第一章 线性规划与单纯形法2012
1-1LP模型的结构及建模步骤及标准型
线性规划模型举例2
运输问题:见课本第七页
分析
可控因素:从仓库
x ij ; i 1 , j , 2
2 3
Ai
运往
B
j
的产品数量
设为
1 , 2 , 3
目标:总运费最小 费用函数 c
i 1 j 1 ij
x ij
受控条件: 从仓库运出总量不超过可用总量, 运入各商场的数量不低于 需求量。由于总供给量等于总需求量,所以都是等号。即
重点与难点:如何建立线性
规划问题的数学模型?(建模条 件、步骤及相应的技巧)
教学目标:掌握建模的步骤
和方法,能根据实际背景抽象和 建立适当的线性规划模型。
2012年9月8日9时15分
例1 资源利用问题
光华食品厂主要生产葱油饼干(Ⅰ型)和苏打饼干(Ⅱ型), 销售利润分别为500元/吨和400元/吨。根据销售部门提供的信 息可知,目前这两种饼干在市场上都很畅销,该厂能生产多少, 市场就能卖出多少。但从生产部门得知,有三种关键设备即搅 拌机、成型机、烘箱的生产能力,限制了该厂的饼干生产。该 公司每天生产这两种饼干的量应为多少,可使其利润最大?其 具体数据如表所示:
Ai
运往
B
j
的产品数量
设为
目标:总运费最小 目标函数 min z= c ij x ij
i 1 j 1 2 4
约束条件: 从仓库运出总量不超过可用总量, 运入零售点的数量不低于 需求量。由于总供给量等于总需求量,所以都是等号。即
x i 1 x i 2 x i 3 x i 4 a i ; i 1, 2
若5种硫酸价格分别为400, 700, 1400, 1900, 2500元/t, 如何使费用最小?
运筹学第一章线性规划及单纯形法
10
2D0
30 X1
(3)、求最优解 Z=40x1+50x2 x2 =-4/5x1+Z/50
C点: x1+2x2 =30 3x1+2x2 =60
解:x1 = 15, x2 = 7.5
maxZ =975
x2
maxZ=40x1+ 50x2
x1+2x2 30
30
3x1+2x2 60
2x2 24
x1 , x2 0
线性规划的单纯形法一线性规划的基本概念二单纯形法的迭代原理三单纯形法的计算步骤四单纯形法的进一步讨论五单纯形法小结线性规划的相关概念?矩阵的秩矩阵a中不为零的子式的最高阶数称为矩阵a的秩
问题的提出
❖ 例1 美佳公司计划制造I,II两种家电产品。 已知各制造一件时分别占用的设备A、B的台 时、调试时间及A、B设备和调试工序每天可 用于这两种家电的能力、各售出一件时的获 利情况如表1-1所示。问该公司应制造A、B 两种家电各多少件,使获取的利润为最大。
图解法的步骤: 1、在平面上建立直角坐标系 2、图示约束条件,找出可行域 3、图示目标函数和寻找最优解
例1、maxZ=40x1+ 50x2
x1+2x2 30 3x1+2x2 60
2x2 24
x1 , x2 0
解:(1)、建立坐标系
(2)、确定可行域
X2
x1+2x2 30
30
x1+2x2 =30
(0,15) (30,0)
20
maxZ=40xX1+1+52X0x2 2 30
3xx11++222xxx3222XX11+,362X22004X2X220
1 3 第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形
1 3 第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形13第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形法复习思考题1. 试述线性规划数学模型的结构及各要素的特征。
2. 求解线性规划问题时可能出现哪几种结果?哪些结果反映建模时有错误?3. 什么是线性规划问题的标准形式?如何将一个非标准型的线性规划问题转化为标准形式?4. 试述线性规划问题的可行解、基解、基可行解、最优解的概念以及上述解之间的相互关系。
5. 试述单纯形法的计算步骤,如何在单纯形表上判别问题是具有唯一最优解、无穷多最优解、无界解或无可行解?6. 如果线性规划的标准型变换为求目标函数的极小化min z,则用单纯形法计算时如何判别问题已得到最优解?7. 在确定初始可行基时,什么情况下要在约束条件中增添人工变量?在目标函数中人工变量前的系数为(-M)的经济意义是什么?8. 什么是单纯形法计算的两阶段法?为什么要将计算分成两个阶段进行,如何根据第一阶段的计算结果来判定第二阶段的计算是否需要继续进行?9. 简述退化的含义及处理退化的勃兰特规则。
10. 举例说明生产和生活中应用线性规划的可能案例,并对如何应用进行必要描述。
11. 判断下列说法是否正确:(a) 图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;(b) 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;(c) 线性规划问题的每一个基解对应可行域的一个顶点;(d) 如线性规划问题存在可行域,则可行域一定包含坐标的原点;(e) 对取值无约束的变量xj,通常令xj=x′j-x″j,其中x′j?0,x″j?0,在用单纯形法求得的最优解中有可能同时出现x′j,0,x″j,0;(f) 用单纯形法求解标准型的线性规划问题时,与σj,0对应的变量都可以被选作换入变量; (g) 单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;(h) 单纯形法计算中,选取最大正检验数σk对应的变量xk作为换入变量,将使目标函数值得到最快的增长;(i) 一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;(j) 线性规划问题的任一可行解都可以用全部基可行解的线性组合表示; (k)若X1,X2分别是某一线性规划问题的最优解,则X=λ1X1+λ2X2也是该线性规划问题的最优解,其中λ1、λ2可以为任意正的实数;(l) 线性规划用两阶段法求解时,第一阶段的目标函数通常写为minz=?ixai(xai为人工变量),但也可写为min z=?ikixai,只要所有ki均为大于零的常数;(m)对一个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为Cmn个; (n) 单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解; (o) 线性规划问题的可行解如为最优解,则该可行解一定是基可行解; (p) 若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;(q) 线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;(r) 将线性规划约束条件的“?”号及“?”号变换成“=”号,将使问题的最优目标函数值得到改善;(s) 线性规划目标函数中系数最大的变量在最优解中总是取正的值;(t) 一个企业利用3种资源生产4种产品,建立线性规划模型求解得到的最优解中,最多只含有3种产品的组合;(u) 若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解; (v) 一个线性规划问题求解时的迭代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。
第一章 线性规划及单纯形法
线性规划问题的标准形式: 线性规划问题的标准形式:
max f = ∑ c j x
j =1 j n
n ∑ aij x j = bi , i = 1,2,L , m j =1 x j ≥ 0, j = 1,2,L , n
日产量( 日产量(吨) 9 5 7 21
11
)(模型 例2(运输问题)(模型) (运输问题)(模型)
minf = 2 x11 + 9 x12 + 10 x13 + 7 x14 + x21 + 3 x22 + 4 x23 + 2 x24 + 8 x31 + 4 x32 + 2 x33 + 5 x34 x11 + x12 + x13 + x14 = 9 x +x +x +x =5 23 24 21 22 x31 + x32 + x33 + x34 = 7 x11 + x21 + x31 = 3 s.t. x12 + x22 + x32 = 8 x13 + x23 + x33 = 4 x14 + x24 + x34 = 6 xij ≥ 0(i = 1,2,3; j = 1,2,3,4)
18
3、(线性规划)数学模型的三要素 、(线性规划) 、(线性规划 变量/决策变量 决策变量; ①变量 决策变量; 目标函数( ②目标函数(max/min); ); 约束条件。 ③约束条件。
19
决策变量: ①变量/决策变量:指决策者为实现规划目标采 变量 决策变量 取的方案、措施,是问题中要确定的未知量; 取的方案、措施,是问题中要确定的未知量;
线性规划与单纯形法
线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。
而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。
本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。
一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。
其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。
目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。
二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。
其基本思想是通过逐步迭代改进当前解,直至达到最优解。
三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。
2. 初始化:确定初始可行解。
通常使用人工变量法来获得一个初始可行解。
3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。
否则,进入下一步。
4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。
5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。
若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。
四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。
第1章-线性规划及单纯形法-课件(1)
✓ x1、 x2 0
IБайду номын сангаас
设备
1
原材料 A 4
原材料 B 0
利润
2
II 资源限量
2 8 台时
0
16kg
4
12kg
3
第一章 线性规划及单纯形法 运筹学
该计划的数学模型
✓ 目标函数 ✓ 约束条件
Max Z = 2x1 + 3x2
x1 + 2x2 8 4x1 16 4x2 12 x1、 x2 0
x1
✓ 美国航空公司关于哪架飞机用于哪一航班和哪些 机组人员被安排于哪架飞机的决策。
✓ 美国国防部关于如何从现有的一些基地向海湾运 送海湾战争所需要的人员和物资的决策。
✓ ……
第一章 线性规划及单纯形法 运筹学
二、线性规划问题的数学模型
✓ 1、一般形式 ✓ 2、简写形式 ✓ 3、表格形式 ✓ 4、向量形式 ✓ 5、矩阵形式
1、唯一最优解
max Z 2 x 1 3 x 2
2 x 1 2 x 2 12 ⑴
x1 4 x1
2 x2
8 16
⑵ ⑶
4 x 2 12 ⑷
x 1 0 , x 2 0
1 234 56
x2
⑶ ⑷
(4,2)
0 1 234 5678
x1
⑵
⑴
✓最优解:x1 = 4,x2 = 2,有唯一最优解Z=14。
第一章 线性规划及单纯形法 运筹学
三、线性规划模型的标准形式
✓ 1、标准形式 ✓ 2、转换方式
第一章 线性规划及单纯形法 运筹学
1、标准形式
maZx cjxj
xj
aijxj 0
bi
第一章线性规划及单纯形法
第一章线性规划及单纯形法6.6单纯形法小结Drawingontheexampl,thetwoaxisinterceptsareplotted.2、求初始基可行解并进行最优性检验Cj比值CBXBb 检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000令非基变量x1=0,x2=0,找到一个初始基可行解:x1=0,x2=0,x3=8,x4=12,x5=36,σj>0,此解不是最优(因为z=3x1+5x2+0x3+0x4+0x5)即X0=(0,0,8,12,36)T,此时利润Z=03、寻找另一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9主元首先确定入基变量再确定出基变量检验数?j81010060101/2012300-21x3x2x5050-30300-5/20Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9令x1=0,x4=0,得x2=6,x3=8,x5=12,即得基可行解X1=(0,6,8,0,12)T此时Z=30σ1=3>0,此解不是最优迭代4、寻找下一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010060101/2012300-21x3x2x5050-30300-5/208-4检验数?j40012/3-1/360101/204100-2/31/3x3x2x1053-42000-1/2-1令x4=0,x5=0,得x1=4,x2=6,x3=4,即X0=(4,6,4,0,0)T?j<0最优解:X=(4,6,4,0,0)T最优值:Z=42小结:单纯形表格法的计算步骤①将线性规划问题化成标准型。
②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。
第1章线性规划与单纯形法
一、选择填空1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 二、判断正误1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 三、将下列问题化为标准型1.123412341231324237..2358,0,0,Max Z x x x x x x x x s t x x x x x x x =++++++≤⎧⎪-+=-⎨⎪≥≤⎩符号不限[解] 令'22x x =-,'445x x x =-,在约束1中引入非负的松弛变量6x ,约束2两边同乘以-1。
整理得:''12345''123456'123''12345623()()7..23()58,,,,,0Max Z x x x x x x x x x x x s t x x x x x x x x x =-++-⎧-++-+=⎪-+--=⎨⎪≥⎩即:12345123456123123456237..2358,,,,,0Max Z x x x x x x x x x x x s t x x x x x x x x x =-++--++-+=⎧⎪---=⎨⎪≥⎩2. Min Z=-x 1+5x 2-2x 3x 1 +x 2- x 3 ≤ 61 - x2 +3x3 ≥ 5x 1 + x 2 = 10x1 ≥0, x2 ≤0, x3符号不限[解] 首先,令对变量x3进行处理,令x3 = x’3- x4;再令x’2 = - x2。
然后对目标函数和约束条件进行标准化。
Max Z=x1+5x2+2x3-2x4x1 - x2 - x3+x4+x5 = 61 + x2 +3x3 - 3x4 -x6 = 5x1 - x2 = 10x1, x2, x3, x4, x5, x6≥0四、用图解法求解下列线性规1. min Z= - x1+2x2x1 - x2 ≥-2x1 +2x2 ≤6x1, x2 ≥0[解]根据上图,最优解为X*=(x1, x2)T =(6, 0)T,最优值为-6。
运筹学教材编写组《运筹学》章节题库-线性规划与单纯形法(圣才出品)
约束条件应引入( )。[北京交通大学 2010 研]
A.可控变量
B.环境变量
C.人工变量
D.松弛变量
【答案】D
【解析】约束方程为“≥”不等式,则可在“≥”不等式左端减去一个非负剩余变量(也
可称松弛变量)。
2.单纯形法中,关于松弛变量和人工ห้องสมุดไป่ตู้量,以下说法正确的是( )。[中山大学 2008 研]
A.在最后的解中,松弛变量必须为 0,人工变量不必为 0 B.在最后的解中,松弛变量不必为 0,人工变量必须为 0 C.在最后的解中,松弛变量和人工变量都必须为 0 D.在最后的解中,松弛变量和人工变量都不必为 0 【答案】B 【解析】如果人工变量不为 0,则原问题无可行解。
【答案】√ 【解析】基解且可行才有可能是最优解。
6.若 X1,X2 分别是某一线性规划问题的最优解,则 X=λ1X1+λ2X2 也是该线性规划问 题的最优解,其中 λ1,λ2 为正实数。[南京航空航天大学 2011 研]
【答案】×
【解析】 1,2 不但应该是正实数,还应该满足 1+2 =1
7.如果线性规划问题有最优解,则它一定是基可行解。[东北财经大学 2008 研] 【答案】√ 【解析】基解且可行才有可能是最优解。
圣才电子书 十万种考研考证电子书、题库视频学习平台
是
C
m n
个。[暨南大学
2011
研]
【答案】×
【解析】其基解的个数最多是
C
m n
个,且一般情况下,基可行解的数目小于基解的个数。
5.若线性规划问题的可行解为最优解,则该可行解必定是基可行解。[南京航空航天大 学 2011 研]
【答案】C
【解析】当某些 σj>0 时,xj 增加则目标函数值还可以增大,这时要将某个非基变量 xj
运筹学[第一章线性规划与单纯形法]山东大学期末考试知识点复习
第一章线性规划与单纯形法1.线性规划问题的数学模型(1)一般形式(2)标准型式]2.数学模型化为标准型(1)若目标函数实现最小化,则min z=-max z'(令z'=-z)(2)若约束方程为不等式,则若约束方程为“≤”不等式左端+松驰变量(≥0)=右端若约束方程为“≥”不等式左端-剩余变量(≥0)=右端(3)若存在取值无约束的变量x k(1≤k≤咒),则在标准型中x k=x'k-x"k(其中x k=x',x"k≥0)3.线性规划的解线性规划问题:(1)可行解:满足约束条件②和③的解X=(x1,x2,…,x n)T。
(2)最优解:使目标函数①达到最大值的可行解。
(3)基:设A为约束方程组②的m×n阶系数矩阵,设n>m,其秩为m,B 为矩阵A中的一个m×m阶的满秩子矩阵,则称B为线性规划问题的一个基。
不失一般性,设B中每一个列向量P j(j=1,2,…,m)称为基向量,与基向量PJ对应的变量x j称为基变量。
除基变量以外的变量为非基变量。
(4)基本解:在约束方程组②中,令所有非基变量x m+1=x m+2=…=x n=0,此时方程组②有唯一解X B=(x1,x2,…,x m)T,将此解加上非基变量取0的值有X=(x1,x2,…,x m,0,0…,0)T,称X为线性规划问题的基本解。
(5)基本可行解:满足非负条件③的基本解。
(6)可行基:对应于基本可行解的基。
4.初始基可行解的确定(1)直接从A中观察到存在一个初始可行基。
(2)对所有约束条件是“≤”形式的不等式,可利用化为标准型的方法,在每个约束条件左端加上一个松弛变量,这m个松弛变量就构成一个基变量,则对应的m个向量组成的单位矩阵B就是线性规划问题的一个可行基。
(3)对所有约束条件是“≥”形式的不等式以及等式约束情况,采用人造基的方法。
即对不等式约束的左端减去一个非负的剩余变量后,再加上一个非负的人工变量;对于等式约束的左端再加上一个非负的人工变量。
运筹学第1章线性规划及单纯形法复习题
max (min)
Z = CX
AX ≤ ( = , ≥ ) b X ≥ 0
3、线性规划的标准形式 、
ma0
4、线性规划问题的解 、 (一)求解方法
一 般 有 两种方法 图 解 法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
适用于任意多个变量、 适用于任意多个变量、但需将 一般形式变成标准形式
(二)线性规划问题的解
1、解的概念 可行解:满足约束条件② 的解为可行解。 ⑴ 可行解:满足约束条件②、③的解为可行解。 所有解的集合为可行解的集或可行域。 所有解的集合为可行解的集或可行域。 最优解: 达到最大值的可行解。 ⑵ 最优解:使目标函数①达到最大值的可行解。 ⑶ 基:B是矩阵A中m×m阶非奇异子矩阵 是矩阵A ≠0), ),则 是一个基。 (∣B∣≠0),则B是一个基。
§2 图 解 法
例一、 例一、 max
Z = 2 x 2 x 2 x 4 x
2 2 1
+ 3 x
2
2 x1 + x + 1 4 x1 x1 ≥
≤ 12 ≤ 8 ≤ 16 ≤ 12
2
⑴ ⑵ ⑶ ⑷
2
0, x
≥ 0
max
Z = 2 x1 + 3 x 2 x 2 x
2 2
当xj=0时, 必有 j=zj=0, 因此 时 必有y
∑P x = ∑P y = ∑P z
j =1
r
r
r
r
j
j
j =1
j
j
j =1
j
j
=b
∑(y
j =1
j
− z j ) Pj = 0
第1章线性规划与单纯形法
线性规划问题的数学模型
7. 线性规划问题的解
线性规划问题
n
max Z cj xj (1) j 1
s.t
n j 1
aij
xj
bi
(i 1, 2,
, m) (2)
x
j
0,
j
1, 2,
, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
解: Max z = 3x1–5x2’+5x2”–8x3 +7x4 s.t. 2x1–3x2’+3x2”+5x3+6x4+x5= 28 4x1+2x2’-2x2”+3x3-9x4-x6= 39 -6x2’+6x2”-2x3-3x4-x7 = 58 x1 ,x2’,x2”,x3 ,x4 ,x5 ,x6 ,x7 ≥ 0
x1 , x2 0, x3无约束
解:(1)因为x3无符号要求 ,即x3取正值也可取负值,标准 型中要求变量非负,所以
用 x3 x3 替换 x3 ,且 x3 , x3 0
20
线性规划问题的数学模型
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
11
线性规划问题的数学模型
3. 建模条件 (1) 优化条件:问题所要达到的目标能用线型函数描述,且 能够用极值 (max 或 min)来表示;
(2) 限定条件:达到目标受到一定的限制,且这些限制能够 用决策变量的线性等式或线性不等式表示;
(3) 选择条件:有多种可选择的方案供决策者选择,以便找 出最优方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1-x2+ x3’-x3‖-x5=2
-3x1+x2+2x3’-2x3‖ =5
x1, x2,x3’,x3‖, x4,x5 0
§4 单纯形方法 一 线性规划问题解的概念
线性规划标准型的矩阵形式: Max S = CX (1-9) s.t. AX=b (1-10) X0 (1-11)
a11 a12 …. a1n
20 可行域 10
10
20
30
40
x1
x2 50
当该直线移到Q2点时,S(目标函 数)值达到最大:
40 30
Max S=50*15+30*20=1350
此时最优解=(15,20)
Q2(15,20) 可行域
20
10
10
20
30
40
x1
二个重要结论:
•满足约束条件的可行域一般都 构成凸多边形。这一事实可以 推广到更多变量的场合。
20
10
4x1+3x2 120
10
20
30
40
x1
x2 50
40 30
2x1+x2 50
由 2x1+x2 50 x1 0 x2 0
20
围成的区域
10
10
20
30
40
x1
x2 50 同时满足: 2x1+x2 50 40 30 4x1+3x2 120 x1 0 x2 0
2x1+x2 50
的区域——可行域 20 可行域 10 4x1+3x2 120
10
20
30
40
x1
x2 50 Q3(0,40) 40 30
可行域是由约束条件围成 的区域,该区域内的每一 点都是可行解,它的全体 组成问题的解集合。 该问题的可行域是由O, Q1,Q2,Q3作为顶点的
20 可行域 10
§2线性规划问题图解法
• 图解法是用画图的方式求解线性规划的一种
方法。它虽然只能用于解二维(两个变量)
的问题,但其主要作用并不在于求解,而是
在于能够直观地说明线性规划解的一些重要
性质。
§2线性规划问题图解法 (1)满足约束条件的变量的值,称 为可行解。
§2线性规划问题图解法 (1)满足约束条件的变量的值,称 为可行解。 (2)使目标函数取得最优值的可行 解,称为最优解。
二个重要结论:
•满足约束条件的可行域一般都 构成凸多边形。这一事实可以 推广到更多变量的场合。
•最优解必定能在凸多边形的某 一个顶点上取得,这一事实也 可以推广到更多变量的场合。
解的讨论:
最优解是唯一解;
解的讨论:
最优解是唯一解;
无穷多组最优解:
例1.1的目标函数由 max S=50x1+30x2 变成: max S=40x1+30x2 s.t. 4x1+3x2 120 2x1+x2 50 x1,x2 0
Max S=c1x1+c2x2+…..+cnxn
s.t. a11x1+a12x2+….+a1nxn=b1
a21x1+a22x2+….+a2nxn=b2
………………….
am1x1+am2x2+….+amnxn=bm
x1,x2….xn 0
其中:bi 0(i=1,2,….m)
线性规划问标准形的向量形式
§2线性规划问题图解法
(1)满足约束条件的变量的值,称为可 行解。 (2)使目标函数取得最优值的可行解, 称为最优解。
例1.1的数学模型 max S=50x1+30x2 s.t. 4x1+3x2 120 2x1+x2 50 x1,x2 0
x2 50 由 4x1+3x2 120 x1 0 40 30 x2 0 围成的区域
A B C 产品单价(百元)
要求确定甲、乙、丙的产量,使总产值最大。
解 将一个实际问题转化为线性规划模型有 以下几个步骤: (1)确定决策变量:决策变量是模型要决定 的未知量,也是模型最重要的参数。对简 单的模型,如上例,决策变量是显而易见 的。但对较复杂的问题,决策变量的定义 就不那么简单了。在本例中,工厂要确定 产品甲、乙、丙的生产数量,因此可定义: 生产产品甲的数量为x1,:生产产品乙的数 量为x2 ,:生产产品丙的数量为x2 。
(4) 变量取值限制:一般情况下,决策 变量只取正值(非负值)。因此,模型 中应有变量的非负约束。在本例中,非 负约束为:
将以上几部分结合起来就得到反映此工厂生 产计划的完整的数学模型:
对于模型的第四部分,对变量取值的约束, 一般都是根据实际问题所确定的。如果实 际问题中要求变量取值非负(如例1中代表 产品的产量),则变量就可以有非负限制, 但如果实际问题中变量没有非负要求,不 能人为的对变量加以非负限制。比如,变 量若表示温度,误差、资金周转等等。
b1
A=
a21 a22 …. a2n
……………………………
b =
b2
…………
am1 am2 …. amn
bn
c1 c2 C= …… cn X=
x1 x2 0= …… xn
0 0 ….. 0
•解、可行解、最优解
⊙满足约束条件(1-10)的X,称为 线性规划问题的解。
•解、可行解、最优解
⊙满足约束条件(1-10)的X,称为 线性规划问题的解。 ⊙满足约束条件(1-10)与(1-11) 的X,称为线性规划的问题可行解。
20
10
10
20
Q1(25,0) 30 40
x1
解的讨论:
无界解:
例:max S=x1+x2 s.t. -2x1+x2 40 x1-x2 20 x1,x2 0
x2 50
40 30
该可行域无界,目标函 数值可增加到无穷大, 称这种情况为无界解或 无最优解。
20
10
10
20
30
40
x1
线性规划问题的一般形式: Max(Min)S=c1x1+c2x2+…..+cnxn s.t. a11x1+a12x2+….+a1nxn (=, )b1
a21x1+a22x2+….+a2nxn (=, )b2
………………….
am1x1+am2x2+….+amnxn (=, )bm
x1,x2….xn 0
引进两个非负变量xj’ xj‖ 0
令xj= xj’- xj‖(可正可负)
如何将一般问题化为标准型:
•若约束条件右面的某一常数项 bi<0
这时只要在bi相对应的约束方程两边乘 上-1。 •若变量 xj无非负限制
引进两个非负变量xj’ xj‖>=0
令xj= xj’- xj‖(可正可负)
任何形式的线性规划总可以化成标准型
如何将一般问题化为标准型:
•若目标函数是求最小值 Min S = CX 令 S’= - S, 则 Max S’= - CX •若约束条件是不等式 若约束条件是“”不等式 n
aijxj + si = bi
j=1
si 0是非负的松驰变量
如何将一般问题化为标准型:
若约束条件是“”不等式
•解、可行解、最优解
⊙满足约束条件(1-10)的X,称为 线性规划问题的解。 ⊙满足约束条件(1-10)与(1-11) 的X,称为线性规划的问题可行 解。
⊙满足目标函数(1-9)的可行解X,
称为线性规划的问题最优解。
•基、基向量、基变量
⊙设 r(A) = m,并且B是A的m 阶非奇异 的子矩阵(det(B) 0),则称矩阵 B为线性规划问题的一个基。
例1.3 将下列问题化成标准型: Min S = -x1+2x2-3x3 s.t. x1+x2+x3 7 x1-x2+x3 2 -3x1+x2+2x3 = 5
x1,x2 0
x3 无非负限制
Max S = x1-2x2+3x3’-3x3‖ s.t. x1+x2+x3’-x3‖+x4 =7
•基、基向量、基变量
⊙设r(A)=m,并且B是A的m 阶非奇异 的子矩阵(det(B)<>0),则称矩阵 B为线性规划问题的一个基。 ⊙矩阵 B =(P1,P2….Pm) ,其列向量 Pj 称为对应基B的基向量。
n
aijxj - si = bi
j=1
si 0是非负的松驰变量
如何将一般问题化为标准型:
•若约束条件右面的某一常数项 bi<0
这时只要在bi相对应的约束方程两边乘
上-1。
如何将一般问题化为标准型:
•若约束条件右面的某一常数项 bi<0
这时只要在bi相对应的约束方程两边乘 上-1。 •若变量 xj无非负限制
天津大学老教授协会2013考研辅导 运筹学辅导
第一章
§1
线性规划
线性规划模型
例1 某厂生产甲、乙、丙三种产品,主要消 耗A、B、C三种原料,已知每单位产品消耗 原料的数量等数据如表1.1所示。 表1.1 单
位
产 原
消 品 耗 料
甲 1 5 0 2
乙 4 2 2 4
丙 2 3 5 5
原料总量 (kg) 4500 6300 3800
(2) 确定目标函数:目标函数决定线性规划 问题的优化方向,是线性规划模型的重要 组成部分。很明显,工厂的目标是使总产 值最大,更具体一点,是使三种产品单价 与产量的乘积的总和最大,因此目标函数 可写为: