焦永兰《管理运筹学》课后题答案

合集下载

《管理运筹学》第二课后习题答案

《管理运筹学》第二课后习题答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124m a xx x x Z ++= s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

管理运筹学(第二版)课后习题参考答案

管理运筹学(第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案
(8)总 利润增加了 100×50=5 000,最优产 品组 合不 变。 (9)不能,因为对 偶价格 发生变 化。
(10)不发 生变化,因为允许 增加的百分比与允 许减少的百分比之和
25 50 ≤ 100% 100 100
(11)不发 生变化,因为允许 增加的百分比与允 许减少的百分比之和 50 60 ≤ 100%,其最大利润为 103000+50×50-60 ×200=93 500元。
元;2 车间 与 4 车间 每增加一个工 时,总利 润不增加。
(4)3 车间 ,因为增加的利 润最大。
(5)在400 到正无 穷的范 围内 变化,最优产 品的 组合不 变。
(6)不变,因为在 0,500 的范 围内。
(7)所谓的上限和下限 值指当 约束条件的右 边值 在 给定范 围 内变化 时,约束条件 1 的右 边值 在 200,440 变化,对 偶价格仍 为 50(同理解释 其他 约 束条件)。
x1
0.2
,函数值为 3.6。
x2 0.6
图 2-2
(2)无可行解。 (3)无界解。 (4)无可行解。
(5)无穷多解。
x1
(6)有唯一解
x2
20
3 ,函数值为 92 。
8
3
3
3.解: (1)标 准形式
max f 3x1 2x2 0s1 0s2 0s3
9 x1 2 x2 s1 30 3x1 2 x2 s2 13 2 x1 2 x2 s3 9 x1, x2 ,s1, s2, s3 ≥ 0
金 B 的投 资额 每增加 1 个 单位,回报额 下降 0.06。
(4)c1 不变时 ,c2 在负无 穷到 10 的范 围内变 化,其最优解不 变;
c2 不变时 ,c1 在 2 到正无 穷的范 围 内变化,其最优 解不 变。

管理运筹学第二版课后习题参考答案

管理运筹学第二版课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0 i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

表1—15 某极大化问题的单纯形表7.用大M 法求解如下线性规划。

s .t . ⎪⎪⎩⎪⎪⎨⎧≥=++≤++≤++0,,101632182321321321321x x x x x x x x x x x x解:加入人工变量,进行人造基后的数学模型如下:s .t . ⎪⎪⎩⎪⎪⎨⎧=≥=+++=+++=+++)6,,2,1(0101632182632153214321 i x x x x x x x x x x x x x i列出单纯形表x为“第i电站向第j城市分配的电量”(i=1,2; j=1,2,3),建立模型如下:解:设ijs .t . ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥≤+≥+=+≤+≥+=++=++3,2,1;2,1,035027025032029045040023132313221221112111232221131211j i x x x x x x x x x x x x x x x x x ij10s .t . ⎪⎪⎪⎪⎩⎨=≥≤≤≤4,3,2,1,0,,101520)3()2()1()1(4)1(3)1(2i x x x x x x i i i 通过LINGO 软件计算得:44,12,0,20,10)2(1)2(1)1(3)1(2)1(1=====x x x x x . 10.某家具制造厂生产五种不同规格的家具。

《管理运筹学》第二版)课后习题参考答案

《管理运筹学》第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z .6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1.解:(1)可行域为OABC。

(2)等值线为图中虚线部分。

? (3)由图2-1可知,最优解为B 点,最优解 x =12, x ??15 727图2-1 ;最优目标函数值 69。

72.解:(1)如图2-2所示,由图解法可知有唯一解?x 1 ??0.2,函数值为3.6。

?x 2图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

? (5)无穷多解。

?x ? (6)有唯一解 ??1? 203,函数值为 92 。

8 3x ? ??2 33.解: (1)标准形式max f ??3x 1 ??2x 2 ??0s 1 ??0s 2 ??0s 39x 1 ??2x 2 ??s 1 ??30 3x 1 ??2x 2 ??s 2 ??13 2x 1 ??2x 2 ??s 3 ??9 x 1, x 2 , s 1, s 2 , s 3 ≥ 0(2)标准形式min f ??4x 1 ??6x 2 ??0s 1 ??0s 23x 1 ??x 2 ??s 1 ??6x 1 ??2x 2 ??s 2 ??10 7x 1 ??6x 2 ??4x 1, x 2 , s 1, s 2 ≥ 0(3)标准形式min f ??x 1????2x 2????2x 2??????0s 1 ??0s 2?3x 1 ??5x 2????5x 2??????s 1 ??70 2x 1????5x 2????5x 2??????50 3x 1????2x 2????2x 2??????s 2 ??30 x 1?, x 2??, x 2????, s 1, s 2 ≥ 0 4.解: 标准形式max z ??10x 1 ??5x 2 ??0s 1 ??0s 23x 1 ??4x 2 ??s 1 ??95x 1 ??2x 2 ??s 2 ??8x1, x2 , s1, s2 ≥0≤松弛变量(0,0)最优解为 x 1 =1,x 2=3/2。

管理运筹学课后答案

管理运筹学课后答案

2.2 将下列线性规划模型化为标准形式并列出初始单纯形表。

(1)123123123123123min 243221943414..524260,0,z x x x x x x x x x s t x x x x x x =++-++≤⎧⎪-++≥⎪⎨--=-⎪⎪≤≥⎩无约束 解:(1)令11333','",'x x x x x z z =-=-=-,则得到标准型为(其中M 为一个任意大的正数)12334567123341233561233712334567max '2'24'4''003'22'2''194'34'4''14..5'24'4''26',,','',,,,0z x x x x x x Mx Mx x x x x x x x x x x x s t x x x x x x x x x x x x x =-++-++--++-+=⎧⎪++--+=⎪⎨++-+=⎪⎪≥⎩初始单纯形表如表2-1所示:表2-1c j-22 4-4 0 0 -M -M θC B X B b 1'xx 2 3'x3''xx 4 x 5 x 6 x 7 0 x 4 19 3 2 2 -2 1 0 0 0 19/3 -M x 6 14 [ 4 ] 3 4 -4 0 -1 1 0 14/4 -Mx 7 265 2 4-40 0 0 1 26/5 -z-2+9M2+5M4+8M -4-8M-M2.3 用单纯形法求解下列线性规划问题。

(1)123123123123123max 2360210..220,,0z x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≤⎪⎨+-≤⎪⎪≥⎩ (2) 1234123412341234min 52322347..2223,,,0z x x x x x x x x s t x x x x x x x x =-+++++≤⎧⎪+++≤⎨⎪≥⎩解:(1)最优解为**(15,5,0),25T x z ==。

《管理运筹学》课后习题参考标准答案

《管理运筹学》课后习题参考标准答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么就是线性规划?线性规划的三要素就是什么?答:线性规划(Linear Programming,LP)就是运筹学中最成熟的一个分支,并且就是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,就是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量就是决策问题待定的量值,取值一般为非负;约束条件就是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数就是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域就是空集。

当无界解与没有可行解时,可能就是建模时有错。

3.什么就是线性规划的标准型?松弛变量与剩余变量的管理含义就是什么? 答:线性规划的标准型就是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不就是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案

⎨ 《管理运筹学》第四版课后习题解析(上)第2章 线性规划得图解法1.解:(1)可行域为O ABC .(2)等值线为图中虚线部分.(3)由图2-1可知,最优解为B 点,最优解 x = 12, x = 15 1ﻩ7 2ﻩ7图2-1;最优目标函数值 69 . 72。

解:(1)如图2-2所示,由图解法可知有唯一解 ⎧x 1= 0、2 ,函数值为3、6。

⎩x2图2—2(2)无可行解。

(3)无界解。

(4)无可行解.⎨ (5)无穷多解。

⎧x = (6)有唯一解 ⎪ 1⎪ 20 3 ,函数值为 92 . 83ﻩx = ⎪⎩ 2 33。

解:(1)标准形式ma x f = 3x 1 + 2x2 + 0s1 + 0s 2 + 0s 39x 1 + 2x 2 + s 1 = 303x 1 + 2x 2 + s 2 = 132x1 + 2x 2 + s 3 = 9x 1, x 2 , s 1, s 2 , s3 ≥ 0(2)标准形式min f = 4x 1 + 6x 2 + 0s1 + 0s23x1 - x 2 - s 1= 6 x 1 + 2x2+ s 2 = 10 7x 1- 6x 2 = 4x 1, x2 , s1, s 2 ≥ 0(3)标准形式m in f = x 1' - 2x2' + 2x 2'' + 0s 1 + 0s 2 -3x1 + 5x 2' - 5x 2'' + s 1 = 702x1' - 5x 2' + 5x2'' = 50 3x1' + 2x2' - 2x 2'' - s 2 = 30 x 1', x2' , x 2'' , s 1, s 2 ≥0 4.解:标准形式max z = 10x 1 + 5x 2 + 0s 1 + 0s23x 1 + 4x 2 + s 1= 95x 1 + 2x 2 + s2 = 8x 1, x 2 , s 1, s 2 ≥ 0≤ 松弛变量(0,0)最优解为 ﻮx 1 =1,x 2=3/2.5.解:标准形式mi n f = 11x1 + 8x 2 + 0s1 + 0s 2 + 0s 310x1 + 2x2 - s 1 = 203x 1 + 3x2 - s 2 = 184x 1 + 9x2 - s3 = 36x 1, x2 , s 1, s 2 , s 3 ≥ 0剩余变量(0, 0, 13)最优解为 x1=1,x 2=5。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案
(2)标 准形式
min f 4 x1 6x2 0s1 0s2
3x1 x2 s1 6 x1 2 x2 s2 10 7 x1 6 x2 4 x1, x2 , s1, s2 ≥ 0
(3)标 准形式
min f x1 2 x2 2 x2 0s1 0s2
3x1 5x2 5x2 s1 70 2 x1 5 x2 5x2 50 3x1 2 x2 2x2 s2 30 x1, x2 , x2 , s1 , s2 ≥ 0
推 导 出 x1 18000 ,x2 3000 ,故基金 A 投 资 90 万元,基金 B 投 资 30 万元。
第 3 章 线性规划问题的计算机求 解
1.解: ⑴甲、乙两种柜的日 产量是分 别是 4 和 8,这时 最大利 润 是 2720 ⑵每多生 产一件乙柜,可以使 总利润 提高 13.333 元 ⑶常数 项 的上下限是指常数 项在指定的范 围内 变化时,与其对应 的约 束条件的 对 偶价格不 变。比如油漆时间变为 100,因为 100 在 40 和 160 之间,所以其对偶价格 不 变仍为 13.333 ⑷不 变,因为还 在 120 和 480 之间。
《管理运筹学》第四版课后习题解析(上 )
第 2 章 线性规划的图解法
1.解: (1)可行域为 OABC。
(2)等值线为图 中虚 线 部分。
(3)由图 2- 1 可知,最优解为 B 点,最优解 x = 12 ,x ;最优目标 函数 值 69 。
15
7
1
7
2
7
图 2-1
2.解:
(1)如图 2- 2 所示,由图 解法可知有唯一解
(8)总 利润增加了 100×50=5 000,最优产 品组 合不 变。 (9)不能,因为对 偶价格 发生变 化。

管理运筹学课后习题解答

管理运筹学课后习题解答

1 绪论1、运筹学的内涵答:本书将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化依据的系统知识体系。

”2、运筹学的工作过程答:(1)提出和形成问题。

即要弄清问题的目标、可能的约束、可控变量、有关的参数以及搜索有关信息资料。

(2)建立模型。

即要把问题中的决策变量、参数和目标、约束之间的关系用一定的模型表示出来。

(3)求解模型。

根据模型的性质,选择相应的求解方法,求得最优或者满意解,解的精度要求可由决策者提出。

(4)解的检验和转译。

首先检查求解过程是否有误,然后再检查解是否反映客观实际。

如果所得之解不能较好地反映实际问题,必须返回第(1)步修改模型,重新求解;如果所得之解能较好地反映实际问题,也必须仔细将模型结论转译成现实结论。

(5)解的实施。

实施过程必须考虑解的应用范围及对各主要因素的敏感程度,向决策者讲清楚用法,以及在实施中可能产生的问题和修改的方法。

3、数学模型及其三要素答:数学模型可以简单的描述为:用字母、数字和运算符来精确地反映变量之间相互关系的式子或式子组。

数学模型由决策变量、约束条件和目标函数三个要素构成。

决策变量即问题中所求的未知的量,约束条件是决策所面临的限制条件,目标函数则是衡量决策效益的数量指标。

2 线性规划1、试述线性规划数学模型的组成部分及其特性答:线性规划数学模型由决策变量、约束条件和目标函数三个部分组成。

线性规划数学模型特征:(1) 用一组决策变量表示某一方案,这组决策变量均为非负的连续变量;(2) 存在一定数量(m )的约束条件,这些约束条件可以用关于决策变量的一组线性等式或者不等式来加以表示;(3) 有一个可以用决策变量加以表示的目标函数,而该函数是一个线性函数。

2、一家餐厅24小时全天候营业,在各时间段中所需要的服务员数量分别为:2:00~6:00 3人 6:00~10:00 9人 10:00~14:00 12人 14:00~18:00 5人 18:00~22:00 18人 22:00~ 2:00 4人设服务员在各时间段的开始时点上上班并连续工作八小时,问该餐厅至少配备多少服务员,才能满足各个时间段对人员的需要。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题解析(上)第2章线性规划的图解法1 •解:1 )可行域为OABC2)等值线为图中虚线部分2•解:『X =0 21)女图2-2所示,由图解法可知有唯一解X1 _ . ,函数值为3.6凶=°.6图2-22) 无可行解。

3) 无界解。

4) 无可行解。

3)由图2-1可知,最优解为B 点,最优解辿=12,丿 最优目标函数值 _152 _ 76975)无穷多解3•解:1)标准形式max f =3x i 2x 2 0s i - 0s 2 - 0s 39xi 2x 2 si =303x 1 亠2X 2 亠s =132x i 亠2x 2 亠S 3 =9x i , x 2 ,S 1, S 2, S 3》02) 标准形式min f =4x 1 亠6x 2 亠0$ 亠0s 23x i - X 2 - Si — 6x 1 2x 2 S 2 =i07x i -6x 2 =4x i , x , S i , S 2 A 03) 标准形式min f =xi —2X 2 亠2X 2 亠0s 1 亠0S 2-3x i 5x 2 -5x 2 S i =702x i -5x 2 5X 2: =503x i 2x 2 —2x 2 -S 2 =30x i , xl X 2: Si, S 2 A 0 4•解:标准形式max z =10x i ' 5x 2 ' 0s i 0S 23x 1 4x 2 Si =95xi 2x 2 S 2 =8x i , x , S i , S 2 A 06)有唯一解■: X 2=20 3,函数值为 83 92 3松弛变量0,0) 最优解为x i =1, X 2=3/2。

5•解:标准形式min f =11x i 8x 2 - 0s i - 0s 2 - 0S 310X 1 2X 2 -s 1 =203X I 亠 3X2 -S 2 =184X1 9X2 —S3 =36X 1, X 2 , S 1, S 2 , S3》0剩余变量0, 0, 13)最优解为X 1=1 , X 2=5。

《管理运筹学》第四版课后习题答案

《管理运筹学》第四版课后习题答案

《电路理论》课程教学大纲⎨= 0.6《管理运筹学》第四版课后习题解析(上)第2章 线性规划的图解法1.解:(1)可行域为OABC 。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B 点,最优解 x=12, x = 15 1727图2-1;最优目标函数值 69。

72.解:(1)如图2-2所示,由图解法可知有唯一解⎧x 1 = 0.2,函数值为3.6。

⎩x 2图2-2(2)无可行解。

(3)无界解。

《电路理论》课程教学大纲(4)无可行解。

⎨ (5)无穷多解。

⎧x = (6)有唯一解 ⎪ 1⎪ 203 ,函数值为 92 。

8 3 x = ⎪⎩ 2 33.解: (1)标准形式max f = 3x 1 + 2x 2 + 0s 1 + 0s 2 + 0s 39x 1 + 2x 2 + s 1 = 303x 1 + 2x 2 + s 2 = 13 2x 1 + 2x 2 + s 3 = 9x 1, x 2 , s 1, s 2 , s 3 ≥ 0(2)标准形式min f = 4x 1 + 6x 2 + 0s 1 + 0s 23x 1 - x 2 - s 1 = 6 x 1 + 2x 2 + s 2 = 10 7x 1 - 6x 2 = 4x 1, x 2 , s 1, s 2 ≥ 0(3)标准形式min f = x 1' - 2x 2' + 2x 2'' + 0s 1 + 0s 2-3x 1 + 5x 2' - 5x 2'' + s 1 = 70 2x 1' - 5x 2' + 5x 2'' = 50 3x 1' + 2x 2' - 2x 2'' - s 2 = 30 x 1', x 2' , x 2'' , s 1, s 2 ≥4.解: 标准形式max z = 10x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4x 2 + s 1 = 9 5x 1 + 2x 2 + s 2 = 8 x 1, x 2 , s 1, s 2 ≥ 0≤松弛变量(0,0)最优解为 x 1 =1,x 2=3/2。

《管理运筹学》(第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案

《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项b,决策变量满足非负性。

≥i如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0AX,的解,称为可行解。

b≥=X基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表j c412i θB CB Xb 1x2x3x4x5x0 4x 2 [8] 3 1 1 0 2/8 05x86 1 1 0 1 8/6 j σ41 2 0 0 4 1x 1/4 1 3/8 [1/8] 1/8 0 (1/4)/(1/8) 05x13/26 -5/4 1/4 -3/4 1 (13/2)/(1/4)j σ-1/2 3/2 -1/2 0 2 3x 2 8 3 1 1 0 05x6-2-2-11故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z .6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

《管理运筹学》(第二版)课后习题参考答案(2020年7月整理).pdf

《管理运筹学》(第二版)课后习题参考答案(2020年7月整理).pdf

max Z = 2.7x1 + 3x2 + 4.5x3 + 2.5x4 + 3x5
3x1 + 4x2 + 6x3 + 2x4 + 3x5 3600
s.t.
42xx11
+ +
3x2 3x2
+ +
5x3 3x3
+ +
6x4 4x4
+ +
4x5 3x5
3950 2800
xi 0,i = 1,2,,5
通过 LINGO 软件计算得: x1 = 0, x2 = 38, x3 = 254, x4 = 0, x5 = 642, Z = 3181 .
11.某厂生产甲、乙、丙三种产品,分别经过 A,B,C 三种设备加工。已知生产
单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表 2—10 所示。
《管理运筹学》(第二版)课后习题参考答案
第 1 章 线性规划(复习思考题)
1.什么是线性规划?线性规划的三要素是什么? 答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是 应用最广泛的一个运筹学分支。线性规划属于规划论中的静态规划,是一种重要的优化 工具,能够解决有限资源的最佳分配问题。 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量是决 策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条 件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的 线性函数表达式,有的目标要实现极大值,有的则要求极小值。 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。 当无界解和没有可行解时,可能是建模时有错。 3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么? 答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项 bi 0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业 来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束 的左边取值大于右边规划值,出现剩余量。 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。 答:可行解:满足约束条件 AX = b,X 0 的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 它们的相互关系如右图所示: 5.用表格单纯形法求解如下线性规划。

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案汇总《管理运筹学》(第二版)课后习题参考答案第一章线性规划(复习问题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(LP)是运筹学中最成熟的分支,也是运筹学中应用最广泛的分支。

线性规划在规划理论中属于静态规划。

它是解决有限资源优化配置问题的重要优化工具。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.在解决线性规划问题时,可能会有几个结果。

哪个结果表明建模中存在错误?答:(1)唯一最优解:只有一个最佳优势;(2)多重最优解:无限多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.线性规划的标准形式是什么?松弛变量和剩余变量的管理意义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.尝试解释线性规划问题的可行解、基本解、基本可行解和最优解的概念及其相互关系。

答:可行解:满足约束条件这个问题的解叫做可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基础:与可行解对应的基础称为可行基础。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.使用表格单纯形法求解以下线性规划。

s.t.解决方案:标准化s.t.列出单纯形表00441b二万八千四百一十一/4一3/20-1/2二[8]六2一/81/8]/8六5/4/43/43/21/22/88/6(1/4/(1/8(13/2/(1/422806-221-因此,最佳解决方案是125,即-2.为何值及变,最佳值为6.表1―15中给出了求极大化问题的单纯形表,问表中当数量属于哪种类型时:(1)表中的解是唯一的最优解;(2)表中的解是无限最优解之一;(3)下一次迭代将是代替基变量(4)线性规划问题有无界解;(5)该线性规划问题无可行解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档