsand Its Properities) (111)9.2二重积分的计算法(Evaluation of double Integrals) (114)9.3三重积分(Triple Integrals) (115)9.4重积分的应用(Applications of Multiple Itegrals) (120)第十章曲线积分与曲面积分Chapte 10 Line Integrals and Surface Integrals………………………………121 10.1 对弧长的曲线积分(line Intergrals with Respect to Arc Length) ………121 10.2 对坐标的曲线积分(Line Integrals with respect toCoordinate Variables) ……………………………………………………123 10.3 格林公式及其应用(Green's Formula and Its Applications) ………………124 10.4 对面积的曲面积分(Surface Integrals with Respect to Aarea) ……………126 10.5 对坐标的曲面积分(Surface Integrals with Respect toCoordinate Variables) ………………………………………………………128 10.6 高斯公式通量与散度(Gauss's Formula Flux and Divirgence) …… 130 10.7 斯托克斯公式环流量与旋度(Stokes's Formula Circulationand Rotation) (131)第十一章无穷级数Chapter 11 Infinite Series (133)11.1 常数项级数的概念与性质(The concept and Properties ofThe Constant series) ………………………………………………………133 11.2 常数项级数的审敛法(Test for Convergence of the Constant Series) ……137 11.3 幂级数(powe r Series). ……………………………………………………143 11.4 函数展开成幂级数(Represent the Function as Power Series) ……………148 11.5 函数的幂级数展开式的应用(the Appliacation of the Power Seriesrepresentation of a Function) (148)11.6 函数项级数的一致收敛性及一致收敛级数的基本性质(The Unanimous Convergence of the Ser ies of Functions and Its properties) (149)11.7 傅立叶级数(Fourier Series).............................................152 11.8 一般周期函数的傅立叶级数(Fourier Series of Periodic Functions) (153)第十二章微分方程Chapter 12 Differential Equation……………………………………………155 12.1 微分方程的基本概念(The Concept of DifferentialEqu ation) ……155 12.2 可分离变量的微分方程(Separable Differential Equation) ………156 12.3 齐次方程(Homogeneous Equation) ………………………………156 12.4 一次线性微分方程(Linear Differential Equation of theFirst Order) (157)12.5 全微分方程(Total Differential Equation) …………………………158 12.6 可降阶的高阶微分方程(Higher-order DifferentialEquation Turned to Lower-order DifferentialEquation) (159)12.7 高阶线性微分方程(Linear Differential Equation of Higher Order) …159 12.8 常系数齐次线性微分方程(Homogeneous LinearDifferential Equation with Constant Coefficient) (163)12.9 常系数非齐次线性微分方程(Non HomogeneousDifferential Equation with Constant Coefficient) (164)12.10 欧拉方程(Euler Equation) …………………………………………164 12.11 微分方程的幂级数解法(Power Series Solutionto Differential Equation) (164)第三部分常用数学符号的英文表达Part 3 English Expression of the Mathematical Symbol in Common Use第一部分英汉微积分词汇Part1 English-Chinese Calculus Vocabulary映射 mappingX到Y的映射 mapping of X ontoY 满射 surjection 单射 injection一一映射 one-to-one mapping 双射 bijection 算子 operator变化 transformation 函数 function逆映射 inverse mapping复合映射 composite mapping 自变量 independent variable 因变量 dependent variable 定义域 domain函数值 value of function 函数关系 function relation 值域 range自然定义域 natural domain 单值函数 single valued function 多值函数 multiple valued function 单值分支 one-valued branch 函数图形 graph of a function 绝对值函数 absolute value 符号函数 sigh function 整数部分 integral part 阶梯曲线 step curve 第一章函数与极限Chapter1 Function and Limit 集合 set元素 element 子集 subset 空集 empty set 并集 union交集 intersection 差集 difference of set 基本集 basic set补集 complement set 直积 direct product笛卡儿积 Cartesian product 开区间 open interval 闭区间 closed interval 半开区间half open interval 有限区间 finite interval区间的长度 length of an interval 无限区间 infinite interval 领域 neighborhood领域的中心 centre of a neighborhood 领域的半径 radius of a neighborhood 左领域left neighborhood 右领域 right neighborhood当且仅当 if and only if(iff) 分段函数 piecewise function 上界 upper bound 下界lower bound 有界 boundedness 无界 unbounded函数的单调性 monotonicity of a function 单调增加的 increasing 单调减少的decreasing单调函数 monotone function函数的奇偶性 parity(odevity) of a function对称 symmetry 偶函数 even function 奇函数 odd function函数的周期性 periodicity of a function 周期 period反函数 inverse function 直接函数 direct function 复合函数 composite function 中间变量 intermediate variable 函数的运算 operation of function基本初等函数 basic elementary function 初等函数 elementary function 幂函数 power function指数函数 exponential function 对数函数 logarithmic function 三角函数 trigonometric function反三角函数 inverse trigonometric function 常数函数 constant function 双曲函数hyperbolic function 双曲正弦 hyperbolic sine 双曲余弦 hyperbolic cosine 双曲正切hyperbolic tangent反双曲正弦 inverse hyperbolic sine 反双曲余弦 inverse hyperbolic cosine 反双曲正切 inverse hyperbolic tangent 极限 limit数列 sequence of number 收敛 convergence 收敛于 a converge to a 发散 divergent极限的唯一性 uniqueness of limits收敛数列的有界性 boundedness of aconvergent sequence子列 subsequence函数的极限 limits of functions函数f(x)当x趋于x0时的极限 limit of functions f(x) as x approaches x0 左极限 left limit 右极限 right limit单侧极限 one-sided limits水平渐近线 horizontal asymptote 无穷小 infinitesimal 无穷大 infinity铅直渐近线 vertical asymptote 夹逼准则 squeeze rule单调数列 monotonic sequence高阶无穷小 infinitesimal of higher order 低阶无穷小 infinitesimal of lower order 同阶无穷小 infinitesimal of the same order 等阶无穷小 equivalent infinitesimal 函数的连续性 continuity of a function 增量 increment函数f(x)在x0连续 the function f(x) is continuous at x0左连续 left continuous 右连续 right continuous区间上的连续函数 continuous function 函数f(x)在该区间上连续 function f(x) is continuous on an interval 不连续点 discontinuity point第一类间断点 discontinuity point of the first kind第二类间断点 discontinuity point of the second kind初等函数的连续性 continuity of the elementary functions定义区间 defined interval最大值 global maximum value (absolute maximum)最小值 global minimum value (absolute minimum)零点定理 the zero point theorem介值定理 intermediate value theorem 第二章导数与微分Chapter2 Derivative and Differential 速度 velocity匀速运动 uniform motion 平均速度 average velocity瞬时速度 instantaneous velocity 圆的切线 tangent line of a circle 切线 tangent line切线的斜率 slope of the tangent line 位置函数 position function 导数 derivative 可导derivable函数的变化率问题 problem of the change rate of a function导函数 derived function 左导数 left-hand derivative 右导数 right-hand derivative 单侧导数 one-sided derivativesf(x)在闭区间【a,b】上可导 f(x)isderivable on the closed interval [a,b] 切线方程 tangent equation 角速度 angular velocity 成本函数 cost function 边际成本 marginal cost 链式法则 chain rule隐函数 implicit function 显函数 explicit function 二阶函数 second derivative 三阶导数 third derivative 高阶导数 nth derivative莱布尼茨公式 Leibniz formula 对数求导法 log- derivative 参数方程 parametric equation 相关变化率 correlative change rata 微分 differential 可微的 differentiable 函数的微分 differential of function自变量的微分 differential of independent variable微商 differential quotient间接测量误差 indirect measurement error 绝对误差 absolute error相对误差 relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives 罗马定理Rolle’s theorem 费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点 stationary point 稳定点 stable point 临界点 critical point辅助函数 auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem洛必达法则L’Hospital’s Rule0/0型不定式 indeterminate form of type 0/0不定式 indeterminate form泰勒中值定理Taylor’s mean value theorem泰勒公式 Taylor formula 余项 remainder term拉格朗日余项 Lagrange remainder term 麦克劳林公式Maclaurin’s formula 佩亚诺公式 Peano remainder term 凹凸性 concavity凹向上的 concave upward, cancave up 凹向下的,向上凸的concave downward’ concave down拐点 inflection point函数的极值 extremum of function 极大值 local(relative) maximum 最大值global(absolute) mximum 极小值 local(relative) minimum 最小值 global(absolute) minimum 目标函数 objective function 曲率 curvature弧微分 arc differential平均曲率 average curvature 曲率园 circle of curvature 曲率中心 center of curvature 曲率半径 radius of curvature渐屈线 evolute 渐伸线 involute根的隔离 isolation of root 隔离区间 isolation interval 切线法 tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数 primitive function(antiderivative) 积分号 sign of integration 被积函数integrand积分变量 integral variable 积分曲线 integral curve 积分表 table of integrals换元积分法 integration by substitution 分部积分法 integration by parts分部积分公式 formula of integration by parts有理函数 rational function 真分式 proper fraction 假分式 improper fraction第五章定积分Chapter5 Definite Integrals 曲边梯形 trapezoid with 曲边 curve edge窄矩形 narrow rectangle曲边梯形的面积 area of trapezoid with curved edge积分下限 lower limit of integral 积分上限 upper limit of integral 积分区间 integral interval 分割 partition积分和 integral sum 可积 integrable矩形法 rectangle method积分中值定理 mean value theorem of integrals函数在区间上的平均值 average value of a function on an integvals牛顿-莱布尼茨公式 Newton-Leibniz formula微积分基本公式 fundamental formula of calculus换元公式 formula for integration by substitution递推公式 recurrence formula 反常积分 improper integral反常积分发散 the improper integral is divergent反常积分收敛 the improper integral is convergent无穷限的反常积分 improper integral on an infinite interval无界函数的反常积分 improper integral of unbounded functions绝对收敛 absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法 the element method 面积元素 element of area平面图形的面积 area of a luane figure 直角坐标又称“笛卡儿坐标 (Cartesian coordinates)”极坐标 polar coordinates 抛物线 parabola 椭圆 ellipse旋转体的面积 volume of a solid of rotation旋转椭球体 ellipsoid of revolution, ellipsoid of rotation曲线的弧长 arc length of acurve 可求长的 rectifiable 光滑 smooth 功 work水压力 water pressure 引力 gravitation 变力 variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量 vector自由向量 free vector 单位向量 unit vector 零向量 zero vector 相等 equal 平行parallel向量的线性运算 linear poeration of vector 三角法则 triangle rule平行四边形法则 parallelogram rule 交换律 commutative law 结合律 associative law 负向量 negative vector 差 difference分配律 distributive law空间直角坐标系 space rectangular coordinates坐标面 coordinate plane 卦限 octant向量的模 modulus of vector向量a与b的夹角 angle between vector a and b方向余弦 direction cosine 方向角 direction angle向量在轴上的投影 projection of a vector onto an axis数量积,外积,叉积 scalar product,dot product,inner product曲面方程 equation for a surface 球面 sphere旋转曲面 surface of revolution 母线 generating line 轴 axis圆锥面 cone 顶点 vertex旋转单叶双曲面 revolution hyperboloids of one sheet旋转双叶双曲面 revolution hyperboloids of two sheets柱面 cylindrical surface ,cylinder 圆柱面 cylindrical surface 准线 directrix抛物柱面 parabolic cylinder 二次曲面 quadric surface 椭圆锥面 dlliptic cone 椭球面ellipsoid单叶双曲面 hyperboloid of one sheet 双叶双曲面 hyperboloid of two sheets 旋转椭球面 ellipsoid of revolution 椭圆抛物面 elliptic paraboloid旋转抛物面 paraboloid of revolution 双曲抛物面 hyperbolic paraboloid 马鞍面 saddle surface椭圆柱面 elliptic cylinder 双曲柱面 hyperbolic cylinder 抛物柱面 parabolic cylinder 空间曲线 space curve空间曲线的一般方程 general form equations of a space curve空间曲线的参数方程 parametric equations of a space curve 螺转线 spiral 螺矩 pitch 投影柱面 projecting cylinder 投影 projection平面的点法式方程 pointnorm form eqyation of a plane法向量 normal vector平面的一般方程 general form equation of a plane两平面的夹角 angle between two planes 点到平面的距离 distance from a point to a plane空间直线的一般方程 general equation of a line in space方向向量 direction vector直线的点向式方程 pointdirection form equations of a line方向数 direction number直线的参数方程 parametric equations of a line两直线的夹角 angle between two lines 垂直 perpendicular直线与平面的夹角 angle between a line and a planes平面束 pencil of planes平面束的方程 equation of a pencil of planes行列式 determinant系数行列式 coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application 一元函数 function of one variable 多元函数 function of several variables 内点 interior point 外点 exterior point 边界点 frontier point,boundary point 聚点 point of accumulation 开集 openset 闭集 closed set 连通集 connected set 开区域 open region 闭区域 closed region有界集 bounded set 无界集 unbounded setn维空间 n-dimentional space 二重极限 double limit 多元函数的连续性 continuity of function of seveal 连续函数 continuous function 不连续点 discontinuity point 一致连续 uniformly continuous 偏导数 partial derivative 对自变量x的偏导数 partial derivative with respect to independent variable x 高阶偏导数 partial derivative of higher order 二阶偏导数 second order partial derivative 混合偏导数 hybrid partial derivative 全微分 total differential 偏增量 oartial increment 偏微分 partial differential 全增量 total increment 可微分 differentiable 必要条件 necessary condition充分条件 sufficient condition 叠加原理 superpostition principle 全导数 total derivative中间变量 intermediate variable 隐函数存在定理 theorem of the existence of implicit function 曲线的切向量 tangent vector of a curve 法平面 normal plane 向量方程vector equation 向量值函数 vector-valued function 切平面 tangent plane 法线 normal line 方向导数 directional derivative梯度 gradient数量场 scalar field 梯度场 gradient field 向量场 vector field 势场 potential field 引力场 gravitational field 引力势 gravitational potential 曲面在一点的切平面 tangent plane to asurface at a point 曲线在一点的法线 normal line to asurface at a point 无条件极值 unconditional extreme values 条件极值 conditional extreme values 拉格朗日乘数法 Lagrange multiplier method 拉格朗日乘子 Lagrange multiplier 经验公式 empirical formula 最小二乘法 method of least squares 均方误差mean square error 第九章重积分 Chapter9 Multiple Integrals 二重积分 double integral 可加性 additivity累次积分 iterated integral 体积元素 volume element 三重积分 triple integral 直角坐标系中的体积元素 volumeelement in rectangular coordinate system 柱面坐标 cylindrical coordinates 柱面坐标系中的体积元素 volumeelement in cylindrical coordinate system 球面坐标 spherical coordinates 球面坐标系中的体积元素 volumeelement in spherical coordinate system 反常二重积分 improper double integral 曲面的面积 area of a surface 质心 centre of mass 静矩 static moment 密度 density 形心centroid 转动惯量 moment of inertia 参变量 parametric variable 第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分 line integrals with respect to arc hength第一类曲线积分 line integrals of the first type对坐标的曲线积分 line integrals with respect to x,y,and z第二类曲线积分 line integrals of the second type有向曲线弧 directed arc单连通区域 simple connected region 复连通区域 complex connected region 格林公式Green formula第一类曲面积分 surface integrals of the first type对面的曲面积分 surface integrals with respect to area有向曲面 directed surface对坐标的曲面积分 surface integrals with respect to coordinate elements第二类曲面积分 surface integrals of the second type有向曲面元 element of directed surface 高斯公式 gauss formula拉普拉斯算子 Laplace operator 格林第一公式Green’s first formula 通量 flux散度 divergence斯托克斯公式 Stokes formula 环流量 circulation 旋度 rotation,curl第十一章无穷级数Chapter11 Infinite Series 一般项 general term 部分和 partial sum 余项 remainder term 等比级数 geometric series 几何级数 geometric series 公比 common ratio调和级数 harmonic series柯西收敛准则 Cauchy convergence criteria, Cauchy criteria for convergence 正项级数series of positive terms 达朗贝尔判别法D’Alembert test 柯西判别法 Cauchy test交错级数 alternating series 绝对收敛 absolutely convergent 条件收敛 conditionally convergent 柯西乘积 Cauchy product 函数项级数 series of functions 发散点 point of divergence 收敛点 point of convergence 收敛域 convergence domain 和函数 sum function 幂级数 power series幂级数的系数 coeffcients of power series 阿贝尔定理 Abel Theorem收敛半径 radius of convergence 收敛区间 interval of convergence 泰勒级数 Taylor series麦克劳林级数 Maclaurin series 二项展开式 binomial expansion 近似计算approximate calculation舍入误差 round-off error,rounding error 欧拉公式Euler’s formula魏尔斯特拉丝判别法 Weierstrass test 三角级数 trigonometric series 振幅 amplitude 角频率 angular frequency 初相 initial phase 矩形波 square wave谐波分析 harmonic analysis 直流分量 direct component 基波 fundamental wave 二次谐波 second harmonic三角函数系 trigonometric function system 傅立叶系数 Fourier coefficient 傅立叶级数 Forrier series 周期延拓 periodic prolongation 正弦级数 sine series 余弦级数cosine series 奇延拓 odd prolongation 偶延拓 even prolongation傅立叶级数的复数形式 complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程 solve a dirrerential equation 常微分方程 ordinary differential equation偏微分方程 partial differential equation,PDE微分方程的阶 order of a differential equation微分方程的解 solution of a differential equation微分方程的通解 general solution of a differential equation初始条件 initial condition微分方程的特解 particular solution of a differential equation初值问题 initial value problem微分方程的积分曲线 integral curve of a differential equation可分离变量的微分方程 variable separable differential equation隐式解 implicit solution隐式通解 inplicit general solution 衰变系数 decay coefficient 衰变 decay齐次方程 homogeneous equation一阶线性方程 linear differential equation of first order非齐次 non-homogeneous齐次线性方程 homogeneous linear equation非齐次线性方程 non-homogeneous linear equation常数变易法 method of variation of constant暂态电流 transient stata current 稳态电流 steady state current 伯努利方程 Bernoulli equation全微分方程 total differential equation 积分因子 integrating factor高阶微分方程 differential equation of higher order悬链线 catenary高阶线性微分方程 linera differentialequation of higher order自由振动的微分方程 differential equation of free vibration强迫振动的微分方程 differential equation of forced oscillation串联电路的振荡方程 oscillation equation of series circuit二阶线性微分方程 second order linera differential equation线性相关 linearly dependence 线性无关 linearly independce二阶常系数齐次线性微分方程 second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程 second order homogeneous linear differential equation with variable coefficient 特征方程 characteristic equation无阻尼自由振动的微分方程 differential equation of free vibration with zero damping 固有频率 natural frequency简谐振动 simple harmonic oscillation,simple harmonic vibration微分算子 differential operator待定系数法 method of undetermined coefficient共振现象 resonance phenomenon 欧拉方程 Euler equation幂级数解法 power series solution 数值解法 numerial solution 勒让德方程 Legendre equation微分方程组 system of differential equations常系数线性微分方程组 system of linera differential equations with constant coefficient第二部分定理定义公式的英文表达Part2 English Expression for Theorem, Definition and Formula第一章函数与极限Chapter 1 Function and Limit1.1 映射与函数 (Mapping and Function)一、集合 (Set)二、映射 (Mapping)映射概念 (The Concept of Mapping) 设X, Y是两个非空集合 , 如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应 ,则称f为从X到 Y的映射 , 记作f:X→Y。
空间分数阶laplace算子
空间分数阶Laplace算子一、介绍Laplace算子是微分方程中经常使用的一个算子,用于描述函数的二阶导数。
然而,在实际应用中,几乎所有的问题都涉及到空间的分数阶导数,而不仅仅是二阶导数。
因此,出现了空间分数阶Laplace算子的概念。
二、空间分数阶导数空间分数阶导数是对函数在空间中的导数进行了泛化处理,包括了整数阶导数和分数阶导数。
整数阶导数是我们熟知的导数概念,而分数阶导数则对应了非整数次导数。
分数阶导数具有更广泛的应用场景,能够更好地刻画实际问题的行为特征。
三、Laplace算子Laplace算子(∇²)是二阶导数算子的空间形式,用于描述函数在空间中的曲率和变化率。
在传统的Laplace算子中,阶数固定为2,表示求取二阶导数。
然而,对于空间分数阶导数的推广,我们可以将Laplace算子的阶数扩展为非整数,形成空间分数阶Laplace算子。
四、空间分数阶Laplace算子的定义空间分数阶Laplace算子的定义如下:其中,γ为分数阶指数,Γ(⋅)为伽马函数。
五、分数阶Laplace算子的计算方法要计算分数阶Laplace算子,可以通过傅里叶变换的方法进行求解。
具体的计算步骤如下: 1. 对函数f(x)进行傅里叶变换,得到F(ω)。
2. 将F(ω)乘以(2πiω)γ,其中γ为分数阶指数。
3. 对结果进行反傅里叶变换,得到分数阶Laplace算子所对应的函数。
六、空间分数阶Laplace算子的应用空间分数阶Laplace算子具有广泛的应用,以下是一些常见的应用领域:1. 图像处理通过空间分数阶Laplace算子,可以更好地进行图像边缘检测、纹理分析、图像增强等处理。
分数阶导数可以更好地捕捉图像的细节,并提供更多的信息。
2. 信号处理在信号处理领域,空间分数阶Laplace算子可以用于信号的去噪、频谱分析、信号恢复等。
与整数阶导数相比,分数阶导数可以更好地描述非线性系统的行为特征。
与Hermite算子相关的分数阶Carleson测度
与Hermite算子相关的分数阶Carleson测度分数阶Carleson测度是一种用于研究分数阶导数的测度。
而Hermite算子是一种用于描述分数阶导数的算子。
本文将讨论的性质和应用。
首先,我们来介绍一下Hermite算子。
Hermite算子是一类特殊的微分算子,它可以用来表示分数阶导数。
在数学和物理学中,分数阶导数是一种介于整数阶导数和常微分方程之间的导数形式。
Hermite算子可以通过傅里叶变换来定义,并且具有一些特殊的性质,如内积性质和微分性质。
通过研究Hermite算子,我们可以更好地理解和应用分数阶导数。
然后,我们来介绍一下Carleson测度。
Carleson测度是一种用于描述函数的局部振幅和局部平均性质的测度。
在分析学中,Carleson测度是一个重要的工具,被广泛用于研究函数的正则性和奇点结构。
分数阶Carleson测度则是一种将分数阶导数引入Carleson测度中的扩展。
通过引入分数阶导数,我们可以获得更多关于函数的信息,从而更精确地描述函数的振幅和平均性质。
最后,我们来讨论与Hermite算子相关的分数阶Carleson测度的性质和应用。
首先,分数阶Carleson测度可以用于描述函数的分数阶导数的局部振幅和局部平均性质。
通过研究分数阶Carleson测度,我们可以获得关于函数的更多信息,从而更好地理解和应用分数阶导数。
其次,分数阶Carleson测度还可以用于研究分数阶微分方程的解的正则性和奇点结构。
通过研究分数阶Carleson测度,我们可以获得关于分数阶微分方程解的更深入的理解和应用。
综上所述,与Hermite算子相关的分数阶Carleson测度是一种用于研究分数阶导数的测度。
通过引入分数阶导数,我们可以获得更多关于函数的信息,从而更好地理解和应用分数阶导数。
分数阶Carleson测度可以用于描述函数的分数阶导数的局部振幅和局部平均性质,并且可以用于研究分数阶微分方程解的正则性和奇点结构。
分数阶 klein-gordon 方 程
分数阶 klein-gordon 方程分数阶Klein-Gordon方程是经典场论中重要的方程之一,描述了一个零自旋、质量m的粒子的行为。
与标准的Klein-Gordon方程不同,分数阶Klein-Gordon方程引入了分数阶导数来描述粒子的运动特征。
本文将介绍分数阶导数和分数阶Klein-Gordon方程的基本概念和数学表达式。
首先,我们来了解一下分数阶导数。
在标准的微积分中,导数描述了函数在某一点上的变化率。
一阶导数代表了变化率的速度,二阶导数代表了变化率的加速度。
然而,在某些实际情况下,物理过程的变化可能不仅仅服从整数阶的导数,而是服从分数阶的导数。
分数阶导数可以用极限定义和积分定义来描述。
在极限定义中,分数阶导数是函数的分数阶差分的极限。
在积分定义中,分数阶导数是函数的分数阶积分的反函数。
在分数阶Klein-Gordon方程中,我们引入了分数阶导数来描述粒子的运动。
该方程的数学表达式可以写作:D^α ϕ + m^2 ϕ = 0其中,D^α 表示分数阶导数,ϕ表示场的波函数,m表示粒子的质量。
方程中的指数α是分数阶导数的阶数。
该方程包含了一阶导数和二阶导数的项,并且方程中的质量项是一个常数。
分数阶Klein-Gordon方程可以用来描述包括扩散和非局域行为在内的一系列物理过程。
由于分数阶导数的引入,分数阶Klein-Gordon方程的解具有一些特殊的性质。
首先,分数阶Klein-Gordon方程的解在更长的时间尺度上呈现出不同寻常的行为,比如超扩散或亚扩散行为。
其次,分数阶Klein-Gordon方程的解可以在空间中表现出非局域性,即一个点的变化会影响附近的所有点。
分数阶Klein-Gordon方程在不同的物理学领域都有重要的应用。
在量子力学中,该方程可以用来描述粒子的运动状态。
在相对论中,该方程可以用来描述场的运动行为。
在固体物理学和化学中,该方程可以用来描述材料中的电子结构和动力学行为。
数学术语
V、X、Z:Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线V olume :体积X-axis :x轴x-coordinate :x坐标x-intercept :x截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点T:Tangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分S:Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称R:Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution , solid of :旋转体Revolution , surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根P、Q:Parabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律M、N、O:Maximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Orthogonal :正交的L:Laplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数I:Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分H:Higher mathematics 高等数学/高数E、F、G、H:Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyper boloid :双曲面D:Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :方向导数domain of :导数之定义域of exponential function :指数函数之导数higher :高阶导数partial :偏导数of a power function :幂函数之导数of a power series :羃级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :二阶导数as the slope of a tangent :导数看成切线之斜率Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程partial :偏微分方程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分change of variable in :二重积分之变数变换in polar coordinates :极坐标二重积分C:Calculus :微积分differential :微分学integral :积分学Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性at a point :在一点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Convergence :收敛interval of :收敛区间radius of :收敛半径Convergent sequence :收敛数列series :收敛级数Coordinate:s:坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标polar :极坐标rectangular :直角坐标spherical :球面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder:圆柱Cylindrical Coordinates :圆柱坐标A、B:Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法by differentials :用微分逼近linear :线性逼近法by Simpson’s Rule :Simpson法则逼近法by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积under a curve :曲线下方之面积between curves :曲线间之面积in polar coordinates :极坐标表示之面积of a sector of a circle :扇形之面积of a surface of a revolution :旋转曲面之面积Asymptote :渐近线horizontal :水平渐近线slant :斜渐近线vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :二项级数。
数值分析中常用数学词汇英中文对照翻译.
数值分析中常用数学词汇英中文对照abbreviation 简写符号;简写absolute error 绝对误差absolute value 绝对值accelerate 加速accumulation 累积accuracy 准确度act on 施于action 作用; 作用力add 加addition 加法addition formula 加法公式addition law 加法定律additive property 可加性adjoint matrix 伴随矩阵algebra 代数algebraic 代数的algebraic equation 代数方程algebraic expression 代数式algebraic fraction 代数分式;代数分数式algebraic inequality 代数不等式algebraic number 代数数algebraic operation 代数运算algorithm 算法系统; 规则系统alternating series 交错级数alternative hypothesis 择一假设; 备择假设; 另一假设analysis 分析;解析angle 角anti-clockwise direction 逆时针方向;返时针方向anti-derivative 反导数; 反微商anti-logarithm 逆对数;反对数anti-symmetric 反对称approach 接近;趋近approximate value 近似值approximation 近似;略计;逼近Arabic system 阿刺伯数字系统arbitrary 任意arbitrary constant 任意常数arc 弧arc-cosine function 反余弦函数arc-sin function 反正弦函数arc-tangent function 反正切函数area 面积argument (1论证; (2辐角argument of a function 函数的自变量arithmetic 算术array 数组; 数组ascending order 递升序ascending powers of X X 的升幂assumption 假定;假设asymmetrical 非对称asymptote 渐近augmented matrix 增广矩阵average 平均;平均数;平均值axiom 公理back substitution 回代base (1底;(2基;基数basis 基belong to 属于bias 偏差;偏倚billion 十亿binary number 二进数binary operation 二元运算binary system 二进制binomial 二项式bisection method 分半法;分半方法boundary condition 边界条件boundary line 界(线;边界bounded 有界的bounded above 有上界的;上有界的bounded below 有下界的;下有界的bounded function 有界函数bounded sequence 有界序列brace 大括号bracket 括号breadth 阔度calculation 计算calculator 计算器;计算器calculus (1 微积分学; (2 演算cancel 消法;相消Cartesian coordinates 笛卡儿坐标category 类型;范畴centre 中心;心chain rule 链式法则chance 机会change of base 基的变换change of variable 换元;变量的换characteristic equation 特征(征方程characteristic function 特征(征函数characteristic root 特征(征根chart 图;图表check digit 检验数位checking 验算circle 圆classification 分类clockwise direction 顺时针方向clockwise moment 顺时针力矩closed convex region 闭凸区域closed interval 闭区间coefficient 系数cofactor 余因子; 余因式coincide 迭合;重合collection of terms 并项collinear 共线collinear planes 共线面column (1列;纵行;(2 柱column matrix 列矩阵column vector 列向量combination 组合common denominator 同分母;公分母common difference 公差common divisor 公约数;公约common factor 公因子;公因子common multiple 公位数;公倍comparable 可比较的complement 余;补余completing the square 配方complex number 复数complex number plane 复数平面complex root 复数根component 分量composite function 复合函数; 合成函数computation 计算computer 计算机;电子计算器concept 概念conclusion 结论condition 条件conditional 条件句;条件式conjugate 共轭constant 常数constant of integration 积分常数constraint 约束;约束条件continuity 连续性continuous function 连续函数contradiction 矛盾converge 收敛convergence 收敛性convergent 收敛的convergent iteration 收敛的迭代convergent sequence 收敛序列convergent series 收敛级数convex 凸convexity 凸性coordinate 坐标corollary 系定理; 系; 推论correspondence 对应counter clockwise direction 逆时针方向;返时针方向counter example 反例counting 数数;计数criterion 准则critical point 临界点critical region 临界域cirtical value 临界值cube 正方体;立方;立方体cubic 三次方;立方;三次(的 cubic equation 三次方程cubic roots of unity 单位的立方根cumulative 累积的curve 曲线decimal 小数decimal place 小数位decimal point 小数点decimal system 十进制definite integral 定积分definition 定义degree (1 度; (2 次degree of a polynomial 多项式的次数degree of accuracy 准确度degree of ODE 常微分方程次数delete 删除; 删去denary number 十进数denominator 分母dependence (1相关; (2应变derivable 可导derivative 导数determinant 行列式diagonal 对角线diagonal matrix 对角矩阵difference 差difference equation 差分方程differentiable 可微differential 微分differential coefficient 微商; 微分系数differential equation 微分方程differential mean value theorem 微分中值定理differentiate 求...的导数differentiation 微分法digit 数字dimension 量; 量网; 维(数direction 方向; 方位discontinuity 不连续性discontinuous 间断(的;连续(的; 不连续(的discontinuous point 不连续点discrete 分立; 离散distance 距离diverge 发散divergence 发散(性divergent 发散的divergent iteration 发散性迭代divergent sequence 发散序列divide 除dividend (1被除数;divisible 可整除division 除法division algorithm 除法算式divisor 除数;除式;因子dot 点dot product 点积echelon form 梯阵式echelon matrix 梯矩阵eigenvalue 本征值eigenvector 本征向量element 元素elementary row operation 基本行运算elimination 消法elimination method 消去法;消元法empty set 空集equivalent 等价(的error 误差error estimate 误差估计error term 误差项estimate 估计;估计量evaluate 计值exact 真确exact solution 准确解;精确解;真确解exact value 法确解;精确解;真确解example 例expand 展开experiment 实验;试验experimental 试验的exponent 指数exponential function 指数函数express…in terms of… 以………表达extreme point 极值点extreme value 极值extremum 极值factor 因子;因式;商factor method 因式分解法factorial 阶乘factorization 因子分解;因式分解fallacy 谬误FALSE 假(的falsehood 假值finite 有限finite sequence 有限序列first derivative 一阶导数first order differential equation 一阶微分方程fixed point 不动点fixed point iteration method 不动点迭代法for all X 对所有X for each /every X 对每一Xform 形式;型format 格式;规格formula(formulae 公式fraction 分数;分式function 函数fundamental theorem of calculus 微积分基本定理Gaussian elimination 高斯消去法general form 一般式;通式general solution 通解;一般解general term 通项given 给定;已知global 全局; 整体global maximum 全局极大值; 整体极大值global minimum 全局极小值; 整体极小值gradient (1斜率;倾斜率;(2梯度graph 图像;图形;图表graphical method 图解法graphical representation 图示;以图样表达graphical solution 图解growth 增长higher order derivative 高阶导数horizontal 水平的;水平hypothesis 假设identity 等(式identity matrix 恒等矩阵if and only if/iff 当且仅当;若且仅若if…, then 若….则;如果…..则illustration 例证;说明image 像点;像imaginary number 虚数implicit function 隐函数imply 蕴涵;蕴含improper integral 广义积分; 非正常积分increase 递增;增加indefinite integral 不定积分independence 独立;自变inequality 不等式;不等inequality sign 不等号infinite 无限;无穷infinite sequence 无限序列;无穷序列infinite series 无限级数;无穷级数infinitesimal 无限小;无穷小infinity 无限(大;无穷(大initial approximation 初始近似值initial condition 原始条件;初值条件initial value 初值;始值initial-value problem 初值问题inner product 内积input 输入integer 整数integral 积分integrate 积;积分;......的积分integration 积分法integration by parts 分部积分法integration by substitution 代换积分法;换元积分法interchange 互换intermediate value theorem 介值定理interpolating polynomial 插值多项式interpolation 插值interval 区间intuition 直观invalid 失效;无效invariance 不变性invariant (1不变的;(2不变量;不变式inverse 反的;逆的inverse function 反函数;逆函数inverse matrix 逆矩阵inverse problem 逆算问题invertible 可逆的invertible matrix 可逆矩阵iterate (1迭代值; (2迭代iteration 迭代iterative method 迭代法known 己知Lagrange interpolating polynomial 拉格朗日插值多项代leading coefficient 首项系数leading diagonal 主对角线lemma 引理limit 极限limit of sequence 序列的极限line of best-fit 最佳拟合line segment 线段linear 线性;一次linear convergence 线性收敛性linear differeantial equation 线性微分方程linear equation 线性方程;一次方程linear equation in two unknowns 二元一次方程;二元线性方程linearly dependent 线性相关的linearly independent 线性无关的local maximum 局部极大(值local minimum 局部极小(值logic 逻辑long division method 长除法loop 回路lower bound 下界lower triangular matrix 下三角形矩阵Maclaurin expansion 麦克劳林展开式magnitude 量;数量;长度;大小mantissa 尾数matrix 阵; 矩阵matrix addition 矩阵加法matrix equation 矩阵方程matrix multiplication 矩阵乘法matrix operation 矩阵运算maximize 极大maximum absolute error 最大绝对误差mean value theorem 中值定理method of completing square 配方法method of interpolation 插值法; 内插法method of least squares 最小二乘法; 最小平方法method of substitution 代换法;换元法method of successive substitution 逐次代换法; 逐次调替法minimize 极小minus 减modulus of a complex number 复数的模monomial 单项式multiple 倍数multiple root 多重根multiplication 乘法multiplicity 重数multiplier 乘数;乘式multiply 乘mutually independent 独立; 互相独立mutually perpendicular lines 互相垂直n factorial n阶乘n th derivative n阶导数n th root n次根;n次方根n the root of unity 单位的n次根natural logarithm 自然对数necessary and sufficient condition 充要条件necessary condition 必要条件negative 负neighborhood 邻域Newton-Cote's rule 牛顿- 高斯法则Newton-Raphson's method 牛顿- 纳逊方法Newton's formula 牛顿公式Newton's method 牛顿方法non-linear 非线性non-linear equation 非线性方程non-negative 非负的non-singular (1满秩的; (2非奇异的non-singular matrix 满秩矩阵non-trivial 非平凡的non-zero 非零norm 模方; 范数normal (1垂直的;正交的;法线的(2正态的(3正常的;正规的normalize 正规化normalized form 标准型notation 记法;记号null 零; 空null set 空集null vector 零向量number 数numerator 分子numerical method 计算方法;数值法objective function 目标函数octant 卦限odd function 奇函数one-to-one 一个对一个one-one correspondence 一一对应operation 运算order of a matrix 矩阵的阶ordinary differential equation 常微分方程origin 原点orthogonal 正交orthogonality 正交性 outcome 结果 output 输出 parameter 参数;参变量parametric equation 参数方程 partition 分割; 划分 periodic function 周期函数permutation 排列 perpendicular 垂线;垂直(于 phase 相; 位相 pivot 支点 plot 绘图plus 加 point 点 polynomial 多项式 polynomial equation 多项式方程 positive 正 post-multiply 后乘; 自右乘 premultiply 前乘; 自左乘 prime 素 product 乘积;积 proper integral 正常积分 property 性质 quadratic convergence 二阶收敛性 quadratic formula 二次公式 quadratic function 二次函数 quadratic inequality 二次不等式 quadrature 求积法 quadrilateral 四边形 quotient 商;商式 quotient rule 商法则 R.H.S 右 rank 秩 rate of convergence 收敛率 ratio 比 ; 比率 rational function 有理函数 real number 实数 real part 实部 real root 实根 reciprocal 倒数 rectangle 长方形;矩形 recurrence formula 递推公式 recurrent 循环的 recurring decimal 循环小数 reduce 简化 region 区域 region of convergency 收敛区域 regular 正;规则 relative error 相对误差 remainder term 余项root 根 rotation 旋转 rounded number 舍数 rounding(off 舍入;四舍五入 row 行;棋行 row vector 行向量; 行矢量 rule 规则;法(则 satisfy 满足;适合 scalar 纯量; 无向量, 标量 scalar matrix 纯量矩阵 scale 比例尺;标度;图尺 scientific notation 科学记数法 secant (1正割; (2割线 secant method 正割法 second derivative 二阶导数 second order ordinary differential equation 二阶常微分方程 sentence 句;语句 sequence 序列series 级数 set 集 shaded portion 有阴影部分 shape 形状 shear 位移 side 边;侧 sign 符号;记号 signed number 有符号数 significant figure 有效数字 signum 正负号函数similar 相似 simplify 简化 Simpson's integral 森逊积分 Simpson's rule 森逊法则singular 奇的 singular matrix 奇异矩阵; 不可逆矩阵 span 生成 square (1平方;(2正方形 square bracket 方括号square matrix 方(矩阵 stability 稳度 stationary 平稳 stationary point 平稳点; 逗留点; 驻点 straight line 直线 subset 子集 substitute 代入 substitution 代入; 代入法subtract 减 subtraction 减法 successive approximation 逐次逼近法 successive derivative 逐次导数 successive differentiation 逐次微分法 sufficiency 充份性 sufficient and necessary condition 充要条件 sufficient condition 充份条件 sufficiently close 充份接近suffix 下标 sum 和 summation 求和法; 总和 symbol 符号; 记号 symmetry 对称; 对称性Taylor’s expansion 泰勒展开式 term 项 transpose 移项;转置 transpose of matrix 倒置矩阵;转置矩阵 trapezium 梯形 trapezoidal integral 梯形积分 trapezoidal rule 梯形法则 trial 试;试验 triangle 三角形 triangular matrix 三角矩阵 trigonometric equation 三角方程 trigonometric function 三角函数 triple 三倍 trivial solution 平凡解truncation error 截断误差 undefined 未下定义(的 undetermined coefficient 待定系数unequal 不等 unique solution 唯一解 uniqueness 唯一性 unit 单位 unit area 单位面积unit circle 单位圆 unknown 未知数;未知量 upper bound 上界 upper limit 上限 upper triangular matrix 上三角形矩阵 validity 真确性; 有效性 variable 变项;变量;元;变元;变数 vector 向量; 矢量 vector function 向量函数; 矢量函数 vector product 矢量积; 矢量积 vector space 向量空间 verify 证明;验证 weight (1重量;(2权 weighted average, weighted mean 加权平均数 without loss of generality 不失一般性 x-axis x 轴x-coordinate x 坐标 x-intercept x 轴截距 y-axis y 轴 y-coordinate y 坐标 y-intercept y轴截距 zero 零 zero factor 零因子 zero matrix 零矩阵 zero vector 零向量 zeros of a function 函数零值。
高等数学(微积分学)专业术语名词、概念、定理等英汉对照
目录第一部分英汉微积分词汇Part 1 English-Chinese Calculus Vocabulary第一章函数与极限Chapter 1 function and Limi t (1)第二章导数与微分Chapter 2 Derivative and Differential (2)第三章微分中值定理Chapter 3 Mean Value theorem of differentials and theApplication of Derivatives (3)第四章不定积分Chapter 4 Indefinite Integrals (3)第五章定积分Chapter 5 Definite Integral (3)第六章定积分的应用Chapter 6 Application of the Definite Integrals (4)第七章空间解析几何与向量代数Chapter 7 Space Analytic Geometry and Vector Algebra (4)第八章多元函数微分法及其应用Chapter 8 Differentiation of functions Several variablesand Its Application (5)第九章重积分Multiple Integrals (6)第十章曲线积分与曲面积分Chapter 10 Line(Curve ) Integrals and Surface Integral s (6)第十一章无穷级数Chapter 11 Infinite Series (6)第十二章微分方程Chapter 12 Differential Equation (7)第二部分定理定义公式的英文表达Part 2 English Expression for Theorem,Definition and Formula第一章函数与极限Chapter 1 Function and Limi t (19)1.1映射与函数(Mapping and Function ) (19)1.2数列的极限(Limit of the Sequence of Number) (20)1.3函数的极限(Limit of Function) (21)1.4无穷小与无穷大(Infinitesimal and Infinity) (23)1.5极限运算法则(Operation Rule of Limit) (24)1.6极限存在准则两个重要的极限(Rule for theExistence of Limits Two Important Limits) (25)1.7无穷小的比较(The Comparison of infinitesimal) (26)1.8函数的连续性与间断点(Continuity of FunctionAnd Discontinuity Points) (28)1.9连续函数的运酸与初等函数的连续性(OperationOf Continuous Functions and Continuity ofElementary Functions) (28)1.10闭区间上连续函数的性质(Properties ofContinuous Functions on a Closed Interval) (30)第二章导数与数分Chapter2 Derivative and Differential (31)2.1 导数的概念(The Concept of Derivative) (31)2.2 函数的求导法则(Rules for Finding Derivatives) (33)2.3 高阶导数(Higher-order Derivatives) (34)2.4 隐函数及由参数方程所确定的函数的导数相关变化率(Derivatives ofImplicit Functions and Functions Determined by Parametric Equation andCorrelative Change Rate) (34)2.5 函数的微分(Differential of a Function) (35)第三章微分中值定理与导数的应用Chapter 3 Mean Value Theorem of Differentials and theApplication of Derivatives (36)3.1 微分中值定理(The Mean Value Theorem) (36)3.2 洛必达法则(L’Hospital’s Rule) (38)3.3 泰勒公式(Taylor’s Formula) (41)3.4 函数的单调性和曲线的凹凸性(Monotonicityof Functions and Concavity of Curves) (43)3.5 函数的极值与最大最小值(Extrema, Maximaand Minima of Functions) (46)3.6 函数图形的描绘(Graphing Functions) (49)3.7 曲率(Curvature) (50)3.8 方程的近似解(Solving Equation Numerically) (53)第四章不定积分Chapter 4Indefinite Integrals (54)4.1 不定积分的概念与性质(The Concept andProperties of Indefinite Integrals) (54)4.2 换元积分法(Substitution Rule for Indefinite Integrals) (56)4.3 分部积分法(Integration by Parts) (57)4.4 有理函数的积分(Integration of Rational Functions) (58)第五章定积分Chapter 5 Definite Integrals (61)5.1 定积分的概念和性质(Concept of Definite Integraland its Properties) (61)5.2 微积分基本定理(Fundamental Theorem of Calculus) (67)5.3 定积分的换元法和分部积分法(Integration by Substitution andDefinite Integrals by Parts) (69)5.4 反常积分(Improper Integrals) (70)第六章定积分的应用Chapter 6 Applications of the Definite Integrals (75)6.1 定积分的元素法(The Element Method of Definite Integra (75)6.2 定积分在几何学上的应用(Applications of the DefiniteIntegrals to Geometry) (76)6.3 定积分在物理学上的应用(Applications of the DefiniteIntegrals to Physics) (79)第七章空间解析几何与向量代数Chapter 7 Space Analytic Geometry and Vector Algebar (80)7.1 向量及其线性运算(Vector and Its Linear Operation) (80)7.2 数量积向量积(Dot Product and Cross Product) (86)7.3 曲面及其方程(Surface and Its Equation) (89)7.4 空间曲线及其方程(The Curve in Three-space and Its Equation (91)7.5 平面及其方程(Plane in Space and Its Equation) (93)7.6 空间直线及其方程(Lines in and Their Equations) (95)第八章多元函数微分法及其应用Chapter 8 Differentiation of Functions of SeveralVariables and Its Application (99)8.1 多元函数的基本概念(The Basic Concepts of Functionsof Several Variables) (99)8.2 偏导数(Partial Derivative) (102)8.3 全微分(Total Differential) (103)8.4 链式法则(The Chain Rule) (104)8.5 隐函数的求导公式(Derivative Formula for Implicit Functions). (104)8.6 多元函数微分学的几何应用(Geometric Applications of Differentiationof Ffunctions of Severalvariables) (106)8.7方向导数与梯度(Directional Derivatives and Gradients) (107)8.8多元函数的极值(Extreme Value of Functions of Several Variables) (108)第九章重积分Chapter 9 Multiple Integrals (111)9.1二重积分的概念与性质(The Concept of Double Integralsand Its Properities) (111)9.2二重积分的计算法(Evaluation of double Integrals) (114)9.3三重积分(Triple Integrals) (115)9.4重积分的应用(Applications of Multiple Itegrals) (120)第十章曲线积分与曲面积分Chapte 10 Line Integrals and Surface Integrals (121)10.1 对弧长的曲线积分(line Intergrals with Respect to Arc Length) (121)10.2 对坐标的曲线积分(Line Integrals with respect toCoordinate Variables) (123)10.3 格林公式及其应用(Green's Formula and Its Applications) (124)10.4 对面积的曲面积分(Surface Integrals with Respect to Aarea) (126)10.5 对坐标的曲面积分(Surface Integrals with Respect toCoordinate Variables) (128)10.6 高斯公式通量与散度(Gauss's Formula Flux and Divirgence) (130)10.7 斯托克斯公式环流量与旋度(Stokes's Formula Circulationand Rotation) (131)第十一章无穷级数Chapter 11 Infinite Series (133)11.1 常数项级数的概念与性质(The concept and Properties ofThe Constant series) (133)11.2 常数项级数的审敛法(Test for Convergence of the Constant Series) (137)11.3 幂级数(power Series). (143)11.4 函数展开成幂级数(Represent the Function as Power Series) (148)11.5 函数的幂级数展开式的应用(the Appliacation of the Power Seriesrepresentation of a Function) (148)11.6 函数项级数的一致收敛性及一致收敛级数的基本性质(The UnanimousConvergence of the Series of Functions and Its properties) (149)11.7 傅立叶级数(Fourier Series) (152)11.8 一般周期函数的傅立叶级数(Fourier Series of Periodic Functions) (153)第十二章微分方程Chapter 12 Differential Equation (155)12.1微分方程的基本概念(The Concept of DifferentialEquation) (155)12.2可分离变量的微分方程(Separable Differential Equation) (156)12.3齐次方程(Homogeneous Equation) (156)12.4 一次线性微分方程(Linear Differential Equation of theFirst Order) (157)12.5全微分方程(Total Differential Equation) (158)12.6可降阶的高阶微分方程(Higher-order DifferentialEquation Turned to Lower-order DifferentialEquation) (159)12.7高阶线性微分方程(Linear Differential Equation of Higher Order) (159)12.8常系数齐次线性微分方程(Homogeneous LinearDifferential Equation with Constant Coefficient) (163)12.9常系数非齐次线性微分方程(Non HomogeneousDifferential Equation with Constant Coefficient) (164)12.10 欧拉方程(Euler Equation) (164)12.11 微分方程的幂级数解法(Power Series Solutionto Differential Equation) (164)第三部分常用数学符号的英文表达Part 3 English Expression of the Mathematical Symbol in Common Use第一部分英汉微积分词汇Part1 English-Chinese Calculus V ocabulary 第一章函数与极限Chapter1 Function and Limit集合set元素element子集subset空集empty set并集union交集intersection差集difference of set基本集basic set补集complement set直积direct product笛卡儿积Cartesian product开区间open interval闭区间closed interval半开区间half open interval有限区间finite interval区间的长度length of an interval无限区间infinite interval领域neighborhood领域的中心centre of a neighborhood领域的半径radius of a neighborhood左领域left neighborhood右领域right neighborhood 映射mappingX到Y的映射mapping of X ontoY 满射surjection单射injection一一映射one-to-one mapping双射bijection算子operator变化transformation函数function逆映射inverse mapping复合映射composite mapping自变量independent variable因变量dependent variable定义域domain函数值value of function函数关系function relation值域range自然定义域natural domain单值函数single valued function多值函数multiple valued function 单值分支one-valued branch函数图形graph of a function绝对值函数absolute value符号函数sigh function整数部分integral part阶梯曲线step curve当且仅当if and only if(iff)分段函数piecewise function上界upper bound下界lower bound有界boundedness无界unbounded函数的单调性monotonicity of a function 单调增加的increasing单调减少的decreasing单调函数monotone function函数的奇偶性parity(odevity) of a function对称symmetry偶函数even function奇函数odd function函数的周期性periodicity of a function周期period反函数inverse function直接函数direct function复合函数composite function中间变量intermediate variable函数的运算operation of function基本初等函数basic elementary function初等函数elementary function幂函数power function指数函数exponential function对数函数logarithmic function三角函数trigonometric function反三角函数inverse trigonometric function 常数函数constant function双曲函数hyperbolic function双曲正弦hyperbolic sine双曲余弦hyperbolic cosine双曲正切hyperbolic tangent反双曲正弦inverse hyperbolic sine反双曲余弦inverse hyperbolic cosine反双曲正切inverse hyperbolic tangent极限limit数列sequence of number收敛convergence收敛于 a converge to a发散divergent极限的唯一性uniqueness of limits收敛数列的有界性boundedness of aconvergent sequence子列subsequence函数的极限limits of functions函数()f x当x趋于x0时的极限limit of functions ()f x as x approaches x0左极限left limit右极限right limit单侧极限one-sided limits水平渐近线horizontal asymptote无穷小infinitesimal无穷大infinity铅直渐近线vertical asymptote夹逼准则squeeze rule单调数列monotonic sequence高阶无穷小infinitesimal of higher order低阶无穷小infinitesimal of lower order同阶无穷小infinitesimal of the same order 等阶无穷小equivalent infinitesimal函数的连续性continuity of a function增量increment函数()f x在x0连续the function ()f x is continuous at x0左连续left continuous右连续right continuous区间上的连续函数continuous function函数()f x在该区间上连续function ()f x is continuous on an interval不连续点discontinuity point第一类间断点discontinuity point of the first kind第二类间断点discontinuity point of the second kind初等函数的连续性continuity of the elementary functions定义区间defined interval最大值global maximum value (absolute maximum)最小值global minimum value (absolute minimum)零点定理the zero point theorem介值定理intermediate value theorem第二章导数与微分Chapter2 Derivative and Differential速度velocity匀速运动uniform motion平均速度average velocity瞬时速度instantaneous velocity圆的切线tangent line of a circle切线tangent line切线的斜率slope of the tangent line位置函数position function导数derivative可导derivable函数的变化率问题problem of the change rate of a function导函数derived function左导数left-hand derivative右导数right-hand derivative单侧导数one-sided derivatives()f x在闭区间【a,b】上可导()f x is derivable on the closed interval [a,b]切线方程tangent equation角速度angular velocity成本函数cost function边际成本marginal cost链式法则chain rule隐函数implicit function显函数explicit function二阶函数second derivative三阶导数third derivative高阶导数nth derivative莱布尼茨公式Leibniz formula对数求导法log- derivative参数方程parametric equation相关变化率correlative change rata微分differential可微的differentiable函数的微分differential of function自变量的微分differential of independent variable微商differential quotient间接测量误差indirect measurement error 绝对误差absolute error 相对误差relative error第三章微分中值定理与导数的应用Chapter3 MeanValue Theorem of Differentials and the Application of Derivatives罗马定理Rolle’s theorem费马引理Fermat’s lemma拉格朗日中值定理Lagrange’s mean value theorem驻点stationary point稳定点stable point临界点critical point辅助函数auxiliary function拉格朗日中值公式Lagrange’s mean value formula柯西中值定理Cauchy’s mean value theorem洛必达法则L’Hospital’s Rule0/0型不定式indeterminate form of type 0/0不定式indeterminate form泰勒中值定理Taylor’s mean value theorem泰勒公式Taylor formula余项remainder term拉格朗日余项Lagrange remainder term 麦克劳林公式Maclaurin’s formula佩亚诺公式Peano remainder term凹凸性concavity凹向上的concave upward, cancave up凹向下的,向上凸的concave downward’concave down拐点inflection point函数的极值extremum of function极大值local(relative) maximum最大值global(absolute) mximum极小值local(relative) minimum最小值global(absolute) minimum目标函数objective function曲率curvature弧微分arc differential平均曲率average curvature曲率园circle of curvature曲率中心center of curvature曲率半径radius of curvature渐屈线evolute渐伸线involute根的隔离isolation of root隔离区间isolation interval切线法tangent line method第四章不定积分Chapter4 Indefinite Integrals原函数primitive function(antiderivative) 积分号sign of integration被积函数integrand积分变量integral variable积分曲线integral curve积分表table of integrals换元积分法integration by substitution分部积分法integration by parts分部积分公式formula of integration by parts有理函数rational function真分式proper fraction假分式improper fraction第五章定积分Chapter5 Definite Integrals曲边梯形trapezoid with曲边curve edge窄矩形narrow rectangle曲边梯形的面积area of trapezoid with curved edge积分下限lower limit of integral积分上限upper limit of integral积分区间integral interval分割partition积分和integral sum可积integrable矩形法rectangle method积分中值定理mean value theorem of integrals函数在区间上的平均值average value of a function on an integvals牛顿-莱布尼茨公式Newton-Leibniz formula微积分基本公式fundamental formula of calculus换元公式formula for integration by substitution 递推公式recurrence formula反常积分improper integral反常积分发散the improper integral is divergent反常积分收敛the improper integral is convergent无穷限的反常积分improper integral on an infinite interval无界函数的反常积分improper integral of unbounded functions绝对收敛absolutely convergent第六章定积分的应用Chapter6 Applications of the Definite Integrals元素法the element method面积元素element of area平面图形的面积area of a luane figure直角坐标又称“笛卡儿坐标(Cartesian coordinates)”极坐标polar coordinates抛物线parabola椭圆ellipse旋转体的面积volume of a solid of rotation旋转椭球体ellipsoid of revolution, ellipsoid of rotation曲线的弧长arc length of acurve可求长的rectifiable光滑smooth功work水压力water pressure引力gravitation变力variable force第七章空间解析几何与向量代数Chapter7 Space Analytic Geometry and Vector Algebra向量vector自由向量free vector单位向量unit vector零向量zero vector相等equal平行parallel向量的线性运算linear poeration of vector 三角法则triangle rule平行四边形法则parallelogram rule交换律commutative law结合律associative law负向量negative vector差difference分配律distributive law空间直角坐标系space rectangular coordinates坐标面coordinate plane卦限octant向量的模modulus of vector向量a与b的夹角angle between vector a and b方向余弦direction cosine方向角direction angle向量在轴上的投影projection of a vector onto an axis数量积,外积,叉积scalar product,dot product,inner product曲面方程equation for a surface球面sphere旋转曲面surface of revolution母线generating line轴axis圆锥面cone顶点vertex旋转单叶双曲面revolution hyperboloids of one sheet旋转双叶双曲面revolution hyperboloids of two sheets柱面cylindrical surface ,cylinder圆柱面cylindrical surface准线directrix抛物柱面parabolic cylinder二次曲面quadric surface椭圆锥面dlliptic cone椭球面ellipsoid单叶双曲面hyperboloid of one sheet双叶双曲面hyperboloid of two sheets旋转椭球面ellipsoid of revolution椭圆抛物面elliptic paraboloid旋转抛物面paraboloid of revolution双曲抛物面hyperbolic paraboloid马鞍面saddle surface 椭圆柱面elliptic cylinder双曲柱面hyperbolic cylinder抛物柱面parabolic cylinder空间曲线space curve空间曲线的一般方程general form equations of a space curve空间曲线的参数方程parametric equations of a space curve螺转线spiral螺矩pitch投影柱面projecting cylinder投影projection平面的点法式方程pointnorm form eqyation of a plane法向量normal vector平面的一般方程general form equation of a plane两平面的夹角angle between two planes 点到平面的距离distance from a point to a plane空间直线的一般方程general equation of a line in space方向向量direction vector直线的点向式方程pointdirection form equations of a line方向数direction number直线的参数方程parametric equations of a line两直线的夹角angle between two lines垂直perpendicular直线与平面的夹角angle between a line and a planes平面束pencil of planes平面束的方程equation of a pencil of planes行列式determinant系数行列式coefficient determinant第八章多元函数微分法及其应用Chapter8 Differentiation of Functions of Several Variables and Its Application一元函数function of one variable多元函数function of several variables内点interior point外点exterior point边界点frontier point,boundary point聚点point of accumulation开集openset闭集closed set连通集connected set开区域open region闭区域closed region有界集bounded set无界集unbounded setn维空间n-dimentional space二重极限double limit多元函数的连续性continuity of function of seveal连续函数continuous function不连续点discontinuity point一致连续uniformly continuous偏导数partial derivative对自变量x的偏导数partial derivative with respect to independent variable x高阶偏导数partial derivative of higher order二阶偏导数second order partial derivative 混合偏导数hybrid partial derivative全微分total differential偏增量oartial increment偏微分partial differential全增量total increment可微分differentiable必要条件necessary condition充分条件sufficient condition叠加原理superpostition principle全导数total derivative中间变量intermediate variable隐函数存在定理theorem of the existence of implicit function曲线的切向量tangent vector of a curve法平面normal plane向量方程vector equation向量值函数vector-valued function切平面tangent plane法线normal line方向导数directional derivative梯度gradient 数量场scalar field梯度场gradient field向量场vector field势场potential field引力场gravitational field引力势gravitational potential曲面在一点的切平面tangent plane to a surface at a point曲线在一点的法线normal line to a surface at a point无条件极值unconditional extreme values 条件极值conditional extreme values拉格朗日乘数法Lagrange multiplier method拉格朗日乘子Lagrange multiplier经验公式empirical formula最小二乘法method of least squares均方误差mean square error第九章重积分Chapter9 Multiple Integrals二重积分double integral可加性additivity累次积分iterated integral体积元素volume element三重积分triple integral直角坐标系中的体积元素volume element in rectangular coordinate system柱面坐标cylindrical coordinates柱面坐标系中的体积元素volume element in cylindrical coordinate system球面坐标spherical coordinates球面坐标系中的体积元素volume element in spherical coordinate system反常二重积分improper double integral曲面的面积area of a surface质心centre of mass静矩static moment密度density形心centroid转动惯量moment of inertia参变量parametric variable第十章曲线积分与曲面积分Chapter10 Line(Curve)Integrals and Surface Integrals对弧长的曲线积分line integrals with respect to arc hength第一类曲线积分line integrals of the first type对坐标的曲线积分line integrals with respect to x,y,and z第二类曲线积分line integrals of the second type有向曲线弧directed arc单连通区域simple connected region复连通区域complex connected region格林公式Green formula第一类曲面积分surface integrals of the first type对面的曲面积分surface integrals with respect to area有向曲面directed surface对坐标的曲面积分surface integrals with respect to coordinate elements第二类曲面积分surface integrals of the second type有向曲面元element of directed surface高斯公式gauss formula拉普拉斯算子Laplace operator格林第一公式Green’s first formula通量flux散度divergence斯托克斯公式Stokes formula环流量circulation旋度rotation,curl第十一章无穷级数Chapter11 Infinite Series一般项general term部分和partial sum余项remainder term等比级数geometric series几何级数geometric series公比common ratio调和级数harmonic series柯西收敛准则Cauchy convergence criteria, Cauchy criteria for convergence正项级数series of positive terms达朗贝尔判别法D’Alembert test柯西判别法Cauchy test 交错级数alternating series绝对收敛absolutely convergent条件收敛conditionally convergent柯西乘积Cauchy product函数项级数series of functions发散点point of divergence收敛点point of convergence收敛域convergence domain和函数sum function幂级数power series幂级数的系数coeffcients of power series 阿贝尔定理Abel Theorem收敛半径radius of convergence收敛区间interval of convergence泰勒级数Taylor series麦克劳林级数Maclaurin series二项展开式binomial expansion近似计算approximate calculation舍入误差round-off error,rounding error欧拉公式Euler’s formula魏尔斯特拉丝判别法Weierstrass test三角级数trigonometric series振幅amplitude角频率angular frequency初相initial phase矩形波square wave谐波分析harmonic analysis直流分量direct component基波fundamental wave二次谐波second harmonic三角函数系trigonometric function system 傅立叶系数Fourier coefficient傅立叶级数Forrier series周期延拓periodic prolongation正弦级数sine series余弦级数cosine series奇延拓odd prolongation偶延拓even prolongation傅立叶级数的复数形式complex form of Fourier series第十二章微分方程Chapter12 Differential Equation解微分方程solve a dirrerential equation 常微分方程ordinary differential equation偏微分方程partial differential equation,PDE微分方程的阶order of a differential equation微分方程的解solution of a differential equation微分方程的通解general solution of a differential equation初始条件initial condition微分方程的特解particular solution of a differential equation初值问题initial value problem微分方程的积分曲线integral curve of a differential equation可分离变量的微分方程variable separable differential equation隐式解implicit solution隐式通解inplicit general solution衰变系数decay coefficient衰变decay齐次方程homogeneous equation一阶线性方程linear differential equation of first order非齐次non-homogeneous齐次线性方程homogeneous linear equation非齐次线性方程non-homogeneous linear equation常数变易法method of variation of constant暂态电流transient stata current稳态电流steady state current伯努利方程Bernoulli equation全微分方程total differential equation积分因子integrating factor高阶微分方程differential equation of higher order悬链线catenary高阶线性微分方程linera differential equation of higher order自由振动的微分方程differential equation of free vibration强迫振动的微分方程differential equation of forced oscillation串联电路的振荡方程oscillation equation of series circuit二阶线性微分方程second order linera differential equation线性相关linearly dependence线性无关linearly independce二阶常系数齐次线性微分方程second order homogeneour linear differential equation with constant coefficient二阶变系数齐次线性微分方程second order homogeneous linear differential equation with variable coefficient特征方程characteristic equation无阻尼自由振动的微分方程differential equation of free vibration with zero damping 固有频率natural frequency简谐振动simple harmonic oscillation,simple harmonic vibration微分算子differential operator待定系数法method of undetermined coefficient共振现象resonance phenomenon欧拉方程Euler equation幂级数解法power series solution数值解法numerial solution勒让德方程Legendre equation微分方程组system of differential equations常系数线性微分方程组system of linera differential equations with constant coefficient第二部分 定理定义公式的英文表达Part2 English Expression for Theorem, Definition and Formula第一章 函数与极限Chapter 1 Function and Limit1.1 映射与函数 (Mapping and Function)一、集合 (Set)二、映射 (Mapping)映射概念 (The Concept of Mapping) 设X , Y 是两个非空集合 , 如果存在一个法则f , 使得对X 中每个元素x , 按法则f , 在Y 中有唯一确定的元素y 与之对应 , 则称f 为从X 到 Y 的映射 , 记作:f X Y →。
分数阶总结
前言:
一:Riemann-Liouville 分数阶微积分及其性质 1. Riemann-Liouville 积分定义与性质 在引入分数阶微分定义之前,先介绍一下 Riemann-Liouville 积分定义, 并且分数阶积分只有一个,即 Riemann-Liouville 积分定义。令 (a,b)上的函数,对于任意的复数
a
Dt a J t f (t ) f (t ) , 0
证明:由左侧 Riemann-Liouville 分数阶微分算子的定义,性质三,及微积分的 基本定理有
a
Dt a J t f (t ) a Dtn a J tn a J t f (t ) a Dtn [ a J tn a J t f (t )]
(
)
当
的时候,即分数阶为整数时,上述定义可以退化到整数的情形,即
a
J tn f (t ) d1 d 2
a a
t
1
n1
a
f ( )d n
)
t 1 (t )n1 f ( )d ( a (n 1)!
右侧积分有类似的结果,在此不再赘述。 2.Riemann-Liouville 微分定义 同样 Riemann-Liouville 微分也有左侧微分和右侧微分。令 (a,b)上的函数, 为定义在区间 则 Riemann-Liouville 左侧分数阶微分的定义为
(
1 1 x ) x e dx i 0
(iw) ( )
同理 F (h(t )) (iw) ( )
令 f (t ) 定义在区间 (, ) 上,则 Riemann-Liouville 微分算子的 Fourier 变换 为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江师范大学本科毕业设计(论文)外文翻译原文:A Child’s Garden of Fractional DerivativesMarcia Kleinz and Thomas J. OslerThe College Mathematics Journal , March 2000, Volume 31, Number 2, pp. 82–88Marcia Kleinz is an instructor of mathematics at Rowan University. Marcia is married and has two children aged four and eight. She would rather research the fractional calculus than clean, and preparing lectures is preferable to doing laundry. Her hobbies include reading, music, and physical fitness.Tom Osler (osler@) is a professor of mathematics at Rowan University. He received his Ph.D. from the Courant Institute at New York University in 1970 and is the author of twenty-three mathematical papers. In addition to teaching university mathematics for the past thirty-eight years, Tom has a passion for long distance running. Included in his over 1600 races are wins in three national championships in the late sixties at distances from 25 kilometers to 50 miles. He is the author of two running books. IntroductionWe are all familiar with the idea of derivatives. The usual notation()df x dxor 1()D f x ,22()d f x dxor 2()D f xis easily understood. We are also familiar with properties like[()()]()()D f x f y Df x Df y +=+But what would be the meaning of notation like1/21/2()df x dxor 1/2()D f x ?Most readers will nothave encountered a derivative of ―order ‖ before, because almost none of the familiar textbooks mention it. Yet the notion was discussed briefly as early as the eighteenth century by Leibnitz. Other giants of the past including L’Hos pital, Euler, Lagrange, Laplace, Riemann, Fourier, Liouville, and others at least toyed with the idea. Today a vast literature exists on this subject called the ―fractional calculus.‖ Two text books on the subject at the graduate level have appeared recently, [9] and [11]. Also, two collections of papers delivered at conferences are found in [7] and [14]. A set of very readable seminar notes has been prepared by Wheeler [15], but these have not beenpublished. It is the purpose of this paper to introduce the fractional calculus in a gentle manner. Rather than the usual definition —lemma —theorem approach, we explore the idea of a fractional derivative by first looking at examples of familiar n th order derivatives like D naxnaxea e= and then replacing thenatural number n by other numbers like In this way, like detectives, we will try to see whatmathematical structure might be hidden in the idea. We will avoid a formal definition of the fractional derivative until we have first explored the possibility of various approaches to the notion. (For a quick look at formal definitions see the excellent expository paper by Miller [8].)As the exploration continues, we will at times ask the reader to ponder certain questions. The answers to these questions are found in the last section of this paper. So just what is a fractional derivative?Let us see. . . .Fractional derivatives of exponential functionsWe will begin by examining the derivatives of the exponential function axe because the patterns they develop lend themselves to easy exploration. We are familiar with the expressions for the derivativesof axe .12233,,axax axax axaxD eae D ea e D ea e ===, and, in general, n ax n ax D e a e = when n is aninteger. Could we replace n by 1/2 and write 1/21/2axaxD eae=Why not try? Why not go further andlet n be an irrational number like i ?We will be bold and writeaxaxD ea e αα=, (1)for any value of α, integer, rational, irrational, or complex. It is interesting to consider the meaningof (1) when is αa negative integer. We naturally want 1(())ax axe D D e -=.Since1(())axaxeD e a=,we have1()axaxD e edx-=⎰.Similarly,2()axaxDe edxdx-=⎰⎰,so is itreasonable to interpret D αwhen αis a negative integer –n as the n th iterated integral.D αrepresents a derivative if αis a positive real number and an integral if αis a negative realnumber.Notice that we have not yet given a definition for a fractional derivative of a general function. But if that definition is found, we would expect our relation (1) to follow from it for the exponential function. We note that Liouville used this approach to fractional differentiation in his papers [5] and [6]. Questions Q1 In this case does12121212()a xa xa xa xD c ec e c D e c D eα+=+?Q2 In this case does axaxD D e De αβαβ+=? Q3 Is1()axaxD e e dx-=⎰, and is2()axaxDe e dxdx-=⎰⎰ ,(as listed above) really true, oris there something missing?Q4 What general class of functions could be differentiated fractionally be means of the idea contained in (1)?Trigonometric functions: sine and cosine.We are familiar with the derivatives of the sine function:12sin sin ,sin cos ,sin sin ,D x x D x x D x x ===-This presents no obvious pattern from which to find 1/2sin Dx . However, graphing the functionsdiscloses a pattern. Each time we differentiate, the graph of sin x is shifted /2π to the left. Thus differentiating sin x n times results in the graph of sin x being shifted /2n π to the left and sosin sin()2nn D x x π=+. As before, we will replace the positive integer n with an arbitrary α. So,we now have an expression for the general derivative of the sine function, and we can deal similarly with the cosine:sin sin(),cos cos().22D x x D x x αααπαπ=+=+(2)After finding (2), it is natural to ask if these guesses are consistent with the results of the previous section for the exponential. For this pur pose we can use Euler’s expression,cos sin ixex i x =+Using (1) we can calculate(/2)cos()sin()22ixixi ixD ei eeex i x ααπααπαπ===+++which agrees with (2). Question Q5 What is sin()D ax α?Derivatives of pxWe now look at derivatives of powers of x . Starting with px we have:12,,(1),,(1)(2)(1).(3)ppppppnpp nD x x D x px D x p p x D x p p p p n x-===-=---+Multiplying the numerator and denominator of (3) by (p-n )! results in(1)(2)(1)()(1)1!(4)()(1)1()!pp np np p p p n p n p n p x xxp n p n p n -----+---==----This is a general expression of n pD x .To replace the positive integer n by the arbitrary number αwe may use the gamma function. The gamma function gives meaning to p ! and (p-n )! in (4) when p and n are not natural numbers. The gamma function was introduced by Euler in the 18th century togeneralize the notion of z ! to non-integer values of z . Its definition is 1()d t z z e tt ∞--Γ=⎰,and it hasthe property that (+1)!z z Γ=. We can rewrite (4) as (1),(1)npp np D x xp n -Γ+=Γ-+which makes sense if n is not an integer, so we put(1)(5)(1)pp p D x xp ααα-Γ+=Γ-+for any α. With (5) we can extend the idea of a fractional derivative to a large number of functions. Given any function that can be expanded in a Taylor series in powers of x ,(),nn n f x a x ∞==∑assuming we can differentiate term by term we get(1)().(6)(1)nn n nn n n D f x a D x a xn αααα∞∞-==Γ+==Γ-+∑∑The final expression presents itself as a possible candidate for the definition of the fractional derivative for the wide variety of functions that can be expanded in a Taylor’s series in powers of x . However, we will soon see that it leads to contradictions. QuestionQ6 Is there a meaning for ()D f x α in geometric terms? A mysterious contradictionWe wrote the fractional derivative of as(7)xxD e eα=Let us now compare this with (6) to see if they agree. From the Taylor Series, 01,!xnn e xn ∞==∑(6)gives.(8)(1)nxn xD e n αα∞==Γ-+∑But (7) and (8) do not match unless is a whole number! When is a whole number, the right side of (8)will be the series of xe with different indexing. But when αis not a whole number, we have twoentirely different functions. We have discovered acontradiction that historically has caused great problems. It appears as though ourexpression (1) for the fractional derivative of the exponential is inconsistent with ourformula (6) for the fractional derivative of a power.This inconsistency is one reason the fractional calculus is not found in elementary texts. In thetraditional calculus, where α is a whole number, the derivative of an elementary function is an elementary function. Unfortunately, in the fractional calculus this is not true. The fractional derivative of an elementary function is usually a higher transcendental function. For a table of fractional derivatives see [3].At this point you may be asking what is going on? The mystery will be solved in later sections. Stay tuned . . . .Iterated integralsWe have been talking about repeated derivatives. Integrals can also be repeated. We could write1()()Df x f x dx -=⎰,but the right-hand side is indefinite. We will instead write1()()xDf x f t dt -=⎰.The second integral will then be 221120()()xt Df x f t dt dt -=⎰⎰.The region of integration is the triangle in Figure 1. If we interchange the order of integration, the right-hand diagram in Figure 1 shows that121210()()x xt Df x f t dt dt -=⎰⎰Since 1()f t is not a function of 2t , it can be moved outside the inner integral so,121211110()()()()x xx t Df x f t dt dt f t x t dt -==-⎰⎰⎰or2()()()xDf x f t x t dt -=-⎰Using the same procedure we can show that324311()()(),()()(),223x x Df x f t x t dt Df x f t x t dt --=-=-⋅⎰⎰and, in general,11()()().(1)!x nn Df x f t x t dt n --=--⎰Now, as we have previously done, let us replace the –n with arbitrary αand the factorial with the gamma function to get11()().(9)()()x f t dt D f x x t ααα+=Γ--⎰This is a general expression (using an integral) for fractional derivatives that has the potential of being used as a definition. But there is a problem. If 1,α>- the integer is improper. This occurs because as ,0.t x x t →-→The integral diverges for every 0α≥.When 10,α-<< the improper integral converges, so if α is negative there is no problem. Since (9) converges only for negative it is truly a fractional integral. Before we leave this section we want to mention that the choice of zero for the lower limit was arbitrary. The lower limit could just as easily have been b . However, theresulting expression will be different. Because of this, many people who work in this field use the notation()bx D f x αindicating limits of integration going from b to x . Thus we have from (9)11()().(10)()()xbx bf t dt D f x x t ααα+=Γ--⎰QuestionQ7 What lower limit of fractional differentiation b will give us the result(1)()()(1)pp bx p D x c x c p ααα-Γ+-=-Γ-+?The mystery solvedNow you may begin to see what went wrong before. We are not surprised that fractional integrals involve limits, because integrals involve limits. Since ordinary derivatives do not involve limits ofintegration, no one expects fractional derivatives to involve such limits. We think of derivatives as local properties of functions. The fractional derivative symbol D αincorporates both derivatives (positive α) and integrals (negative α). Integrals are between limits. It turns out that fractional derivatives are between limits also. The reason for the contradiction is that two different limits of integration were being used. Now we can resolve the mystery.What is the secret? Let’s stop and think. What are the limits that will work for the exponential from (1)? Remember we want to write11.(11)x axaxaxbx bD e e dx e a-==⎰What value of b will give this answer? Since the integral in (11) is really11.x axaxabbe dx ee aa=-⎰we will get the form we want when10abea=.It will be zero when .ab =-∞So, if a is positive,then b =-∞.This type of integral with a lower limit of -∞ is sometimes called the Weyl fractionalderivative. In the notation from (10) we can write (1) as.axaxx D ea e αα-∞=Now, what limits will work for the derivative of p x in (5)? We have111.11p p x ppbxbxbD x x dx p p ++-==-++⎰Again we want101p bp +=+。