第2章(1) 控制系统的状态空间表达式
控制系统的状态空间表达式
第一章 控制系统的状态空间表达式Chapter 1 State space representation of control systems本章内容• 状态变量及状态空间表达式 • 状态空间表达式的模拟结构图 • 状态空间表达式的建立(1) • 状态空间表达式的建立(2) • 状态矢量的线性变换 • 由传递函数求状态方程• 由状态空间表达式求传递函数阵 • 离散系统的状态空间表达式• 时变系统和非线性系统的状态空间表达式系统的动态特性由状态变量构成的一阶微分方程组来描述,能同时给出系统全部独立变量的响应,因而能同时确定系统的全部内部运动状态。
1.1 状态变量及状态空间表达式1.1 State space representation of control systems 状态变量 (State variables)状态:表征系统运动的信息和行为状态变量:能完全表示系统运动状态的最小个数的一组变量x 1(t ), x 2(t ), …, x n (t ) 状态向量(State vectors)由状态变量构成的向量 x (t )T 123()(),(),()...()n x t x t x t x t x t =⎡⎤⎣⎦状态空间 (State space) • 以各状态变量x 1(t ),x 2(t ),…… x n (t )为坐标轴组的几维空间。
•状态轨迹:在特定时刻t ,状态向量可用状态空间的一个点来表示,随着时间的推移,x (t )将在状态空间描绘出一条轨迹线。
状态方程 (State equations)• 由系统的状态变量与输入变量之间的关系构成的一阶微分方程组。
例1.1 设有一质量弹簧阻尼系统。
试确定其状态变量和状态方程。
解:系统动态方程2()().()().()()()d yF t ky t f yt m dt my t f yt ky t F t ⎧--=⎪⎨⎪++=⎩ 设1()()y t x t =,2()()yt x t = 12()()............................................(1)1()()()()........(2)x t y t f k x t y t y t F t m m m =⎧⎪⎨=--+⎪⎩12212()()1()()()()xt x t k f x t x t x t F t m m m =⎧⎪⎨=--+⎪⎩1122010()()()1()()xt x t F t f k x t x t m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ = 状态方程的标准形式:()()()xt Ax t Bu t =+ (A :系统矩阵 B :输入矩阵) 输出方程 (O u t p u t e q u a t i o n )系统的输出量与状态变量之间的关系[]112()()()10 ()x t y t x t x t ⎡⎤==⎢⎥⎣⎦()()y t Cx t =(C:输出矩阵)状态方程和输出方程的总和即称为状态空间表达式。
现代控制理论课后题及答案
第2章 “控制系统的状态空间描述”习题解答2.1有电路如图P2.1所示,设输入为1u ,输出为2u ,试自选状态变量并列写出其状态空间表达式。
图P2.1解 此题可采样机理分析法,首先根据电路定律列写微分方程,再选择状态变量,求得相应的系统状态空间表达式。
也可以先由电路图求得系统传递函数,再由传递函数求得系统状态空间表达式。
这里采样机理分析法。
设1C 两端电压为1c u ,2C 两端的电压为2c u ,则212221c c c du u C R u u dt++= (1) 112121c c c du u duC C dt R dt+= (2) 选择状态变量为11c x u =,22c x u =,由式(1)和(2)得:1121121121212111c c c du R R C u u u dt R R C R C R C +=--+ 2121222222111c c c du u u u dt R C R C R C =--+ 状态空间表达式为:12111211212121212122222221111111R R C x x x u R R C R C R C x x x u R C R C R C y u u x +⎧=--+⎪⎪⎪=--+⎨⎪⎪==-⎪⎩即: 12121121211112222222211111R R C R C R R C R C x x u x x R C R C R C +⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦[]11210x y u x ⎡⎤=-+⎢⎥⎣⎦2.2 建立图P22所示系统的状态空间表达式。
1图P2.2解 这是一个物理系统,采用机理分析法求状态空间表达式会更为方便。
令()f t 为输入量,即u f =,1M ,2M 的位移量1y ,2y 为输出量, 选择状态变量1x =1y ,2x = 2y ,3x =1dy dt,24dyx dt =。
线性控制理论 第2章 状态空间表达式的求解
12t 2 0 2 2 2 t 1 2! 0 2 2 n t
1 2 2 1 t t 0 1 1 2! 1 2 2 1 2 t 2 t 2! 1 2 2 0 1 n t n t 2!
1
1 2 1 m 1 t t 2! (m 1)! t (2-21) 1 2 1 t 2! t 1 mm
证明 因
12 1 1 0 1 2 ,A A 0 1 1 1 mm 21
x(t ) Φ(t ) x(0),t 0
上式表明齐次状态方程的解,在初始状 态确定情况下,由状态转移矩阵惟一确定,
即状态转移矩阵包含了系统自由运动的全部
信息,完全表征了系统的动态特性。
定义2.1
线性定常系统状态转移矩阵 Φ(t t0 ) 是
满足矩阵微分方程和初始条件
(t t ) AΦ (t t ), t t Φ 0 0 0 Φ (t0 t0 ) I
(2-3)
(t ) b1 2b2t kbk t x
( k 1)
k
Ax (t ) A(b0 b1t b2t bk t )
2ቤተ መጻሕፍቲ ባይዱ
比较上式两边t的同次幂可得
现代控制系统课件第2章
2021/1/4
5
2.2 矩阵指数函数——状态转移矩阵 2.2.1 状态转移矩阵
齐次微分方程的自由解为: x(t) eAt x0
或
x(t) e A(tt0 ) x0
从这个解的表达式可知,初始时刻的状态矢量x0, 到任意t>0或t>t0时刻的状态矢量x(t)的一种矢量变换 关系,变换矩阵就是矩阵指数函数 eAt 。
2021/1/4
27
例
x1 x2
0 2
1 3
x1 x2
0 1u
求 u(t) 为单位阶跃函数时,系统状态方程的解 (设
初始状态为零).
解:
(t)
e At
2et 2et
e2t 2e2t
et e2t
et
2e2t
x(t) e At x(0) 0te A(t ) Bu( )d
0 1
例:已知 A 2 3 ,求eAt
解: s 1
sI A 2 s 3
2021/1/4
19
(sI A) 1
1 sI A
adj (sI
A)
(s
1 1)(s
2)
s 3
2
1 s
s3
(
s
1)( s 2
2)
(s 1)( s 2)
1
(s
1)( s s
2)
(s 1)( s 2)
x(t) eAt x0 , t 0
2021/1/4
2
证明: 和标量微分方程求解类似,先假设式齐次状 态方程的解x(t)为t的矢量幂级数形式,即:
x(t) 0 1t 2t 2 iti
**
代入齐次状态方程中, 得
1 22t iit i1
第2章(1)-控制系统的状态空间表达式
第二章 控制系统的状态空间表达式2-1 状态、状态变量、状态空间、状态方程、动态方程任何一个系统在特定时刻都有一个特定的状态,每个状态都可以用最小的一组(一个或多个)独立的状态变量来描述。
设系统有n 个状态变量n x x x ,,21,它们都是时间t 的函数,控制系统的每一个状态都可以在一个由n x x x ,,21为轴的n 维状态空间上的一点来表示,用向量形式表示就是:()t x 称作系统的状态向(矢)量。
设系统的控制输入为:r u u u ,,,21 ,它们也是时间t 的函数。
记:那么表示系统状态变量x(t)随系统输入u(t)以及时间t 变化的规律的方程就是控制系统的状态方程:其中()()()[]T=t f t f t f f n 21 是一个函数矢量。
设系统的输出变量为m y y y ,,,21 ,则()Tm y y y y ,,,21 = 称为系统的输出向量。
表示输出变量y(t)与系统状态变量x(t)、系统输入u(t)以及时间t 的关系的方程就称作系统的输出方程: 其中()Tm g g g g ,,,21 = 是一个函数矢量。
在现代控制理论中,用系统的状态方程和输出方程来描述系统的动态行为,状态方程和输出方程合起来称作系统的状态空间表达式或称动态方程。
根据函数向量F 和G 的不同情况,一般控制系统可以分为如下四种: ∙线性定常(时不变)系统(LTI-Linear Time-Invariant); ∙ 线性不定常(时变)系统(Linear Time-Variant); ∙ 非线性定常系统(Nonlinear Time-Invariant); ∙ 非线性时变系统(Nonlinear Time-Variant)。
在本课程中,我们主要考虑线性定常系统(LTI)。
这时,系统的状态空间表达式可以表示如下: 写成矢量形式为:其中:n n nn n n n n a a a a a a a a a A ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211 , r n nr n n r r b b b b b bb b b B ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211n m mn m m n n c c c c c c c c c C ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211 , rm mr m m r r a a a a a aa a d D ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 212222111211n n A ⨯----称为系统矩阵,由系统内部结构及其参数决定,体现了系统内部的特性;r n B ⨯----称为输入(或控制)矩阵,主要体现了系统输入的施加情况;n m C ⨯----称为输出矩阵,它表达了输出变量与状态变量之间的关系,r m D ⨯----称为直接传递(转移)矩阵,表示了控制向量U 直接转移到输出变量Y 的转移关系。
第二章现代控制理论状态空间表达式
即
(2-11)
(3) 列出状态空间描述iL 1 − ( R + R )C 1 2 R1 L( R1 + R2 ) − R1 1 ( R1 + R2 )C uC ( R1 + R2 )C (2-12) + e(t ) R1 R2 iL R2 − L( R + R ) L( R1 + R2 ) 1 2
§2.1 状态空间描述的概念 2.1.2 控制系统的状态空间描述举例
例2-1 R-L-C系统,求其状态空间描述
R
u
L i
C
uC
解 (1) 确定状态变量 选择电容两端电压 uC (t )、电感通过的电流 i (t ) (2) 列写微分方程并化为一阶微分方程组 基尔霍夫(Kirchhoff)电压定律,
(2-13)
令
1 − ( R + R )C 1 2 A= R1 L( R + R ) 1 2
1 ( R + R )C 2 b= 1 R2 L( R + R ) 1 2
−
R1 ( R1 + R2 )C R1 R2 − L( R1 + R2 )
n 维列向量,状态向量
a12 a1n a22 a2 n an 2 ann
n×n方阵,系统矩阵(或状态矩阵), 反映系统状态的内在联系
§2.1 状态空间描述的概念
现代控制理论第二章
第二章 控制系统状态空间表达式的解建立了控制系统状态空间表达式之后,就是讨论求解的问题,本章重点讨论状态转移矩阵的定义,性质和计算方法,从而导出状态方程的求解公式并讨论连续时间系统状态方程的离散化的问题。
§2-1线性定常齐次状态方程的解(自由解)所谓自由解是指系统输入为零时,由初始状态引起的自由运动。
状态方程为齐次矩阵微分方程:AX X= (2-1)若初始时刻0t 时的状态给定为00)(x t x =,则式(2-1)有唯一确定解。
0)(0)(x e t x t t A -=,0t t ≥(2-2)若初始时刻从0=t 开始,即0)0(x x =,则其解为:0)(x e t x At =, 0t t ≥(2-3)证:先假设式(2-1)的解)(t x 为t 的矢量幂级数形式,即:+++++=k k t b t b t b b t x 2210)((2-4)对上式求导: ++++=-1232132)(k k t kb t b t b b t x代人式(2-1)得:A x= ( +++++kk t b t b t b b 2210) (2-5)既然式(2-4)是(2-1)的解,则式(2-5)对任意时刻t 都成立,故t 的同次幂项的系数应相等,有:01Ab b =,0212!2121b A Ab b ==,0323!3131b A Ab b ==,… 01!11b A k Ab kb k k k ==-,… 在式(2-4)中,令0=t ,可得:00)0(x x b == 将以上结果代人式(2-4),故得:022)!1!211()(x t A k t A At t x k k +++++= (2-6)括号内的展开式是n n ⨯矩阵,它是一个矩阵指数函数,记为At e221112!!At k ke At A t A t K =+++++ (2-7)式(2-6)可表示为:0()At x t e x =再用)(0t t -代替)0(-t ,即在代替t 的情况下,同样证明0)(0)(x e t x t t A -=的正确性。
现代控制理论-第二章 控制系统的状态空间描述
DgXu
2.2.1.由物理机理直接建立状态空间表达式: 例2.2.1 系统如图所示
L
R2
u
iL
R1
uc
选择状态变量:
x1 iL , x2 uC ,
13 中南大C diL 1 iL (u L ) C dt R1 dt duC diL L uC C R2 u dt dt
y(s) [C(sI A) B D]U (s)
1
1
得
9
G(s) C (sI A) B D
命题得证
中南大学信息学院自动化系
1
DgXu
例2.1.3
已知系统的状态空间描述为
x1 0 1 0 x1 0 x 0 1 1 x 1 u 2 2 x3 0 0 3 x3 1
28 中南大学信息学院自动化系
DgXu
故有(n-1) 个状态方程:
对xl求导数且考虑式 (2.3.12),经整理有:
则式 (2.3.12) bn=0 时的动态方程为:
(2.3.16)
式中:
29 中南大学信息学院自动化系
DgXu
30 中南大学信息学院自动化系
DgXu
3)
化输入-输出描述为状态空间描述
11 中南大学信息学院自动化系
DgXu
2.3. 线性定常连续系统状态空间表达式的建立
建立状态空间表达式的方法主要有两种: 一是直接根据系统的机理建立相应的微分方程或差分方 程,继而选择有关的物理量作为状态变量,从而导出其状态 空间表达式; 二是由已知的系统其它数学模型经过转化而得到状态达 式。由于微分方程和传递函数是描述线性定常连续系统常用 的数学模型,故我们将介绍已知 n 阶系统微分方程或传递函 数时导出状态空间表达式的一般方法,以便建立统一的研究 理论,揭示系统内部固有的重要结构特性。
第2章 状态空间表达式求解
1 T 2. 若A能通过非奇异变换予以对角线化,即 AT
则
e1t e At (t ) T 0
e2t
0 T 1 n t e
证明:根据定义式
A2t 2 A3t 3 Ak t k e I At 2! 3! k 0 k! At
A2t 2 A3t 3 ( I At ) A e At A 信息与控制工程学院 2! 3!
5. 性质五
设有nxn矩阵A和B,当且仅当AB=BA 时,有eAteBt
= e(A+B)t ,而当AB≠BA 时,则eAteBt ≠ e(A+B)t 。
证明:根据定义式
e ( A B ) t ( A B ) 2 2 ( A B )3 3 I ( A B )t t t 2! 3! A2t 2 ABt2 BAt2 B 2t 2 I ( A B )t ( ) 2! 2! 2! 2! A3t 3 A2 Bt3 ABAt3 AB2t 3 BA2t 3 BABt3 ( 3! 3! 3! 3! 3! 3! B 2 At3 B 3t 3 ) 3! 3!
2 2 1 t 2! 1 1t 1 k k 2t At e At k 0 k! nt 1 0 0 k k 1 t k! k 0 0 2 2 2t 2!
(t )( ) (t ) (t )( t ) (t t ) I ( )(t ) ( t )
( t )(t ) ( t t ) I
从而证明了(t)与(-t)互为逆
信息与控制工程学院
4. 性质四
状态空间分析法
4
§1-1 状态变量及状态空间表达式
一、状态
状态:动态系统的状态粗略地说就是指系统的过去、现在和 将来的运动状况。精确地说,状态需要一组必要而充分的 数据来说明。
二、状态变量
状态变量:足以完全确定系统运动状态的一组最小(内部) 变量。
y(t) Cx(t) Du(t)
11
§1-1 状态变量及状态空间表达式
例:
R
方法二: 令x1(t)= uc(t)
u(t)
x1
(
t
)
x 2
(
t
)
x1(t)
yx2((tt ))
Lxx1C21((xt1t)(0L)tL1)iC(RLt)1xC12RL(ut )0c(t)Lxx1Cxx12 ((12uLLitt((((Ct))ttti))())utc)(tC)0L1RuRciC((uttux)()ct2(()t t)u)=cu(cut()tc)(t)uu((tt))
四、状态空间 以状态变量x1(t), x2(t) , x3(t) , … , xn(t)为坐标轴
所构成的 n 维空间,称为状态空间。 在特定时刻t,状态向量x (t) = [x1(t) , … , xn(t)]T
在状态空间中是一点 。随着时间的推移,状态向量 x (t) 在状态空间中描绘出一条轨迹,称为状态轨迹。
x1
(
t
)
x2
(
t
)
0
1
L
现代控制理论1-8三习题库
复习题
1.现代控制理论研究的主要内容是什么? 2.现代控制理论研究对象? 3.现代控制理论所使用的数学工具有哪些? 4.现代控制理论问题的解决方法是什么?
练习题 1.控制一个动态系统的几个基本步骤是什么?
第二章(单元): 控制系统的状态空间表达式
本章节(单元)教学目标: 正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线
3 均为标量。
d
u
3
2
1
+
y
+
x3 1/s x3 +
1/s
x2
x2
+ x1
1/s x1
a3
a2
a1
7. 试求图中所示的电网络中,以电感 L1 、L2 上的支电流 x1 、 x2 作为状态
变量的状态空间表达式。这里 u 是恒流源的电流值,输出 y 是 R3 上的
支路电压。
8. 已知系统的微分方程 y y 4y 5y 3u ,试列写出状态空间表达式。
复习题 练习题
2. 若已知系统的模拟结构图,如何建立其状态空间表达式? 3. 求下列矩阵的特征矢量
1 -1 0
A
2
0 2
10 5 2
4. (判断)状态变量的选取具有非惟一性。 5. (判断)系统状态变量的个数不是惟一的,可任意选取。 6. (判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输
G(s) 3s 4 s(s 1)(s 3)
40. 已知系统的传递函数,试列写出状态空间表达式,并画出状态变量图。
G(s) s 2 2s 3 s3 1
41. 已知系统的传递函数,试列写出状态空间表达式,并画出状态变量图。
【精选】状态空间表达式建立
an1x2 an x1) 0
12
b1 a10 b2 a11
a20
n bn a1n1 an11 an0
第二章 控制系统的状态空间描述
得到状态空间描述:
0
x1
x2
0
xn
0
an
1 0
0 an1
0 1
0 an2
y 1 0
0 x1 x2
0 0
x1
x2
U s
an1s an
Xi s sXi1(s), i 2,..., n
第二章 控制系统的状态空间描述
能控标准形状态空间方程:
x1 0
x2
0
xn
an
1
0 an1
y bn bn1
0 x1 0
x2
u
1 0
a1
xn
1
x1
b1
x2
.
pn a1 pn1 an1 p an
引入中间变量z
1
z pn a1 pn1
u an1 p an
y (b0 pm b1 pm1 bm1 p bm )z
第二章 控制系统的状态空间描述
整理得:
zn a1zn1 a2zn2 an1z anz u y b0zm b1z(m1) ...... bm1z bmz
0
0
x1 0
x2
0
1 a1
xn
0
b0
0 b1
0 u(m)
u
(
m1)
0
bm
u
这是求解系统所不希望的情形。 目标:状态方程中不包含u(t)的高阶形式。
第二章 控制系统的状态空间描述
a) 待定系数法
第二章控制系统状态空间表达式的解要求1、掌握状态空间表达式的
③ 比较 f ( )、f (* ) ④ 解得K 例 已知
G(s)
得n个方程
10 ,试设计状态试系统的闭环极点为-2,-1±j。 s( s 1)( s 2)
0 0 x 0 y 10 1 0 0 0 u 0 1 x 2 3 1 0 0 x
带输出反馈的传递函数阵(L=I,D=0)
GH ( s ) C[ sI ( A BHC )]1 LB [ I G0 ( s ) H ]1 G0 ( s ) G0 ( s )[ I HG0 ( s )]1
受控系统传递函数阵(D=0)
G0 (s) C (sI A)1 B
1. SISO系统极点配置
定理
对Σ0(A,B,C)任意配置极点 Σ0完全能控。
给定极点确定状态反馈增益K的步骤: ① 加入 K [ K0
K1 Kn1 ]
② 求 f () I ( A BK )
* * f * ( ) ( 1* )( 2 )( n )
故受控系统可以任意配置极点以及观测器的特征值。 令 G ( g1 g2 g3 )T ,则
1 ( ) I ( A GC) I f 3 0 0 g1 g 2 [0 1 1 2 0 g 3 0
K [k1 k2 k3 ]
20 G 25 12
令
,则
1 0 0 1 f ( ) I ( A BK ) I 3 1 1 0 [ k1 k2 k3 ] 0 2 0 0 k1 1 k2 k3 3 1 1 3 k1 2 (k1 3k2 3) 2k1 6k3 2
现代控制理论基础 第2章 控制系统的状态空间描述
【例3】建立图2-1所示RLC电路的状态方程。
取电容上的电压uC (t)和电感中的电流i(t)作为状态变量, 根据电路原理有
C duc (t) i(t) dt
di(t) L dt Ri(t) uc (t) u(t)
将上式中状态变量的一阶导数放在方程左边,其余项 移至方程右边,整理得一阶微分方程组为
状态空间法具备如下优点: (1)在数字计算机上求解一阶微分方程组或者差分方程
组,比求解与它相当的高阶微分方程或差分方程要容易。
(2)状态空间法引入了向量矩阵,大大简化了一阶微分方 程组的数学表示法。
(3)在控制系统的分析中,系统的初始条件对经典法感 到困难的问题,采用状态空间法就迎刃而解了。
(4)状态空间法能同时给出系统的全部独立变量的响应, 不但反映了系统的输入输出外部特性,而且揭示了系统 内部的结构特性,既适用单输入单输出系统又适用多输 入多输出系统。
x = A(t)x B(t)u
y
C (t ) x
D(t)u
式中,各个系数矩阵分别为
(2-8)
a11 (t)
A(t)
an1 (t)
c11 (t)
C
(t)
cm1 (t)
a1n (t)
b11 (t)
,
B(t)
ann (t)
bn1 (t)
c1n (t)
d11 (t)
,
D(t)
cmn (t)
述把系统的输出取为系统外部输入的直接响应, 显然这种描述回避了表征系统内部的动态过程 即把系统当成一个“黑匣”,认为系统的内部 结构和内部信息全然不知,系统描述直接反映 了输出变量与输入变量间的动态因果关系。
考察图2-1所示的n级RC网络。图中虚线框内 为具有放大器隔离的n级RC电路,设放大器的输入阻
现代控制理论-控制系统的状态空间表达式
1.4 状态空间表达式的建立
• 注意的问题
– 实现条件是m≤n,否则是不可实现的
– 当m<n时,d=0
– 当m=n时,d=bn≠0 此时,系统的传递函数可写为
W
(s)
bnsn bn1sn1 b1s b0 sn an1sn1 a1s a0
bn
bn1 bnan1 sn1 bn2 bnan2 sn2 sn an1sn1 a1s a0
u
L2 C
di2
dt duc
dt
R1i2 i2
R1i1
R2i2
uc
0
C
uc
R2
1.3 状态空间表达式的建立
考虑到 三个变量是独立的,故可确定为系统的状态 变量,经整理上式变为
di1
dt
R1 L1
i1
R1 L1
i2
1 L1
u
di2 dt
R1 L2
i1
R1 R2 L2
i2
uc L2
duc dt
1 C
i2
现在令状态 x1 i1 x2 i2 x3 uc 将上式写成矩阵形式即为状态方程
1.3 状态空间表达式的建立
x1
x2
x3
RRL1 11
L2
0
R1
L1 R1 R2
L2 1
C
0 1
L2 0
x1 x2 x3
第1章 控制系统的状态空间表达式
系统动态过程的两类数学描述
• 系统的外部描述
外部描述常被称作输出—输入描述
例如,对SISO线性定常系统 u
y
时间域的外部描述:
y(n) an1 y(n1) a1 y(1) a0 y bn1u(n1) b1u (1) b0u
现代控制理论试题与答案
现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定(1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现。
第1章控制系统的状态空间表达式
u
X
y
●状态方程的一般形式为:
x Ax Bu
§1-1 状态空间变量及状态空间表达式
五. 输出方程
在指定系统输出y 的情况下,输出y 与状态变量x 及系统输入u 的
函数关系式,称为系统的输出方程 。
●系统的状态和输入决定了系统输出的变化 。
2.根据给定的数学模型,画出相应的加法器和比例器。
3.用箭头将这些元件连接起来。
§1-2 状态空间表达式的模拟结构图
二. 绘制状态空间模拟结构图的例子
例1 一阶标量微分方程x: ax bu
u
b+
x x
+
a
§1-2 状态空间表达式的模拟结构图
二. 绘制状态空间模拟结构图的例子
例2 三阶微分方程 : x a2 x a1x a0 x bu
值以及t≥t0时间的输入,就完全能够确定系统在任何t≥t0时间的动态行 为;
●状态变量的最小性,体现在减少变量个数就不能够完全表征系统的动态
行为,而增加变量数则是完全表征系统动态行为所不需要的。
●状态变量在数学上是线性无关的。
●状态变量的选取不是唯一的。
●对于一个实际的物理系统,状态变量个数等于系统独立储能元件的个数。
Kn
J2 x2
x1
Kb
x2
x1
§1-3 状态空间表达式的建立(一)
由以上方框图可知:x1 x2
x2
J2 Kb
x4
x3 K n x4
状态方程:
x4
1 J1
x3
Kp J1
第二章控制系统状态空间表达式的解
a(b0 b1t b2t 2 bkt k )
(1) (2) (3)
2.1 线性定常齐次状态方程的解(自由解)
等式两边t 的同次幂的系数相等,因此有
b1 ab0
b2 bk
1 2
1 k
ab1
abk
1 2!
a
2b0
1 k!
a
(5)
将(5)式代入(1)式
2.1 线性定常齐次状态方程的解(自由解)
b1 2b2t 3b3t 2 kbkt k 1
A(b0 b1t b2t 2 bkt k )
等式两边t 同次幂的系数相等,因此有
b1 Ab0
b2 bk
1 2
1 k
Ab1
Abk
1 2!
A2b0
1 k!
2.1 线性定常齐次状态方程的解(自由解)
1、线性定常系统的运动
1)、自由运动:线性定常系统在没有控制作用,即u=0时, 由初始状态引起的运动称自由运动。
u0
x
( A, B)
齐次状态方程的解: x Ax , x(t) |t0 x(0)
2)、强迫运动:线性定常系统在控制u作用下的运动,称
为强迫运动。
e1t
0
e At Te AtT1 T
T 1
0
ent
其中: T为使A化为对角线标准型的非奇异变换矩阵。
求状态转移矩阵的步骤:
1)先求得A阵的特征值 。i
2)求对应于 的i 特征向量 ,p并i 得到T阵及T的逆阵。
3)代入上式即可得到状态转移矩阵的值。
即:A det(I A) 0 i (i I A)pi 0 pi T
0 0 0 0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 控制系统的状态空间表达式
2-1 状态、状态变量、状态空间、状态方程、动态方程
任何一个系统在特定时刻都有一个特定的状态,每个状态都可以用最小的一组(一个或多个)独立的状态变量来描述。
设系统有n 个状态变量n x x x ,,21,它们都是时间t 的函数,控制系统的每一个状态都可以在一个由n x x x ,,21为轴的n 维状态空间上的一点来表示,用向量形式表示就是:
()()()()[]T
=t x t x t x t x n 21
()t x 称作系统的状态向(矢)量。
设系统的控制输入为:r u u u ,,,21 ,它们也是时间t 的函数。
记:
()()()()[]T
=t u t u t u t u r 21
那么表示系统状态变量x(t)随系统输入u(t)以及时间t 变化的规律的方程就是控制系统的状态方程:
()()()[]t t u t x f t x
,,= 其中()
()()[]T
=t f t f t f f n 21 是一个函数矢量。
设系统的输出变量为m y y y ,
,,21 ,则()T
m y y y y ,,,21 =
称为系统
的输出向量。
表示输出变量y(t)与系统状态变量x(t)、系统输入u(t)以及时间t 的关系的方程就称作系统的输出方程:
()()()[]t t u t x g t y ,,=
其中()T
m g g g g ,,,21 = 是一个函数矢量。
在现代控制理论中,用系统的状态方程和输出方程来描述系统的动态行为,状态方程和输出方程合起来称作系统的状态空间表达式或称动态方程。
根据函数向量F 和G 的不同情况,一般控制系统可以分为如下四种: ∙
线性定常(时不变)系统(LTI-Linear Time-Invariant); ∙ 线性不定常(时变)系统(Linear Time-Variant); ∙ 非线性定常系统(Nonlinear Time-Invariant); ∙ 非线性时变系统(Nonlinear Time-Variant)。
在本课程中,我们主要考虑线性定常系统(LTI)。
这时,系统的状态空间表达式可以表示如下:
⎪⎪⎩⎪⎪⎨
⎧+++++++=+++++++=+++++++=r nr n n n nn n n n r
r n n r r n n u b u b u b x a x a x a x
u b u b u b x a x a x a x
u b u b u b x a x a x a x 22112211222212122221212121211112121111 ⎪⎪⎩⎪⎪⎨
⎧+++++++=+++++++=+++++++=r
mr m m n mn m m m r
r n n r r n n u d u d u d x c x c x c y u d u d u d x c x c x c y u d u d u d x c x c x c y 22112211222212122221212121211112121111 写成矢量形式为:
⎩⎨⎧+=+=Du Cx y Bu Ax x
其中:
n n nn n n n n a a a a a a a a a A ⨯⎥
⎥
⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 2122221
11211 , r n nr n n r r b b b b b b
b b b B ⨯⎥
⎥⎥⎥⎦⎤
⎢⎢⎢⎢⎣⎡= 2122221
11211
n m mn m m n n c c c c c c c c c C ⨯⎥
⎥
⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 21
22221
11211 , r
m mr m m r r a a a a a a
a a d D ⨯⎥
⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 21
22221
11211
n n A ⨯----称为系统矩阵,由系统内部结构及其参数决定,体现了系统内部的特性;
r n B ⨯----称为输入(或控制)矩阵,主要体现了系统输入的施加情况; n m C ⨯----称为输出矩阵,它表达了输出变量与状态变量之间的关系, r m D ⨯----称为直接传递(转移)矩阵,表示了控制向量U 直接转移到输出变量Y 的转移关系。
一般控制系统中,通常情况D=0。
将系统状态空间表达式用方块图表示如图2-1所示。
系统有两个前向通道
和一个状态反馈回路组成,其中D 通道表示控制输入U 到系统输出Y 的直接转移。
图2-1 系统状态空间表达式的方块图
2-2 建立实际物理系统的状态空间表达式(动态方程)
一般控制系统可分为电气、机械、机电、液压、热力等等。
要研究它们,一般先要建立其运动的数学模型(微分方程(组)、传递函数、动态方程等)。
根据具体系统结构及其研究目的,选择一定的物理量作为系统的状态变量和输出变量,并利用各种物理定律,如牛顿定律、基尔霍夫电压电流定律、能量守恒定律等,即可建立系统的动态方程模型。
例2-1
机械平移系统 如图2-2为一加速度仪的原理结构图。
它可以指示出其壳体相对于惯性空间(如地球)的加速度。
设:
i x 为壳体相对于惯性空间的位移; 0x 为质量m 相对于惯性空间的位移;
0x x y i -=为质量m 相对于壳体的位移。
根据牛顿第二定律,这个系统的运动方程为:
y ky x
m μ+=0 将 y x x i -=0代入,我们就可以得到关于加速度仪以变量y 为输出的微
分方程: y
m y ky x m i ++=μ 以质量m 相对于壳体的位移y 作为状态变量y x =1,m 相对于壳体的速度
为状态变量y
x =2,并将质量m 相对于加速度仪壳体的位移y 作为系统输出,以加速度仪外壳相对于地面的加速度i x 作为系统输入i x u =,那么有: ⎪⎪
⎩⎪⎪⎨⎧=+--==1
21
221x y u x m x m k x x x μ 写成矢量形式为:
[]⎪
⎪⎪⎩⎪⎪⎪⎨
⎧==⎥⎦
⎤⎢⎣⎡+⎥⎥⎦⎤⎢⎢⎣⎡--=x
x y u x m m
k x 011010
1μ 这就是图2-2所示加速度仪的状态空间表达式。
当加速度i x
为常数,且系统达到稳定状况时,有:k
x
m y i = 所以我们可以通过y 的读数,确定运动物体的加速度值。
例2-2 RLC 电路如图2-3所示。
以()t u i 作为系统的控制输入u(t),()t u 0作为系统输出()t y 。
建立系统的动态方程。
该R-L-C 电路有两个独立的储能元件L 和C ,我们可以取电容C 两端电压()t u 0和流过电感L 的电流()t i 作为系统的两个状态变量,分别记作1x 和2x 。
根据基尔霍夫电压定律和R 、L 、C 元件的电压电流关系,可得到下列方程:
()()⎪⎪⎪
⎩
⎪
⎪
⎪⎨⎧===++⎰t u y dt
x C x t u x Rx dt dx L i 021122
1 整理得:
()()⎪⎪⎪
⎩
⎪⎪
⎪⎨⎧==+--==102
1221111x t u y t u L x L R x L x x C x i 写成矢量形式为:
图2-3 RLC 电网络
()[]⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎥⎥⎦⎤
⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=x
y t u L x L R L C x i 01
10110
这就是如图2-3所示RLC 电网络的状态空间表达式。
例2-3
多输入多输出系统(MIMO ) 如图2-5所示机械系统,质量1m 、2m 各受到1f 、2f 的作用,其相对平衡位置的位移分别为1x 、2x 。
根据牛顿定律,分别对1m 、2m 进行受力分析,我们有:
()()()()()()()()()()()()⎪⎩⎪⎨⎧----=----=-+-+=-+-+=1212212'
122221212112'12111x x k v v t f x x k x x t f x m x x k v v t f x x k x x t f x m μμμμ
取1x 、2x 、1v 、2v 为系统四个状态变量1x 、2x 、3x 、4x
()t f 1、()t f 2为系统两个控制输入()t u 1、()t u 2,则有状态方程:
()()⎪⎪⎪
⎩
⎪⎪⎪⎨⎧+-+-=++-+-===t u m x m x m x m k x m k x
t u m x m x m x m k x m k x x x x x 22423222124114
13121113423111μμμμ
如果取1x 、2x 为系统的两个输出,即:
⎩⎨
⎧==2
21
1x y x y 写成矢量形式,得系统的状态空间表达式:
⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎨⎧⎥⎦
⎤
⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎦⎤
⎢⎢⎢⎢⎢⎢
⎢⎣
⎡+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢
⎢⎣⎡----
=x y u m m x m m m k m k m m m k m k x 00
1
00011001
0000
10
001002122
2
211
11μμ
μμ。