空间解析几何基础知识ppt课件
合集下载
高等数学-01空间解析几何(课件
向量的数量积
表示两个向量的夹角。
向量的向量积与向量的混合积
向量的向量积
表示两个向量的垂直程度。
向量的混合积
表示三个向量的空间关系。
向量在空间几何中的应用
力的合成与分解
在物理中,力可以表示为向量,力的 合成与分解可以通过向量的加法、数 乘和向量积进行计算。
速度和加速度的分析
在运动学中,速度和加速度可以表示 为向量,通过向量的加法、数乘、向 量积和混合积进行计算和分析。
空间解析几何在计算机图形学中 用于三维建模、动画制作和虚拟 现实技术。
空间解析几何的基本概念
空间向量
表示空间中具有大小和方向的 量。
向量积
表示两个向量的外积,是一个 向量运算,结果是一个向量。
空间点
表示空间中一个位置的点。
向量运算
包括加法、数乘、向量的模等 基本运算。
混合积
表示三个向量的内积,结果是 一个标量。
习题三
总结词
向量的数量积、向量积和混合积
详细描述
习题三主要涉及向量的数量积、向量积和混合积的计算和性质。通过这些练习题,学生 可以深入理解向量的数量积、向量积和混合积的概念和计算方法,掌握其性质和应用,
提高解题能力。
THANKS
感谢观看
曲线方程
通过给定的方程,可以描 述曲线的形状和路径。
常见曲线
圆、椭圆、抛物线、双曲 线等。
曲面与曲线的应用
工程设计
在机械工程、航空航天、船舶制造等领域,曲面与曲线被广泛应 用于产品设计和优化。
数学建模
在物理、化学、生物等学科中,曲面与曲线可以用来描述自然现 象和规律,建立数学模型。
数据分析
在统计学和数据分析领域,曲面与曲线可以用来可视化数据和探 索数据之间的关系。
表示两个向量的夹角。
向量的向量积与向量的混合积
向量的向量积
表示两个向量的垂直程度。
向量的混合积
表示三个向量的空间关系。
向量在空间几何中的应用
力的合成与分解
在物理中,力可以表示为向量,力的 合成与分解可以通过向量的加法、数 乘和向量积进行计算。
速度和加速度的分析
在运动学中,速度和加速度可以表示 为向量,通过向量的加法、数乘、向 量积和混合积进行计算和分析。
空间解析几何在计算机图形学中 用于三维建模、动画制作和虚拟 现实技术。
空间解析几何的基本概念
空间向量
表示空间中具有大小和方向的 量。
向量积
表示两个向量的外积,是一个 向量运算,结果是一个向量。
空间点
表示空间中一个位置的点。
向量运算
包括加法、数乘、向量的模等 基本运算。
混合积
表示三个向量的内积,结果是 一个标量。
习题三
总结词
向量的数量积、向量积和混合积
详细描述
习题三主要涉及向量的数量积、向量积和混合积的计算和性质。通过这些练习题,学生 可以深入理解向量的数量积、向量积和混合积的概念和计算方法,掌握其性质和应用,
提高解题能力。
THANKS
感谢观看
曲线方程
通过给定的方程,可以描 述曲线的形状和路径。
常见曲线
圆、椭圆、抛物线、双曲 线等。
曲面与曲线的应用
工程设计
在机械工程、航空航天、船舶制造等领域,曲面与曲线被广泛应 用于产品设计和优化。
数学建模
在物理、化学、生物等学科中,曲面与曲线可以用来描述自然现 象和规律,建立数学模型。
数据分析
在统计学和数据分析领域,曲面与曲线可以用来可视化数据和探 索数据之间的关系。
第一节 空间解析几何的基本知识.
(2) p 0, q 0 时, z 0
曲面在 xOy 平面上方
z y
x
当 x 0, y 0 时, z 0
曲面通过坐标原点,我们把坐标原点叫 做椭圆抛物线的顶点
• M2
Q Ny
M1M2 x2 x1 2 y2 y1 2 z2 z1 2 .
空间两点间距离公式
特殊地:若两点分别为 M( x, y, z) , O(0,0,0)
d OM x2 y2 z2 .
例 1 求证以M1(4,3,1)、M 2 (7,1,2)、M 3 (5,2,3)
三点为顶点的三角形是一个等腰三角形.
2、球心在点 M0 ( x0 , y0 , z0 )、半径为 R的球面
方程.
解 设M( x, y, z)是球面上任一点,
根据题意有
| MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
特殊地:球心在原点时方程为 x2 y2 z2 R2
Ⅲ
yoz面
Ⅳ
xoy面
Ⅶ
x
Ⅷ
z zox 面
Ⅱ
o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
空间的点M 11 有序数组( x, y, z)
特殊点的表示: 坐标轴上的点 P, Q, R, 坐标面上的点 A, B, C, O(0,0,0)
z
R(0,0, z)
B(0, y, z)
C( x,o, z)
o x P( x,0,0)
• x y 0 表示母线平行于
z 轴的平面. (且 z 轴在平面上)
z
o y
x
z
o y
x
一般地,在三维空间
曲面在 xOy 平面上方
z y
x
当 x 0, y 0 时, z 0
曲面通过坐标原点,我们把坐标原点叫 做椭圆抛物线的顶点
• M2
Q Ny
M1M2 x2 x1 2 y2 y1 2 z2 z1 2 .
空间两点间距离公式
特殊地:若两点分别为 M( x, y, z) , O(0,0,0)
d OM x2 y2 z2 .
例 1 求证以M1(4,3,1)、M 2 (7,1,2)、M 3 (5,2,3)
三点为顶点的三角形是一个等腰三角形.
2、球心在点 M0 ( x0 , y0 , z0 )、半径为 R的球面
方程.
解 设M( x, y, z)是球面上任一点,
根据题意有
| MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
特殊地:球心在原点时方程为 x2 y2 z2 R2
Ⅲ
yoz面
Ⅳ
xoy面
Ⅶ
x
Ⅷ
z zox 面
Ⅱ
o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
空间的点M 11 有序数组( x, y, z)
特殊点的表示: 坐标轴上的点 P, Q, R, 坐标面上的点 A, B, C, O(0,0,0)
z
R(0,0, z)
B(0, y, z)
C( x,o, z)
o x P( x,0,0)
• x y 0 表示母线平行于
z 轴的平面. (且 z 轴在平面上)
z
o y
x
z
o y
x
一般地,在三维空间
空间解析几何基本知识_ppt课件
M
O x P(x,0,0)
在直角坐标系下
1 1
Q (0 ,y ,0 )
y
A (x ,y ,0 )
(x, y, z) (称为点 M 的坐标) 点 M 有序数组
8
4.各卦限坐标的符号: Ⅰ(+,+,+), Ⅱ(-,+,+), Ⅲ(-,-,+), Ⅳ(+,-,+), Ⅴ(+,+,-), Ⅵ(-,+,-),
14 14 解得 z , 即所求点为 M(0, 0, ) . 9 9
13
二、曲面及其方程的概念
引例: 求到两定点A(1,2,3) 和B(2,-1,4)等距离的点的 轨迹方程. 解:设轨迹上的动点为 M AM BM ,即 ( x ,y ,z ) ,则
( x 1 ) ( y 2 ) ( z 3 )
2
第七章 第一节 空间解析几何基本知识
一、空间直角坐标系
二、曲面及其方程的概念 三、几种常见的曲面及其方程
3
一、空间直角坐标系
为了确定空间上一个点的位 置,我们需要引入空间直角坐 标系. 为此,过空间中一点 o 分别作 ,oy ,oz 三条互相垂直的数轴 ox
z
o
y
x
(见右图所示),常称这三条数轴为三个坐标轴,分别 oy轴和 oz 记为ox 轴、 轴.
4
一、空间直角坐标系
(一)空间坐标系的建立 定义:由原点重合且互相 垂直的三条数轴(单位一般
o
x
z
y
一致), 而且三条数轴的正方
向符合右手系. 即构成一个空间直角坐标系.
右手系: 即以右手握住z轴,当右手的四个手指从 轴的正向以 角度转向 y轴的正向时,大拇指的 x 2 指向就是 z 轴的正向.
《空间解析几何》课件
了解空间解析几何在计算机图形 学中的应用,如3D建模、动画制 作等。
THANKS
感谢观看
通过参数方程表示曲面的形式,如x = x(u, v),y = y(u, v),z = z(u, v)。
曲面方程
表示三维空间中曲面的方程形式,如z = f(x, y)。
空间曲线的方程
1 2
参数曲线
通过参数方程表示曲线的形式,如x = x(t),y = y(t),z = z(t)。
空间曲线
表示三维空间中曲线的方程形式,如F(x, y, z) = 0。
空间解析几何的应用领域
总结词
空间解析几何在许多领域都有广泛的应用。
详细描述
在物理学中,空间解析几何用于描述物理现象的空间关系,如力学、电磁学和光学等领 域。在计算机图形学中,空间解析几何用于建模和渲染三维场景。在工程学中,空间解 析几何用于设计和分析机械、建筑和航空航天等领域中的物体和结构。此外,空间解析
03
空间平面与直线
空间平面的方程
平面方程的基本形式
Ax + By + Cz + D = 0
特殊平面
平行于坐标轴的平面、过原点的平面、与坐标轴垂直的平面
参数方程
当平面过某一定点时,可以用参数方程表示平面的方程
空间直线的方程
直线方程的基本形式
Ax + By + Cz = 0
特殊直线
与坐标轴平行的直线、过原点的直线、与坐标轴垂直的直线
利用代数方法,如向量运算、线性代数等, 求解空间几何问题。
几何意义
将代数解转化为几何意义,解释其实际意义 。
如何理解空间几何中的概念?
向量的概念
理解向量的表示、向量的加法、数乘以及向量的模 等基本概念。
THANKS
感谢观看
通过参数方程表示曲面的形式,如x = x(u, v),y = y(u, v),z = z(u, v)。
曲面方程
表示三维空间中曲面的方程形式,如z = f(x, y)。
空间曲线的方程
1 2
参数曲线
通过参数方程表示曲线的形式,如x = x(t),y = y(t),z = z(t)。
空间曲线
表示三维空间中曲线的方程形式,如F(x, y, z) = 0。
空间解析几何的应用领域
总结词
空间解析几何在许多领域都有广泛的应用。
详细描述
在物理学中,空间解析几何用于描述物理现象的空间关系,如力学、电磁学和光学等领 域。在计算机图形学中,空间解析几何用于建模和渲染三维场景。在工程学中,空间解 析几何用于设计和分析机械、建筑和航空航天等领域中的物体和结构。此外,空间解析
03
空间平面与直线
空间平面的方程
平面方程的基本形式
Ax + By + Cz + D = 0
特殊平面
平行于坐标轴的平面、过原点的平面、与坐标轴垂直的平面
参数方程
当平面过某一定点时,可以用参数方程表示平面的方程
空间直线的方程
直线方程的基本形式
Ax + By + Cz = 0
特殊直线
与坐标轴平行的直线、过原点的直线、与坐标轴垂直的直线
利用代数方法,如向量运算、线性代数等, 求解空间几何问题。
几何意义
将代数解转化为几何意义,解释其实际意义 。
如何理解空间几何中的概念?
向量的概念
理解向量的表示、向量的加法、数乘以及向量的模 等基本概念。
《空间解析几何基础》PPT课件
24
(5)二次锥面
x2 a2
y2 b2
z2 c2
0
(6)椭圆抛物面
x2 a2
y2 b2
2z
0
(a,b,c 0) (a,b 0)
(7.10) (7.11)
25
(7)双曲抛物面(马鞍面) x2 y2 2z 0 (a,b 0) a2 b2
(7.12)
26
思考题
指出下列方程在平面解析几何中和空 间解析几何中分别表示什么图形?
(1) x 2;
(2) x2 y2 4;
(3) y x 1.
27
思考题解答
方程
平面解析几何中 空间解析几何中
x2
平行于y 轴的直线 平行于 yoz 面的平面
圆心在(0,0) ,
x2 y2 4
半径为2 的圆
以z 轴为中心轴的圆柱面
y x 1 斜率为1的直线 平行于z 轴的平面
பைடு நூலகம்
28
三、平面区域的概念及其解析表示 设P0(x0,y0)是xOy平面上的一定点,δ>0为一实
4
空间两点间的距离
设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点
zR
M1•
P o
d M1M2 ?
• M2
Q N
在直角M1 NM 2 及 直 角 M1 PN
中,使用勾股定
y 理知
x
d 2 M1P 2 PN 2 NM 2 2 ,
5
M1P x2 x1 , PN y2 y1 , NM 2 z2 z1 ,
(7.4)
其 中 a,b,c,d 为 常 数 , 且 a,b,c 不 全 为 零 . 例 如 , 当
空间解析几何精ppt课件
记作-a ; 因平行向量可平移到同一直线上, 故两向量平行又称
两向量共线 . 若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k
个向量共面 .
.
机动 目录 上页 下页 返回 结束
二、向量的线性运算
1. 向量的加法 平行四边形法则:
b ab
(ab)c
c
bc
a(bc)
a 三角形法则: ab
b
过空间一定点 o ,由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
• 坐标原点
Ⅲ
zz 轴(竖轴)
Ⅱ
• 坐标轴
Ⅳ
• 坐标面
• 卦限(八个) Ⅶ x
x轴(横轴)
Ⅷ
yoz面 oxoy面
Ⅴ
Ⅰ
y
y轴(纵轴)
Ⅵ
.
机动 目录 上页 下页 返回 结束
在直角坐标系下
点 M 1 1有序数组 (x, y, z) 1 1向径 r
M2
零向量: 模为 0 的向量, 记 0 , 或 作 0 . M 1
.
机动 目录 上页 下页 返回 结束
若向量 a 与 b大小相等, 方向相同, 则称 a 与 b 相等,
记作 a=b ; 若向量 a 与 b 方向相同或相反, 则称 a 与 b 平行,记作
a∥b ; 规定: 零向量与任何向量平行 ; 与 a 的模相同, 但方向相反的向量称为 a 的负向量,
ab b a
a
运算规律 : 交换律 a b b a
结合律 (ab)ca(bc)a.
.
机动 目录 上页 下页 返回 结束
s a 1 a 2 a 3 a 4 a 5
a4
a5
a3 s
两向量共线 . 若 k (≥3)个向量经平移可移到同一平面上 , 则称此 k
个向量共面 .
.
机动 目录 上页 下页 返回 结束
二、向量的线性运算
1. 向量的加法 平行四边形法则:
b ab
(ab)c
c
bc
a(bc)
a 三角形法则: ab
b
过空间一定点 o ,由三条互相垂直的数轴按右手规则
组成一个空间直角坐标系.
• 坐标原点
Ⅲ
zz 轴(竖轴)
Ⅱ
• 坐标轴
Ⅳ
• 坐标面
• 卦限(八个) Ⅶ x
x轴(横轴)
Ⅷ
yoz面 oxoy面
Ⅴ
Ⅰ
y
y轴(纵轴)
Ⅵ
.
机动 目录 上页 下页 返回 结束
在直角坐标系下
点 M 1 1有序数组 (x, y, z) 1 1向径 r
M2
零向量: 模为 0 的向量, 记 0 , 或 作 0 . M 1
.
机动 目录 上页 下页 返回 结束
若向量 a 与 b大小相等, 方向相同, 则称 a 与 b 相等,
记作 a=b ; 若向量 a 与 b 方向相同或相反, 则称 a 与 b 平行,记作
a∥b ; 规定: 零向量与任何向量平行 ; 与 a 的模相同, 但方向相反的向量称为 a 的负向量,
ab b a
a
运算规律 : 交换律 a b b a
结合律 (ab)ca(bc)a.
.
机动 目录 上页 下页 返回 结束
s a 1 a 2 a 3 a 4 a 5
a4
a5
a3 s
高等数学第八章空间解析几何教学精品PPT课件
高等数学(下册)
§8.4 空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
高等数学(下册)
一、空间曲线的一般方程
空间曲线C可看作两曲面S1与S2的交线.
若S1:F(x,y),z0;
z
S2:G(x,y),z0,
S1
则 M ( x ,y ,z ) C M S 1 且 M S 2
x
0
同理,xo面z 上的投影曲线,
y o z 面上
的投影曲线
T(x, z) 0
y
0
高等数学(下册)
如图:投影曲线的研究过程.
空间曲线
投影柱面
投影曲线
高等数学(下册)
x2 y2 z2 1
例4
求曲线
z
1 2
在坐标面上的投影.
解 (1)消去变量z后得
x2 y2 3, 4
在 xoy面上的投影为
解 截线方程为
y2 z2 x x2y z 0
如图,
高等数学(下册)
( 1) 消 去 z得 投 影x25y24xyx0,
z0
( 2) 消 去 y得 投 影x25z22xz4x0,
y0
( 3) 消 去 x得 投 影y2
z2
2yz0 .
x0
高等数学(下册)
补充: 空间立体或曲面在坐标面上的投影.
t
oM
xaco ts
yasi nt
zvt
x A M y 螺旋线的参数方程
高等数学(下册)
螺旋线的参数方程还可以写为
x a cos
y
a
sin
z b
(t, bv)
螺旋线的重要性质:
§8.4 空间曲线及其方程
一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影
高等数学(下册)
一、空间曲线的一般方程
空间曲线C可看作两曲面S1与S2的交线.
若S1:F(x,y),z0;
z
S2:G(x,y),z0,
S1
则 M ( x ,y ,z ) C M S 1 且 M S 2
x
0
同理,xo面z 上的投影曲线,
y o z 面上
的投影曲线
T(x, z) 0
y
0
高等数学(下册)
如图:投影曲线的研究过程.
空间曲线
投影柱面
投影曲线
高等数学(下册)
x2 y2 z2 1
例4
求曲线
z
1 2
在坐标面上的投影.
解 (1)消去变量z后得
x2 y2 3, 4
在 xoy面上的投影为
解 截线方程为
y2 z2 x x2y z 0
如图,
高等数学(下册)
( 1) 消 去 z得 投 影x25y24xyx0,
z0
( 2) 消 去 y得 投 影x25z22xz4x0,
y0
( 3) 消 去 x得 投 影y2
z2
2yz0 .
x0
高等数学(下册)
补充: 空间立体或曲面在坐标面上的投影.
t
oM
xaco ts
yasi nt
zvt
x A M y 螺旋线的参数方程
高等数学(下册)
螺旋线的参数方程还可以写为
x a cos
y
a
sin
z b
(t, bv)
螺旋线的重要性质:
空间解析几何基本知识《微积分》PPT31页
55、 为 中 华 之 崛起而 读书 ——周 恩来
空间解析几何基本知识《微积分》
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
空间解析几何基本知识《微积分》
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为终点的向量,
过M1 , M2各作垂直于三个坐标轴的平面 , 这六个平面围成一个以线段M1M 2 为对角线的
长方体.
20
以i
,
j,
k 分别表示沿x,
z
y,
za轴正a向xi的 单ay位j 向a量zk.
R
向向 向
M2
量量 量
x
k M1
P
o
j
i
Q
在
x
N
y
轴 上
的
ax x2 x1 投
aab{ax{,aax
y,
az },
bx
,
a
y
b by ,
{bx ,
az
by , bz }
bz },
a
b
(ax {ax
bx )i (ay by ) bx ,ay by , az
a
a
向径: 空间直角坐标系中任一点 M与原点 构成的向量.OM
7
二、向量的加减法
[1]
加法: a
b
c
(平行四边形法则)
b
c
a
(平行四边形法则有时也称为三角形法则)
特殊地:若
a‖
a b
b
分为同向和反向
c | c || a
|
|
b
|
b a
c
|
c
,使
b
a.
11
设a0表示与非零向量a 同方向的单位向量,
按照向量与数的乘积的规定,
a | a | a0
|
a a
|
a
0
.
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
12
13
一、空间两向量的夹角的概念:
向量aa与0,向量bb的0,夹角
3
二、空间两点间的距离
设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点
M1M2 x2 x1 2 y2 y1 2 z2 z1 2 .
空间两点间距离公式
4
5
一、向量的概念
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
向量的以模M:1向为量起点 的,大M小.2 为| a终| 或点|的M有1M向2线| 段.
单位向量:模长为1的向量. a0
或
M1
M
0 2
零向量:模长为0的向量. 0
6
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
a
b 负向量:大小相等但方向相反的向量. a
a 2a 1 a 2
10
数与向量的乘积符合下列运算规律:
(1)结合律:(a) ( a) ()a
(2)分配律:( )a a a
(a
b)
a
b
两个向量的平行关系
定理
设向量
a
0,那末向量
b
平行于
a
的充
分必要条件是:存在唯一的实数
b
a
(a,
b)
(b,
a
)
(0 )
类似地,可定义向量与一轴或空间两轴的夹角.
特殊地,当两个向量中有一个零向量时,规定 它们的夹角可在0与 之间任意取值.
14
空间一点在轴上的投影
A
过点A 作轴u的垂直
A
u
平面,交点A 即为点 A 在轴u 上的投影.
15
空间一向量在轴上的投影
B A
u
A
B
已知向量的起点A 和终点B 在
轴u上的投影分别为 A, B那
么轴u 上的有向线段AB 的
值,称为向量在轴u 上的投影.
16
向量AB在轴u 上的投影记为 Pr ju AB AB.
关于向量的投影定理(1)
向量AB 在轴u 上的投影等于向量的模乘以
轴与向量的夹角的余弦: Pr ju AB | AB | cos
c
a
(b)
a
a
b
a
b
9
三、向量与数的乘法
设 是一个数,向量a 与 的乘积a 规定为
(1) 0, a与a 同向,| a | | a |
(2) 0,
a
0
(3) 0, a与a 反向,| a || | | a |
1
一、空间点的直角坐标
三个坐标轴的正方向 符合右手系.
z 竖轴
即以右手握住z 轴,
当右手的四个手指
从正向x 轴以 角
2
度转向正向y 轴
时,大拇指的指向
就是z 轴的正向.
定点 o
y 纵轴
横轴 x 空间直角坐标系
2
Ⅲ
yoz 面
Ⅳ
xoy 面
Ⅶ
x
Ⅷ
z zox 面
Ⅱ
o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
19
二、向量在坐标轴上的分向量与向量 的坐标
设a 是以M1( x1 , y1 , z1 )为起点、M2 ( x2 , y2 , z2 )
在 y 轴 上 的 投
在z
轴 上 的 投
a y y2 y1 az z2 z1 影 影 影
M1M2 ( x2 x1 )i ( y2 y1 ) j (z2 z1 )k
21
按基本单位向量的坐标分解式:
M1M2 ( x2 x1 )i ( y2 y1 ) j (z2 z1 )k
|
|
a
|
|
b
|
8
向量的加法符合下列运算规律:
(1)交换律:
a
b
b
a.
(2)结合律:
a
b
c
(a
b)
c
a
(b
c).
(3)
a
(a)
0.
[2]
减法
a
b
a
(b)
a
b
b
b
b c
a
b
证
B
A
B
ABPr ju AB Pr ju ABu u
| AB | cos
17
定理1的说明:
(1) 0 , 投影为正;
2
(2) , 投影为负;
2
(3) ,
2
投影为零;
c
a
b
u
(4) 相等向量在同一轴上投影相等;
18
关于向量的投影定理(2)
在三个坐标轴上的分向量:axi , ay j , azk ,
向量的坐标: ax , a y
向量的坐标表达式:
, a
az
, {a
x
,
ay,
az }
M1M2 { x2 x1, y2 y1, z2 z1}
特殊地:OM {x, y, z}
22
向量的加减法、向量与数的乘法运算的坐标表达式
过M1 , M2各作垂直于三个坐标轴的平面 , 这六个平面围成一个以线段M1M 2 为对角线的
长方体.
20
以i
,
j,
k 分别表示沿x,
z
y,
za轴正a向xi的 单ay位j 向a量zk.
R
向向 向
M2
量量 量
x
k M1
P
o
j
i
Q
在
x
N
y
轴 上
的
ax x2 x1 投
aab{ax{,aax
y,
az },
bx
,
a
y
b by ,
{bx ,
az
by , bz }
bz },
a
b
(ax {ax
bx )i (ay by ) bx ,ay by , az
a
a
向径: 空间直角坐标系中任一点 M与原点 构成的向量.OM
7
二、向量的加减法
[1]
加法: a
b
c
(平行四边形法则)
b
c
a
(平行四边形法则有时也称为三角形法则)
特殊地:若
a‖
a b
b
分为同向和反向
c | c || a
|
|
b
|
b a
c
|
c
,使
b
a.
11
设a0表示与非零向量a 同方向的单位向量,
按照向量与数的乘积的规定,
a | a | a0
|
a a
|
a
0
.
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
12
13
一、空间两向量的夹角的概念:
向量aa与0,向量bb的0,夹角
3
二、空间两点间的距离
设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点
M1M2 x2 x1 2 y2 y1 2 z2 z1 2 .
空间两点间距离公式
4
5
一、向量的概念
M2
向量:既有大小又有方向的量.
向量表示:a 或 M1M2
M1
向量的以模M:1向为量起点 的,大M小.2 为| a终| 或点|的M有1M向2线| 段.
单位向量:模长为1的向量. a0
或
M1
M
0 2
零向量:模长为0的向量. 0
6
自由向量:不考虑起点位置的向量.
相等向量:大小相等且方向相同的向量.
a
b 负向量:大小相等但方向相反的向量. a
a 2a 1 a 2
10
数与向量的乘积符合下列运算规律:
(1)结合律:(a) ( a) ()a
(2)分配律:( )a a a
(a
b)
a
b
两个向量的平行关系
定理
设向量
a
0,那末向量
b
平行于
a
的充
分必要条件是:存在唯一的实数
b
a
(a,
b)
(b,
a
)
(0 )
类似地,可定义向量与一轴或空间两轴的夹角.
特殊地,当两个向量中有一个零向量时,规定 它们的夹角可在0与 之间任意取值.
14
空间一点在轴上的投影
A
过点A 作轴u的垂直
A
u
平面,交点A 即为点 A 在轴u 上的投影.
15
空间一向量在轴上的投影
B A
u
A
B
已知向量的起点A 和终点B 在
轴u上的投影分别为 A, B那
么轴u 上的有向线段AB 的
值,称为向量在轴u 上的投影.
16
向量AB在轴u 上的投影记为 Pr ju AB AB.
关于向量的投影定理(1)
向量AB 在轴u 上的投影等于向量的模乘以
轴与向量的夹角的余弦: Pr ju AB | AB | cos
c
a
(b)
a
a
b
a
b
9
三、向量与数的乘法
设 是一个数,向量a 与 的乘积a 规定为
(1) 0, a与a 同向,| a | | a |
(2) 0,
a
0
(3) 0, a与a 反向,| a || | | a |
1
一、空间点的直角坐标
三个坐标轴的正方向 符合右手系.
z 竖轴
即以右手握住z 轴,
当右手的四个手指
从正向x 轴以 角
2
度转向正向y 轴
时,大拇指的指向
就是z 轴的正向.
定点 o
y 纵轴
横轴 x 空间直角坐标系
2
Ⅲ
yoz 面
Ⅳ
xoy 面
Ⅶ
x
Ⅷ
z zox 面
Ⅱ
o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
19
二、向量在坐标轴上的分向量与向量 的坐标
设a 是以M1( x1 , y1 , z1 )为起点、M2 ( x2 , y2 , z2 )
在 y 轴 上 的 投
在z
轴 上 的 投
a y y2 y1 az z2 z1 影 影 影
M1M2 ( x2 x1 )i ( y2 y1 ) j (z2 z1 )k
21
按基本单位向量的坐标分解式:
M1M2 ( x2 x1 )i ( y2 y1 ) j (z2 z1 )k
|
|
a
|
|
b
|
8
向量的加法符合下列运算规律:
(1)交换律:
a
b
b
a.
(2)结合律:
a
b
c
(a
b)
c
a
(b
c).
(3)
a
(a)
0.
[2]
减法
a
b
a
(b)
a
b
b
b
b c
a
b
证
B
A
B
ABPr ju AB Pr ju ABu u
| AB | cos
17
定理1的说明:
(1) 0 , 投影为正;
2
(2) , 投影为负;
2
(3) ,
2
投影为零;
c
a
b
u
(4) 相等向量在同一轴上投影相等;
18
关于向量的投影定理(2)
在三个坐标轴上的分向量:axi , ay j , azk ,
向量的坐标: ax , a y
向量的坐标表达式:
, a
az
, {a
x
,
ay,
az }
M1M2 { x2 x1, y2 y1, z2 z1}
特殊地:OM {x, y, z}
22
向量的加减法、向量与数的乘法运算的坐标表达式