【精品课件】聚合物熔体的流变性
高分子材料与工程精讲3.1—聚合物熔体的流变行为
而增加。
2019/11/28
17
3.1.2 拉伸粘度
定义:拉伸应力与拉伸应变速率的比值,用λ表示。
λ = σ/
ε.
σ:拉伸应力 ε. :拉伸ε应ε.. 变速率
区别:
拉伸流动:液体中某一平面自身的流动
剪切流动:液体中许多假想平面层作相对滑移。
2019/11/28
14
2.膨胀性液体 一般是非均匀液体,一般都含有固体成分。η随τ 或
↑而↑ 。γ 在生产涂层制品时常应用这一性质。 膨胀性液体的流变行为同样也可以用指数定律来描
述,这时n>1。
2019/11/28
15
3.宾哈液体:
只有在剪切应力τ 达到一定值时才能流动,且剪切应力与剪
切速率成直线关系。即:
由于指数定律不是由理论推导的,而是根据流动曲线通过解析方
法得到的,所以不同人采用不同的数学方法就得到不同的形式。
2019/11/28
13
相比之下,虽然形式不同,但本质一样。 注意:n和m, K 和k的意义正好相反。
m=1/n ; K=(1/k)n ; n : 1-0.2 m : 1-5 由指数定律演变得:ηa=K n-1 γ
剪切粘度η=τ/ γ 根据粘度η对τ的关系,把流体分为两大类: 牛顿流体 τ与γ 成比例 η为常数 非牛顿流体 τ与 γ 不6
牛顿流体:对牛顿流体来说,其粘度在定温情况下,不 随τ、γ 而变化,其流动行为符合牛顿定律。
非牛顿流体:对非牛顿流体来说,其粘度在定温情况 下,是随τ或 γ等因素而变化的。因此对非牛顿流体粘度, 其表示方法与牛顿流体粘度不同。一般用ηa表示,称为表 观粘度或非牛顿粘度 ηa = τ/ γ
第二章聚合物的流变性质
图中,F为外部作用于整个液体的恒定的剪切力,A为 向两端无限延伸的液层的面积。液层上的剪应力为: τ=F/A (2-1) (单位:牛顿/米2,即N/m2)在恒定的应力作用下液 体的应变表现为液层以均匀的速度ν沿剪应力作用方 向移动。但液层间的粘性阻力和管壁的摩擦力使相邻 液层间在移动方向上存在速度差。管中心阻力最小, 液层移动速度最大。管壁附近液层同时受到液体粘性 阻力和管壁摩擦力作用,速度最小,在管壁上液层的 移动速度为零(假定不产生滑动时)。当液层间的径 向距离为dr的两液层的移动速度为ν和ν+dv时,则液层 间单位距离内的速度差就是速度梯度dv/dr。但液层移 动速度v等于单位时间dt内液层沿管轴x-x上移动的距 离dx,即v=dx/dt。故速度梯度又可表示为:
粘度计的几种主要类型: (1)旋转粘度计:它们通过浸入被测液中的转子的持续旋转 形成的扭矩来测量粘度值,扭矩与浸入样品中的转子被粘性 拖拉形成的阻力成比例,因而与粘度也成比例。1934年, Brookfield卖出了他的第一台表盘式粘度计,此后,他与父亲 和兄弟一起开办了一个公司并将表盘式粘度计投放市场,这 一产品后来成为世界粘度计的标准。许多协会及工业规范采 用了布氏粘度计,国内标准中的NDJ系列就是仿制它的,其中 NDJ-1相当于Brookfield的LVDV系列。 它测的是牛顿流体的绝对粘度和非牛顿流体的表观粘度,对 于有触变性的流体会出现读数先是很大,然后逐渐减小的现 象,使用不同的转子和转速得到的粘度值是不同的。所以对 我们测的象水煤浆只有固定转子、转速,稳定一段时间测定 的数值比较才有参考价值。 还有一种连续追踪淀粉糊化过程中粘度变化最常用的布拉班 德粘度计据说也是同样原理,但我没用过不敢评论。
(1)第一流动区 是聚合物液体在低剪切速率(或低应 力)范围流动时表现为牛顿型流动的区域。此时,一 种看法认为:在低剪切速率或低应力时,聚合物液体 的结构状态并未因流动而发生明显改变,流动过程中 大分子的构象分布,或大分子线团尺寸的分布以及大 分子束(网络结构)或晶粒的尺寸均与物料在静态时 相同,长链分子的缠结和分子间的范德华力使大分子 间形成了相当稳定的结合,因此粘度保持为常数。另 一种看法认为:在较低的剪切速率范围,虽然大分子 的构象变化和双重运动有足够时间使应变适应应力的 作用,但由于熔体中大分子的热运动十分强烈,因而 削弱或破坏了大分子应变对应力的依赖性,以致粘度 不发生改变。通常将聚合物流体在第一牛顿流动区所 对应的粘度称为零切粘度η。
聚合物熔体的流变性ppt课件
〔4〕非宾汉流体(了解〕
又称非塑性流体。同宾汉流体类似, 但超越 y 后,其流动不符合牛顿流 体,即流动曲线是非线性的。
2.粘度与时间有关的
〔1〕触变性流体
在恒定的剪切速率下〔或剪切 应力〕,流体的粘度随时间的添加 而降低,这种流体称为触变性流体 〔或摇溶液体〕。
方向大。
温度升高,分子热运动能量添加,液体中的空穴 也随着添加和膨胀,流动的阻力减小。液体的粘 度与温度 T 之间有如下关系。
AeE/RT
流动活化能,分子向穴跃迁时抑制 周围分子作用所需求的能量;
粘度
分子量增大, E 增大,每添加一个-CH2-, E 大约添加约 2.1 kJ/mol
实验现实
产生高分子大小的空穴是困难的;实际推算 1000个-CH2-的E=2.1MJ/mol;比-C-C-键 能(3.4kJ/mol)大。实测烃类同系物的E , 当C原子数大于20-30时与分子量无关。不同分 子量高聚物的流动活化能与分子量无关。
〔2〕震凝性流体
在恒定的剪切速率下〔或剪切应 力〕,流体的粘度随时间的添加而添加, 这种流体称为震凝性流体〔或摇凝液 体〕,或反触变流体。
变稠与某种构造的构成有关。
三.高聚物粘性流动的特点
1.高分子的流动是经过链段的位移运动来完成的 小分子的流动,可用简单模型描画。 低分子液体中存在许多与分子尺寸相当的空穴。 外力存在使分子沿作用力方向跃迁的几率比其他
用 / 定义的粘度不是常数,引入表观粘 度的概念 a,定义:
a
a Kn1
(2) 零切粘度
低剪切速率下,非牛顿流体表现出 牛顿流体的特性,由 对 曲线的 起始斜率可得到牛顿粘度。
塑料加工原理 第一章-聚合物熔体的流动特性-2
图2-29 几种高分子熔体在200℃的粘度与剪切速率的关系 〇-HDPE;Δ-PS;●-PMMA;▽-LDPE;□-PP
材料的“剪切变稀”曲线,至少可以得到以下几方面的信息: 1)材料的零剪切粘度高低不同;对同一类材料而言,主要 反映了分子量的差别。 2)材料流动性由线性行为(牛顿型流体)转入非线性行为 (非牛顿型流体)的临界剪切速率不同; 3)幂律流动区的曲线斜率不同,即流动指数 n 不同。流 动指数反映了材料粘-切依赖性的大小。 流动曲线的差异归根结底反映了分子链结构及流动机理的 差别。一般讲,分子量较大的柔性分子链,在剪切流场中易 发生解缠结和取向,粘-切依赖性较大。长链分子在强剪切场 中还可能发生断裂,分子量下降,也导致粘度降低。
ln
x3
33 31 32
ln
n>1 n<1
13 12 21 22 11
x1 x2
23
n=1
ln
1.1 变形与流动
几种典型的流体: 假塑性流体 流动特征:流动很慢时,剪切粘度为常数,而随着 剪切速率的增加,剪切粘度反常减少。
图2-17 假塑性高分子液体的流动曲线 左图:剪切应力-剪切速率曲线; 右图:表观粘度-剪切速率曲线
多数橡胶材料的粘-切依赖性大于塑料
几种材料的表观粘度与切应力关系
粘-切依赖性与分子链结构密切相关,分子链柔性好的聚甲醛、聚乙烯等, 对切应力敏感性较大,而分子链柔性差的聚碳酸酯、尼龙,敏感性较差。
1.3.3 分子结构参数的影响
主要参数为超分子结构参数,即平均分子量、分子量分布、 长链支化度。 (1) 平均分子量的影响
相关方程-Carreau方程
特点:既能反映在高剪切速率下材料的假塑 性行为,又能反映低剪切速率下出现的牛顿 性行为。 流动方程:
第2章_聚合物的流变性质
II.
聚合物中的支链 支链越长,支化度越高, η越大,流动性下降, 长支链还增大了对剪切速率的敏感性。当η一定时, 有支链的聚合物越易呈现非牛顿性流动的行为。
III. 侧基
侧基较大,自由体积增大,η降低, η对T和P 的敏感性增加,如PS、PMMA。
第一节
聚合物熔体的流变行为
定义:材料受力后产生的形变和尺寸改变称为应变γ。单位 时间内的应变称为应变速率(或速度梯度),可以表示为:
d dt
应变方式和应变速率与所受外力的性质和位置有关,可 分为以下三种流动方式: 剪切流动:聚合物加工时受到剪切力作用 拉伸流动:聚合物在加工过程中受到拉伸应力作用 静压力的均匀压缩(主要影响粘度)
第二章 聚合物的流变性质
2.1 聚合物熔体的流变行为 2.2 影响聚合物流变行为的主要因素
流变学(Rheology) :研究物质形变与流动的科学 熔融加工是最常见的加工形式,在加工过程
中,聚合物都要产生流动和形变。 聚合物的形变包括:弹性形变、塑性形变和 粘性形变 影响形变的因素:聚合物结构与性质、温度、 力(大小和方式、作用时间)和物料体系组成。
二、压力对粘度的影响
聚合物的聚集态并不如想象中那么紧密,实际上 存在很多微小空穴,即所谓“自由体积”,从而使聚 合物液体有可压缩性。
为了提高流量,不得不提高压力,自由体积减小,
粘度增大,同时设备损耗增加。因此不能单纯加压提
高产量。
当压力增加到700大气压时,体积变化可达5.5%, PS的粘度增加高达100倍。 在加工过程中通过改变压力或温度,都能获得同样 的粘度变化效应称为压力—温度等效性。 例如,对很多聚合物,压力增加到1000大气压时, 熔体粘度的变化相当于降低30~50℃温度的作用。
完整课件-聚合物加工流变学
2 聚合物熔体的基本流变性能
(2)稳定流动和不稳定流动 凡在输送通道中流动时,流体在任何部位的流
动状态保持恒定,不随时间而变化,一切影响流 体流动的因素都不随时间而改变,此种流动称为 稳定流动。
凡流体在输送通道中流动时,流动状态都随时 间而变化。影响流动的各种因素,有随时间而变 动的情况,此种流动称为不稳定流动。
• 16世纪至18世纪,流变学的发展较快。 • 19世纪,建立的泊肃叶方程,在流变学的
发展史上是一个很重要的标志。
1.2 流变学的发展历史
1.2 流变学的发展历史
• 1678年 胡克弹性定律 1687年 牛顿粘性定律 1928年 流变学概念的提出 1929年 流变学协会的成立 流变学杂志 1948年 第一届国际流变学会议 1950年以后 流变学领域研究迅速发展
课程内容
第1章:绪论 第2章 :聚合物熔体的基本流变性能
第3章:聚合物流动方程 第4章:流变学基础方程的初步应用 第5章:挤出机头设计
绪论
• 1.1 流变学的定义 • 1.2 流变学的发展历史 • 1.3 高聚物流变学的研究内容 • 1.4 高聚物流变学的研究意义 • 1.5 高聚物流变学在塑料加工中的应用
2 聚合物熔体的基本流变性能
(5)拉伸流动和剪切流动 • 按照流体内质点速度分布与流动方向关系,
可将高聚物加工时的熔体流动分为拉伸流 动和剪切流动两类。 • 剪切流动:质点速度仅沿着与流动方向垂 直的方向发生变化。如图2-1(a)。 • 拉伸流动:指点速度仅沿流动方向发生变 化,如图2-1(b)。
2 聚合物熔体的基本流变性能
(3)等温流动和非等温流动 • 等温流动是指流体各处温度保持不变情况下的
《聚合物的流变性》课件
指聚合物与溶剂混合形成的流体体系。
2 聚合物高分子溶液的流变行为
聚合物高分子溶液在剪切作用下表现出复杂的流变性质。
八、聚合物的流变行为与化学结构的相关性
1 聚合物化学结构对流变行为的影响
聚合物的分子结构直接影响其流变行为和性 质。
2 聚合物流变行为的调控
通过调整聚合物的化学结构可以改变其流变 性质,实现特定的应用需求。
剪切测试
通过施加剪切力来测量聚合物的 流变性。
动态测试
通过施加动态加载来测量聚合物 的流变性。
六、非牛顿流体的流变学
1 什么是非牛顿流体?
非牛顿流体的黏度随剪切速率或剪切应力的变化而变化。
2 聚合物的非牛顿流变性
聚合物在不同条件下表现出非线性、时间依赖等多种复杂的流变行为。
七、聚合物高分子溶液的流变学
《聚合物的流变性》PPT 课件
通过学习《聚合物的流变性》PPT课件,了解聚合物的流变性质以及其在不同 领域中的应用,为您提供全方位的知识与见解。让我们一起探索这个引人入 胜的主题吧!
一、聚合物概述
1 什么是聚合物?
聚合物是由大量重复单元结合而成的高分子 化合物,具有多样的结构和性质。
2 聚合物的种类
聚合物种类繁多,包括塑料、橡胶、纤维等, 广泛应用于各个领域。
二、聚合物的流变性定义及原理
1 什么是聚合物的流变性?
聚合物的流变性是指其在受力下发生形变和流动的能力。
2 聚合物流变性的原理
聚合物流变性的原理涉及分子间相互作用、链段的运动和排列等因素。
三、聚合物流变学的分类
剪切流变学
研究聚合物在不同剪切速率下的变形和流动行为。
2 药物输送的控制
聚合物的流变性能
聚合物的流变性能一概述 注塑中把聚合物材料加热到熔融状态下进行加工。
这时可把熔体看成连续介质,在机器 某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。
在流场中熔体受到应力,时间,温度 的联合作用发生形变或流动。
这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切 的联系。
处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型 流体它们的流变特性暂不予祥细介绍。
1 关于流变性能(1)剪切速率,剪切应力对粘度的影响 通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。
剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪 性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了 解这一点对注塑有重要意义。
(2)离模膨胀效应 当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀 效应。
普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温 度,剪切速率和流道几何形状等都能影响熔体的膨胀效应。
所以膨胀效应是熔体流动过程中的弹 性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。
在纯剪切流动中法向效应是较小的。
粘弹性熔体的法向效应越大则离模膨胀效应越明显。
流 道的影响;假如流道长度很短,离模效应将受到入口效应的影响。
这是因为进入浇口段的熔体要 收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口, 剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷曲,产生弹性恢复,这会使离模 膨胀效应加剧。
如果流道足够长,则弹性应变能有足够的时间进行弹性松驰。
这时影响离模膨胀 效应的主要原因是稳定流动时的剪切弹性和法向效应的作用。
(3)剪切速率对不稳定流动的影响 剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢 复,所以表现出粘度不变的牛顿特性。
聚合物的流变性.ppt
聚合物流动曲线的解释
缠结理论解释:缠结破坏与形成的动态过程。
ⅰ第一牛顿区: 切变速率足够小,高分子处于高度 缠结的拟网结构,流动阻力大;缠结结构的破坏 速度等于形成的速度,粘度保持不变,且最高。
ⅱ假塑性区:切变速率增大,缠结结构被破坏,破 坏速度大于形成速度,粘度减小,表现出假塑性 流体行为。
9.2.2影响聚合物熔体粘度的因素
A、粘度的分子量依赖性
(1)分子结构
临界分子量发生缠结的最小分子量
When M<Mc
0
KM
1~1.6 w
When M>Mc
0
KM
3~ w
3.4
△成型加工考虑,流动性好(充模好,表面光洁)。 降低分子量,增加流动性,但影响机械强度。在加 工时适当调节分子量大小,满足加工要求尽可能提 高分子量。
定义:挤出机挤出的高聚物熔体其直径比挤出 模孔的直径大的现象。
如何减小挤出涨大?
——引起聚合物弹性形变储能剧烈变化区域 为:模孔入口处,毛细管壁和模孔出口处。
——模口设计成流线型,提高加工温度等。 胀大比B随切变速率提高而增大,B随L/D↑而 减小。
9.4.4 不稳定流动 •波浪形 •鲨鱼皮形 •竹节形 •螺旋形 •不规则破裂
9.1牛顿流体和非牛顿流体
1、牛顿流体:
剪切形变
dx dy
,
剪切应力
F
A
切变速( dx)
d
(dx) dv
dt dt dy dy dt dy
(s-1 )
牛顿流动定律:
:单位Pa·s
凡流动行为符合牛顿流动定律的流体, 称为牛顿流体。牛顿流体的粘度仅与流 体分子的结构和温度有关,与切应力和 切变速率无关。
聚合物熔体的流变性质
聚合物熔体的流变性质塑料的成型往往是通过"流动"和"变形"的途径实现的,这样就产生了塑料流变学这样一门学科来研究塑料在液态、半固态和固态时的流变行为。
塑料通过"流动"这一途径是极为普遍的成型方式,近年来通过"变形"途径又出现了另一种新的成型方式,这种成型方式称为固相成型或冷成型。
这样塑料流变学就成了塑料成型的基础理论之一。
那么什么是塑料流变学呢?塑料流学变是研究塑料的流动和变形与造成塑料流变的各种因素之间的关系的一门科学。
主要内容包括研究塑料在外力作用下产生弹性、塑性以及粘性流变行为以及这些行为与各种因素(聚合物结构与性能、温度、作用力的大小和作用时间、方式以及塑料体系的组成等)之间的关系。
由于塑料熔体的流动和变形是成型过程中最基本的工艺特征,所以塑料流变学的研究,对成型具有非常重要的现实意义和指导意义。
虽然有关的一些理论还不十分完善,但流变学的概念已经成为塑料成型基础理论的重要组成部分,它对原料的选择和使用,成型最佳工艺条件的确定,成型设备及模具的设计以及提高产品质量等,都有极重要的指导作用。
现将塑料流变学的一些基本概念,简介如下。
一、聚合物熔体的流变行为塑料在成型过程中由于外力作用产生变形,塑料受力作用后内部产生与外力相平衡的力称为应力,单位为帕斯卡,简称帕(Pa),通常产生的应力有三种:剪切应力、拉伸应力和压缩应力。
在塑料成型中最重要的是剪切应力,其次是拉伸应力。
塑料成型时剪切应力对聚合物熔体或分散体在设备和模具中流动的压力差,所需要的功率以及制品的质量等有决定性影响。
拉伸应力经常是与剪切应力共同出现的,例如在吹塑成型中,型坯的拉长,吹塑薄膜时泡管的膨胀以及塑料熔体在锥形流道内的流动和单丝的生产等等。
压缩应力不太重要,一般都忽略不计,但这种应力对聚合物的其它性能却有一定的影响,例如熔体的粘度,所以在某些情况下应给予考虑。
聚合物的流变性ppt课件
High MW
Low MW
•
log
Rubber:200000 Plastics Fiber:20000
Wide MWD Narrow MWD
•
log
挤出 注塑 吹塑
3.4.4 分子链结构
分子间作用力 缠结点
链刚性
链段长度
支化
短支链 长支链
缠结点 缠结点
粘度
粘度 粘度
3.4.5 熔体结构
160~200C 初级粒子未熔融 乳液法PVC
2.4
2.2
2.0
1.8
1/T 103 (K1)
4 PE Chloride polyether PS
Cellulose
3
PC
20
1
2• 3
lg (s1)
3.4.3 分子量和分子量分布
M
log0
Mw Mc
0
1~1.5
K1 M w
临界缠结 分子量
Mw Mc
M c log M w
0
3.4
K2 M w
填充体系的粘度 高分子的粘度
0
1 2.5 f
胀塑性流体的形成
填料的体积分数
密堆积
层流
3.5 高分子熔体的 弹性效应
高分子熔体弹性效应的机理
高分子粘流过程中伴随着可逆的高弹形变,这是高分子 熔体区别于低分子液体的重要特征之一
高分子熔体的流动是各链段运动的总结果,在外力作用 下,高分子链顺流动方向取向,外力消失后,链要重新 蜷曲起来,因而整个形变要恢复一部分
刚 性
M>Mc时,E恒定 说明流动 时分段移动,而不是整个分子
链的运动
NR IR PS PA PET PC PVC-U PVC-P PVAc Cellulose
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子数大于20-30时与分子量无关。不同分子 量高聚物的流动活化能与分子量无关。
高分子的流动
高分子流动通过链段的相继跃迁来实现
2.高分子流动不符合牛顿流体流动规律
大多数聚合物的熔体和浓溶液属假塑性流 体,其粘度随剪切速率的增加而减小。
3.高分子流动时伴有高弹形变
3.牛顿流体
为常数
粘度不随剪切应力和剪切速率的大小而改 变,始终保持常数的流体,称为牛顿流体
4.非牛顿流体
之间不呈直线关系,通常采用“幂次定 律”的经验方程来描述其流动行为。
=Kn
K:常数;(非稠度) n:流动指数。
非牛顿流体:
粘度随剪切应力和剪切速率的变化而改变的 流体。
课堂讨论
1.什么叫剪切应力、剪切速率和粘度? 2.什么是牛顿流体?什么是非牛顿流体? 3.高聚物的流动有什么特点? 4.影响粘流温度的因素有哪些? 5.什么叫熔融指数? 6.聚合物熔体一般是什么类型的流体? 7.为什么合成聚合物要控制分子量? 8.为什么聚合物都有一个明确的玻璃化转变温度, 却没有明确的粘流温度?
二.非牛顿流体的类型
1.粘度与时间无关
(1)假塑性流体
粘度随剪切速率的增加而 减小,即剪切变稀
n<1
(2)胀塑性流体(膨胀性流体)
粘度随剪切应力的增大而升高,即剪切 变稠,n>1
在聚合物熔体和浓溶液 中罕见,在聚合物乳液、 悬浮液中常见。
(3)宾汉流体
又称塑性流体
在剪切力小于某一临界
值y 时不发生流动,而 超过 y 后,则可像牛顿
低分子液体流动是完全不可逆的。
高聚物进行粘性流动时,伴随一定的高弹 形变,这部分是可逆的。
高弹形变的恢复过程是一个松弛过程 柔性、温度
高弹形变与加工成型
四.影响粘流温度的因素
聚合物从高弹态转变为粘流态时的温度称为 粘流温度,用 Tf 表示。
在粘流温度以上,在外力作用下,聚合物不仅链 段能够运动,而且整个分子链也能发生相对移动, 在宏观上表现为粘性流动,产生不可逆的流动形变。
l im a li m0
对于假塑性流体:0 > a >
2.熔融指数(MI-melt index)
在一定温度下,熔融状态的高聚物在一定负荷下, 十分钟内从规定直径和长度的标准毛细管中流出的重 量(克数)。熔融指数越大,则流动性越好,熔融指 数的单位为克。
(没有明确的物理意义,但可作为流动性好坏的指标)
第三节
聚合物熔体的流变性
热塑性塑料的成型加工:加热塑化、 流动成型和冷却固化;
合成纤维的纺丝、橡胶制品的成型;
高聚物的聚集态结构也是在加工中形 成的。
一.基本概念
1.粘度的定义
(1)剪切应力():
F
A
(2)剪切速率()
y
(3)粘度():
2.流动曲线
定义
就是剪切应力()与剪切速率()的关系曲线
2.高分子的极性
极性越大,分子间的相互作用也愈大,需要 在较高的温度下以提高分子运动的热能才能克 服分子间的相互作用而产生粘性流动。
极性聚合物的粘流温度比非极性聚合物高
3.分子量
粘流温度是整个高分子链开始运动的温度
分子量越大,粘流温度越高
分子量越大,分子链越长,分子链相对滑动时 的内摩擦力就越大。并且链段的热运动阻碍着 整个分子链在外力作用下的定向运动。
用 / 定义的粘度不是常数,引入表观粘度
的概念a,定义:
a
a Kn1
(2) 零切粘度
低剪切速率下,非牛顿流体表现出牛顿流体的
特性,由 对 曲线的起始斜率可得到牛顿粘度。
定义剪切速率趋于零时的粘度为零切速率粘 度,简称零切粘度:
0
li m0a
li m0
(3) 无穷剪切粘度
定义
剪切速率趋于无穷大时的粘度为无穷剪切粘度
冻胶是最常见的典型触变物质。
(2)震凝性流体
在恒定的剪切速率下(或剪切应力),流 体的粘度随时间的增加而增加,这种流体称为 震凝性流体(或摇凝液体),或反触变流体。
变稠与某种结构的形成有关。
三.高聚物粘性流动的特点
1.高分子的流动是通过链段的位移运动来完成的
小分子的流动,可用简单模型描述。 低分子液体中存在许多与分子尺寸相当的空 穴。 外力存在使分子沿作用力方向跃迁的几率比 其他方向大。
流体一样流动。
呈现这种行为的物质有泥浆、牙膏和油脂等,涂 料特别需要具有这种塑性。
(4)非宾汉流体(了解)
又称非塑性流体。同宾汉流体类似,但
超过y 后,其流动不符合牛顿流体,即流
动曲线是非线性的。
2.粘度与时间有关的
(1)触变性流体
在恒定的剪切速率下(或剪切应力),流 体的粘度随时间的增加而降低,这种流体称 为触变性流体(或摇溶液体)。
温度升高,分子热运动能量增加,液体中的空穴 也随着增加和膨胀,流动的阻力减小。液体的粘 度与温度 T 之间有如下关系。
E
AeE / RT
流动活化能,分子向穴跃迁时克服 周围分子作用所需要的能量;
粘度
分子量增大,E 增大,每增加一个-CH2-, E 大约增加约 2.1 kJ/mol
实验事实
产生高分子大小的空穴是困难的;理论推算 1000个-CH2-的E=2.1MJ/mol;比-C-C-键能
成型温度愈高愈不利。因此,在不影响制品基 本性能要求的前提下,适当降低分子量是必要的。
由于高聚物分子量的多分散性,实际上非晶高 聚物没有明晰的粘流温度,而往往是一个较宽的 软化区域,在此温度区域内,均易于流动,可进 行成型加工。
五.聚合物流动性的表征
1.熔体粘度
(1) 表观粘度
聚合物熔体和浓溶液都属非牛顿牛体,其剪 切应力对剪切速率作图得不到直线,即其粘度 有剪切速率依赖性。
粘流温度是聚合物开始粘性流动的温度,是 聚合物成型加工的下限温度。
聚合物的分解温度(Td)则是聚合物加工的
上限温度。
粘流温度对于选择最佳加工条件是很重要的。
1.高分子的柔性
分子链柔顺性好,内旋转的位垒低,流动单 元小,流动所需要的空穴小,流动活化能也较 低,可在较低的温度下即可发生粘性流动。
分子链愈柔顺,粘流温度越低; 分子链越刚性,粘流温度越高。