Fast 3D simulation of transient electromagnetic by model reduction in the frequency domain using Kry

合集下载

电梯曳引PMSM三维暂态温度场的数值计算与分析

电梯曳引PMSM三维暂态温度场的数值计算与分析

Numerical Calculation and Analysis of 3D Transient Temperature Field in Tractive PMSM for Elavator
Jiang Shanlin Abstract Zou Jibin Zhang Hongliang Harbin 150001 China) ( Harbin Institute of Technology According to the special structure of tractive PMSM for elavator, in this paper the
江善林 等
电梯曳引 PMSM 三维暂态温度场的数值计算与分析
7
各部件的 温 度较高,对 于采用外 转 子结构的 电 机, 定子散热较差,因而要求设计者对电机的温度分 布有全面的了解。现代电机温度场的数值计算主 要集中在大中型异步电机和发电机及相关散热系 数的讨论 上 [3-5] ,而对 曳 引电机类 永 磁电机温 升 问 题的考虑普遍重视不够,实际上,发热问题对任 何电机来说都是一个重要的问题,它直接关系到 电机的使用寿命和运行的可靠性。因此,本文针 对电梯曳引外转子永磁同步电机的特点,建立了 电机三维暂态温度场计算模型并进行了数值计 算,计算结果与实测结果相符,为曳引类永磁电 机的温度场计算提供了参考依据。
率高、过载能力强和运行平稳等性能要求。交流永 磁同步电机( PMSM )具有功率密度高、转矩纹波 小、转速平稳、动态响应快、过载能力强、低噪声、 高效节能等优点已成为当今电梯行业的新宠。 PMSM 易于做成多磁极结构、低速运行,因此在额
收稿日期 2006-12-07 改稿日期 2007-02-07
第 22 卷第 10 期

采用三维有限元设计高速爪极式永磁电机

采用三维有限元设计高速爪极式永磁电机

机 的磁通 、 磁链 、 电感 、 转矩和铁耗等参数的计算 提出了解决方法 , 通过与样 机实验结果相 比较 , 证明 了所用方法 的
正确性 , 得到的结论对软磁复合材料的应用及爪 极式 电机 的设计 与分析都具有一定参考价值。
关键词 : 三维有 限元 ; 极式永磁 电机 ; 爪 软磁 复合材料 ; 参数计算 中图分 类号 : M3 5 T 5 文献标识码 : A 文章编号 :04— 0 8 20 )7—00 0 10 7 1 (0 7 0 0 4— 4
天、 飞轮 蓄能 、 电动工 具 、 心压缩 机 、 汽轮 发 电机 离 微 等许多 领域 , 速从 2 0~ 0 0 / i , 且应 转 00 2 00 0 rm n 并 用 领域 仍在不 断扩 大 。
1电机 结构
三相爪极 式永磁 电机 的定 子 由三个相 同结构 的
部 件彼 此错 开 10 电角ห้องสมุดไป่ตู้度 而组 成 , 2。 每个 部 件 由两 个
相 同的带有爪 极 的法 兰盘 组 成 , 图 1所 示 。两 个 如
软 磁 复合 材料 采 用粉 末 冶金 技 术制 造 , 由表 面
绝缘 的金属粉 末颗 粒 组成 , 以一 步压 制 成 具 有复 可
图 1 爪 极 式 永 磁 电机 单 部 件不 意 图
法兰 盘相对 放 置 , 极 相 互 交 错 , 沿 圆 周 间 隔 分 爪 并 布, 每一部 件 的爪 极总 数与 电机极 数相 同 , 法兰 在两 析常 用 的有 等值 磁路 法 和 等效 二 维 磁场 法 , 这
moo s,oai n o e l s de s e tr r tto a c r o s mo lwa mply d i h s pa r l o e n t i pe .Th p ooy e nd ts e u t we e ic s e fn l h e e r ttp a et r s ls r ds u s d i al y.T meho n e utp e e t d i hi a e r eult h ppi ain o t d a d rs l r s n e n t s p p rwe e us f o te a lc to fSMC tra s mae l . i Ke r y wo ds: D EA ; lw — p l e a e tmo o S C tra ; r me es c c lto 3 F ca o e p r n n tr; M m mae l paa tr a u ain i l

超高速磁悬浮列车的动力学建模与控制研究

超高速磁悬浮列车的动力学建模与控制研究

超高速磁悬浮列车的动力学建模与控制研究随着科技的进步,磁悬浮列车成为了现代高速交通的一种重要形式,也是未来交通的发展趋势。

磁悬浮列车比传统列车具有更高的速度和更先进的技术,其既可以减少城市拥堵,同时也可以提高旅行的速度、舒适性和安全性。

然而,由于其复杂的控制问题,磁悬浮列车的建模与控制一直是研究重点。

超高速磁悬浮列车的建模和控制是极具挑战性的问题。

这里介绍一种动力学建模方法,利用李群及李代数理论,将超高速磁悬浮列车问题转化为任意李群上的左不变向量场的估计问题,通过最优化求解来得到该向量场的估计值,从而实现对列车状态的控制。

在动力学建模过程中,需要对列车的主要参数进行确定。

列车的质量、轮距、气动系数等都是影响列车性能的重要参数。

其中,质量是列车动力学性能的重要指标。

由于超高速磁悬浮列车速度较快,其运行中会遇到空气动力学的影响,因此需要引入气动系数进行建模。

此外,两车轮的距离也需要考虑,它们对列车性能具有很大影响。

建立好了超高速磁悬浮列车的动力学模型之后,需要进行控制。

常用的控制方法有PID控制和模型预测控制。

PID控制是最常用的一种控制方法,它通过对偏差、积分和微分这三个量的加权组合来控制系统的输出。

模型预测控制是建立一个预测模型,通过预测模型来实现对列车状态的控制。

它的优点是可以利用未来的状态信息来调整当下的状态,从而使得控制效果更加理想。

需要注意的是,磁悬浮列车还需要考虑悬浮系统的控制问题。

超高速磁悬浮列车的悬浮系统一般分为电磁悬浮和磁力悬浮两种。

在悬浮系统的控制中,需要将列车的重力、气动力和侧向力进行优化控制,以保证列车在高速运行时的稳定性和平顺性。

总体来说,超高速磁悬浮列车的动力学建模和控制研究是一个复杂而又困难的问题。

通过合理的动力学建模方法和控制策略,可以实现对列车状态的实时监测和控制,确保列车在高速运行下的稳定和安全。

未来,随着科技的不断发展,超高速磁悬浮列车将会成为人们出行的主要方式,磁悬浮技术的研究和开发也将会得到广泛的关注。

永磁直线同步电动机模型参考自适应神经元速度控制的仿真

永磁直线同步电动机模型参考自适应神经元速度控制的仿真

Z a gL u n L o n u h n  ̄ a u y Da
Zh n z o e t o rCo l g e g h u El c i P we l e c e

要: 针对永 磁直线同步 电动机 的矢量控制系统,
1 永磁 直线同步 电动机 数学模 型
永磁 直线同步电动机数学模 型的建 立是计 算机 仿真 的前提 。 推导过 程 中, 如下假 设 在 做
直 接 驱 动 的 永 磁 直 线 同步 电 动 机 ,由于 其
B 粘滞摩擦系数; 一 负载阻力;

省掉了中间的传动环 节, 消除了机械传动链 的影 响; 又因其采用高性能永磁体 , 具有电磁推力强
电磁推力; 永磁体有效磁链 ;
。 () 3
度高 、 损耗低 、 电气 时间常数小 、 响应时间快 等
() 1 忽略铁心饱和; () 2 不计涡流和磁滞效应;
Ab t a t F r e ma e t g e n a y c —o o s s r e : o p r n n a ma n t i e r n h r n u l s
moo(M L M ) etrc nrl y tm, e r a iig trP S v co o t s o s e sl g nzn o
p r mee u z o to S e dc n r l r S mu ai n a a tr z y c n r l p e o to l i l t f e o
M d /tB + fKf vd+ v F = i a
() 1
( 2)
Kf 一
式 中:M一 电动机的动子质量;
() 3 动子上没有阻尼绕组 , 永磁体也没有阻

基于模型参考自适应律的无速度传感器交流异步电动机矢量控制仿真

基于模型参考自适应律的无速度传感器交流异步电动机矢量控制仿真

Re e r h o pe d S ns re sVe t r Co t o fI uci n s a c fS e e o ls co n r lo nd to
M o o s d o o e f r n e A d ptv y t m t r Ba e n M d lRe e e c a i e S s e
l I r e t i n fI 0 i n ato X
0 引 言
近年 来 , 由于构 建简 洁 、 高效 和高 可靠性 交 流
法根据不同的策略 , 以选择电机的不同物理量 可 如 电磁转 矩 、 子磁 链 、 转 定子 反 电动 势等 作为 系统 状态 广义 误差 来估 算转 速 IJ 4。本 文基 于模 型参
( 兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 7 0 5 ) 3 0 0
摘 要: 针对异步 电动机矢量控制 中对定子电阻和转子时问常数等参数 的依赖性 , 设计 了一 种基 于模 型
参考 自适应律 ( AS 的参数辨识器。该辨识器 同时还可 以观测定 子磁链 及转 子速度 , 以此为基 础 , MR ) 并 利用 MA L B Sm l k 建了以定子磁场定 向的无速度传感器矢量控制 系统 。仿 真结果表明 : T A / i ui 构 n 该方 法实时辨识 电 机参数的变化 , 高了控制 系统 的准确性和鲁棒性 。 提
T c n l y a zo 3 0 0, h a eh oo ,L nh u7 0 5 C i ) g n
Ab ta t s r c :Fo h e n e c he sao e it c n o o i o sa ti he v co o to fi du to rt e d pe d n e on t tt rr ssan e a d r t rtme c n tn n t e trc n r lo n ci n m oo ,a pa a t re tma o a e RAS s sg d. Th tmao lo c P b e'e t t tr fu nd s e . t r r mee si tr b s d M Wa de ine e esi tr as a ,o s l he sao x a pe d v l Ac o d n o t e e p r mee s,a s e d s n ore s sao ux o ena in v c o o to y t m s c n tu t d. Re c r i g t h s a a tr p e e s l s t tr f r tto e t rc n r ls se wa o sr c e l i -

三维建模与电磁场仿真新工具3D Workbench的介绍及使用方法图文详解

三维建模与电磁场仿真新工具3D Workbench的介绍及使用方法图文详解

三维建模与电磁场仿真新工具3D Workbench的介绍及使用方法图文详解™2018版本中,介绍了全新的三维建模与电磁场仿真工具——3D Workbench。

它具有当前市场上主流3D CAD 产品的用户界面(GUI),采用了经业界多年验证的Powe® 3D-EM仿真引擎(Engine)与多样且高效的网格划分(Mesh)选项。

实现跨多板信号的快速精准分析。

®等其他仿真与设计平台实现数据互通与设计仿真无缝结合。

较当前市场上依赖第三方数据与模型转换的的其他三维电磁场仿真工具而言,3D Workbench 可提供效率更高、出错率更低的解决方案,大幅缩短设计-仿真周期的同时降低设计失误风险。

庞诚来为大家详细解说该工具的四大功能:3D Workbench的建模界面与模型导入、网格化分选项、参数扫描仿真与分析,以及全功能脚本命令(Tcl)录制与回放,并向大家图示展示3D Workbench的基本工作流程。

3D Workbench工具特点友好的建模界面与模型导入便利3D Workbench 具备当前主流的3D CAD工具的建模界面。

具有三维模型界面(三维坐标轴与建模网格)、工程树、几何体构建工具以及布尔运算工具等。

如下图所示,该建模界面由上方的菜单栏和工具栏、下方的Tcl命令窗口和信息输出窗口、左侧的“工程树”面板和“实体属性”面板,以及占据主要位置的三维模型界面构成。

丰富的网格划分(Mesh)选项3D Workbench提供了Sigma Mesh 与D Mesh 两大类网格划分算法,采用四面体网格单元对求解区域内所设定的电磁场问题进行求解。

在初始网格划定并求解后,3D Workbench会根据预先设定的收敛标准,对不符合误差设定的区域做网格精炼,最终获得符合收敛标准的仿真结果。

3D Workbench更可以根据不同设计需求,选择不同的算法:需要对模型求解区域作整体快速粗略估计,选择Sigma Mesh算法或D Mesh算法中的‘Coarse’子选项需要对模型求解区域内的信号网络做精细分析,选择Sigma Mesh算法或D Mesh算法中的‘Local Map’子选项,并根据信号线尺度、求解波长等参量对‘信号线最大网格长度(Signal net max edge length)’做适当设置。

永磁同步电机调速系统的建模与仿真

永磁同步电机调速系统的建模与仿真

永磁同步电机调速系统的建模与仿真引言永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)作为一种具有高效能和高功率密度的电机,广泛应用于工业和交通领域。

在实际应用中,调速系统的性能对于电机的工作效率和稳定性至关重要。

因此,对永磁同步电机调速系统进行建模与仿真分析是非常有意义的。

本文将介绍永磁同步电机调速系统的建模过程,并利用仿真工具对其进行验证和分析。

首先,我们将介绍永磁同步电机的基本原理和特点,然后讨论调速系统的要求和功能。

接下来,我们将详细介绍建模过程,包括电机参数的确定、数学模型的建立等。

最后,利用仿真工具进行一系列实验,并对实验结果进行分析与讨论。

永磁同步电机的基本原理与特点永磁同步电机是一种采用永磁体作为励磁源的感应电机,其基本原理是利用电磁感应产生的磁场与永磁体磁场之间的相互作用,从而实现力矩输出。

与其他电机相比,永磁同步电机具有以下特点:•高效能:由于永磁体的磁场不需要外部供电,电机的能量转换效率较高。

•高功率密度:永磁材料具有较高的磁能密度,同样功率下的永磁同步电机尺寸较小。

•高响应性:永磁同步电机响应速度快,能够快速适应负载变化。

•平滑运行:电机工作过程中无需传统感应电机的公差、电刷及电架等机械部件,运行平稳。

调速系统的要求与功能永磁同步电机的调速系统需要满足一定的要求和功能,主要包括以下几点:1.速度闭环控制:调速系统需要实现对电机运行速度的闭环控制,使其能够稳定地运行在设定的转速范围内。

2.高动态响应:调速系统需要具有较高的控制带宽,能够快速响应负载变化和指令调整。

3.自抗扰能力:调速系统需要具备较强的自抗扰能力,能够有效抵抗外部干扰对电机运行的影响。

4.电流保护:调速系统需要实现对电机电流的实时监测和保护,避免电流过大对电机和系统的损坏。

永磁同步电机调速系统的建模过程1. 确定电机参数在建立调速系统的模型之前,首先需要确定永磁同步电机的参数。

电力专业常用英语词汇

电力专业常用英语词汇

电力专业常用英语词汇网易电力专业英语词汇(较全)1)元件设备三绕组变压器:three-column transformer ThrClnTrans 双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor2)状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance负序阻抗:negative sequence impedance零序阻抗:zero sequence impedance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current母线 bus变压器 transformer升压变压器 step-up transformer高压侧 high side输电系统 power transmission system输电线 transmission line固定串联电容补偿fixed series capacitor compensation 稳定 stability电压稳定 voltage stability功角稳定 angle stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC装机容量 installed capacity电网 power system落点 drop point开关站 switch station双回同杆并架 double-circuit lines on the same tower 变电站 transformer substation补偿度 degree of compensation高抗 high voltage shunt reactor无功补偿 reactive power compensation故障 fault调节 regulation裕度 magin三相故障 three phase fault故障切除时间 fault clearing time极限切除时间 critical clearing time切机 generator triping高顶值 high limited value强行励磁 reinforced excitation线路补偿器 LDC(line drop compensation)机端 generator terminal静态 static (state)动态 dynamic (state)单机无穷大系统 one machine - infinity bus system 机端电压控制 AVR功角 power angle有功(功率) active power无功(功率) reactive power功率因数 power factor无功电流 reactive current下降特性 droop characteristics斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap下降率 droop rate仿真分析 simulation analysis传递函数 transfer function框图 block diagram受端 receive-side裕度 margin同步 synchronization失去同步 loss of synchronization阻尼 damping摇摆 swing保护断路器 circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitanceAGC Automatic Generation Control自动发电控制AMR Automatic Message Recording 自动抄表ASS Automatic Synchronized System 自动准同期装置ATS Automatic Transform System 厂用电源快速切换装置AVR Automatic Voltage Regulator 自动电压调节器BCS Burner Control System 燃烧器控制系统BMS Burner Management System 燃烧器管理系统CCS Coordinated Control System 协调控制系统CRMS Control Room Management System 控制室管理系统CRT Cathode Ray Tube 阴极射线管DAS Data Acquisition System 数据采集与处理系统DCS Distributed Control System 分散控制系统DDC Direct Digital Control 直接数字控制(系统)DEH Digital Electronic Hydraulic Control 数字电液(调节系统)DPU Distributed Processing Unit 分布式处理单元EMS Energy Management System 能量管理系统ETS Emergency Trip System 汽轮机紧急跳闸系统EWS Engineering Working Station 工程师工作站FA Feeder Automation 馈线自动化FCS Field bus Control System 现场总线控制系统FSS Fuel Safety System 燃料安全系统FSSS Furnace Safeguard Supervisory System 炉膛安全监控系统GIS Gas Insulated Switchgear 气体绝缘开关设备GPS Global Position System 全球定位系统HCS Hierarchical Control System 分级控制系统LCD Liquid Crystal Display 液晶显示屏LCP Local Control Panel 就地控制柜MCC Motor Control Center (电动机)马达控制中心MCS Modulating Control System 模拟量控制系统MEH Micro Electro Hydraulic Control System 给水泵汽轮机电液控制系统MIS Management Information System 管理信息系统NCS Net Control System 网络监控系统OIS Operator Interface Station 操作员接口站OMS Outage Management System 停电管理系统PID Proportion Integration Differentiation 比例积分微分PIO Process inputOutput 过程输入输出(通道)PLC Programmable Logical Controller 可编程逻辑控制器PSS Power System Stabilizator 电力系统稳定器SCADA Supervisory Control And Data Acquisition 数据采集与监控系统SCC Supervisory Computer Control 监督控制系统SCS Sequence Control System 顺序(程序)控制系统SIS Supervisory Information System 监控信息系统TDCS(TDC)Total Direct Digital Control 集散控制系统TSI Turbine Supervisory Instrumentation 汽轮机监测仪表UPS Uninterrupted Power Supply 不间断供电专业英语(电力词汇)标准的机组数据显示 (Standard Measurement And Display Data)负载电流百分比显示 Percentage of Current load(%)单相/三相电压 Voltage by One/Three Phase (Volt.)每相电流 Current by Phase (AMP)千伏安 Apparent Power (KVA)中线电流 Neutral Current (N Amp)功率因数 Power Factor (PF)频率 Frequency(HZ)千瓦 Active Power (KW)千阀 Reactive Power (KVAr)最高/低电压及电流 Max/Min. Current and Voltage输出千瓦/兆瓦小时 Output kWh/MWh运行转速 Running RPM机组运行正常 Normal Running超速故障停机 Overspeed Shutdowns低油压故障停机 Low Oil Pressure Shutdowns高水温故障停机 High Coolant Temperature Shutdowns起动失败停机 Fail to Start Shutdowns冷却水温度表 Coolant Temperature Gauge机油油压表 Oil Pressure Gauge电瓶电压表 Battery Voltage Meter机组运行小时表 Genset Running Hour Meter怠速-快速运行选择键 Idle Run – Normal Run Selector Switch运行-停机-摇控启动选择键 Local Run-Stop-Remote Starting Selector Switch其它故障显示及输入 Other Common Fault Alarm Display and电力行波词汇行波travelling wave模糊神经网络fuzzy-neural network神经网络neural network模糊控制fuzzy control研究方向 research direction副教授associate professor电力系统the electrical power system大容量发电机组large capacity generating set输电距离electricity transmission超高压输电线super voltage transmission power line 投运commissioning行波保护Traveling wave protection自适应控制方法adaptive control process动作速度speed of action行波信号travelling wave signal测量信号measurement signal暂态分量transient state component非线性系统nonlinear system高精度high accuracy自学习功能self-learning function抗干扰能力anti-jamming capability自适应系统adaptive system行波继电器travelling wave relay输电线路故障transmission line malfunction仿真simulation算法algorithm电位electric potential短路故障short trouble子系统subsystem大小相等,方向相反equal and opposite in direction 电压源voltage source故障点trouble spot等效于equivalent暂态行波transient state travelling wave偏移量side-play mount电压electric voltage附加系统add-ons system波形waveform工频power frequency延迟变换delayed transformation延迟时间delay time减法运算subtraction相减运算additive operation求和器summator模糊规则fuzzy rule参数值parameter values可靠动作action message等值波阻抗equivalent value wave impedance附加网络additional network修改的modified反传算法backpropagation algorithm隶属函数membership function模糊规则fuzzy rule模糊推理fuzzy reasoning模糊推理矩阵fuzzy reasoning matrix样本集合 sample set给定的given采样周期sampling period三角形隶属度函数Triangle-shape grade of membership function负荷状态load conditions区内故障troubles inside the sample space门槛值threshold level采样频率sampling frequency全面地all sidedly样本空间sample space误动作malfunction保护特性protection feature仿真数据simulation data灵敏性sensitivity小波变换wavelet transformation神经元neuron谐波电流harmonic current电力系统自动化power system automation继电保护relaying protection中国电力 China Power学报 journal初探primary exploration电机学 electrical machinery自动控制理论 automatic control theory电磁场 electromagnetic field电磁场与电磁波Electromagnetic Fields & Magnetic Waves微机原理 principle of microcomputer电工学 electrotechnics principle of circuit s电力系统稳态分析 steady-state analysis o f power system电力系统暂态分析 transient-state analysi s of power system电力系统继电保护原理 principle of electrica l system's relay protection电力系统元件保护原理 protection principl e of power system 's element电力系统内部过电压 past voltage within po wer system模拟电子技术基础 basis of analogue electr onic technique数字电子技术 digital electrical technique 电路原理实验lab. of principle of circuits电气工程讲座 lectures on electrical powe r production电力电子基础basic fundamentals of powe r electronics高电压工程high voltage engineering电子专题实践topics on experimental proje ct of electronics电气工程概论introduction to electrical eng ineering电子电机集成系统electronic machine syste m电力传动与控制electrical drive and contro l电力电子电路Power Electronic Circuit电力电子电器Power Electronic Equipment电力电子器件Power Electronic Devices电力电子学Power Electronics电力工程Electrical Power Engineering电力生产技术Technology of Electrical Power Generation电力生产优化管理Optimal Management of Electrical Power Generation电力拖动基础Fundamentals for Electrical Towage电力拖动控制系统Electrical Towage Control Systems电力系统Power Systems电力系统电源最优化规划Optimal Planning of Power Source in a PowerSystem电力系统短路Power System Shortcuts电力系统分析Power System Analysis电力系统规划Power System Planning电力系统过电压Hyper-Voltage of Power Systems电力系统继电保护原理Power System Relay Protection电力系统经济分析Economical Analysis of Power Systems电力系统经济运行Economical Operation of Power Systems电力系统可靠性Power System Reliability电力系统可靠性分析Power System Reliability Analysis电力系统无功补偿及应用Non-Work Compensation in Power Systems &Applicati电力系统谐波Harmonious Waves in Power Systems电力系统优化技术Optimal Technology of Power Systems电力系统优化设计Optimal Designing of Power Systems电力系统远动Operation of Electric Systems电力系统远动技术Operation Technique of Electric Systems电力系统运行Operation of Electric Systems电力系统自动化Automation of Electric Systems电力系统自动装置Power System Automation Equipment电路测试技术Circuit Measurement Technology电路测试技术基础Fundamentals of Circuit Measurement Technology电磁感应定律law of electromagnetic induction励磁 excitation 励磁器 magnetizing ex citer励磁器 exciter 恒定励磁器constant excit er励磁器激振器exciter励磁电流:magnetizing current 强行励磁reinforced excitation励磁调节器excitation regulator无功伏安volt-ampere reactive无功伏安时volt-ampere-hour reactive稳态控制homeostatic control; stable co ntrol a steady-state control水电厂hydroelectric station落点 drop point 调节 regulation调节器conditioner 励磁调节器exc itation regulator调速器regulator, governor ;speed re gulator ;(正规)speed governor高抗 high voltage shunt reactor并列的: apposite; paratactic 同步 sy nchronization系统解列system splitting( trip)失去同步loss of synchronization分接头:tap 裕度 margin 档位:tap p osition故障 fault 三相故障 three phase fault 切机 generator triping故障切除时间fault clearing time高顶值 high limited value静态 static (state) 动态 dynamic (sta te) 暂态transient机端电压控制 avr电动机:motor有功负载: active load/pload 无功负载:r eactive load电压互感器pt (potential /voltage transformer )参考值 reference value 单机无穷大系统one machine - infinity bus system仿真分析 simulation analysis 下降率 dr oop rate传递函数 transfer function 框图 bloc k diagram受端 receive-side 同步 synchronizatio n保护断路器 circuit breaker阻尼 damping无刷直流电机:brusless dc motor永磁直流电动机permanent-magnet direct current motor机端 generator terminal永磁同步电机:permanent-magnet synchr onism motor异步电机:asynchronous motor三绕组变压器:three-column transformer t hrclntransthree winding transforme r双绕组变压器:double-column transforme r dblclmntranstwo-circuit transformer; two -winding transformer固定串联电容补偿fixed series capacitor co mpensation双回同杆并架 double-circuit lines on the s ame tower单机无穷大系统 one machine - infinity bu s system偿度 degree of compensation电磁场失去同步electromagnetic fields los s of synchronization装机容量 installed capacity无功补偿 reactive power compensation故障切除时间 fault clearing time极限切除时间 critical clearing time强行励磁 reinforced excitation并联电容器:shunt capacitor下降特性 droop characteristics线路补偿器 ldc(line drop compensatio n) 《。

永磁同步电机新型滑模观测器无传感器矢量控制调速系统

永磁同步电机新型滑模观测器无传感器矢量控制调速系统

永磁同步电机新型滑模观测器无传感器矢量控制调速系统一、本文概述随着现代电力电子技术和控制理论的不断发展,永磁同步电机(PMSM)因其高效率、高功率密度和优良的控制性能在诸多领域,如电动汽车、风力发电、工业自动化等,得到了广泛应用。

然而,传统的PMSM控制系统通常依赖于位置传感器来获取电机的转速和位置信息,这不仅增加了系统的复杂性,还降低了系统的可靠性和稳定性。

因此,研究并开发无传感器矢量控制调速系统对于提高PMSM的性能和适用范围具有重要意义。

本文旨在研究一种新型的滑模观测器无传感器矢量控制调速系统,旨在解决传统PMSM控制系统对位置传感器的依赖问题。

文章将介绍永磁同步电机的基本工作原理和控制策略,为后续研究奠定理论基础。

接着,将详细阐述滑模观测器的设计原理及其在PMSM无传感器控制中的应用,包括滑模观测器的数学模型、稳定性分析和优化方法。

在此基础上,将探讨基于滑模观测器的无传感器矢量控制调速系统的实现方法,包括转速估计、矢量控制和调速策略等。

通过仿真和实验验证所提系统的有效性和优越性,为PMSM无传感器控制技术的发展提供新的思路和解决方案。

本文的研究不仅对于提高PMSM的性能和稳定性具有重要意义,也为其他类型电机的无传感器控制提供了有益的参考和借鉴。

本文的研究成果有望为相关领域的技术创新和应用推广提供理论支持和实践指导。

二、永磁同步电机及其控制系统概述永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种高性能的电动机,其设计基于同步电机的原理,并采用永磁体作为其磁场源,从而省去了传统电机中的励磁绕组和相应的励磁电流。

由于其高功率密度、高效率以及优良的调速性能,PMSM在电动汽车、风电、工业自动化等领域得到了广泛应用。

PMSM的控制系统是实现其高性能运行的关键。

传统的PMSM控制系统通常依赖于高精度的位置传感器(如光电编码器或霍尔传感器)来获取电机的转子位置信息,进而实现准确的矢量控制。

毕设翻译

毕设翻译

运输车使用散装超导的磁悬浮3D电磁分析摘要—我们已经构建并展示了磁悬浮转运模型组成的超导块材(超导散货)和永久磁铁。

电梯的动态特性力,侧向力和磁刚度是非常重要的超导装置,如磁悬浮系统的设计。

电磁现象应在高温超导的条件下,通过澄清磁场和屏蔽电流来准确的分析。

在这项研究中,我们开发了结合了快速多极子方法(FMM)的新的基于三维混合仿真程序有限元和边界元法(三维混合FE-BE)。

通过使用快速多极子方法,使得解决减少所需的内存大小和改善准确性的大规模问题成为可能。

这个仿真程序,可以考虑各向异性和非线性E—J特性的高温超导块材。

结果实验和数值模拟是在良好的协议。

相关的索引—快速多极子方法,高温超导散装,悬浮转运,三维混合有限元与边界元法。

1.导言高温的电磁特性超导体块材(高温超导块材),预计将适用于磁悬浮装置。

我们已经构建并表现出了高温超导磁悬浮转运组成散货和永久磁铁[1][2]。

下部和上部(悬浮一部分)磁性连接; 根据下部的运动没有任何机械接触这意味着磁悬浮部分可以自由移动。

这种磁悬浮系统应用在工业清洗房间场和娱乐场。

对于超导应用的设计磁悬浮系统,动态特性升力,侧向力和磁刚度是很重要的。

电磁现象应该建立在高温超导块材内磁场的精确分析和屏蔽电流分布的基础上进行调查研究。

我们已经开发出一种基于三维混合有限元与边界元法(三维混合FE-BE法)[3]的计算机程序。

3D混合FE-BE方法适合开放边界电磁领域的运动的非线性的材料和涡流。

但是由于边界元法产生的稠密矩阵,这种方法需要大容量内存和长的计算时间。

在最近这些年,快速多极子方法(FMM)已成为一个可行的技术来加速计算的边界积分和边界元法[7]。

快速多极子方法(FMM)在结合使用迭代求解已被证明,可以减少所需的内存[10]。

因此,为了减少执行时间,以提高基于三维混合精度的数值模拟FE -BE方法,我们修改了开发的计算机程序采用边界元的快速多极子方法(FMM)。

我们进行了所设计的磁悬浮模型[4] 的升力和侧向力特性实验来确认开发的计算机程序的有效性。

三维直线感应电动机牵引力计算方法

三维直线感应电动机牵引力计算方法

一 — …



2 { ; ≥… … … … … … … … … … … … … … … … … … … … … … … 一 一
搬持电棚 一_0 年 .2 一 1 … . … 2 第 :期 : -1 :o : :.
三维 直 线 感应 电动机 牵 引 力计o a l t ma n t ed mo e f h n a d cin moo . h rc in w so ti e y c c lt g t et r e d — i n i n l er e o g e i f l d l e l e r n u t tr T eta t a b an d b a u ai h e - i ci ot i i o o l n h
型。通过计算 三维 电磁 场量来 得到电机牵引力 , 计算结果与实验测试结果进行 了比较 。
关键词 : 直线感应 电动机 ; 分层理论 ; 傅里 叶谐波法 ; 三维电磁场 ; 引力 牵 中图分类号 : M3 94 T 5 . 文 献标识码 : A 文章编 号 :04 7 1 ( 00 1 — 04 0 1 0 — 08 2 1 )2 02 — 3
me tme h d, i h e —dme so a i i l me t meh d t k s ln i o c ry o t B s d o h w -d me so a n t o whl t r e i n i n l f t ee n to a e o g t e ne me t a r u . a e n t e t o i n i n l mu t l y rte r t e F u e amo i t o su e y e p n i g l r r r u r n e o st u l h r e l - a e h o y. o r rh r n c meh d wa s d b x a d n i h i  ̄e a p ma c re ti p r d o b i t e t e l i y n i d h

电动汽车前向仿真中驾驶员模型建模与仿真

电动汽车前向仿真中驾驶员模型建模与仿真

电动汽车前向仿真中驾驶员模型建模与仿真
黄妙华;陈飚;陈胜金
【期刊名称】《武汉理工大学学报(交通科学与工程版)》
【年(卷),期】2004(028)006
【摘要】介绍了在电动汽车前向仿真中所采用的驾驶员模型的建模方法.针对仿真车速与需求车速之间的偏差使用PI控制器进行修正而又难以整定P,I系数的问题,提出了采用模糊控制器对车速偏差进行修正的方法.按此方法对驾驶员模型进行建模,在电动汽车仿真软件HEVSim中进行仿真测试,在实现仿真要求的前提下,仿真车速对需求车速的跟踪情况优于PI控制器.该驾驶员模型具有较好的鲁棒性,适用于各种类型的电动汽车仿真.
【总页数】4页(P825-828)
【作者】黄妙华;陈飚;陈胜金
【作者单位】武汉理工大学汽车工程学院,武汉,430070;武汉理工大学汽车工程学院,武汉,430070;武汉理工大学汽车工程学院,武汉,430070
【正文语种】中文
【中图分类】U469.72;TP391.9
【相关文献】
1.微观交通仿真中的驾驶员模型 [J], 李勇;何伟;苏虎
2.基于遗传算法的混合动力汽车前向仿真驾驶员模型参数优化 [J], 胡斐;赵治国
3.驾驶员模型在制动到零仿真中的应用 [J], 刘涛;郭孔辉
4.一种交通虚拟仿真中的驾驶员情绪感染模型 [J], 刘婷婷; 刘箴; 陆涛; 刘翠娟; 柴艳杰
5.交通微观仿真中的驾驶员视觉感知模型 [J], 杨建国;肖永剑;王兆安
因版权原因,仅展示原文概要,查看原文内容请购买。

基于滑模变结构的表面式永磁同步电机速度与位置控制

基于滑模变结构的表面式永磁同步电机速度与位置控制

基于滑模变结构的表面式永磁同步电机速度与位置控制一、本文概述本文旨在探讨基于滑模变结构的表面式永磁同步电机(Surface-Mounted Permanent Magnet Synchronous Motor, SPMSM)速度与位置控制的研究。

滑模变结构控制作为一种先进的非线性控制方法,具有快速响应、强鲁棒性和易于实现等优点,在电机控制领域得到了广泛应用。

SPMSM作为一种高性能的电机类型,具有高功率密度、高效率和优良的动态性能,因此在工业自动化、电动车辆和航空航天等领域具有广泛的应用前景。

本文将详细介绍基于滑模变结构的SPMSM速度与位置控制策略,包括滑模变结构控制的基本原理、SPMSM的数学模型、滑模控制器的设计以及实验验证等方面。

通过理论分析和实验研究,本文旨在揭示滑模变结构控制在SPMSM速度与位置控制中的有效性,并为其在实际应用中的推广提供理论依据和技术支持。

本文还将对滑模变结构控制在实际应用中可能遇到的问题和挑战进行探讨,以期为未来相关研究提供参考和借鉴。

二、滑模变结构控制理论基础滑模变结构控制(Sliding Mode Variable Structure Control,简称SMVSC)是一种非线性控制方法,具有对系统参数摄动和外部干扰不敏感的特性,因此在电机控制领域得到了广泛应用。

SMVSC的核心思想是通过设计合适的滑模面和控制律,使系统状态在滑模面上做滑动运动,从而实现对系统的高性能控制。

对于表面式永磁同步电机(Surface-Mounted Permanent Magnet Synchronous Motor,简称SPMSM)的速度与位置控制,滑模变结构控制能够有效地处理系统中的不确定性和非线性因素,提高系统的鲁棒性。

在SPMSM的控制中,滑模面通常设计为电机速度和位置的函数,通过调整控制律使得系统状态在滑模面上滑动,从而实现速度和位置的精确控制。

鲁棒性强:滑模变结构控制对系统参数摄动和外部干扰具有很强的抑制能力,因此在实际应用中能够保持良好的控制性能。

瞬态电磁场数值模拟模型的建立与验证

瞬态电磁场数值模拟模型的建立与验证

瞬态电磁场数值模拟模型的建立与验证随着工业生产和科技发展的不断推进,电子产品、通信设备等高科技产品的应用越来越广泛,而这些高科技产品中经常使用到电磁波与电磁场相应技术。

随着应用的不断深入,研究电磁场的性质和特点已经成为了物理学家们关注的重点之一。

为了更好地应用电磁场技术,科学家们就必须建立一个可靠的数值模拟模型,以帮助他们更好地了解电磁场在各种情况下的变化规律。

目前,已经有不少学者对电磁场数值模拟模型进行了探究,其中重点研究的便是瞬态电磁场数值模拟模型。

瞬态电磁场通常指电磁场中瞬间的电流或电荷过程,其特点是快速变化,一般频率高达百万赫兹以上,因此考虑到瞬态电磁场的特殊性质,在建立数值模拟模型时就需要考虑更多的因素。

首先,我们需要建立一个瞬态电磁场的数值模拟模型。

该模型通常是建立在电场密度、磁场密度、电流密度等参数的基础上的,其中重点是确定这些参数的初值和方程。

为了更好地了解电磁场在不同条件下的变化规律,模型需要考虑到许多因素,例如电磁场与介质的相互作用,电荷和电流的分布等等。

其次,为了验证所建立的数值模拟模型的正确性,需要进行一些实验和观测。

通常,我们会利用专门的电磁场探测器来测量电磁场的变化情况,并与预测的模型数据进行比较。

通过比较,我们可以知道模型在多大程度上符合实际情况,以及模型中是否存在潜在问题需要进一步解决。

最后,需要注意到模型的可靠性问题。

由于瞬态电磁场的变化速度极快,因此模型的精度可能会受到许多因素的影响,例如时间步长、网格划分等等。

因此,在建立模型时需要格外小心以确保其可靠性。

总的来说,研究瞬态电磁场数值模拟模型是一项艰巨但有前途的工作。

虽然目前已经取得了不少成果,但还需要进一步地探究,以确保模型的正确性和可靠性。

通过建立可靠的数值模型,我们将能够更好地了解瞬态电磁场的特性,同时也能够更好地应用电磁场技术,以推进工业生产和科技的发展。

电磁场有限元仿真的高速直线电机

电磁场有限元仿真的高速直线电机

电磁场有限元仿真的高速直线电机一、简介高速直线电机是一种最近备受关注的电机类型,它具有高速、高精度、高力密度等特点,广泛应用于数控机床、印刷设备、风力发电、电梯等领域。

由于其特殊的结构和工作原理,传统的电机设计方法已经无法满足其发展需求,因此电磁场有限元仿真成为了高速直线电机设计中的重要工具。

二、电磁场有限元仿真的意义对于高速直线电机来说,电磁场有限元仿真具有重要的意义。

通过仿真可以更好地理解电机的工作原理和特性,为电机的优化设计提供参考。

仿真可以直观地观察电机在不同工况下的电磁场分布、磁场强度等参数,为电机的性能预测和分析提供依据。

仿真还可以帮助设计人员快速评估不同设计方案的优劣,加快设计周期,降低成本。

三、电磁场有限元仿真的原理电磁场有限元仿真是利用电磁场有限元软件,将电机的结构和工作原理建立为二维或三维的有限元模型,通过求解Maxwell方程组,得到电机在不同工况下的电磁场分布和参数。

在仿真过程中,需要考虑电机的结构、材料特性、绕组接口、气隙磁路等因素,以准确地模拟电机的电磁场。

四、电磁场有限元仿真的挑战尽管电磁场有限元仿真在高速直线电机设计中具有重要的意义,但是也面临一些挑战。

高速直线电机通常具有复杂的结构和多种工况,仿真模型需要考虑多种因素,计算量大,耗时长。

电机的非线性、饱和等特性也增加了仿真的难度。

仿真结果的准确性和可靠性也是一个关键问题,需要设计人员具有丰富的经验和深厚的理论功底。

五、个人观点对于电磁场有限元仿真的高速直线电机,我认为在未来的发展中,应该加强仿真软件的开发,提高仿真效率和准确性。

设计人员也需要不断提升自身的专业能力,充分理解电机的工作原理和特性,结合仿真结果进行合理的设计优化。

另外,也应该加强仿真结果与实际测试的验证,不断完善仿真模型,提高仿真的可信度。

总结通过上述对电磁场有限元仿真的高速直线电机的探讨,我们可以看到,电磁场有限元仿真在高速直线电机设计中扮演着重要的角色。

一种基于非newtonian流变学模型的牵引力计算公式

一种基于非newtonian流变学模型的牵引力计算公式

一种基于非newtonian流变学模型的牵引力计算公式非牛顿流变学模型是研究非粘性流体和非弹性固体的变形和流动性质的一种科学模型。

这种模型放弃了牛顿流体力学中的假设,认为材料不仅仅有粘性,还存在弹性等非线性特性。

在牵引力计算中,传统的牛顿流体力学模型无法准确描述复杂流体的流动行为,因此需要采用非牛顿流变学模型。

其中最常用的非牛顿流变学模型有Bingham模型、塑性流体模型和黏弹性模型等。

Bingham模型是最基本的非牛顿流变学模型之一,适用于描述铺层体、胶体和泥浆等流体的流动行为。

根据Bingham模型,流体的剪切应力与应变速率之间存在一个固定的起始应变速率,即Bingham应变速率,当超过这个应变速率时,流体才开始流动。

根据Bingham模型,牵引力计算公式如下:τ=τ0+μγ其中,τ表示流体的剪切应力,τ0表示流体的起始应变速率,μ表示流体的动态黏度,γ表示应变速率。

塑性流体模型适用于描述像泥浆、浆体和液态金属等这样的流体。

塑性流体模型认为流体的流动需要克服一个起动剪切应力,即塑性屈服点,当超过这个塑性屈服点时,流体才开始流动。

根据塑性流体模型,牵引力计算公式如下:τ=τ0+μγ^2其中,τ表示流体的剪切应力,τ0表示流体的塑性屈服点,μ表示流体的塑性黏度,γ表示应变速率。

黏弹性模型适用于描述像胶体、乳胶和复合材料等这样的流体。

黏弹性模型认为流体具有同时具有粘性和弹性的特性,即具有流变性和弹性恢复性。

根据黏弹性模型,牵引力计算公式如下:τ=μγ+Gγ其中,τ表示流体的剪切应力,μ表示流体的黏性,γ表示应变速率,G表示流体的弹性模量。

总结起来,非牛顿流变学模型的牵引力计算公式分为Bingham模型、塑性流体模型和黏弹性模型。

根据流体的实际性质和流动条件,选择合适的模型进行计算,能够更准确地描述非牛顿流体的流动行为。

这些模型可根据不同的实验数据和流动条件进行参数拟合,得到更准确的牵引力计算公式。

超导磁体的场景建模与优化设计方法

超导磁体的场景建模与优化设计方法

超导磁体的场景建模与优化设计方法引言超导磁体是一种应用于医学成像、核磁共振、粒子加速器等领域的重要设备。

为了提高超导磁体的性能和效率,场景建模和优化设计方法成为了研究的热点。

本文将探讨超导磁体场景建模与优化设计方法的相关技术和应用。

一、超导磁体的场景建模1.1 超导磁体的基本原理超导磁体是利用超导材料的零电阻和完全抗磁性的特性来产生强磁场的设备。

超导材料在低温下可以达到超导状态,电流可以在其中无阻抗地流动。

通过在超导材料中通入电流,可以产生强大的磁场。

1.2 场景建模的重要性场景建模是超导磁体设计的关键步骤之一。

通过建立准确的场景模型,可以预测超导磁体的性能和行为,为优化设计提供依据。

场景建模需要考虑超导材料的特性、电磁场分布、热传导等因素。

1.3 场景建模的方法场景建模的方法包括数值模拟和实验测试。

数值模拟方法通过建立数学模型,利用计算机进行仿真分析。

实验测试方法通过实际测量数据来获取场景信息。

两种方法相互补充,可以提高场景建模的准确性和可靠性。

二、超导磁体的优化设计方法2.1 优化设计的目标超导磁体的优化设计旨在提高磁场强度、稳定性和效率,降低能耗和成本。

优化设计需要考虑超导材料的选择、电流密度的分布、磁场分布的均匀性等因素。

2.2 优化设计的方法优化设计的方法包括参数优化、拓扑优化和材料优化。

参数优化通过调整超导磁体的结构参数,如线圈的尺寸、形状等,来改善性能。

拓扑优化通过改变线圈的布局和连接方式,来优化磁场分布。

材料优化通过选择合适的超导材料,来提高磁场强度和稳定性。

2.3 优化设计的工具优化设计的工具包括有限元分析、遗传算法、神经网络等。

有限元分析是一种常用的数值模拟方法,可以用于建立超导磁体的数学模型,并进行仿真分析。

遗传算法和神经网络是优化算法,可以用于搜索最优解。

这些工具可以提高优化设计的效率和准确性。

三、超导磁体场景建模与优化设计方法的应用3.1 医学成像领域超导磁体在医学成像领域有广泛应用,如核磁共振成像。

基于三维磁场仿真分析的含永磁继电器等效磁路模型的建立_梁慧敏

基于三维磁场仿真分析的含永磁继电器等效磁路模型的建立_梁慧敏

2011年1月电工技术学报Vol.26 No. 1 第26卷第1期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Jan. 2011基于三维磁场仿真分析的含永磁继电器等效磁路模型的建立梁慧敏由佳欣叶雪荣翟国富(哈尔滨工业大学军用电器研究所哈尔滨 150001)摘要具有非线性B-H特性曲线永磁体的等效是影响含永磁继电器等效磁路计算准确度的重要因素之一。

首先通过有限元软件对永磁进行三维磁场仿真分析,获得永磁各截面磁感应强度分布曲线,根据曲线特点对永磁进行分段等效,给出各段永磁等效磁动势的求解方法。

在此基础上,针对某型号含永磁继电器磁系统的具体结构,建立其等效磁路模型,计算继电器的吸力特性。

最后将计算结果与三维有限元磁场仿真结果及实际测试结果进行比较,该磁路模型能够将吸力计算误差减小到10%以内,成为继电器可靠性设计计算吸力特性的有效方法。

关键词:永磁继电器等效磁路可靠性中图分类号:TM581.3Construction of Equivalent Magnetic Circuit forPermanent Magnet Relay Based on 3-D Magnetic Field AnalysisLiang Huimin You Jiaxin Ye Xuerong Zhai Guofu(Harbin Institute of Technology Harbin 150001 China)Abstract Equivalent nonlinear B-H characteristic permanent magnet (PM) is an important factor of accurate equivalent model calculation. Equivalent subsection PM based on 3-D magnetic field simulation is established, and equivalent magnetic potentials of each subsection are calculated.Equivalent magnetic circuit model of PM relay magnetic system is established to calculate attractive force characteristics of relay. The accuracy is proved by comparing the result calculated by using 3-D magnetic field simulation result and measuring result. This method reduces the calculation results error of attractive force to 10%. Such research can become a valid way for attractive force calculation of relay.Keywords:Permanent magnet, relay, equivalent magnetic circuit, reliability1引言在电子元器件中,电磁继电器一般被认为是一种最不可靠的电子元件,但是电磁继电器尤其是含永磁继电器在控制电路中有独特的电气、物理特性,具有转换深度高、可多路同步切换、输入输出比大、抗干扰能力强等一系列固体电子器件不能替代的优点,因此广泛应用于国防及民用自动控制系统中完成信号传递、执行控制、系统配电、电路隔离、电压或负载转换等功能,其可靠性直接影响整机系统的可靠性。

电涡流缓速器的三维数值仿真(英文)

电涡流缓速器的三维数值仿真(英文)

电涡流缓速器的三维数值仿真(英文)
衣丰艳;于明进;刘成晔
【期刊名称】《系统仿真学报》
【年(卷),期】2010()7
【摘要】为三维电涡流缓速器的仿真提供了一个完全的有限元表达式,这个表达式通过运用A,Φ-A公式结合库仑定律得以实现.为了考虑电涡流缓速器不规则的几何形状,采用了四面体单元对网格进行划分,并用有限元程序仿真电涡流缓速器在500rpm的磁通密度分布。

电涡流缓速器在不同转速下用有限元程序计算的制动力矩与测量值进行了比较,测量值和仿真数据近似一致,有限元程序可用于工程计算和仿真。

【总页数】4页(P1592-1595)
【作者】衣丰艳;于明进;刘成晔
【作者单位】山东交通学院;江苏技术师范学院
【正文语种】中文
【中图分类】U463.532
【相关文献】
1.液力缓速器与电涡流缓速器性能比较
2.液力缓速器和电涡流缓速器
3.液力缓速器和电涡流缓速器
4.转筒式电涡流缓速器电磁场三维有限元分析
5.液力缓速器与电涡流缓速器性能比较
因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fast3D simulation of transient electromagneticfields by model reduction in the frequency domain using Krylov subspace projectionRalph-Uwe Börner1,Oliver G.Ernst2,and Klaus Spitzer1Technische Universität Bergakademie Freiberg,Freiberg,Germany1Institute of Geophysics,2Institute of Numerical Analysis and Optimization1SummaryWe present an efficient numerical method for the simulation of transient electromagneticfields resulting from magnetic and electric dipole sources in three dimensions.The method we propose is based on the Fourier synthesis of frequency domain solutions at a sufficient number of discrete frequencies obtained using afinite element(FE)approximation of the damped vector wave equation,which results after Fourier transforming Maxwell’s equations in time.We assume the solution to be required only at a few points in the computational domain,whose number is small relative to the number of FE degrees of freedom.The mapping which assigns to each frequency the FE ap-proximation at the points of interest is a vector-valued rational function known as the transfer function. Its evaluation is approximated using Krylov subspace projection,a standard model reduction technique. Computationally,this requires the FE discretization at one reference frequency and the generation of a sufficiently large Krylov subspace associated with the reference frequency.Once a basis of this subspace is available,a sufficiently accurate rational approximation of the transfer function can be evaluated at the remaining frequencies at negligible cost.These partial frequency domain solutions are then synthesized to the time evolution at the points of interest using a fast Hankel transform.To test the algorithm,responses have been calculated for a three-layered earth and compared with results obtained analytically.We observe a maximum deviation of less than2percent in the case of transient EM modelling.We emphasize the usability of our approach by an example of a controlled-source marine electromagnetic application.Afirst implementation of our new numerical algorithm already gives very good results using much less computational time compared with time stepping methods and comparable times and somewhatimproved accuracy compared with the Spectral Lanczos Decomposition Method(SLDM). Keywords:Transient electromagnetic modelling,Krylov projection methods2IntroductionThe transient electromagnetic(TEM)method has become one of the standard applications in geo-electromagnetism and is now widely used,e.g.,for exploration of groundwater and mineral resources. The numerical computation of transient electromagneticfields is of particular interest in applied geo-physics.First introduced by Yee(1966),thefinite difference time domain(FDTD)technique has been widely used to simulate the transientfields in2D and3D engineering applications by time stepping (Taflove,1995).In geophysics,first attempts to numerically simulate transients were made by Goldman and Stoyer(1983)for axially-symmetric conductivity structures using implicit time-stepping.Wang and Hohmann(1993)have developed an explicit FDTD method in3D based on Du Fort-Frankel time-stepping.Generally,explicit time stepping algorithms require small time steps to guarantee numerical stability. For the simulation of late-time responses their computational cost must therefore be regarded as very high.Several attempts have been made to reduce the numerical effort,e.g.,by a special treatment of the air-earth interface to circumvent excessively small time steps due to the extremely low conductivity of the air layer(Oristaglio&Hohmann,1984;Wang&Hohmann,1993).For FDTD methods,it thus seems that acceptable computing times can only be achieved by paralleliza-tion using computer clusters(Commer&Newman,2004).An alternative approach was introduced by Druskin and Knizhnerman(1988)and has since been known as the Spectral Lanczos Decomposition Method(SLDM).This method uses a3Dfinite difference(FD) approximation of Maxwell’s equations,which are cast into a system of ordinary differential equations. The solution of the latter is formulated as a multiplication of a matrix exponential and a vector of initial values.Numerical evidence indicates that the convergence of the SLDM depends mainly on the conduc-tivity contrasts within the model.To improve convergence,the FD grids have to be refined near jumps of electrical conductivity within the discretized region.However,the FD tensor product grids further increase the number of unknowns even in regions where densely sampled solutions are not of particular interest,e.g.at greater depths.We note,however,that the time-stepping technique that is inherent to SLDM can be combined with otherspatial discretizations.Everett and Edwards(1993)have published afinite element(FE)discretization for the solution of a2.5-D problem with subsequent Laplace transform of the response of electric dipoles located on the seafloor.A FE solution of geo-electromagnetic problems for2D sources using isoparametric quadratic elements has been introduced by Mitsuhata(2000)with respect to frequency domain modelling of dipole sources over undulating surfaces.The approach of modelling in the frequency domain with subsequent transformation into the time domain was proposed by Newman et al.(1986),who used a3D integral equation method to provide the responses for typically20to40frequencies,which are transformed into the time domain using a digitalfiltering technique(Anderson,1979).However,the time domain results displayed deviations from reference solutions at late times due to the limited accuracy of the3D responses.Sugeng et al.(1993)have computed the step response solutions for31frequencies over a range between 1and1000kHz using isoparametricfinite elements.The authors report small deviations in the late time response.Jin et al.(1999)have developed a frequency-domain and time-domain FE solution using SLDM for a small bandwidth of frequencies and very short times,respectively.This paper introduces a method based on a FE discretization in the frequency domain.We avoid the heavy computational expense associated with solving a full3D problem for each of many frequencies by a model reduction approach.The point of departure is that the transients,which are synthesized from the frequency domain solutions,are required only at a small number of receiver locations.The synthesis of the transients at these locations therefore requires only frequency domain solutions at these points. After discretization in space,the frequency domain solution values at the receiver points are rational functions of ing the model reduction technique of Krylov subspace projection(cf.(An-toulas,2005))it is possible to approximate this function,known as the transfer function in linear systems theory,by rational functions of lower putationally,the discretized frequency-domain problem for a suitably chosen reference frequency is projected onto a Krylov subspace of low dimension,yield-ing the desired approximation of the transfer function in terms of quantities generated in the Arnoldi process,which is used to construct an orthonormal basis of the Krylov subspace.This approximation, the evaluation of which incurs only negligible cost,is then used for all the other frequencies needed for the synthesis.While more difficult model reduction problems such as those arising in semiconduc-tor device simulation require repeating this process at several reference frequencies across the spectralbandwidth of interest,our experience has shown the time evolution of the electromagneticfields after a current shut-off to be a very benign problem for which one reference frequency suffices.After obtaining frequency-domain approximations at the receiver locations for all required frequencies in this way,the associated transients are synthesized using a fast Hankel transform(cf.(Newman et al.,1986)).The re-sulting algorithm thus has as its main expense the FE solution at the reference frequency and the Arnoldi process to construct the Krylov space.Since each Arnoldi step requires the solution of a linear system with the coefficient matrix associated with the reference frequency problem,we generate a sparse LU factorization of this matrix,which we found feasible for problem sizes of up to around250,000using the PARDISO software of Schenk and Gärtner(2004).For much larger problems the linear systems can instead be solved iteratively.Our computational experiments demonstrate that the proposed method can, as an example,compute transients at several receiver locations based on a discretization with100,000 degrees of freedom in roughly5minutes wall clock time on current desktop hardware.We note that solutions to such multiple-frequency partial-field problems have been published by Wagner et al.(2003)in the context of an acousticfluid-structure interaction problem.Without loss of generality,we restrict our2D and3D numerical experiments to a simple1D conductivity structure.For such conductivity models,analytical solutions are readily available.We complete the model studies with a problem set arising from marine controlled source electromagnetic applications as described by Edwards(2005).3Theoretical backgroundThe behaviour of the transient electromagneticfields after a source current shut-off is described by an initial boundary value problem for Maxwell’s equations in quasi-static approximation∇×h−σe=j e,(1a)∂t b+∇×e=0,(1b)∇·b=0,(1c) where we denote by e(r,t)the electricfield,h(r,t)the magneticfield,b(r,t)=µh(r,t)the magnetic flux density,µ(r)is the magnetic permeability,and j e(r,t)external source current density,respectively. The spatial variable r is restricted to a computational domainΩ⊂R3bounded by an artificial boundary Γ,along which appropriate boundary conditions on the tangential components of thefields are imposed,whereas t∈R.The forcing results from a known stationary transmitter source with a driving current which is shut off at time t=0,and hence of the formj e(r,t)=q(r)H(−t)(2)with the vectorfield q denoting the spatial current pattern and H the Heaviside step function.The Earth’s electrical conductivity is denoted by the parameterσ(r).We assume negligible coupling between displacement currents and induced magneticfields,which is valid at late times after current shut-off. After eliminating b from(1)we obtain the second order partial differential equation∇×(µ−1∇×e)+∂tσe=−∂t j e inΩ(3a) for the electricfield,which we complete with the perfect conductor boundary conditionn×e=0onΓ,(3b)at the outer walls of the model.It should be noted that by doing so,the electricfields at the boundaryΓno longer depend on time t.Switching to the frequency domain,we introduce the Fourier transform paire(t)=12π∞−∞E(ω)eiωtdω=:(F−1E)(t),(4)E(ω)=∞−∞e(t)e−iωtdt=(F e)(ω),(5)ωdenoting angular frequency.The representation(4)can be interpreted as a synthesis of the electricfield e(t)from weighted time-harmonic electric partial waves E(ω),whereas(5)determines the frequency content of the time-dependent electricfield e.We thus obtain the transformed version∇×(µ−1∇×E)+iωσE=q inΩ,(6a) n×E=0onΓ,(6b) of(3a)and(3b)provided that solutions exist for all frequenciesω∈R.In(6a)we have used the fact that,for the time-dependence e iωtdifferentiation with respect to the time variable t becomes multiplicationwith iωin the transformed equations as well as the formal identity F(H(−t))=−1/(iω),which recflects the fact that the step response due to a current shut-off in a transmitter source is related to an impulsive source by a time derivative∂t H(t)=δ(t),whereδdenotes the Dirac impulse,and F(δ)≡1.For a given number of discrete frequencies,the Fourier representation(4)of the solution e of(3)can be utilized to construct an approximate solution in the time domain by a Fourier synthesis.Causality of the field in the time domain allows for a representation of the solution in terms of a sine or cosine transform of the real or imaginary part of E,resp.(Newman et al.,1986):e(t)=2π∞Re(E)sinωtωdω=2π∞Im(E)cosωtωdω.(7)In practice,the infinite range of integration is restricted to afinite range and the resulting integrals are evaluated by a Fast Hankel Transform(Johansen&Sorensen,1979).For the problems addressed here, solutions for80to150frequencies distributed over a broad spectral bandwidth with f∈[10−2,109]Hz are required to maintain the desired accuracy.4Finite element discretization in spaceFor the solution of boundary value problems in geophysics,especially for geo-electromagnetic applica-tions,finite difference methods have mainly been utilized due to their low implementation effort.How-ever,finite element methods offer many ing triangular or tetrahedral elements to mesh a computational domain allows for greaterflexibility in the parametrization of conductivity structures without the need for staircasing at curved boundaries,such as arise with terrain or sea-floor topography. In addition,there is a mature FE convergence theory for electromagnetic applications(Monk,2003). Finally,FE methods are much more suitable for adaptive mesh refinement,adding yet further to their efficiency.For the construction of a FE approximation,wefirst express the boundary value problem(6)in varia-tional or weak form(Monk,2003).The weak form requires the equality of both sides of(6a)in the inner product sense only.The L2(Ω)inner product of two complex vectorfields u and v is defined as(u,v)=Ωu·¯v dV(8) with¯v denoting the complex conjugate of v.Taking the inner product of(6a)with the smooth vector fieldϕ—called the test function—and integrating overΩ,we obtain after an integration by partsΩ(µ−1∇×E)·(∇ׯϕ)+iωσE·¯ϕdV−Γ(nׯϕ)·(µ−1∇×E)dA=Ωq·¯ϕdV.(9)OnΓ,the perfect conductor boundary condition(6b)gives no information about(µ−1∇×E),so we eliminate this integral by choosingϕsuch that n×ϕ=0onΓ.Introducing the solution spaceE:={v∈H(curl;Ω):n×v=0onΓ},in terms of the Sobolev space H(curl;Ω)={v∈L2(Ω)3:∇×v∈L2(Ω)3},the weak form of the boundary value problemfinally readsFind E∈E such thatΩ(µ−1∇×E)·∇ׯv+iωσE·¯vdV=Ωq·¯v dV for all v∈E.(10)Due to the homogeneous boundary condition(6b)the trial and test functions can be chosen from the same space E.To construct a FE solution of the boundary value problem(6)the domainΩis partitioned into simple ge-ometrical subdomains,e.g.triangles for two-dimensional or tetrahedra for three-dimensional problems, such thatΩ=N ee=1Ωe.(11)The infinite-dimensional function space E is approximated by afinite dimensional function space E h⊂E of elementwise polynomial functions satisfying the homogeneous boundary condition(6b).The approximate electricfield E h≈E is defined as the solution of the discrete variational problem obtained by replacing E by E h in(10)(cf.Monk(2003)).To obtain the matrix form of(10),we express E h as a linear combination of basis functions{ϕi}N i=1of E h,i.e.E(r)=Ni=1E iϕi(r).(12)Testing against all functions in E h is equivalent to testing against all basis functionsϕj,j=1,...,N. Taking the j-th basis function as the test function and inserting(12)into(10)yields the j-th row of a linear system of equations(K+iωM)u=f(13)for the unknown coefficients E i=[u]i,i=1,...,N,where[K]j,i=Ω(µ−1∇×ϕi)·∇ׯϕj dV,(14) [M]j,i=Ωσϕϕi·¯ϕj dV,(15)[f]j=Ωq·¯ϕj dV.(16) The matrices K and M,known as stiffness and mass matrix,respectively,infinite element parlance,are large and sparse and,sinceµandσare real-valued quantities in the problem under consideration,consist of real entries.For a given source vector f determined by the right-hand side of(6a),the solution vector u∈C N yields the approximation E h of the electricfield E we wish to determine.5Model reductionOur goal is the efficient computation of thefinite element approximation E h in a subset of the compu-tational domainΩ.To this end,wefix a subset of p N components of the solution vetor u to be computed.These correspond to p coefficients in thefinite element basis expansion(12),and thus,in the lowest-order Nédélec spaces we have employed,directly to components of the approximate electric field E h in the direction of selected edges of the mesh.We introduce the discrete extension operator E∈R N×p defined as[E i,j]=1,if the j-th coefficient to be computed has global index i, 0,otherwise.Multiplication of a coefficient vector v∈C N with respect to thefinite element basis by E then extracts the p desired components,yielding the reduced vector E v∈C p containing thefield values at the points of interest.For the solution u,this reduced vector,as a function of frequency,thus takes the formt=t(ω)=E (K+iωM)−1f∈C p.(17)The vector-valued function t(ω)in equation(17)assigns,for each frequencyω,the output values of interest to the source(input)data represented by the right-hand-side vector f.Computing t(ω)for a given number of frequenciesωj∈[ωmin,ωmax],j=1,...,N f,by solving N f full systems and then extracting the p desired components from each is computationally expensive,if not prohibitive,for large N.This situation is similar to that of linear systems theory,where the function t is known as a transfer function and the objective is to approximate t based on a model with significantly fewer degrees of freedom than N,hence the term model reduction.To employ model reduction techniques,we proceed byfixing a reference frequencyω0and rewriting (17)ast=t(s)=E [A0−s M]−1f,A0:=K+iω0M,(18)where we have also introduced the(purely imaginary)shift parameter s=s(ω):=i(ω0−ω).Setting further L:=E∈R N×p,r:=A−10f∈C N,and A:=A−10M∈C N×N,the transfer function becomest(s)=L (I−s A)−1r.(19)The transfer function is a rational function of s(and hence ofω),and a large class of model reduction methods consist offinding lower order rational approximations to t(s).The method we shall propose constructs a Padé-type approximation with respect to the expansion pointω0,i.e.,s=0.The standard approach(Gragg&Lindquist,1983;Freund,2003;Antoulas,2005)for computing such approximations in a numerically stable way is by Krylov subspace projection.For simplicity,we shall consider an orthogonal projection onto a Krylov space based on Arnoldi’s method.Given a matrix C and a nonzero initial vector x,the Arnoldi process successively generates orthonormal basis vectors of the nested sequenceK m(C,x):=span{x,Cx,...,C m−1x},m=1,2,...of Krylov spaces generated by C and x,which are subspaces of dimension m up until m reaches a unique index L,called the grade of C with respect to x,after which these spaces become stationary.In particular, choosing C=A and x=r,m steps of the Arnoldi process result in the Arnoldi decompositionAV m=V m H m+ηm+1,m v m+1e,r=βv1,(20)min which the columns of V m∈C N×m form an orthonormal basis of K m(A,r),H m∈C m×m is an unreduced upper Hessenberg matrix,v m+1is a unit vector orthogonal to K m(A,r)and e m denotes the m-th unit coordinate vector in C m.In particular,we have the relation H m=V m AV ing the orthonormal basis V m,we may project the vector r as well as the columns of L in(19)orthogonally ontoK m(A.r)and replace the matrix I−s A by its compression V m(I−s A)V m onto K m(A,r),yielding the approximate transfer functiont m(s):=(Vm L) [Vm(I−s A)V m]−1(Vmr)=Lm(I m−s H m)−1βe1,where we have set L m:=V m L and used the properties of the quantities in(20)stated above.Given the task of evaluating the transfer function(17)for N f frequenciesωj∈[ωmin,ωmax],our model reduction approach now proceeds as detailed in Algorithm1.Algorithm1:Model reduction for TEM in the frequency domain.Select a reference frequencyω0Set A0:=K+iω0M,A:=A−10M and r:=A−10fPerform m steps of the Arnoldi process yielding decomposition(20)for j=1,2,...,N f doSet sj:=ω−ωjEvaluate approximate transfer function t m(s j)Note that computations with large system matrices and vectors with the full number N of degrees of freedom are required only in the Arnoldi process,after which the loop across the target frequencies takes place in a subspace of much smaller dimension m N.As a consequence,the work required in the latter is almost negligible in comparison.The most expensive step of the Arnoldi process is the matrix-vector multiplication with the matrix A0.Currently,we compute an LU factorization of A0in a preprocessing step and use the factors to compute the product with two triangular solves.We note that current Krylov subspace-based model reduction techniques employ more refined subspace generation techniques,in particular block algorithms to take into account all columns of L in the sub-space generation as well as two-sided Lanczos(Feldmann&Freund,1994)and Arnoldi(Antoulas,2005) methods to increase the approximation order of the transfer function.We intend to evaluate these refine-ments for the present TEM application in future work.However,we have been able to obtain surprisingly good results usung this very basic method.A further enhancement is replacing the LU factorization of A0with an inner iteration once the former is no longer feasible due to memory constraints.6Numerical examplesTo validate of our approach we consider as a model problem a vertical magnetic dipole over a layered halfspace.The reason for this choice is twofold:First,an analytical solution is available for direct comparison with the numerical approximation.Second,the huge conductivity contrast due to including the air layer in the computational domain presents a severe challenge for realistic simulations.Besides comparison with the analytical solution we also check our solution against one obtained by the Spectral Lanczos Decomposition Method.The FE discretization was carried out using the Electromagnetics Module of the COMSOL Multiphysics package,where we have used second order Lagrange elements on triangles in the2D calculations and second-order Nédélec elements on tetrahedra for3D.The sparse LU decomposition required in our algorithm as well as the triangular solves based on this decomposition are performed using the PARDISO software of Schenk and Gärtner(2004,2006).Our own code is written in MATLAB,from where the appropriate COMSOL and PARDISO components are called.All computations were carried out on a 3.0GHz Intel Xeon5160with16GB RAM running Suse Linux10.1.6.1The2D axisymmetric caseWe begin our numerical experiments with a2D axisymmetric study in order to demonstrate the interplay of the three main discretization parameters:mesh resolution,size of the computational domain and the dimension of the Krylov subspace used for the frequency sweep.The FE discretization contains two sources of error:one arising from the usual dependence of the error on the mesh width,i.e.,resolution, the other arising from imposing a non-exact boundary condition at the non-symmetry boundaries.As we are modelling a diffusion process,the error due to the boundary condition decreases rapidly with the size of the computational domain.An efficient discretization should balance these two types of error, i.e.,the domain size and mesh width should be chosen such that these two errors are of comparable magnitude.The third relevant parameter,the dimension of the Krylov space,determines the size of the reduced model,and should be large enough to provide a sufficiently good approximation of the transfer function so that the time-domain solution is sufficiently accurate.We consider thefields of a vertical magnetic dipole over an axially-symmetric conductivity structure. The dipole is aligned with the z-axis of a cylindrical coordinate system and is approximated by afinite circular coil with a radius of5m.Due to the symmetry of the problem,we may restrict the computationaldomain to the r−z-plane of the coordinate system thus resulting in a purely2D problem.The conductivity structure we consider consists of a30m thick30Ω·m layer at a depth of100m embedded in a uniform halfspace of100Ω·m(cf.Fig.1).For the FE discretization,second-order(node based)Lagrange elements were used to compute the tangential component of the electricfield in the frequency domain.The reference frequency was1000Hz.For the analytical reference solution we employ the quasistatic approximation of Ward and Hohmann(1988),from which we obtain the time-domain solution via a Hankel transform.Note that the quasistatic approximation deteriorates at high frequencies.The numerical results obtained by the Arnoldi model reduction method are compared with the analytical1D model results.To demonstrate the influence of the computational domain size and the number of triangles involved, we choose different geometries.Three horizontal model sizes of±600(model1),±1200(model2), and±2400meters(model3)are considered.Fig.2shows the discretized conductivity region for these three domain sizes.The small elements in the vicinity of the transmitter coil result from three successive adaptive mesh refinement steps of COMSOL’s default a posteriori error estimator,in which the mesh refinement is performed by remeshing.The FE spaces based on these three meshes contained11,227 (model1),7,850(model2)and29,358(model3)degrees of freedom,respectively.Furthermore,by specifying the maximum number of new triangles generated in each adaptive cycle,we introduce a rough upper bound of thefinal mesh resolution.The resulting transfer functions and transient electricfields on the air-earth interface at100meters dis-tance from the dipole location are depicted in Fig.3.For a Krylov subspace of dimension m=60we observe a substantial error in the high frequencies,which is significantly reduced in the case m=200. However,this error does not affect the transientfield at the corresponding short times(cf.Fig.3,right), where the agreement with the analytical solution is equally good in all cases.The reason for this is that, when the Hankel transform is carried out to synthesize the transientfield,the high-frequency values of the transfer function are damped in such a way that these errors have little effect on the solution.We have not plotted relative errors here,since high frequencies are near the limits of validity of the analytical reference solution.We observe a strong dependence of the synthesized late time solution on the distance of the outer bound-ary,where the perfect conductor boundary condition is imposed,enforcing a vanishing tangential com-ponent of the electricfield there.Since,for each frequency,we are solving a damped wave equation in which damping increases with frequency(atfixed conductivity),the solutions at higher frequenciesdecay faster towards the outer boundary.Therefore,the effect of error due to the inexact boundary con-dition is greatest at the lowest frequency.In the time domain,this is observed at late times,when all but the low frequency components have decayed.The non-exact boundary condition leads to consistency errors in the corresponding low frequency re-sponse for which the problem is originally formulated in terms of the matrix A0.Adjusting the outer boundaries improves the solution significantly.On the other hand,by restricting the total number of tri-angles within the discretized region,a coarser mesh in regions where steep changes in the solutions occur must be expected.To counteract this tendency,more Arnoldi iterations steps are necessary to obtain a satisfactory approximation of the high frequency part of the solution.On the left hand side in Fig.4,we display the relative error in the transient electricfield at a distance of 100m from the source.For model1the errore an(t)−e m(t)·100%e an(t)with e an(t)denoting the analytical solution and e m(t)the solution after m Arnoldi steps,is dominated at late times by the effect of the boundary condition,and increasing the Krylov subspace dimension from m=60to m=200does not result in an improvement.For models2and3,by contrast,a considerable improvement can be observed for the larger Krylov subspace,particularly for late times in the2400m case.The convergence with increasing m,measured in terms of the relative error||e an(t)−e m(t)||/||e an||,where||·||denotes the Euclidean norm of the transient at the receiver point for31discrete time values spaced logarithmically in[10−6,10−3],indicates that thefiner mesh resolution in the case of model1needs substantially fewer Arnoldi iterations than the larger models2and3.Finally,the computing time is dominated by the Arnoldi process.Once the Arnoldi basis of the Krylov space has been computed,the sweep over the frequencies adds only negligible puting time for the sparse LU decomposition can also be neglected,which is typical for2D problems.6.2The full3D caseFor the numerical experiments in3D we use vector(Nédélec)finite elements with quadratic basis func-tions.The FE approximation of the electricfield is therefore associated with the edges of the tetrahedral elements.The vertical magnetic transmitter dipole source is approximated by a square loop of10m edge length located in the plane defined by z=0.The electric currentflowing inside the loop is associated with edge currents attributed to the edges of those tetrahedral elements which coincide with the loop。

相关文档
最新文档