同轴电缆SPD的阻抗匹配
同轴电缆 技术要求
![同轴电缆 技术要求](https://img.taocdn.com/s3/m/d922a6652e60ddccda38376baf1ffc4ffe47e2eb.png)
同轴电缆 技术要求
同轴电缆是一种常见的传输线,用于传输高频信号,如射频信号、视频信号等。
以下是同轴电缆的技术要求:
1. 阻抗匹配:同轴电缆的阻抗应该与连接器、放大器等设备的输入/输出阻抗匹配,以避免信号反射和失真。
2. 衰减:同轴电缆的衰减应该尽可能小,以保证信号的传输质量。
3. 屏蔽:同轴电缆应该有良好的屏蔽性能,以避免外部干扰对信号的影响。
4. 绝缘:同轴电缆的绝缘层应该具有足够的绝缘性能,以避免信号泄漏。
5. 弯曲半径:同轴电缆的弯曲半径应该尽可能大,以避免信号损失和电缆损坏。
6. 温度范围:同轴电缆的工作温度应该在一定的范围内,以保证其工作稳定性。
7. 阻燃性:同轴电缆应该具有一定的阻燃性,以避免火灾危险。
不同类型的同轴电缆可能有不同的技术要求,具体的技术要求可以参考相关的行业标准或企业标准。
最全的阻抗匹配方案
![最全的阻抗匹配方案](https://img.taocdn.com/s3/m/141f5111f18583d04964592d.png)
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。
阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。
这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便。
阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
同轴电缆阻抗
![同轴电缆阻抗](https://img.taocdn.com/s3/m/5c6d861a443610661ed9ad51f01dc281e53a56d2.png)
同轴电缆阻抗:连接网络的关键同轴电缆在数字通信领域有着广泛的应用,其性能优异,传输速率高。
而同轴电缆的阻抗则是影响其性能的一个重要因素。
同轴电缆的阻抗是指在同轴电缆中电信号传输时的阻力大小。
通俗来讲,这就相当于电信号传输时的水管大小,如果管子太小,水流就会受阻,这样就会降低传输的速度,反之,如果水管太大,就会浪费水资源。
同样的道理,当同轴电缆的阻抗与接收器或发送器的阻抗不匹配时,就会出现反射,导致信号损失、抖动、干扰等问题。
因此,匹配同轴电缆阻抗至关重要。
一般来讲,同轴电缆的阻抗为50或75欧姆,而大多数接收器和发送器也都设计为50或75欧姆,这样才能保证信号传输的质量。
除了同轴电缆阻抗的匹配,同轴电缆使用的场所以及电缆本身的质量同样会影响其性能。
通常情况下,同轴电缆应在地下或受人为损坏小的场所使用,避免被机械损坏;同时,电缆的绝缘材料应具有良好的绝缘性、阻燃性和抗老化性,这些都是保障同轴电缆传输质量的重要因素。
综上所述,同轴电缆阻抗是影响其性能的一个重要因素,合理选择同轴电缆及相关设备,匹配好阻抗,可以保证信号传输的质量。
同轴射频电缆阻抗计算
![同轴射频电缆阻抗计算](https://img.taocdn.com/s3/m/37c0c8c7d5d8d15abe23482fb4daa58da1111c58.png)
同轴射频电缆阻抗计算射频同轴电缆是一种广泛应用于通信、雷达、导航等领域的传输线。
它由内导体、绝缘层、外导体和护套组成,具有低损耗、高带宽、抗干扰能力强等优点。
在射频系统中,阻抗匹配是非常重要的一个环节,因为它直接影响到信号的传输质量和系统的性能。
因此,对射频同轴电缆的阻抗计算具有重要意义。
一、射频同轴电缆的基本参数1. 内导体:射频同轴电缆的内导体通常采用铜或铝制成,其截面积和长度会影响电缆的阻抗。
2. 绝缘层:绝缘层的主要作用是防止内外导体之间的短路,同时保证射频信号的传输。
绝缘层的材料和厚度也会影响电缆的阻抗。
3. 外导体:外导体通常采用铜管或铝管制成,其直径和长度会影响电缆的阻抗。
4. 护套:护套的主要作用是保护电缆,防止外部环境对电缆的影响。
护套的材料和厚度也会影响电缆的阻抗。
二、射频同轴电缆的阻抗计算公式射频同轴电缆的阻抗计算公式为:Z = R + jX,其中Z表示阻抗,R表示电阻,X表示电抗,j表示虚数单位。
1. 电阻R的计算:电阻R主要由内导体的电阻决定,其计算公式为:R = ρL/A,其中ρ表示导体材料的电阻率,L表示内导体的长度,A表示内导体的截面积。
2. 电抗X的计算:电抗X主要由绝缘层的电容和外导体的电感决定,其计算公式为:X = 2πfL/D,其中f表示射频信号的频率,L表示外导体的长度,D表示外导体的直径。
三、射频同轴电缆阻抗计算实例假设我们要设计一根射频同轴电缆,要求其工作频率为10GHz,内导体采用铜制,截面积为1mm²,长度为1m;绝缘层采用聚乙烯材料,厚度为0.05mm;外导体采用铜管,直径为0.5mm,长度为1m;护套采用聚氨酯材料。
根据上述参数,我们可以计算出射频同轴电缆的阻抗。
1. 计算内导体的电阻:首先我们需要知道铜的电阻率ρ约为1.68×10^-8Ω·m。
代入公式R = ρL/A,得到R = 1.68×10^-8 ×1000/1 = 1.68×10^-7Ω。
阻抗匹配计算公式zhihu
![阻抗匹配计算公式zhihu](https://img.taocdn.com/s3/m/0cb8e80e842458fb770bf78a6529647d272834fd.png)
阻抗匹配计算公式zhihu阻抗匹配是一种常用的电路设计技术,能够提高电路的效能和传输功率。
阻抗匹配是指在电路设计中,将信号源、传输线、负载等电路的阻抗调整到相互匹配的状态,以实现最大功率传输和信号传输的最佳效果。
在实际应用中,阻抗匹配可以通过改变电阻、电容、电感等元件的数值来实现。
阻抗匹配的目的是为了使信源和负载之间达到最大功率传输的状态,即阻抗匹配的目标是使信源和负载之间的阻抗相等。
在电路中,阻抗可以用复数来表示,即阻抗的实部和虚部,分别对应于电阻和电抗。
阻抗匹配的计算公式主要有以下几种:1.串联匹配公式:当信源阻抗为Zs,负载阻抗为Zl,需要串联一个电感L和一个电容C进行阻抗匹配时,串联匹配公式为:Zin = Zs + jωL = Zl + 1/(jωC)其中,ω为角频率,j为单位虚数。
这个公式可以通过将实部和虚部分别相等的方式求解。
首先将两个复数等于,得到:Zs=Zl+1/(jωC)接着,将上式的复数形式展开,得到:Rs+jωL=Rl+1/(jωC)将实部和虚部分开,并进行整理,得到:Rs=Rl+1/(ω^2CL)ωL=1/ωC根据这两个等式,可以求解出所需的电感L和电容C的数值。
2.并联匹配公式:当信源阻抗为Zs,负载阻抗为Zl,需要并联一个电阻R和一个电感L进行阻抗匹配时,并联匹配公式为:Zin = (Zs + R) ,(Zl + jωL)其中,","表示并联。
这个公式同样也可以通过将实部和虚部分别相等的方式求解。
首先将两个复数等于,得到:Zs+R=Zl+jωL接着,将上式的复数形式展开,并进行整理,得到:Rs+R+jωL=Rl将实部和虚部分开,并进行整理,得到:Rs+R=RlωL=-R根据这两个等式,可以求解出所需的电阻R和电感L的数值。
3.逆变器匹配公式:逆变器匹配是一种较为复杂的匹配方式,其中包含多个元件。
逆变器匹配公式可以根据具体的电路结构来确定,常用的逆变器匹配方法有L型匹配法、π型匹配法等。
射频同轴电缆选择指南
![射频同轴电缆选择指南](https://img.taocdn.com/s3/m/9d7acd7f0812a21614791711cc7931b765ce7b0e.png)
射频同轴电缆选择指南
1.频率范围
2.阻抗匹配
阻抗匹配是指信号源和负载之间的阻抗匹配。
在选择射频同轴电缆时,需要确保其阻抗与信号源和负载的阻抗匹配。
常见的阻抗值有50欧姆和
75欧姆,选择时需要根据实际应用的设备和系统来确定阻抗匹配。
3.传输损耗
传输损耗是指信号在传输过程中由于电缆的衰减而丢失的能量。
传输
损耗会降低系统的信号质量和传输距离。
在选择射频同轴电缆时,需要考
虑其传输损耗的大小。
一般来说,传输损耗越小,电缆的传输性能越好。
4.电缆长度
电缆长度也是一个重要的考虑因素。
一般来说,射频同轴电缆的传输
性能受到电缆长度的限制,传输损耗随着长度的增加而增加。
因此,在选
择电缆时,需要根据实际的传输距离来确定合适的电缆长度。
5.屏蔽性能
6.环境适应性
射频同轴电缆通常被安装在室内或者室外环境中,对于不同的环境,
电缆的要求也不同。
室外电缆需要具有良好的耐候性和防水性能,室内电
缆则需要具有良好的抗干扰能力。
选择电缆时,需要根据实际安装环境来
确定合适的电缆。
综上所述,射频同轴电缆选择时需要考虑频率范围、阻抗匹配、传输损耗、电缆长度、屏蔽性能和环境适应性等因素。
根据实际应用场景和需求,选择合适的射频同轴电缆可以确保系统的传输质量和性能。
同轴线的阻抗为什么一般为50或75欧(详解)
![同轴线的阻抗为什么一般为50或75欧(详解)](https://img.taocdn.com/s3/m/68f4b509de80d4d8d15a4faa.png)
什么是典型的电缆阻抗?同轴电缆使用的最典型阻抗值为50欧姆和75欧姆。
50欧姆同轴电缆大概是使用中最常见的,一般使用在无线电发射接收器,实验室设备,以太等环境下。
另一种常用的电缆类型是75欧姆的同轴电缆,一般用在视频传输,有限电视网络,天线馈线,长途电讯应用等场合。
电报和电话使用的裸露平行导线也是典型的阻抗为600欧姆。
一对线径标准22的双绞线,使用合适的绝缘体,因为机械加工的限制,平均阻抗大约在120欧姆左右,这是另一种具有自己特有特性阻抗的传输线。
某些天线系统中使用300欧姆的双引线,以匹配折合半波阵子在自由空间阻抗。
(但当折合阵子处于八木天线中的时候,阻抗通常会下降很多,一般在100-200欧姆左右)(注:加反射板也会改变阵子的阻抗值,一般会降低,而且反射板越近则阻抗降低越多。
)为什么是50欧姆的同轴电缆?在美国,用作射频功率传输的标准同轴电缆的阻抗几乎无一例外地都是50欧姆。
为什么选用这个数值,在伯德电子公司出示的一篇论文中有解释。
不的的参数都对应一个最佳的阻抗值。
内外导体直径比为1.65时导线有最大功率传输能力,对应阻抗为30欧姆(注:lg1.65*138=30欧姆,要使用空气为绝缘介质,因为这个时候介电常数最小,如果使用介电常数为2.3的固体聚乙烯,则阻抗只有不到20欧姆)。
最合适电压渗透的直径比为2.7,对应阻抗大约是6 0欧姆。
(顺带一提,这个是很多欧洲国家使用的标准阻抗)当发生击穿时,对功率传输能力的考量是忽略了渗透电流的,而在阻抗很低,3 0欧姆时,渗透电流会很高。
衰减只源自导体的损失,此时的衰减大约比最小衰减阻抗(直径比3.5911)77欧姆的时候上升了50%,而在这个比率下(D/d=3. 5911),最大功率的上限为30欧姆电缆最大功率的一半。
以前,很少使用微波功率,电缆也无法应付大容量传输。
因此减少衰减是最重要的因素,导致了选择77(75欧姆)为标准。
同时也确立了硬件的规格。
50-22射频同轴电缆技术指标要求
![50-22射频同轴电缆技术指标要求](https://img.taocdn.com/s3/m/dad21b0cb207e87101f69e3143323968001cf46c.png)
50-22射频同轴电缆技术指标要求50-22射频同轴电缆是一种广泛应用于通信网络、电视信号传输、无线电频率传输等领域的电缆。
其技术指标要求主要包括以下几个方面:1.增益稳定性:射频同轴电缆的增益稳定性是指在频率范围内,电缆传输信号经损耗后,能够保持相对稳定的信号增益。
对于50-22射频同轴电缆而言,增益稳定性要求高,可以确保信号传输的质量和可靠性。
2.阻抗匹配:阻抗匹配是指射频同轴电缆输入和输出端口之间的电气特性阻抗相匹配。
50-22射频同轴电缆要求输入和输出的阻抗匹配度高,以减小信号反射和传输损耗,提高传输效率。
3.传输损耗:传输损耗是指在信号传输过程中由于电缆中的电阻、电感、电容等元件引起的能量损失。
50-22射频同轴电缆要求在频率范围内传输损耗低,以确保信号的强度和质量。
4.平衡度:平衡度是指射频同轴电缆在传输过程中两个导线之间的电信号平衡性。
高平衡度可以减少噪声和干扰,提高信号传输的可靠性。
50-22射频同轴电缆要求具有良好的平衡度。
5.带宽:带宽是指射频同轴电缆能够传输的频率范围。
50-22射频同轴电缆要求具有较宽的带宽,可以传输更多的频率信号,满足不同应用领域的需求。
6.温度范围:温度范围是指射频同轴电缆能够正常工作的环境温度范围。
50-22射频同轴电缆要求能够在较高或较低的温度下正常工作,以满足不同环境条件下的使用需求。
通过以上几个方面的技术指标要求,可以确保50-22射频同轴电缆在通信、传输等领域中的稳定性、可靠性和传输效率。
同时,在不同应用场景中,还可以根据实际需求,进一步提高技术指标要求,以满足更高级别的信号传输需求。
SPD的分类及参数选择
![SPD的分类及参数选择](https://img.taocdn.com/s3/m/71fa345569dc5022aaea00e0.png)
智能大楼设备配置中有计算机中心机房、 消防监控、音响、程控交换等机房及机要 设备等很多机房。
除了需要在大楼总电源处加装电源避雷器。 按照标准要求,还必须在0区、1区、2区 分别加装避雷器。
在各设备前端分别要加装电源避雷器,以 最大限度地抑制雷电感应的能量。
信号系统所有出户线路都应视为雷电引入 通道,都应加装信号避雷器。
注: 放电电流是衡量电源避雷器泄放雷电流能 力的指标,应根据当地雷电强度、被保护设备重 要性选择SPD的放电电流。
主要技术指标
3、限制电压 ---UP
定义:施加规定波形(8/20μs)、幅值(标称放电 电流)和次数(同一极性5次)的冲击时,在SPD端子 间测得的电压峰值的最大值。
在选用SPD时应兼顾限制电压和最大 持续运行电压,限制电压是SPD对设备保 护的有效性指标,而最大持续运行电压与 SPD本身工作可靠性相关。
磁干扰。 7)、保险丝中断产生10/1000us(通常在300—1000A)
电磁干扰。 8)、空调器的开启产生10/1000us(通常在300—1000A)
电磁干扰
其实静电感应、电磁感应主要是通过供电 线路破坏设备的,因此对计算机信息系统 的防雷保护首先是合理地加装电源避雷器, 其次是加装信号线路和天馈线避雷器。
SPD的分类及参数选择
前言
现代防雷技术是多学科、多行业 相互合作、协调、配合,通过外部防 雷和内部防雷及综合布线等措施来最 大限度地减小这种雷击灾害的系统工 程技术 。
综合防雷系统
外部防雷措施
内部防雷措施
接
安
(
闪 器
针 网 带 线
引 下 线
屏 蔽
接 地 装 置
共 用 接
屏 蔽
什么是阻抗匹配阻抗匹配的条件
![什么是阻抗匹配阻抗匹配的条件](https://img.taocdn.com/s3/m/ab7b28c76e1aff00bed5b9f3f90f76c661374cd4.png)
什么是阻抗匹配阻抗匹配的条件阻抗匹配的信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,那么你对阻抗匹配了解多少呢?以下是由店铺整理关于什么是阻抗匹配的内容,希望大家喜欢!阻抗匹配的概述信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。
一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。
对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。
输入端阻抗匹配时,传输线获得最大功率;在输出端阻抗匹配的情况下,传输线上只有向终端行进的电压波和电流波,携带的能量全部为负载所吸收。
在阻抗失配的情况下,传输线上将同时存在-射波和应射波。
从传输的角度来说,总是竭力避免阻抗失配现象的出现,因为反射波的出现,意味着递送到传输线终端的功率不能全部为负载所吸收,降低了传输效率;在输送功率较高的情况下,电压或电流的波腹有可能损坏传输线的介质;而且传输线始端的输入阻抗随频率而变化,输送多频信号时,将因机、线阻抗难于匹配而出现失真。
阻抗匹配的程度常用电压反射系数来衡量。
阻抗匹配的条件①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。
②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。
这时在负载阻抗上可以得到最大功率。
这种匹配条件称为共轭匹配。
如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
射频同轴电缆绝缘电阻标准
![射频同轴电缆绝缘电阻标准](https://img.taocdn.com/s3/m/2c726b28ae1ffc4ffe4733687e21af45b307fedf.png)
射频同轴电缆绝缘电阻标准一、导体电阻同轴电缆的导体电阻主要是指电缆中心导体的电阻。
这个电阻值的大小会影响到电缆的传输性能,如传输速率和信号质量。
通常,导体电阻的值越小,电缆的传输性能就越好。
在射频同轴电缆中,导体电阻的数值通常在几欧姆到几十欧姆之间。
二、绝缘电阻绝缘电阻是指电缆绝缘层对地的电阻值。
这个电阻值的大小直接反映了电缆的绝缘性能。
绝缘电阻值越高,电缆的绝缘性能就越好。
一般来说,射频同轴电缆的绝缘电阻值需要达到100MΩ以上。
三、阻抗匹配射频同轴电缆的阻抗匹配是指电缆的阻抗值与传输信号的阻抗值一致。
如果阻抗不匹配,信号在传输过程中会发生反射,导致信号质量下降。
因此,射频同轴电缆的阻抗匹配是非常重要的。
四、电缆衰减电缆衰减是指信号在传输过程中逐渐减弱的趋势。
射频同轴电缆的衰减主要由导体电阻、绝缘电阻、介电常数等因素引起。
衰减越小,信号传输的距离就越远,传输质量也越好。
五、温度系数温度系数是指电缆导体电阻值随温度变化的比率。
由于射频同轴电缆在使用过程中会受到环境温度的影响,因此温度系数也是衡量电缆性能的一个重要指标。
温度系数越小,电缆的性能就越稳定。
六、机械性能射频同轴电缆的机械性能主要包括拉伸强度、弯曲半径、耐磨性等。
这些性能指标直接影响到电缆的使用寿命和可靠性。
机械性能良好的电缆能够在各种环境下保持稳定的工作状态。
七、耐候性耐候性是指电缆在各种环境条件下的适应能力。
射频同轴电缆需要适应不同的气候条件,如高温、低温、潮湿、干燥等。
耐候性好的电缆能够在各种环境下保持良好的性能。
八、防雷性能防雷性能是指电缆在遇到雷击时的防护能力。
射频同轴电缆在遇到雷击时,如果防雷性能不好,可能会损坏传输设备和信号质量。
因此,防雷性能也是衡量射频同轴电缆的一个重要指标。
九、安全性安全性是指射频同轴电缆在使用过程中对人和环境的危害程度。
射频同轴电缆在使用过程中应不会产生有害的辐射,对人体和环境不会造成危害。
十、电磁辐射电磁辐射是指射频同轴电缆在使用过程中产生的电磁波对周围环境的影响。
同轴电缆SPD的阻抗匹配
![同轴电缆SPD的阻抗匹配](https://img.taocdn.com/s3/m/be62f0275acfa1c7aa00cc80.png)
同轴电缆SPD的阻抗匹配作者:黄灏王绍俊来源:《科技传播》2011年第20期摘要:同轴电缆SPD的选型,需要考虑的参数有很多,例如接口、工作电压、插入损耗等,但阻抗匹配这一重要参数很容易被忽视,该参数恰恰也决定着SPD安装后对原线路的影响。
本文主要就同轴电缆SPD(避雷器)阻抗匹配问题进行讨论。
关键词:同轴电缆;阻抗匹配;SPD中图分类号TM7 文献标识码A 文章编号 1674-6708(2011)53-0099-020引言同轴电缆通常也被称做细缆,在10Base2网络中是主要的信号传输介质,但随着10/100BaseT网络的普及,双绞线已逐渐取代了细缆的位置,成为了现在局域网络的主要传输介质。
在网络中,同轴电缆虽被双绞线取代,但它并没有退出通信系统的舞台。
在现代网络中同轴电缆主要作为E1线路(广域网常用专线)的接入介质,因此在视频传输中得到广泛的应用。
同轴电缆抗干扰能力很弱,尤其是雷电磁脉冲对其影响很大,很容易产生雷电过电压而损坏连接的设备,但可以通过安装BNC接口的SPD来防止雷电过电压损坏相连的设备。
由于同轴电缆的应用于不同的系统,其外型一样但阻抗分50Ω或75Ω等。
其SPD选择时如果阻抗不匹配,虽接口、电压等满足要求,但长时间工作会使线路的带宽下降并产生损耗。
1 同轴电缆简介同轴电缆(Coaxial)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。
最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住。
目前,常用的同轴电缆有两类:50Ω和75Ω的同轴电缆。
75Ω同轴电缆常用于CATV 网,故称为CATV电缆,传输带宽可达1GHz,目前常用CATV电缆的传输带宽为750MHz。
50Ω同轴电缆主要用于基带信号传输,传输带宽为1MHz~20MHz,总线型以太网就是使用50Ω同轴电缆,在以太网中,50Ω细同轴电缆的最大传输距离为185m,粗同轴电缆可达1 000m。
一篇文章看看能不能讲透“阻抗匹配”
![一篇文章看看能不能讲透“阻抗匹配”](https://img.taocdn.com/s3/m/1043975932687e21af45b307e87101f69e31fb7a.png)
一篇文章看看能不能讲透“阻抗匹配”先说“阻抗”和“阻抗匹配”的概念电路中存在的电阻、电容和电感对电流起到的阻碍作用就叫做阻抗。
阻抗的单位为欧姆(Ω),用Z来表示,是一个表达式为:Z=R+i(ωL–1/(ωC))的复数。
实部R为电阻,虚部(ωL–1/(ωC))为电抗,其中ωL为感抗,1/(ωC)为容抗。
像我们平时接触到的耳机、喇叭,它的一个重要的参数就是阻抗,准确的说是在1KHz的正弦波信号电路中耳机所呈现的阻抗值。
主要是电阻和感抗,没有容抗。
拜亚动力DT990Pro 250Ω阻抗匹配是指信号源、传输线和负载之间达到一种适合的搭配关系,从而提升能源效益。
低频电路中的阻抗匹配在直流电路中也就是理想化的纯电阻电路中,由电容和电感引起的电抗基本可以忽略不计,此时电路中的阻抗主要是来自于电阻。
如下图示,我们假设激励源已定,那么负载的功率由两者的阻抗匹配度决定。
电路中的电流I=U/(r+R),负载的功率P=I²R,我们整理得到P=(U²*R)/(r+R)²,可以看出当R=r时负载的功率P最大=U²/4R。
纯电阻电路模型此结论在交流电路中引入容抗和感抗以后会稍有不同,在交流电路中负载的阻抗与信号源的阻抗共轭的时候能够实现最大功率输出。
在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的阻抗匹配,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑,因为即使反射回来,跟原信号也是一样的。
高频电路中的阻抗匹配我为什么把高频电路单拉一个段落?因为在高频电路中引入了一个非常重要的因素—反射信号。
我们知道当信号频率很高时,则信号的波长就很短。
当波长和传输线长度同一量级时,反射信号叠加在原信号上将会改变原信号的形状。
但是如果传输线的特征阻抗与负载阻抗相等(即阻抗匹配)时,就会有效的减少、消除高频信号反射。
信号传输波形至于为什么阻抗不匹配会产生反射以及传输线的特征阻抗的算法,涉及到二阶偏微分方程的求解,在这里我就不细说了,有兴趣的朋友可以看一下高等教育出版社的教材《电磁场与电磁波》第四版的第七章<导型电磁波>的第6小结<传输线>,里面有详细描述。
阻抗匹配器—搜狗百科
![阻抗匹配器—搜狗百科](https://img.taocdn.com/s3/m/b3bb80db8ad63186bceb19e8b8f67c1cfad6eecc.png)
阻抗匹配器—搜狗百科
中文名:阻抗匹配
英文名:Impedance matching
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。
这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。
电阻小的物质称作良导体,电阻很大的物质称作非导体,而在高科技领域中称的超导体,则是一种电阻值几近于零的东西。
但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。
电容及电感的电抗分别称作电容抗及
电感抗,简称容抗及感抗。
它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。
此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。
阻抗匹配计算公式 zhihu
![阻抗匹配计算公式 zhihu](https://img.taocdn.com/s3/m/d1bf3fb3d1d233d4b14e852458fb770bf78a3b36.png)
阻抗匹配计算公式 zhihu
(最新版)
目录
1.阻抗匹配的定义和重要性
2.阻抗匹配计算公式的概述
3.阻抗匹配计算公式的推导过程
4.阻抗匹配计算公式的应用实例
5.阻抗匹配计算公式的优缺点分析
正文
1.阻抗匹配的定义和重要性
阻抗匹配是一种在电路中实现能量最大传输的技术,其目的是使负载阻抗与源阻抗相等或接近相等,从而减少能量损耗,提高系统效率。
阻抗匹配在无线通信、射频电路、信号处理等领域有着广泛的应用。
2.阻抗匹配计算公式的概述
阻抗匹配计算公式是根据电路中电阻、电感和电容等参数计算得到的,用以描述负载阻抗与源阻抗之间的匹配程度。
阻抗匹配计算公式可以较为直观地反映电路的匹配状态,从而指导电路设计和优化。
3.阻抗匹配计算公式的推导过程
阻抗匹配计算公式的推导过程涉及到复数运算和电路分析知识。
首先,根据电路中电阻、电感和电容等参数,可以求得负载阻抗的复数表示;然后,通过一定的数学变换,可以得到阻抗匹配计算公式。
具体的推导过程较为复杂,需要一定的数学基础。
4.阻抗匹配计算公式的应用实例
阻抗匹配计算公式在实际电路设计中有着广泛的应用。
例如,在无线
通信系统中,通过阻抗匹配可以实现信号源与负载之间的能量高效传输,从而提高通信系统的性能;在射频电路中,阻抗匹配可以减少反射损耗,提高信号传输质量。
5.阻抗匹配计算公式的优缺点分析
阻抗匹配计算公式具有直观、简便等优点,可以较为方便地判断电路的匹配状态。
然而,阻抗匹配计算公式也存在一定的局限性,例如对于复杂的电路系统,计算公式可能无法准确反映电路的匹配状态,需要结合实际情况进行分析。
阻抗匹配原理
![阻抗匹配原理](https://img.taocdn.com/s3/m/d3c5081b0912a216147929c3.png)
阻抗匹配原理来源:互联网阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。
阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。
这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便。
阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
同轴电缆SPD的阻抗匹配
![同轴电缆SPD的阻抗匹配](https://img.taocdn.com/s3/m/254b2f5ffe4733687e21aa60.png)
同轴电缆SPD的阻抗匹配摘要:同轴电缆SPD的选型,需要考虑的参数有很多,例如接口、工作电压、插入损耗等,但阻抗匹配这一重要参数很容易被忽视,该参数恰恰也决定着SPD安装后对原线路的影响。
本文主要就同轴电缆SPD(避雷器)阻抗匹配问题进行讨论。
关键词:同轴电缆;阻抗匹配;SPD0引言同轴电缆通常也被称做细缆,在10Base2网络中是主要的信号传输介质,但随着10/100BaseT网络的普及,双绞线已逐渐取代了细缆的位置,成为了现在局域网络的主要传输介质。
在网络中,同轴电缆虽被双绞线取代,但它并没有退出通信系统的舞台。
在现代网络中同轴电缆主要作为E1线路(广域网常用专线)的接入介质,因此在视频传输中得到广泛的应用。
同轴电缆抗干扰能力很弱,尤其是雷电磁脉冲对其影响很大,很容易产生雷电过电压而损坏连接的设备,但可以通过安装BNC接口的SPD来防止雷电过电压损坏相连的设备。
由于同轴电缆的应用于不同的系统,其外型一样但阻抗分50Ω或75Ω等。
其SPD选择时如果阻抗不匹配,虽接口、电压等满足要求,但长时间工作会使线路的带宽下降并产生损耗。
1 同轴电缆简介同轴电缆(Coaxial)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。
最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住。
目前,常用的同轴电缆有两类:50Ω和75Ω的同轴电缆。
75Ω同轴电缆常用于CATV网,故称为CATV电缆,传输带宽可达1GHz,目前常用CATV电缆的传输带宽为750MHz。
50Ω同轴电缆主要用于基带信号传输,传输带宽为1MHz~20MHz,总线型以太网就是使用50Ω同轴电缆,在以太网中,50Ω细同轴电缆的最大传输距离为185m,粗同轴电缆可达1 000m。
1.1宽带电缆是CATV系统中使用的标准,它既可使用频分多路复用的模拟信号发送,也可传输数字信号。
阻抗匹配的原理与概念
![阻抗匹配的原理与概念](https://img.taocdn.com/s3/m/6941c4c0866fb84ae55c8d0e.png)
阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。
这种匹配条件称为共扼匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
右图中R为负载电阻,r为电源E的内阻,E为电压源。
由于r的存在,当R很大时,电路接近开路状态;而当R很少时接近短路状态。
显然负载在开路及短路状态都不能获得最大功率。
根据式:式中分母中的(R-r)的值最小为0,此时负载所获取的功率最大。
所以,当负载电阻等于电源内阻时,负载将获得最大功率。
这就是电子电路阻抗匹配的基本原理。
阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。
这种匹配条件称为共扼匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同轴电缆SPD的阻抗匹配
摘要:同轴电缆SPD的选型,需要考虑的参数有很多,例如接口、工作电压、插入损耗等,但阻抗匹配这一重要参数很容易被忽视,该参数恰恰也决定着SPD安装后对原线路的影响。
本文主要就同轴电缆SPD(避雷器)阻抗匹配问题进行讨论。
关键词:同轴电缆;阻抗匹配;SPD
0引言
同轴电缆通常也被称做细缆,在10Base2网络中是主要的信号传输介质,但随着10/100BaseT网络的普及,双绞线已逐渐取代了细缆的位置,成为了现在局域网络的主要传输介质。
在网络中,同轴电缆虽被双绞线取代,但它并没有退出通信系统的舞台。
在现代网络中同轴电缆主要作为E1线路(广域网常用专线)的接入介质,因此在视频传输中得到广泛的应用。
同轴电缆抗干扰能力很弱,尤其是雷电磁脉冲对其影响很大,很容易产生雷电过电压而损坏连接的设备,但可以通过安装BNC接口的SPD来防止雷电过电压损坏相连的设备。
由于同轴电缆的应用于不同的系统,其外型一样但阻抗分50Ω或75Ω等。
其SPD选择时如果阻抗不匹配,虽接口、电压等满足要求,但长时间工作会使线路的带宽下降并产生损耗。
1 同轴电缆简介
同轴电缆(Coaxial)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。
最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住。
目前,常用的同轴电缆有两类:50Ω和75Ω的同轴电缆。
75Ω同轴电缆常用于CATV网,故称为CATV电缆,传输带宽可达1GHz,目前常用CATV电缆的传输带宽为750MHz。
50Ω同轴电缆主要用于基带信号传输,传输带宽为1MHz~20MHz,总线型以太网就是使用50Ω同轴电缆,在以太网中,50Ω细同轴电缆的最大传输距离为185m,粗同轴电缆可达1 000m。
1.1宽带电缆
是CATV系统中使用的标准,它既可使用频分多路复用的模拟信号发送,也可传输数字信号。
同轴电缆的价格比双绞线贵一些,但其抗干扰性能比双绞线强。
当需要连接较多设备而且通信容量相当大时可以选择同轴电缆。
1.2网络同轴电缆
内外由相互绝缘的同轴心导体构成的电缆:内导体为铜线,外导体为铜管或网。
电磁场封闭在内外导体之间,故辐射损耗小,受外界干扰影响小。
常用于传送多路电话和电视。
1.3同轴电缆
同轴电缆的得名与它的结构相关。
同轴电缆也是局域网中最常见的传输介质之一。
它用来传递信息的一对导体是按照一层圆筒式的外导体套在内导体(一根细芯)外面,两个导体间用绝缘材料互相隔离的结构制选的,外层导体和中心轴芯线的圆心在同一个轴心上,所以叫做同轴电缆,同轴电缆之所以设计成这样,也是为了防止外部电磁波干扰异常信号的传递。
2 阻抗匹配概念
特性阻抗是指无限长传输线上各处的电压与电流的比值,用Z0表示。
同轴电缆的特性阻抗的计算公式为:
D为同轴电缆外导体铜网内径;d为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数;
由公式可以看出,同轴电缆特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与同轴电缆长短、工作频率等参数无关。
一般对于同轴电缆的阻抗为50Ω与75Ω。
阻抗匹配是指同轴电缆终端所接负载阻抗ZL 等于同轴电缆特性阻抗Z0 时,称为同轴电缆终端是匹配连接的。
匹配时,同轴电缆上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此当SPD安装时就成为了终端负载,匹配能保证同轴电缆连接设备取得全部信号功率,当SPD阻抗为50Ω时,与50Ω的电缆是匹配的,而当SPD阻抗为75Ω欧时,与50Ω的电缆是不匹配的,如果50Ω的SPD安装在75Ω的同轴电缆时将对原通信系统产生很大的影响,所以SPD的阻抗与同轴电缆的阻抗一定要匹配。
3 阻抗匹配性能
阻抗的匹配是生产SPD的一项重要参数,如果阻抗匹配做的不好,那安装上SPD会对原通信线路产生损耗以至带宽降低。
在不匹配的情况下,馈线上同时存在入射波和反射波。
在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;而在入射波
和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节;其它各点的振幅值则介于波腹与波节之间,这种合成波称为行驻波,反射波电压和入射波电压幅度之比叫作反射系数R表示为:
波腹电压与波节电压幅度之比称为驻波系数,也叫电压驻波比,记为T,其表示为:
终端负载阻抗ZL和特性阻抗Z0越接近,反射系数R 越小,驻波比T越接近于1,匹配也就越好,在GB50343-2004的5.4.2中规定电压驻波比应小于1.3,但应注意一些特殊系统,如卫星接收等对信号衰减有严格要求的系统,其驻波比应小于1.14,在选型时应尽量选择驻波比接近于1的SPD。
4 阻抗匹配判断
同轴电缆的应用主要是视频传输与E1线路,对于视频传输一般应用于监控系统,其传输的是模拟信号,阻抗为75Ω;对于E1线路(广域网常用专线)的接入,主要是通过两根同轴电缆经E1转换盒,转换为RJ45接口的网线,此时同轴电缆传输的是数字信号,其阻抗为50Ω,在防雷设计中这两个系统是最常见的。
对于一些同轴电缆的应用,不容易判断其匹配的阻抗,因为电缆外形相同,在不确定阻抗的时可以查找系统相关的资料,还有就是凭经验来判断,一般的50Ω同轴电缆的BNC接头芯比75Ω芯要粗一些。
5结论
同轴电缆除了在E1及视频应用外,在移动通信机房等也有重要应用,对于常见的E1及视频的电缆很好判断其阻抗,但一些不常见的通信是很难判断的,在SPD选型时一定要主要阻抗的匹配,否则不匹配会产生损耗,而影响原通信线路。
参考文献
[1]雷击电磁脉冲防护IEC 61312-1第三部分:浪涌保护器的要求.
[2]同轴电缆的性能参数.
[3]建筑物电子信息系统防雷技术规范GB50343-2004.。