同轴电缆SPD的阻抗匹配
阻抗匹配计算公式
阻抗匹配计算公式
1 阻抗匹配介绍
阻抗匹配是一种在电子电路系统中根据数学关系考虑负载装置和传播器之间电力及信号失真损耗关系的技术,它最常见的用途是将信号从单个传播源中输出到一系列负载设备,并在最大可能的限度内确保信号完整性。
2 功率阻抗匹配的基本原理
电路和传播系统中,当多个负载设备无法与信号源准确匹配时,会出现电力损耗和信号失真的问题,而功率阻抗匹配则是可以有效解决上述问题的关键技术。该技术需要确定一组参数,以获得最优的匹配:功率,源阻抗和负载阻抗。只需根据一系列基本的公式,可计算出各参数的值,从而实现最佳的功率匹配。
3 功率阻抗匹配的计算公式
功率阻抗匹配的计算公式可以根据需求进行不同模式的计算:即电压驱动或功率驱动,一般来说通常以电压驱动为主,该模式下计算公式定义如下:负载阻抗 = 源阻抗 * 功率系数 * 载波方向系数;载波方向系数 = 源阻抗 * 源驱动能量因数;负载驱动利用系数 = 源功率 / 负载功率。
4 什么是功率系数
功率系数是指系统中原功率到传输系统中消耗的功率的比率,是一个初始参数,通常用来控制系统的损耗或传输效率,它与负载阻抗有很大的关系,在做阻抗匹配时,功率系数可用于实现指定的阻抗匹配比。
5 功率驱动的计算公式
功率驱动模式下计算公式与电压驱动模式下略有不同,它的公式如下:负载阻抗 = 源阻抗 / 功率系数 / 方向系数;负载驱动利用系数 = 源功率 / 负载功率;载波方向系数 = 源功率 / 源功率。
6 功率驱动与电压驱动的比较
在控制系统损耗和传输效率时,功率驱动与电压驱动是不同的模式,它们的共同点是都可以调整负载阻抗值,从而达到阻抗匹配的要求。但两者的不同之处在于,功率驱动模式以功率系数控制,即以调节损耗来调整和匹配参数,而电压驱动模式以功率系数控制,因此功率驱动模式能够更好地控制系统的损耗,不会出现失真和信号衰减的问题。
同轴电缆 技术要求
同轴电缆 技术要求
同轴电缆是一种常见的传输线,用于传输高频信号,如射频信号、视频信号等。以下是同轴电缆的技术要求:
1. 阻抗匹配:同轴电缆的阻抗应该与连接器、放大器等设备的输入/输出阻抗匹配,以避免信号反射和失真。
2. 衰减:同轴电缆的衰减应该尽可能小,以保证信号的传输质量。
3. 屏蔽:同轴电缆应该有良好的屏蔽性能,以避免外部干扰对信号的影响。
4. 绝缘:同轴电缆的绝缘层应该具有足够的绝缘性能,以避免信号泄漏。
5. 弯曲半径:同轴电缆的弯曲半径应该尽可能大,以避免信号损失和电缆损坏。
6. 温度范围:同轴电缆的工作温度应该在一定的范围内,以保证其工作稳定性。
7. 阻燃性:同轴电缆应该具有一定的阻燃性,以避免火灾危险。
不同类型的同轴电缆可能有不同的技术要求,具体的技术要求可以参考相关的行业标准或企业标准。
同轴电缆的电气参数计算
同轴电缆的电气参数计算同轴电
缆的一个回路是同轴对,它是对
地不对称的.在金属圆管(称为外
导体)内配置另一圆形导体(称为
内导体),用绝缘介质使两者相互
绝缘并保持轴心重合,这样所构
成的线对称同轴对。同轴电缆可
用于开通多路栽波通信或传输电
视节
目,也可用同轴电缆传输高数码的数据信息(如
UL2919屏幕线)
1.一次传输参数:
同轴电缆的一次传输参数主要随电流的频率及电缆结构尺寸D/d变化而变化.
(1).有效电阻,随频率的增大而增大•而与
内外导体直径比没直接的关系•
(2).电感随频率的增大而减小,随内外导体直径比增大而增大.
(3).电容与频率无关,随直径比的增大而减小.
(4).电导与频率基本上成正比,随直径的增大而减小.
具体计算公式如下
1.1.有效电阻:
同轴电缆的有效电阻包括内导体的有效电阻及外导体的有效电阻,当内外导体都是铜导体时,总的有效电阻为:
d d D
1.2有效电感:
同轴回路的电感由内•外导体的内电感和内外导体之间的外电感组成,当内外导体都是铜时回路的电感为:
2? 132 1 1 *
L=①恤(孑)十卡主〒+万沪L(T宮萤醛
1.3同轴电缆电容:
同于同轴电缆无外部电场,所以同轴对的工作电容就等于同轴对内外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:
Dw外导体结构的修正系数(理想外导体Dw=O 非理想外导体Dw编织外导体中的单线直径) K1-内导体结构的修正系数,
D1-同轴线外导体内径(mm)
1.4绝缘电导:
同轴对的绝缘导体G由两部分组成:一是由绝缘介质极化作用引起的交流电导G〜,另一个部分是由于绝缘不完善而引起的直流电导G0:
阻抗匹配计算公式 zhihu
阻抗匹配计算公式 zhihu
阻抗匹配是为了使得两个电路或设备之间的阻抗相互匹配,以达到最大功率传输或信号传输的目的。
在电路中,阻抗可以表示为复数的形式,即阻抗值与相位差。
常见的阻抗匹配公式有:
1. 普通阻抗匹配公式:
当源电阻/负载电阻/传输线特性阻抗与目标阻抗不匹配时,使用以下公式进行阻抗匹配。
- 对于串联匹配:
RL = |ZL|,其中RL为串联电阻,即源电阻或负载电阻的阻抗值。
XL = Xs,其中XL为串联电感的阻抗值,Xs为源电阻等效电感的阻抗值。
XC = Xc,其中XC为串联电容的阻抗值,Xc为源电阻等效电容的阻抗值。
这样,源电阻/负载电阻/传输线特性阻抗可以表示为:
Zs = RL + j(Xs - Xc)
- 对于并联匹配:
RL = |ZL|,其中RL为并联电阻,即源电阻或负载电阻的阻抗值。
XL = Xs,其中XL为并联电感的阻抗值,Xs为源电阻等效电感的阻抗值。
XC = Xc,其中XC为并联电容的阻抗值,Xc为源电阻等效电容的阻抗值。
这样,源电阻/负载电阻/传输线特性阻抗可以表示为:
Zs = RL || j(Xs + Xc)
2. 变压器阻抗匹配公式:
当需要将源电压的阻抗匹配到负载电阻时,可以使用变压器进行阻抗匹配。
- 对于串联匹配:
Ns/Np = sqrt(zL/Rs),其中Ns为源侧绕组匝数,Np为负载侧绕组匝数,zL为负载电阻的阻抗值,Rs为源阻的阻抗值。 - 对于并联匹配:
Ns/Np = sqrt(Rs/zL),其中Ns为源侧绕组匝数,Np为负载侧绕组匝数,zL为负载电阻的阻抗值,Rs为源阻的阻抗值。
同轴电缆参数
同轴电缆参数
同轴电缆是一种常用的传输信号的电缆,其参数对于信号传输的质量和距离都有着重要的影响。以下是同轴电缆的几个重要参数:
1. 阻抗:同轴电缆的阻抗是指电缆内部的电阻和电感对于信号传输的阻碍程度。一般来说,同轴电缆的阻抗为50或75欧姆,不同的阻抗适用于不同的应用场景。阻抗不匹配会导致信号反射和损失,影响信号传输的质量。
2. 带宽:同轴电缆的带宽是指电缆能够传输的最高频率范围。带宽越宽,电缆传输的信号就越多,传输距离也就越远。一般来说,同轴电缆的带宽在几百MHz到几GHz之间。
3. 衰减:同轴电缆的衰减是指信号在传输过程中的损失。衰减越小,信号传输的距离就越远,信号质量也就越好。衰减与电缆的长度、频率和阻抗等因素有关。
4. 速度:同轴电缆的速度是指信号在电缆中传输的速度。速度越快,信号传输的时间就越短,信号质量也就越好。同轴电缆的速度一般在60%到90%之间。
5. 噪声:同轴电缆的噪声是指电缆内部的干扰信号。噪声越小,信号传输的质量就越好。同轴电缆的噪声与电缆的材料、结构和环境等因素有关。
同轴电缆的参数对于信号传输的质量和距离都有着重要的影响。在选择同轴电缆时,需要根据具体的应用场景和要求来选择合适的电缆,以保证信号传输的质量和稳定性。
同轴电缆SPD的阻抗匹配
同轴电缆SPD的阻抗匹配
摘要:同轴电缆SPD的选型,需要考虑的参数有很多,例如接口、工作电压、插入损耗等,但阻抗匹配这一重要参数很容易被忽视,该参数恰恰也决定着SPD安装后对原线路的影响。本文主要就同轴电缆SPD(避雷器)阻抗匹配问题进行讨论。
关键词:同轴电缆;阻抗匹配;SPD
0引言
同轴电缆通常也被称做细缆,在10Base2网络中是主要的信号传输介质,但随着10/100BaseT网络的普及,双绞线已逐渐取代了细缆的位置,成为了现在局域网络的主要传输介质。
在网络中,同轴电缆虽被双绞线取代,但它并没有退出通信系统的舞台。在现代网络中同轴电缆主要作为E1线路(广域网常用专线)的接入介质,因此在视频传输中得到广泛的应用。同轴电缆抗干扰能力很弱,尤其是雷电磁脉冲对其影响很大,很容易产生雷电过电压而损坏连接的设备,但可以通过安装BNC接口的SPD来防止雷电过电压损坏相连的设备。
由于同轴电缆的应用于不同的系统,其外型一样但阻抗分50Ω或75Ω等。其SPD选择时如果阻抗不匹配,虽接口、电压等满足要求,但长时间工作会使线路的带宽下降并产生损耗。
1 同轴电缆简介
同轴电缆(Coaxial)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住。
目前,常用的同轴电缆有两类:50Ω和75Ω的同轴电缆。75Ω同轴电缆常用于CATV网,故称为CATV电缆,传输带宽可达1GHz,目前常用CATV电缆的传输带宽为750MHz。50Ω同轴电缆主要用于基带信号传输,传输带宽为1MHz~20MHz,总线型以太网就是使用50Ω同轴电缆,在以太网中,50Ω细同轴电缆的最大传输距离为185m,粗同轴电缆可达1 000m。
什么是阻抗匹配-阻抗匹配是什么意思-
什么是阻抗匹配?阻抗匹配是什么意思?
阻抗匹配(impedance matching)信号源内阻与所接传输线的特性阻抗大小相等且相位一样,或传输线的特性阻抗与所接负载阻抗的大小相等且相位一样,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。否则,便称为阻抗失配。有时也直接叫做匹配或失配。
阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R 的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:
P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2)
=U2×R/[(R-r)2+4×R×r]
=U2/{[(R-r)2/R]+4×r}
对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗
匹配之一。此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。
同轴电缆阻抗
同轴电缆阻抗:连接网络的关键同轴电缆在数字通信领域有着广泛的应用,其性能优异,传输速率高。而同轴电缆的阻抗则是影响其性能的一个重要因素。
同轴电缆的阻抗是指在同轴电缆中电信号传输时的阻力大小。通俗来讲,这就相当于电信号传输时的水管大小,如果管子太小,水流就会受阻,这样就会降低传输的速度,反之,如果水管太大,就会浪费水资源。
同样的道理,当同轴电缆的阻抗与接收器或发送器的阻抗不匹配时,就会出现反射,导致信号损失、抖动、干扰等问题。因此,匹配同轴电缆阻抗至关重要。一般来讲,同轴电缆的阻抗为50或75欧姆,而大多数接收器和发送器也都设计为50或75欧姆,这样才能保证信号传输的质量。
除了同轴电缆阻抗的匹配,同轴电缆使用的场所以及电缆本身的质量同样会影响其性能。通常情况下,同轴电缆应在地下或受人为损坏小的场所使用,避免被机械损坏;同时,电缆的绝缘材料应具有良好的绝缘性、阻燃性和抗老化性,这些都是保障同轴电缆传输质量的重要因素。
综上所述,同轴电缆阻抗是影响其性能的一个重要因素,合理选择同轴电缆及相关设备,匹配好阻抗,可以保证信号传输的质量。
同轴电缆的特性阻抗计算
同轴电缆的特性阻抗计算
同轴电缆特性阻抗拉普拉斯方程矩形网格
同轴电缆的横截面可以看做是两个同心圆。外圆半径为2,内圆半径为1。外圆上的电势为1,内圆上的电势为0。我们依据这些条件,通过编写matlab程序来计算出同轴缆线的特性阻抗。
首先介绍一下计算中所用到的物理学公式。特性阻抗的公式为如下所示,C 为电容,C0为光速。
由这两个公式,我们可将求解阻抗的问题转化为求解电量的问题。此时我们可以使用高斯公式。
为了处理截面上的问题,我们将面积分化为线积分。
本次计算过程中编程采用的方法是逐次超松弛迭代法。先将同轴电缆的截面按矩形网格进行划分。由于同轴电缆截面具有对称性,为了缩短程序运行时间,我们可以先计算四分之一截面内的电位分布。电位的迭代公式如下。
由于这个程序采用矩形网格来处理圆的问题,所以处理精度和处理速度都没有采用极坐标处理理想。如果希望得到跟极坐标情况下同样误差的结果,则需要耗费更多的计算时间。
图一为基本算法。图二、图三、图四分别是将代误差率为百万分之一时的特性阻抗、电势分布图和电场分布图。在文章的最后附有程序的代码。
建立一个所有元素
均是nan的矩阵U
在U中将1/4个圆环
离散化(圆环所包
括的点取0)
将所有点的c1 c2 c3
c4分别存入四个与
U同维的矩阵C1 C2
C3 C4中
U(i,j)=0时上下左右是否有
nan
有
没
有
U(i,j)为边界点
计算c1 c2 c3 c4中
不等于1的值
U(i,j)不为边界
c1=c2=c3=c4=1
将边界上的电势值
和C1 C2 C3 C4带
入迭代公式开始反
复迭代矩阵U
同轴电缆的阻抗计算
同轴电缆的阻抗计算
同轴电缆的阻抗是由内导体半径、外导体半径和绝缘材料介电常数等参数决定的。通常,同轴电缆的阻抗可以根据以下公式计算:Zo = ln(D/d)/(2π∈),
其中Zo表示同轴电缆的特性阻抗,D表示内导体直径,d表示外导体直径,∈表示绝缘材料的介电常数。
如果需要计算不同频率下的阻抗,可以使用L和C值的组合公式,其中L为同轴电缆的感应值,C为同轴电缆的电容值。具体公式如下:Zo = (L/C)^(1/2)。
以上是同轴电缆阻抗的基本计算方法,但实际计算中还需要考虑许多因素,如分布电容、信号频率等。所以在实际应用中,建议根据具体情况选用符合实际需要的同轴电缆,并按照制造商提供的参数进行匹配和调试。
同轴线的阻抗为什么一般为50或75欧(详解)
什么是典型的电缆阻抗?
同轴电缆使用的最典型阻抗值为50欧姆和75欧姆。50欧姆同轴电缆大概是使用中最常见的,一般使用在无线电发射接收器,实验室设备,以太等环境下。
另一种常用的电缆类型是75欧姆的同轴电缆,一般用在视频传输,有限电视网络,天线馈线,长途电讯应用等场合。
电报和使用的裸露平行导线也是典型的阻抗为600欧姆。一对线径标准22的双绞线,使用合适的绝缘体,因为机械加工的限制,平均阻抗大约在120欧姆左右,这是另一种具有自己特有特性阻抗的传输线。
某些天线系统中使用300欧姆的双引线,以匹配折合半波阵子在自由空间阻抗。〔但当折合阵子处于八木天线中的时候,阻抗通常会下降很多,一般在100-200欧姆左右〕
〔注:加反射板也会改变阵子的阻抗值,一般会降低,而且反射板越近则阻抗降低越多。〕
为什么是50欧姆的同轴电缆?
在美国,用作射频功率传输的标准同轴电缆的阻抗几乎无一例外地都是50欧姆。为什么选用这个数值,在伯德电子公司出示的一篇论文中有解释。
不的的参数都对应一个最正确的阻抗值。内外导体直径比为1.6 5时导线有最大功率传输能力,对应阻抗为30欧姆〔注:lg1.65*13 8=30欧姆,要使用空气为绝缘介质,因为这个时候介电常数最小,
如果使用介电常数为2.3的固体聚乙烯,则阻抗只有不到20欧姆〕。最合适电压渗透的直径比为2.7,对应阻抗大约是60欧姆。〔顺带一提,这个是很多欧洲国家使用的标准阻抗〕
当发生击穿时,对功率传输能力的考量是忽略了渗透电流的,而在阻抗很低,30欧姆时,渗透电流会很高。衰减只源自导体的损失,此时的衰减大约比最小衰减阻抗〔直径比3.5911〕77欧姆的时候上升了50%,而在这个比率下〔D/d=3.5911〕,最大功率的上限为3 0欧姆电缆最大功率的一半。
同轴电缆的电阻
同轴电缆的电阻
【原创实用版】
目录
一、同轴电缆的概述
二、同轴电缆的电阻值
三、同轴电缆的阻抗
四、同轴电缆的应用
五、总结
正文
一、同轴电缆的概述
同轴电缆,又称为电视闭路线或同轴线,是一种广泛应用于电视网络、局域网和通信系统等领域的电子元器件。同轴电缆由内外两层导体组成,内外导体之间用绝缘材料隔开。由于内外导体的形状和大小不同,同轴电缆可分为多种类型,如 50 欧姆和 75 欧姆等。
二、同轴电缆的电阻值
同轴电缆的电阻值与其长度、材料、截面积等因素有关。以常用的 75 欧姆同轴电缆为例,其铜芯标称直径为 1mm,铜的电阻率 20 度时为
0.0178 欧姆·平方毫米米。根据公式 R=ρ*L/S,其中 R 为电阻,ρ为电阻率,L 为长度,S 为截面积,可以计算出 20 米长的 75 欧姆同轴电缆的电阻值约为 1.12 欧姆。需要注意的是,由于加工不可能完全圆整,线粗细不均匀,以及测量误差等因素,实际使用中的电阻值可能在一定范围内波动。
三、同轴电缆的阻抗
同轴电缆的阻抗包括电阻、电感和电容等,其特性阻抗一般为 50 欧姆或 75 欧姆。特性阻抗是同轴电缆在特定频率下的阻抗值,用于保证信
号在传输过程中能够稳定地传播。在实际应用中,同轴电缆的阻抗应与信号源和负载的阻抗相匹配,以避免信号反射和衰减。
四、同轴电缆的应用
同轴电缆广泛应用于电视网络、局域网、通信系统等领域。例如,CATV 网络中常用的 75 欧姆同轴电缆,传输带宽可达 1GHz,适用于高清电视和数据传输等场景。此外,同轴电缆还用于双绞线、RS485/422 等通信系统,以及实验室和工业现场的测试与测量等。
阻抗匹配方法
阻抗匹配方法
1. 什么是阻抗匹配
阻抗匹配是一种用来匹配电气设备输出阻抗与它的负载阻抗的
技术。在电气系统中,将负载与大功率的源连接时,必须使大功率源的输出阻抗与负载的阻抗相匹配,二者之间的匹配被称为“阻抗匹配”,阻抗匹配技术使电路可以将最大的功率输出到负载中,使得系统正常运行,达到预期的效果。
2. 阻抗匹配的目的
能够有效地将电气信号从源端传输到负载端,以获得较好的信号传递质量,确保系统有效地工作,减少噪声,以及防止系统损坏。
3. 如何匹配阻抗
(1)使用具有非常低的阻抗值(2)使用可调节的阻抗变压器(3)使用改变负载电阻的装置(4)使用特殊的变压器,如:带有阻抗变
化因子的变压器(5)使用带有阻抗变化因子的网络变压器(双臂变
压器)(6)使用可调谐的特殊线圈(7)使用电容,电感或晶体管组
成的混合电路。
- 1 -
射频同轴电缆选择指南
射频同轴电缆选择指南
1.频率范围
2.阻抗匹配
阻抗匹配是指信号源和负载之间的阻抗匹配。在选择射频同轴电缆时,需要确保其阻抗与信号源和负载的阻抗匹配。常见的阻抗值有50欧姆和
75欧姆,选择时需要根据实际应用的设备和系统来确定阻抗匹配。
3.传输损耗
传输损耗是指信号在传输过程中由于电缆的衰减而丢失的能量。传输
损耗会降低系统的信号质量和传输距离。在选择射频同轴电缆时,需要考
虑其传输损耗的大小。一般来说,传输损耗越小,电缆的传输性能越好。
4.电缆长度
电缆长度也是一个重要的考虑因素。一般来说,射频同轴电缆的传输
性能受到电缆长度的限制,传输损耗随着长度的增加而增加。因此,在选
择电缆时,需要根据实际的传输距离来确定合适的电缆长度。
5.屏蔽性能
6.环境适应性
射频同轴电缆通常被安装在室内或者室外环境中,对于不同的环境,
电缆的要求也不同。室外电缆需要具有良好的耐候性和防水性能,室内电
缆则需要具有良好的抗干扰能力。选择电缆时,需要根据实际安装环境来
确定合适的电缆。
综上所述,射频同轴电缆选择时需要考虑频率范围、阻抗匹配、传输损耗、电缆长度、屏蔽性能和环境适应性等因素。根据实际应用场景和需求,选择合适的射频同轴电缆可以确保系统的传输质量和性能。
同轴线的阻抗为什么一般为50或75欧(详解)
什么是典型的电缆阻抗?
同轴电缆使用的最典型阻抗值为50欧姆和75欧姆。50欧姆同轴电缆大概是使用中最常见的,一般使用在无线电发射接收器,实验室设备,以太等环境下。另一种常用的电缆类型是75欧姆的同轴电缆,一般用在视频传输,有限电视网络,天线馈线,长途电讯应用等场合。
电报和电话使用的裸露平行导线也是典型的阻抗为600欧姆。一对线径标准22的双绞线,使用合适的绝缘体,因为机械加工的限制,平均阻抗大约在120欧姆左右,这是另一种具有自己特有特性阻抗的传输线。
某些天线系统中使用300欧姆的双引线,以匹配折合半波阵子在自由空间阻抗。(但当折合阵子处于八木天线中的时候,阻抗通常会下降很多,一般在100-200欧姆左右)
(注:加反射板也会改变阵子的阻抗值,一般会降低,而且反射板越近则阻抗降低越多。)
为什么是50欧姆的同轴电缆?
在美国,用作射频功率传输的标准同轴电缆的阻抗几乎无一例外地都是50欧姆。为什么选用这个数值,在伯德电子公司出示的一篇论文中有解释。
不的的参数都对应一个最佳的阻抗值。内外导体直径比为1.65时导线有最大功率传输能力,对应阻抗为30欧姆(注:lg1.65*138=30欧姆,要使用空气为绝缘介质,因为这个时候介电常数最小,如果使用介电常数为2.3的固体聚乙烯,则阻抗只有不到20欧姆)。最合适电压渗透的直径比为2.7,对应阻抗大约是6 0欧姆。(顺带一提,这个是很多欧洲国家使用的标准阻抗)
当发生击穿时,对功率传输能力的考量是忽略了渗透电流的,而在阻抗很低,3 0欧姆时,渗透电流会很高。衰减只源自导体的损失,此时的衰减大约比最小衰减阻抗(直径比3.5911)77欧姆的时候上升了50%,而在这个比率下(D/d=3. 5911),最大功率的上限为30欧姆电缆最大功率的一半。
射频同轴电缆的技术参数
射频同轴电缆的技术参数
1.频率范围:射频同轴电缆的频率范围决定了它适用的应用场景。常见的射频同轴电缆能够覆盖几百兆赫兹到数十吉赫兹的频率范围。
2.阻抗:阻抗是射频同轴电缆中一个重要的参数,一般标准的射频同轴电缆的阻抗为50欧姆(Ω),也有75Ω的电视同轴电缆。
3.传输损耗:射频同轴电缆的传输损耗是指信号在电缆中传输过程中的能量损耗。它与电缆中的材料、结构、频率等因素相关。传输损耗常用单位为分贝(dB)。
4.衰减:衰减是射频同轴电缆传输过程中信号强度衰减的程度。一般情况下,高频信号的衰减更加显著。复杂的传输线结构及金属外屏蔽层可以减小衰减。
5.速度:射频同轴电缆中信号的传播速度决定了信号的延迟。一般情况下,电缆中信号的传播速度为约200-300兆米/秒。
6.容量:射频同轴电缆的容量是指电缆内部存储能量的能力。容量与电缆的电容有关,一般单位为皮法/米(pF/m)。
7.耐压:射频同轴电缆应具备一定的耐压能力,在正常工作环境下不会发生电脑闪击等危险。
8.抗干扰:射频同轴电缆应具备较好的抗干扰能力,能在高频信号传输过程中减小对外界干扰信号的感应和传导。
9.绝缘材料:射频同轴电缆的绝缘材料应具备良好的绝缘性能和耐高温性能,以防止信号在传输过程中出现串扰或关断现象。
10.外屏蔽:射频同轴电缆的外屏蔽是用来保护内部信号不受外界电磁干扰的。常见的外屏蔽材料有铝箔屏蔽、铜网屏蔽等。
不同应用需要的射频同轴电缆具备不同的技术参数,因此在选购射频同轴电缆时需要根据具体需求选择合适的产品。以上列举的技术参数仅为射频同轴电缆重要的几个方面,具体参数还需根据具体型号和厂商提供的产品参数进行确认。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同轴电缆SPD的阻抗匹配
摘要:同轴电缆SPD的选型,需要考虑的参数有很多,例如接口、工作电压、插入损耗等,但阻抗匹配这一重要参数很容易被忽视,该参数恰恰也决定着SPD安装后对原线路的影响。本文主要就同轴电缆SPD(避雷器)阻抗匹配问题进行讨论。
关键词:同轴电缆;阻抗匹配;SPD
0引言
同轴电缆通常也被称做细缆,在10Base2网络中是主要的信号传输介质,但随着10/100BaseT网络的普及,双绞线已逐渐取代了细缆的位置,成为了现在局域网络的主要传输介质。
在网络中,同轴电缆虽被双绞线取代,但它并没有退出通信系统的舞台。在现代网络中同轴电缆主要作为E1线路(广域网常用专线)的接入介质,因此在视频传输中得到广泛的应用。同轴电缆抗干扰能力很弱,尤其是雷电磁脉冲对其影响很大,很容易产生雷电过电压而损坏连接的设备,但可以通过安装BNC接口的SPD来防止雷电过电压损坏相连的设备。
由于同轴电缆的应用于不同的系统,其外型一样但阻抗分50Ω或75Ω等。其SPD选择时如果阻抗不匹配,虽接口、电压等满足要求,但长时间工作会使线路的带宽下降并产生损耗。
1 同轴电缆简介
同轴电缆(Coaxial)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住。
目前,常用的同轴电缆有两类:50Ω和75Ω的同轴电缆。75Ω同轴电缆常用于CATV网,故称为CATV电缆,传输带宽可达1GHz,目前常用CATV电缆的传输带宽为750MHz。50Ω同轴电缆主要用于基带信号传输,传输带宽为1MHz~20MHz,总线型以太网就是使用50Ω同轴电缆,在以太网中,50Ω细同轴电缆的最大传输距离为185m,粗同轴电缆可达1 000m。
1.1宽带电缆
是CATV系统中使用的标准,它既可使用频分多路复用的模拟信号发送,也可传输数字信号。同轴电缆的价格比双绞线贵一些,但其抗干扰性能比双绞线强。当需要连接较多设备而且通信容量相当大时可以选择同轴电缆。
1.2网络同轴电缆
内外由相互绝缘的同轴心导体构成的电缆:内导体为铜线,外导体为铜管或网。电磁场封闭在内外导体之间,故辐射损耗小,受外界干扰影响小。常用于传送多路电话和电视。
1.3同轴电缆
同轴电缆的得名与它的结构相关。同轴电缆也是局域网中最常见的传输介质之一。它用来传递信息的一对导体是按照一层圆筒式的外导体套在内导体(一根细芯)外面,两个导体间用绝缘材料互相隔离的结构制选的,外层导体和中心轴芯线的圆心在同一个轴心上,所以叫做同轴电缆,同轴电缆之所以设计成这样,也是为了防止外部电磁波干扰异常信号的传递。
2 阻抗匹配概念
特性阻抗是指无限长传输线上各处的电压与电流的比值,用Z0表示。同轴电缆的特性阻抗的计算公式为:
D为同轴电缆外导体铜网内径;d为同轴电缆芯线外径;εr为导体间绝缘介质的相对介电常数;
由公式可以看出,同轴电缆特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与同轴电缆长短、工作频率等参数无关。一般对于同轴电缆的阻抗为50Ω与75Ω。
阻抗匹配是指同轴电缆终端所接负载阻抗ZL 等于同轴电缆特性阻抗Z0 时,称为同轴电缆终端是匹配连接的。匹配时,同轴电缆上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此当SPD安装时就成为了终端负载,匹配能保证同轴电缆连接设备取得全部信号功率,当SPD阻抗为50Ω时,与50Ω的电缆是匹配的,而当SPD阻抗为75Ω欧时,与50Ω的电缆是不匹配的,如果50Ω的SPD安装在75Ω的同轴电缆时将对原通信系统产生很大的影响,所以SPD的阻抗与同轴电缆的阻抗一定要匹配。
3 阻抗匹配性能
阻抗的匹配是生产SPD的一项重要参数,如果阻抗匹配做的不好,那安装上SPD会对原通信线路产生损耗以至带宽降低。
在不匹配的情况下,馈线上同时存在入射波和反射波。在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;而在入射波
和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节;其它各点的振幅值则介于波腹与波节之间,这种合成波称为行驻波,反射波电压和入射波电压幅度之比叫作反射系数R表示为:
波腹电压与波节电压幅度之比称为驻波系数,也叫电压驻波比,记为T,其表示为:
终端负载阻抗ZL和特性阻抗Z0越接近,反射系数R 越小,驻波比T越接近于1,匹配也就越好,在GB50343-2004的5.4.2中规定电压驻波比应小于1.3,但应注意一些特殊系统,如卫星接收等对信号衰减有严格要求的系统,其驻波比应小于1.14,在选型时应尽量选择驻波比接近于1的SPD。
4 阻抗匹配判断
同轴电缆的应用主要是视频传输与E1线路,对于视频传输一般应用于监控系统,其传输的是模拟信号,阻抗为75Ω;对于E1线路(广域网常用专线)的接入,主要是通过两根同轴电缆经E1转换盒,转换为RJ45接口的网线,此时同轴电缆传输的是数字信号,其阻抗为50Ω,在防雷设计中这两个系统是最常见的。
对于一些同轴电缆的应用,不容易判断其匹配的阻抗,因为电缆外形相同,在不确定阻抗的时可以查找系统相关的资料,还有就是凭经验来判断,一般的50Ω同轴电缆的BNC接头芯比75Ω芯要粗一些。
5结论
同轴电缆除了在E1及视频应用外,在移动通信机房等也有重要应用,对于常见的E1及视频的电缆很好判断其阻抗,但一些不常见的通信是很难判断的,在SPD选型时一定要主要阻抗的匹配,否则不匹配会产生损耗,而影响原通信线路。
参考文献
[1]雷击电磁脉冲防护IEC 61312-1第三部分:浪涌保护器的要求.
[2]同轴电缆的性能参数.
[3]建筑物电子信息系统防雷技术规范GB50343-2004.